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ABSTRACT. In this paper we present a classification, up to equivariant iso-
morphism, of C∗-dynamical systems (A, R, α) arising as inductive limits of
directed systems {(An, R, αn), ϕnm} where each An is a finite direct sum of
matrix algebras over graphs, the ϕnm are unital and injective, and the αns are
generated by inner ∗-derivations coming from diagonalisable self-adjoint ele-
ments with distinct eigenvalues.
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1. INTRODUCTION

There are now many classification results for C∗-dynamical systems of in-
ductive limit type. For various cases involving compact groups, see [1],[8], [9],[10],
and [12]. For non-compact groups, inductive limit type actions of the Euclidean
motion group were studied in [4], actions of SL(2, R) were considered in [5], and
AF flows were classified in [2] and [3].

In this paper we shall consider C∗-dynamical systems (A, R, αn) arising as
limits of inductive systems {(An, R, αn), ϕnm}where each An is a finite direct sum
of matrix algebras over graphs, the αns are generated by inner derivations given
by diagonalisable self-adjoint elements having distinct eigenvalues in all minimal
quotients, and the ϕnm are unital, injective equivariant ∗-homomorphisms. In
the case where the algebras are simple, these algebras were classified in [13] by
showing that they are AT, reducing the problem to that already solved in [7] and
[15]. Our theorem does not include this result, as the trivial action does not satisfy
our hypotheses. When attention is restricted to the algebra, our invariant closely
resembles that used in [17] to classify pairs (A, B) with B what is called in [17] an
approximately trivial homogemeous C∗-algebra and A a diagonal in B.
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For the rest of this paper, the term C∗-dynamical system shall always imply
that the group is R, and we shall write Aα for the fixed point subalgebra of A
under the action α. We refer the reader to [16] for general facts about R actions.

2. THE INVARIANT

DEFINITION 2.1. By the term graph we shall mean a 1-dimensional simpli-
cial complex. Thus, each edge has exactly two vertices and any two edges have
at most one intersection point, which must be a vertex. We shall assume that all
graphs are connected unless stated otherwise.

DEFINITION 2.2. Let A be a C∗-algebra that is isomorphic to a matrix alge-
bra over a graph X. A self-adjoint element a ∈ A is called diagonalisable if, and
only if, there exist mutually orthogonal projections P1, . . . , Pm ∈ A and functions
f1, . . . , fm from X to R such that a(t) = f1(t)P1(t)+· · ·+ fmPm(t) for all t ∈ X. If
A is a finite direct sum of matrix algebras over graphs we say that a self adjoint
element a ∈ A is diagonalisable if its cut-down by each minimal central projec-
tion is.

In the special case where X is a tree and the eigenvalues of a are distinct
in every fibre, it follows from Theorem 1.4 of [11] that diagonalisability of a is
automatic. It is not in general (cf. the counterexamples in [11]).

DEFINITION 2.3. We shall say that a C∗-dynamical system (A, α) is of special
form if, and only if, A is a finite direct sum of matrix algebras over graphs and α is
generated by an inner derivation given by a diagonalisable self-adjoint element
h of A having the property that the image of h has distinct eigenvalues in every
simple quotient of A.

DEFINITION 2.4. If A is a sub-C∗-algebra of a C∗-algebra B, an element b ∈
B is called an A-normaliser if bAb∗ ⊆ A and b∗Ab ⊆ A. If B is a unital C∗-algebra,
a system of matrix units in B is a set {eij}n

i,j=1 such that e∗ij = eji, eijekl = δjkeil , and
n
∑

i=1
eii = 1. If B ∼= C(X)⊗Mn, where X is a compact Hausdorff space, a diagonal in

B was defined in [17] to be an Abelian subalgebra A ⊆ B such that A contains the
unit of B and there exists a system of matrix units in B consisting of normalisers of

A that, together with A, generate B. If B ∼=
k⊕

m=1
C(Xm)⊗ Mnm , where each Xm is a

compact Hausdorff space, we shall call an Abelian subalgebra A ⊆ B a diagonal
in B if its intersection with each C(Xm)⊗ Mnm is a diagonal in the above sense.

LEMMA 2.5. Let (A, α) be a C∗-dynamical system of special form. Then the fixed
point subalgebra, Aα, of A is a diagonal in A.
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Proof. Let (A, α) be a C∗-dynamical system of special form. It will be suffi-
cient to consider the case where A has only one direct summand. Suppose A ∼=
Mn(C(X)), where X is a graph, and that α is generated by an inner ∗-derivation
coming from a diagonalisable self-adjoint element h. Our hypotheses imply that
we may write h(t) = f1(t)p1(t) + · · · + fn(t)pn(t), t ∈ X, where p1, . . . , pn are
pairwise orthogonal minimal projections in A ∼= C(X, Mn), and f1, . . . , fn are real
valued functions on X with the property that fi(t) 6= f j(t) if i 6= j for all ts.
If g ∈ Aα, we must have g(t) = p1(t)g(t)p1(t) + · · ·+ pn(t)g(t)pn(t) for every
t ∈ X. It follows that Aα ∼= p1 Ap1⊕ · · · ⊕ pn Apn ∼= C(X)⊕ · · · ⊕C(X) (n copies).
The minimal projections p1, . . . pn are pairwise equivalent, so there exist partial
isometries v11, . . . , v1n in A such that v1iv∗1i = p1 and v∗1iv1i = pi for each i. Setting
eij = v∗1iv1j we see that {eij} is a system of matrix units consisting of normalisers
of Aα. Since Aα contains the centre of A, it follows that Aα is a diagonal.

DEFINITION 2.6. Let X and Y be compact Hausdorff spaces. A unital ∗-
homomorphism ϕ : C(X)⊗ Mn → C(Y)⊗ Mnk is called a standard homomorphism
if there exist continuous functions f1, . . . , fk from Y to X such that ϕ(h) = diag(h ◦
f1, . . . , h ◦ fk) for all h ∈ C(X)⊗ Mn, for some identifications of C(X)⊗ Mn and

C(Y)⊗ Mnk with C(X, Mn) and C(Y, Mnk) respectively. If A∼=
k⊕

m=1
C(Xm) ⊗Mnm

and B ∼=
l⊕

j=1
C(Xm)⊗Mnj , where the Xms and Yjs are graphs, we shall call a unital

∗-homomorphism ϕ : A → B standard if, and only if, each of the partial maps
from C(Xm) ⊗ Mnm to ϕ(1m)(C(Yj) ⊗ Mnj)ϕ(1m) for 1 6 m 6 k, 1 6 j 6 l are
standard in the above sense, where 1m is the unit of the m-th direct summand of
A. (Note that all of the projections in a matrix algebra over a graph are trivial, so
ϕ(1m)(C(Yj)⊗ Mnj)ϕ(1m) ∼= Mrank(ϕ(1m))(C(Yj)).)

It follows from Lemma 2.5 above and Corollary 1.13 of [17] that if (A, α)
and (B, β) are two C∗-dynamical systems of special form, and ϕ : A → B is a
unital equivariant ∗-homomorphism, then ϕ is unitarily equivalent to a standard
homomorphism.

LEMMA 2.7. Suppose {(An, αn), ϕnm} is an inductive system of C∗-dynamical
systems where each (An, αn) is of special form and let (A, α) denote the inductive limit

C∗-dynamical system. Then Aα =
∞⋃

n=1
ϕn∞(Aαn

n ).

Proof. Let (A, α) be a C∗-dynamical system. For each natural number n,
let gn : R → R be the function defined by gn(t) = 1/(2n + 1) if t ∈ [−n, n],
gn(t) = 0 if t /∈ [−n − 1, n + 1], and being linear on [−n − 1,−n] and [n, n +
1]. Then

∫
R

gn(t) dt = 1. Consider the mapping Γn : A → A given by Γn(a) =
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R

gn(t)αt(a) dt. If a, b ∈ A, we have

‖Γn(a)− Γn(b)‖ =
∥∥∥ ∫

R

gn(t)αt(a) dt−
∫
R

gn(t)αt(b) dt
∥∥∥

6
∫
R

gn(t)‖αt(a)− αt(b)‖dt = ‖a− b‖.

Furthermore, if (B, β) is another C∗-dynamical system, and ϕ : A → B is an
equivariant ∗-homomorphism, then Γn ◦ ϕ = ϕ ◦ Γn, where we define Γn on B the
same way.

Let {(An, αn), ϕnm} be an inductive system of C∗-dynamical systems where
each (An, αn) is of special form and let (A, α) denote the inductive limit C∗-
dynamical system. Let a ∈ Aα and let ε > 0 be given. For some natural number m,
there exists a b ∈ Am such that ‖ϕm∞(b)− a‖ < ε. Suppose that Am ∼= C(X)⊗Ml
for a graph X (the case of several direct summands is similar) and that αm is gen-
erated by a self-adjoint element h(x) = f1(x)p1(x) + · · · + fl(x)pl(x), x ∈ X,
where p1, . . . , pl are orthogonal minimal projections with sum 1 and the f js are
real valued functions with distinct values for every x ∈ X. It is then easy to see
that αm,t(pk(x)b(x)pj(x)) = exp(it( fk(x)− f j(x)))(pk(x)b(x)pj(x)) for all x ∈ X
and t ∈ R. Since the values of the f js are distinct for every x ∈ X, and X is
compact, it follows that fk(x)− f j(x) is bounded and bounded away from zero,
M > | fk(x)− f j(x)| > δ > 0, say. If r is a non-zero real number,

∫
I

eirt dt will be

zero on any interval of length 2π/|r|. Noticing that( ∫
R

gn(t)αt(pkbpj) dt
)
(x) =

( ∫
R

gn(t) exp(it( fk(x)− f j(x))) dt
)
(pk(x)b(x)pj(x)),

it is easy to see that Γn(pkbpj) → 0 as n → ∞ for j 6= k, so Γn(b) → p1bp1 +
· · ·+ plbpl ∈ Aαm

m as n → ∞. It follows that ‖a− ϕm∞(p1bp1 + · · ·+ plbpl)‖ 6 ε.

Since ε > 0 was arbitrary, a ∈
∞⋃

n=1
ϕn∞(Aαn

n ). The other inclusion is obvious, so

the lemma follows.

It is immediate from this lemma, and important for what follows, that Aα is
commutative.

DEFINITION 2.8. Let (A, α) be a C∗-dynamical system. A non-zero partial
isometry v ∈ A will be called a generalised eigenisometry if, and only if, vv∗ and v∗v
are in Aα; and there exists a self-adjoint element a ∈ Aα such that vv∗avv∗ = a,
and, for all t ∈ R, αt(v) = eiatv. If v is a generalised eigenisometry, the element a
satisfying the above conditions is easily seen to be unique, and we shall refer to
it as the generalised eigenvalue of v. We shall consider the zero partial isometry
to be a generalised eigenisometry with generalised eigenvalue zero.
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LEMMA 2.9. Let (A, α) be a C∗-dynamical system of special form, and let v be a
partial isometry with vv∗ ∈ Aα and v∗v ∈ Aα. Then v is a generalised eigenisometry .
Furthermore, if u is another partial isometry with uu∗ ∈ Aα, u∗u ∈ Aα, and ‖u− v‖ <
1/10, then uu∗ = vv∗, u∗u = v∗v, and u has the same generalised eigenvalue as v.

Proof. Let (A, α) be a C∗-dynamical system with Aα commutative, and sup-
pose that u and v are generalised eigenisometries with generalised eigenvalues a
and b respectively, and that v∗v ⊥ u∗u and uu∗ ⊥ vv∗. Then u + v is a generalised
eigenisometry with generalised eigenvalue a + b. Furthermore, if p is a projec-
tion in Aα and p 6 u∗u, then up is a generalised eigenisometry with generalised
eigenvalue a(upu∗).

Suppose now that (A, α) is of special form. From the above observations, it
will be sufficient to consider the case of one direct summand. Suppose that Am ∼=
C(X)⊗Ml for a graph X and that αm is generated by a self-adjoint element h(x) =
f1(x)p1(x) + · · · + fl(x)pl(x), x ∈ X, where p1, . . . , pl are orthogonal minimal
projections with sum 1 and the f js are real valued functions with distinct values
for every x ∈ X. If v is a partial isometry with v∗v ∈ Aα, then v∗v is a sum of
certain of the ps. If pj 6 v∗v, then vpjv∗ is another minimal projection in Aα, and
is therefore another of the ps, pk say. If b ∈ pk Apj, we have αt(pk(x)b(x)pj(x)) =
exp(it( fk(x)− f j(x)))(pk(x)b(x)pj(x)) for all x ∈ X and t ∈ R, so we see that vpj
is a generalised eigenisometry, and it follows that v is.

Let u and v be two partial isometries with vv∗ ∈ Aα, v∗v ∈ Aα, uu∗ ∈ Aα,
u∗u ∈ Aα, and ‖u − v‖ < 1/10. Then ‖u∗u − v∗v‖ < 1/5 and ‖uu∗ − vv∗‖ <
1/5. Since Aα is commutative, two projections in Aα that differ by less than 1 in
norm are equal, so uu∗ = vv∗ and u∗u = v∗v. Similarly, we see that for each j,
‖upju∗ − vpjv∗‖ 6 ‖upj(u∗ − v∗)‖ + ‖(u − v)pjv∗‖ 6 1/5, so upju∗ = vpjv∗.
It follows that upj and vpj are generalised eigenisometries with the same gen-
eralised eigenvalue. Summing over the js, we see that u and v have the same
generalised eigenvalue.

DEFINITION 2.10. Let (A, α) be a C∗-dynamical system. Let E(A, α) denote
the subset of D(Aα) × D(Aα) × Aα consisting of those triples (x, y, a) such that
there exists a generalised eigenisometry v ∈ A with x = [vv∗], y = [v∗v], and
generalised eigenvalue a. If (B, β) is another C∗-dynamical system and ϕ : A → B
is an equivariant ∗-homomorphism, then the image of under ϕ of a generalised
eigenisometry with generalised eigenvalue a is a generalised eigenisometry in
B with generalised eigenvalue ϕ(a), so we have that the map D(ϕ) × D(ϕ) ×
ϕ takes E(A, α) into E(B, β). We shall write E(ϕ) for the restriction of D(ϕ) ×
D(ϕ)× ϕ to E(A, α).

DEFINITION 2.11. Let (A, α) and (B, β) be two C∗-dynamical systems of
special form, and suppose that ϕ : A → B is a ∗-homomorphism such that
ϕ(Aα) ⊆ Bβ. If v is a generalised eigenisometry in A, with generalised eigen-
value a say, then, since ϕ(vv∗) and ϕ(v∗v) are both in Bβ, it follows by Lemma 2.9
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that ϕ(v) is a generalised eigenisometry in B, with generalised eigenvalue b say.
If w is another generalised eigenisometry in A with w∗w = v∗v, ww∗ = vv∗,
and generalised eigenvalue a, then u = wv∗ is a partial unitary in Aα with uu∗ =
u∗u = vv∗ and w = uv. We have ϕ(w) = ϕ(u)ϕ(v) and ϕ(u) ∈ Bβ, so βt(ϕ(w)) =
ϕ(u)eitb ϕ(v) = eitb ϕ(u)ϕ(v) = eitb ϕ(w), where we have used that Bβ is commu-
tative. Thus ϕ(w) has the same generalised eigenvalue as ϕ(v). It follows that we
may define a map Ẽ : E(A, α) → E(B, β) by Ẽ([vv∗], [v∗v], a) = ([ϕ(vv∗)], [ϕ(v∗v)]
, b), where v is a generalised eigenisometry in A with generalised eigenvalue a,
and b is the generalised eigenvalue of ϕ(v) in B. Note that if ϕ is equivariant,
Ẽ(ϕ) = E(ϕ).

LEMMA 2.12. Let (A, α) be a C∗-dynamical system of special form. Then E(A, α)
is a finite set.

Proof. It is easy to see that each non-zero generalised eigenisometry can be
uniquely expressed as a sum of generalised eigenisometries between minimal
projections in Aα, and that any two partial isometries with the same minimal
projections in Aα for both range and support are generalised eigenisometries with
the same generalised eigenvalue. Since there are only finitely many projections
in Aα, the lemma follows.

LEMMA 2.13. Suppose {(An, αn), ϕnm} is an inductive system of C∗-dynamical
systems where each (An, αn) is of special form, and let (A, α) denote the inductive limit

C∗-dynamical system. Then we have E(A, α) =
∞⋃

n=1
E(ϕn∞)(E(An, αn)).

Proof. Let v be a generalised eigenisometry in A with generalised eigen-
value a. Then for some large enough m we have that there exist projections p, q ∈
Aαm

m such that vv∗ = ϕm∞(p) and v∗v = ϕm∞(q). Passing to a subsequence, we
may assume that there exist such projections in Aα1

1 , and we fix a pair p, q. Since
A has cancelation of projections, there exists a partial isometry x ∈ A such that
x∗x = 1− v∗v and xx∗ = 1− vv∗. Thus (x + v) is a unitary. There exist unitaries
un ∈ An such that ϕn∞(un) → x + v. Set sn = un ϕ1n(q). Then sn is a partial isom-
etry in An with ϕn∞(sn) → v. For large enough n, there exist partial isometries
rn ∈ An with r∗nrn = s∗nsn and rnr∗n = ϕ1n(p). Furthermore, rn may be chosen so
that ‖rnsn − sn‖ → 0 as n → ∞. Setting wn = rnsn, we have wnw∗n = ϕ1n(p),
w∗nwn = ϕ1n(q), and ϕn∞(wn) → v. It follows from Lemma 2.9 that each wn is a
generalised eigenisometry with generalised eigenvalue bn say. Since {ϕn∞(wn)}
is convergent it is Cauchy, so for some M we have ‖ϕk∞(wk)− ϕj∞(wj)‖ < 1/20
for all k > j > M. It follows that for any bk and bj with k > j > M, there ex-
ists an l > k such that ‖ϕkl(wk)− ϕjl(wj)‖ < 1/10. It follows from Lemma 2.9
that the generalised eigenvalues of ϕkl(wk) and ϕjl(wj) in Al are the same, so
ϕkl(bk) = ϕjl(bj). This implies that the sequence {ϕk∞(bk)} is eventually con-
stant, equal to some element b say. Since ϕn∞(wn) → v, we have, for all large
enough n, αt(ϕn∞(wn)) = eitϕn∞(bn)ϕn∞(wn) = eitb ϕn∞(wn) → αt(v) = eitav for
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all t ∈ R. It follows that b = a and ([vv∗], [v∗v], a) = E(ϕn∞)([wnw∗n], [w∗nwn], bn)
for all large enough n. This shows one inclusion, and the other is obvious, so the
lemma follows.

DEFINITION 2.14. Suppose that (A, α) is a C∗-dynamical system with Aα

commutative, and suppose that u and v are two generalised eigenisometries with
uu∗ = vv∗, u∗u = v∗v, and having the same generalised eigenvalue. Then u∗v is
a partial unitary in Aα, so uau∗ = vav∗ for all a ∈ (v∗v)A. Thus we get a map,
which we shall denote R, from E(A, α) into the ∗-homomorphisms from Aα to Aα

defined by R(([vv∗], [v∗v], a))(b) = vbv∗ for b ∈ Aα, ([vv∗], [v∗v], a) ∈ E(A, α).

LEMMA 2.15. Suppose that (A, α) and (B, β) are C∗-dynamical systems with Aα

and Bβ commutative, and that ϕ : A → B is an equivariant ∗-homomorphism. Then
R((E(ϕ))(x))(ϕ(b)) = ϕ(R(x)(b)) for every x ∈ E(A, α) and b ∈ Aα. Furthermore,
if (A, α) and (B, β) are of special form and ϕ : A → B is any ∗-homomorphism with
ϕ(Aα) ⊆ Bβ, then R((Ẽ(ϕ))(x))(ϕ(b)) = ϕ(R(x)(b)) for every x ∈ E(A, α) and
b ∈ Aα.

Proof. Both sides are equal to ϕ(v)ϕ(b)ϕ(v∗), where x = ([vv∗], [v∗v], a).

DEFINITION 2.16. Define a category C as follows. An object in C is a triple
(A, E, R), where A is a C∗-algebra, E is a subset of D(A)× D(A)× A, and R is
a map from E into the endomorphisms on Aα. A morphism in C from an ob-
ject (A, E, R) to an object (B, F, V) is a ∗-homomorphism ϕ : A → B such that
(D(ϕ)× D(ϕ)× ϕ)(E) ⊂ F and V((D(ϕ)× D(ϕ)× ϕ)(x))(ϕ(b)) = ϕ(R(x)(b))
for x ∈ E and b ∈ Aα. Composition in C is just the usual composition of ∗-
homomorphisms. For a C∗-dynamical system (A, α) with Aα commutative, write
Inv(A, α) for the triple (Aα, E(A, α), R). If (B, β) is another C∗-dynamical system
with Bβ commutative, and ψ : A → B is an equivariant ∗-homomorphism, write
Inv(ψ) for ψ|Aα . Then Inv is a functor from the category of C∗-dynamical systems
with commutative fixed point subalgebras with equivariant ∗-homomorphisms
to the category C.

3. CLASSIFICATION

Suppose that (A, α) is a C∗-dynamical system of special form. It follows
from the theory of stable relations (cf. [14]) that the commutative C∗-algebra Aα

has the following stability property: The algebra Aα can be finitely presented,
Aα ∼= C∗〈x1, . . . , xn : R〉, in terms of elements {x1, . . . , xn} such that for any ε > 0
and finite subset F ⊆ A, there exists a δ > 0 such that if B and C are C∗-algebras
with C ⊆ B and ϕ : Aα → B is a ∗-homomorphism with {x1, . . . , xn} ⊆δ (C),
then there exists a ∗-homomorphism ψ : Aα → C such that ‖ϕ( f )− ψ( f )‖ < ε
for all f ∈ F.
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DEFINITION 3.1. Let (A, α) and (B, β) be two C∗-dynamical systems. We
shall call a sequence {ϕn} of ∗-homomorphisms from A to B approximately equi-
variant if, and only if, for every fixed x ∈ A and t ∈ R we have that ‖ϕn(αt(x))−
βt(ϕn(x))‖ → 0 as n → ∞.

THEOREM 3.2. Let {(An, αn), ϕnm} and {(Bn, βn), ψnm} be two inductive sys-
tems of C∗-dynamical systems of special form with unital injective connecting maps, let
(A, α) and (B, β) denote the respective inductive limit C∗-dynamical systems, and sup-
pose γ : Inv(A, α) :→ Inv(B, β) and η : Inv(B, β) → Inv(A, α) are a pair of inverse
isomorphisms in the category C. Then there exist sequences {nk} and {mk} of natural
numbers and ∗-homomorphisms γk : Ank → Bmk and ηk : Bmk → Ank+1 such that

γk : A
αnk
nk → B

βmk
mk , ηk : B

βmk
mk → A

αnk+1
nk+1 ,

A
αn1
n1

//

γ1
��

A
αn2
n2

//

γ2
��

A
αn3
n3

//

γ3
��

. . . // Aα

γ

��
B

βm1
m1

//

η1

=={{{{{{{{

B
βm2
m2

//

η2

=={{{{{{{{

B
βm3
m3

//

??~~~~~~~~~
. . . // Bβ

η

OO

is approximately commutative in the sense of [6], the diagram

E(An1 , αn1) //

Ẽ(γ1)
��

E(An2 , αn2) //

Ẽ(γ2)
��

E(An3 , αn3) //

Ẽ(γ3)
��

. . . // E(A, α)

E(γ)
��

E(Bm1 , βm1) //
Ẽ(η1)

77ooooooooooo
E(Bm2 , βm2) //

Ẽ(η2)

77ooooooooooo
E(Bm3 , βm3) //

Ẽ(η3)

::ttttttttttt
. . . // E(B, β)

E(η)

OO

is commutative, and the sequences {ψml ∞ ◦ γl ◦ ϕnknl} and {ϕnl+1∞ ◦ ηl ◦ ψmkml} are
approximately equivariant.

Proof. Let the inductive systems {(An, αn), ϕnm} and {(Bn, βn), ψnm}, the
C∗-dynamical systems (A, α) and (B, β), and the isomorphisms γ : Inv(A, α) →
Inv(B, β) and η : Inv(B, β) → Inv(A, α) be as in the statement of the theorem.

By Lemma 2.12, E(A1, α1) is a finite set. By Lemma 2.13, we have E(B, β) =
∞⋃

n=1
E(ψn∞) (E(Bn, βn)), so there exists a natural number l such that E(γ◦ϕ1∞)

E(A1, α1)⊆E(ψl∞)E(Bl , βl). Since E(ψl∞) is injective, we have a map from E(A1, α1)
to E(Bl , βl) that makes the diagram

E(A1, α1) //

&&MMMMMMMMMM
E(A2, α2) // . . . // E(A, α)

E(γ)
��

. . . // E(Bl , βl) // . . . // E(B, β)

E(η)

OO

commute. Repeating the process with E(Bl , βl), we get an m > 1 such that E(η ◦
ψl∞)E(Bl , βl) ⊆ E(ϕm∞)E(Am, αm) and a map from E(Bl , βl) to E(Am, αm). It is
easy to see that the composition of the map from E(Bl , βl) to E(Am, αm) with that
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from E(A1, α1) to E(Bl βl) is equal to E(ϕ1m). Repeating the above, passing to
subsequences, and renumbering, we get a commutative diagram:

(3.1)

E(A1, α1) //

��

E(A2, α2) //

��

E(A3, α3) //

��

. . . // E(A, α)

E(γ)
��

E(B1, β1) //

88qqqqqqqqqq
E(B2, β2) //

88qqqqqqqqqq
E(B3, β3) //

;;vvvvvvvvvv
. . . // E(B, β)

E(η)

OO

Since each (An, αn) is of special form, we may choose, for the l-th minimal
direct summand of An, a system of matrix units {vn,l

ij }ij consisting of generalised

eigenisometries. We fix such a system for each An, and another, {wm,k
ij }ij, for the

k-th minimal direct summand of Bm, for each Bm. Let an,l
ij denote the generalised

eigenvalue for vn,l
ij , and let bm,k

ij denote that of wm,k
ij . Consider (vn,l

11 )Aαn
n (vn,l

11 ) ∼=
C(Xl), for some graph Xl . Let Fn,l be a finite set of generators for (vn,l

11 )Aαn
n (vn,l

11 ).

Then (vn,l
j1 )Fn,l(vn,l

1j ) is a finite set of generators for (vn,l
jj )Aαn

n (vn,l
jj ). Let Fn =

(⋃
l,j

(vn,l
j1 )

Fn,l(vn,l
1j )

)
∪

( ⋃
l,i,j

an,l
ij

)
. Then Fn is a finite set of generators for Aα

n that contains

the generalised eigenvalue for every generalised eigenisometry with a minimal
support projection. Finally, let F̃n =

⋃
m6n

ϕmn(Fm), and let Hm,k, Hm and H̃m be

defined similarly for the other inductive system.
Let {εn} be summable sequence of positive real numbers such that the se-

quence {δn} defined by δn =
∞
∑

k=n
εk is also summable. It follows from the semi-

projectivity of the Aαn
n s that for some natural number l, there exists a ∗-homo-

morphism π : Aα1
1 → Bβl

l such that the diagram

Aα1
1

//

π

  A
AA

AA
AA

A
Aα2

2
// . . . // Aα

γ

��
. . . // Bβl

l
// . . . // Bβ

η

OO

commutes to within ε1 on F̃1. Similarly, there exists an m > 1 and a ∗-homomorph-
ism ζ : Bβl

l → Aαm
m such that the analogous diagram commutes to within ε1 on

H̃l ∪ π1(F̃1). It follows that the triangle

Aα1
1

//

π

  @
@@

@@
@@

@
Aαm

m

Bβl
l

ζ
>>}}}}}}}}
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commutes to within 2ε1 on F̃1. Proceeding in this fashion, and again passing to
subsequences and renumbering, we get a diagram

(3.2)

Aα1
1

//

π1
��

Aα2
2

//

π2
��

Aα3
3

//

π3
��

. . . // Aα

γ

��
Bβ1

1
//

ζ1

>>}}}}}}}}

Bβ2
2

//
ζ2

>>}}}}}}}}

Bβ3
3

//

??���������
. . . // Bβ

η

OO

such that for each n, the triangle with Aαn
n , Aαn+1

n+1 , and Bβn
n commutes within 2εn

on the union of F̃n and all of the images of F̃k, H̃k for k < n under all paths in
the diagram ending at Aαn

n , the triangle with Bβn
n , Aαn+1

n+1 , and Bβn+1
n+1 commutes to

within 2εn on the union of H̃n and all of the images of F̃k, H̃k for k < n under
all paths in the diagram ending at Bβn

n , and the whole diagram approximately
commutes in the sense of [6].

Now we define our maps γn and ηn. Consider An ∼= Mk1(C(X1)) ⊕ · · · ⊕
Mk(C(Xq)) with the systems of matrix units {vn,l

ij }ij already chosen. We de-

fine γn to be equal to the restriction of πn to (vn,1
11 Aαn

n vn,1
11 )⊕ · · · ⊕ (vn,q

11 Aαn
n vn,q

11 ).
Next, we consider the partial isometries {vn,l

ij }ij, l = 1, . . . , q, j = 1, . . . , kl for
each l. From diagram (3.1) we have that there exist generalised eigenisometries
{un,l

ij }ij in Bn such that (un,l
ij )∗(un,l

ij ) = γ((vn,l
ij )∗(vn,l

ij )) = γ(vn,l
jj ), (un,l

ij )(un,l
ij )∗ =

γ((vn,l
ij )(vn,l

ij )∗) = γ(vn,l
ii ), and un,l

ij has generalised eigenvalue γ(an,l
ij ). We may

choose the un,l
ij s to be finite sums of the wn,l

ij s. We define γn(vn,l
ij ) to be un,l

ij . This
assignment then extends to a map from An to Bn which we call γn. The map ηn is
defined similarly.

Since any element of Aαn
n can be written as a finite sum of elements of the

form vn,l
j1 f vn,l

1j , where f ∈ vn,l
11 Anvn,l

11 , it follows that γn(Aαn
n ) ⊆ Bβn

n , and similarly
for the ηns. If (A, α) and (B, β) are two C∗-dynamical systems of special form
and γ : A → B is a ∗-homomorphism that satisfies γ(Aα) ⊆ Bβ, it follows from
Lemma 2.15 that R(Ẽ(γ)(x))(γ(b)) = γ(R(x)(b)) for every x ∈ E(A, α) and
b ∈ Aα. It is easy to see that the Ẽ(γn)s and Ẽ(ηn)s are exactly the maps in our
diagram (3.1).

Next we show that the restrictions of the γns and ηns to the fixed point
subalgebras make the diagram

Aα1
1

//

γ1
��

Aα2
2

//

γ2
��

Aα3
3

//

γ3
��

. . . // Aα

γ

��
Bβ1

1
//

η1

>>}}}}}}}}

Bβ2
2

//

η2

>>}}}}}}}}

Bβ3
3

//

??���������
. . . // Bβ

η

OO
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approximately commutative in the sense of [6]. We do this by showing that the
maps γn differ from the corresponding πns by at most 4δn on the generators, and
similarly for the ηns and ζns, at which point it will follow from the approximate
commutativity of diagram (3.2).

Consider Aαn
n . We have that πn = γn on (vn,l

11 Aαn
n vn,l

11 ). Let f ∈ Fn,l ⊆
(vn,l

11 Aαn
n vn,l

11 ) and consider g = (vn,l
j1 ) f (vn,l

1j ) ∈ (vn,l
jj Aαn

n vn,l
jj ). Let x denote the ele-

ment ([vn,l
j1 vn,l

1j ], [vn,l
1j vn,l

j1 ], an,l
j1 ) ∈ E(An, αn). We then have g = R(x)( f ).

Now ‖πn(g)− (γ ◦ ϕn∞)(g)‖B 6
∞
∑

k=n
2εk = 2δn from the approximate com-

mutativity of (3.2), and

(γ ◦ ϕn∞)(g) = (γ ◦ ϕn∞)(R(x)( f )) = R(E(γ ◦ ϕn∞)(x))((γ ◦ ϕn∞)( f )).

By definition, γn(g) = R(E(γ ◦ ϕn∞)(x))(γn( f )) = R(E(γ ◦ ϕn∞)(x))(πn( f )). As

‖πn( f )− (γ ◦ ϕn∞)( f )‖B 6
∞
∑

k=n
2εk = 2δn from the approximate commutativity

of (3.2), we have ‖πn(g) − γn(g)‖B 6 4δn. The calculation for the ηs and ζs is
similar.

Finally, we show that the sequences {ψl∞ ◦ γl ◦ ϕkl} and {ϕl+1∞ ◦ ηl ◦ ψkl}
are approximately equivariant. Consider An and the element vn,l

ij with gener-

alised eigenvalue an,l
ij . We have that γn(vn,l

ij ) is a generalised eigenisometry in

Bn ⊆ B with generalised eigenvalue bn,l
ij = γ ◦ ϕn∞(an,l

ij ). From above, we have

‖γn(an,l
ij )− bn,l

ij ‖B 6 ‖γn(an,l
ij )− πn(an,l

ij )‖B + ‖πn(an,l
ij )− bn,l

ij ‖B 6 4δn.

Since

‖γn(αn,t(vn,l
ij ))− βn,t(γn(vn,l

ij ))‖B = ‖(exp(tγn(an,l
ij ))− exp(tbn,l

ij ))γn(vn,l
ij )‖B,

the result follows easily.

LEMMA 3.3. Let (A, α) and (B, β) be two C∗-dynamical systems of special form
and let ϕ : A → B be a unital, equivariant, ∗-homomorphism from A to B. Let {vl

ij}ij be a
system of matrix units for the l-th minimal direct summand of A consisting of generalised
eigenisometries. Let ψ : A → B be a ∗-homomorphism such that ψ(Aα) ⊆ Bβ and
Ẽ(ψ) = E(ϕ). Then there exists a unitary u ∈ Bβ such that Ad u ◦ ψ(vl

ij) = ϕ(vl
ij) for

each l, i, j.

Proof. The unitary u = ∑
l

∑
k

ϕ(vl
k1)ψ(vl

1k) is easily seen to do the job.

THEOREM 3.4. Let {(An, αn), ϕnm} and {(Bn, βn), ψnm} be two inductive sys-
tems of C∗-dynamical systems of special form with unital injective connecting maps and
let (A, α) and (B, β) denote the respective inductive limit C∗-dynamical systems, and
suppose γ : Inv(A, α) :→ Inv(B, β) and η : Inv(B, β) → Inv(A, α) are a pair of
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inverse isomorphisms in the category C. Then there exists a pair of inverse equivariant
∗-isomorphisms η̃ : B → A and γ̃ : A → B such that η = Inv(η̃) and γ = Inv(γ̃).

Proof. Consider the ∗-homomorphisms γk and ηk provided by Theorem 3.2.
We have a diagram:

(3.3)

An1
//

γ1

��

An2
//

γ2

��

An3
//

γ3

��

. . . // A

Bm1
//

η1

=={{{{{{{{
Bm2

//
η2

=={{{{{{{{
Bm3

//

>>|||||||||
. . . // B

If (A, α) and (B, β) are two C∗-dynamical systems of special form, and ψ : A → B
is a ∗-homomorphism with ψ(Aα) ⊆ Bβ, then composing with Ad u for a unitary
u ∈ Bβ does not change either Ẽ(ψ) or the restriction of ψ to Aα, so applying
Lemma 3.3 to alter each of the vertical maps in turn, from left to right through the
diagram, we may assume that (3.3) is approximately commutative in the sense of
[6]. By [6], there exists a pair of inverse ∗-isomorphisms η̃ : B → A and γ̃ : A → B
that make the diagram

An1
//

γ1

��

An2
//

γ2

��

An3
//

γ3

��

. . . // A

γ̃

��
Bm1

//
η1

=={{{{{{{{
Bm2

//
η2

=={{{{{{{{
Bm3

//

>>|||||||||
. . . // B

η̃

OO

approximately commutative. Furthermore, we have η = η̃|Bβ and γ = γ̃|Aα .
Since composing with Ad u for a unitary u ∈ Bβ does not affect approximate
equivariance, we see that η̃ and γ̃ are equivariant and fulfil our requirements.

4. EXAMPLES AND CLOSING REMARKS

We begin this section with a theorem indicating how, given a C∗-dynamical
system (A, α) in our classified class, one can determine the Elliott invariant of the
algebra A. Recall that this consists of the K0 group, its positive cone K+

0 , along
with the class of the unit in K0, or, equivalently, the dimension range, D(A); the
K1 group; the tracial state space T(A), or, equivalently, the order unit Banach
space of continuous affine functions on the tracial state space, Aff T(A), with the
distinguished element determined by the unit of the algebra; and the natural map
Γ : K0(A) → Aff T(A).

THEOREM 4.1. Let {(An, αn), ϕnm} be an inductive system where each (An, αn)
is of special form and the connecting maps are unital and injective. Let (A, α) denote the
limit C∗-dynamical system. Then the Elliott invariant of A is computed from Inv(A, α)
as follows:

(K0) The map from D(Aα) to D(A) induced by the inclusion of Aα into A
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is surjective. The projection of E(A, α) onto its first two coordinates is an equivalence
relation on D(Aα). Two elements in D(Aα) are sent to the same element of D(A) if, and
only if, they are equivalent under this relation.

(K1) Each element γ of E(A, α) defines a ∗-homomorphism R(γ) : Aα → Aα,
and hence a group homomorphism K1(R(γ)) : K1(Aα) → K1(Aα). Let N denote the
subgroup of K1(Aα) generated by {x − K1(R(γ))(x) : x ∈ K1(Aα), γ ∈ E(A, α)}.
The homomorphism i∗ : K1(Aα) → K1(A) induced by the inclusion of Aα into A is
surjective, and has kernel N, so K1(A) ∼= K1(Aα)/N.

(Aff T(A)) As above, for each γ in E(A, α) we have a ∗-homomorphism R(γ) :
Aα → Aα. Let V denote the closed linear subspace of Aff T(A) generated by {w −
Aff T(R(γ))(w) : w ∈ Aff T(Aα), γ ∈ E(A, α)}. The map i∗ : Aff T(Aα) →
Aff T(A) induced by the inclusion of Aα into A is surjective and its kernel is V. Fur-
thermore, the map it induces from Aff T(Aα)/V to Aff T(A) is positive and isometric,
so Aff T(A) ∼= Aff T(Aα)/V as order unit Banach spaces.

(Pairing) The pairing is determined by demanding that the diagram

D(Aα) //

i∗
��

Aff T(Aα)

i∗
��

D(Aα)/E // Aff T(Aα)/V,

where E denotes the equivalence relation coming from E(A, α) as above, commutes.

Proof. We begin with (K0). If (A, α) is of special form, all three assertions
are obvious. In general, we have Aα = lim−→ Aαn

n by Lemma 2.7, so D(Aα) =
lim−→D(Aαn

n ) and D(A) = lim−→D(An). Surjectivity of the map from D(Aα) to D(A)
induced by inclusion now follows from the surjectivity of the maps from D(Aαn)
to D(An) for all n and the commutativity of the diagrams

D(Aαn
n ) //

��

D(Aα)

��
D(An) // D(A)

induced by the inclusions. That π1×π2(E(A, α)) is an equivalence relation when-
ever Aα is commutative is easily checked (commutativity of Aα is required when
showing that the relation is transitive). Two elements x, y of D(Aα) are mapped
to the same element of D(A) if, and only if, there exist a number n and elements
w, z ∈ D(Aαn

n ) such that x = D(ϕn∞)(w), y = D(ϕn∞)(z), and D(in)(w) =
D(in)(z), where in : Aαn

n → An is the inclusion. By Lemma 2.9, in this case we
have (w, z) ∈ π1 × π2(E(An, αn)), and it follows that (x, y) ∈ π1 × π2(E(A, α)).
That (x, y) ∈ π1 × π2(E(A, α)) implies that x and y are mapped to the same ele-
ment of D(A) is obvious, so this finishes the case for (K0).
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Next, we consider (K1). Again, if (A, α) is of special form, the assertions in
the theorem are obvious. In general, the surjectivity of the map from K1(Aα) to
K1(A) induced by the inclusion follows as for the dimension range. Applying K1
to the commutative diagram

Aα1
1

//

��

Aα2
2

//

��

. . . // Aα

��
A1 // A2 // . . . // A,

we see that the kernel of the map from K1(Aα) to K1(A) is generated by the im-
ages of the Nns in K1(Aα). These are all contained in N, and that their union is
equal to N follows from Lemma 2.13. The assertion for (K1) follows.

Consider now Aff T(A). For (A, α) of special form the statements are easy
to see. As in the case of K1, the images of the Vns are all contained in V. Let
w ∈ Aff T(Aα) be such that i∗(w) = 0. We may choose a sequence wn such that
wn ∈ Aff T(Aαn

n ) and ϕnm∗(wn) → w. Since Aff T(Aαn
n ) ∼= (Aαn

n )sa isometrically,
and the maps between the affine function spaces correspond to the restrictions
of ∗-homomorphisms under the natural isomorphisms, the maps between the
Aff T(Aαn

n )s are all isometric. For all n, m with m > n the diagram

Aff T(Aαn
n ) //

i∗
��

Aff T(Aαm
m )

i∗
��

Aff T(An) // Aff T(Am)

commutes, so ‖ϕnm∗(i∗(wn))‖=d(ϕnm∗(wn),Vm). It follows that we have d
(

ϕn∞(wn),
∞⋃

m=1
ϕm∞(Vm)

)
→ 0 as n → ∞, and w ∈

∞⋃
m=1

ϕm∞∗(Vm). We have that the maps i∗n :

T(An) → T(Aαn
n ) are all injective, from which it follows that i∗ : T(A) → T(Aα) is

injective. It follows from the Hahn–Banach theorem that continuous affine func-
tions on i∗(T(A)) extend to continuous affine functions on all of T(Aα), so the

map i∗ : Aff T(Aα) → Aff T(A) is surjective. Next, we show that
∞⋃

m=1
ϕm∞∗(Vm) =

V. Suppose that v ∈ Aff T(Aα) and γ ∈ E(A, α). Then there exists a number n
and a γn ∈ E(An, αn) such that γ = E(ϕn∞)(γn) and a sequence vm, m > n,
such that vm ∈ Aff T(Aαm

m ) and ϕm∞∗(vm) → v. We then have ϕm∞∗(vm) −
ϕm∞∗(R(E(ϕnm)(γn))(vm)) → v − Aff T(R(γ))(v) as m → ∞, so V is the clo-
sure of the images of the Vns. From above we see that ‖w + V‖ = ‖i∗(w)‖Aff T(A)
for any w ∈ Aff T(Aα). That Aff T(A) ∼= Aff T(Aα)/V now follows.

The final assertion about the pairing now follows easily from above, so the
proof is complete.
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Our next theorem gives a characterisation in terms of the invariant of those
C∗-dynamical systems in our classified class that are AF flows.

THEOREM 4.2. Let {(An, αn), ϕnm} be an inductive system where each (An, αn)
is of special form and the connecting maps are unital and injective. Let (A, α) denote the
limit C∗-dynamical system. Then (A, α) is an AF flow if, and only if, the fixed point
subalgebra, Aα, is AF and all of the generalised eigenvalues have finite spectrum.

Proof. Assume (A, α) is an inductive limit as in the statement of the theorem
and that it is also an AF flow. It is easy to see that the fixed point subalgebra, Aα,
is an AF algebra. Suppose that v is a generalised eigenisometry with generalised
eigenvalue a. Since (A, α) is an AF flow, there exists an invariant finite dimen-
sional subalgebra B of A such that v is approximately contained in B. Assum-
ing the approximate containment is close enough, there exists a partial isometry
w ∈ B such that ww∗ ∈ Aα, w∗w ∈ Aα, and w is norm close to v. By Lemma
2.9, w is a generalised eigenisometry with the same generalised eigenvalue as v.
Since B is finite dimensional, we may write w = w1 + · · ·+ wk where the wjs are
mutually orthogonal eigenisometries, with eigenvalues a1, . . . , ak say. It is then
easy to see that a = a1(w1w∗1) + · · ·+ ak(wkw∗k ). This proves the necessity of the
conditions.

Now suppose that (A, α) is a limit C∗-dynamical system as in the statement
of the theorem, that Aα is an AF-algebra, and that all the generalised eigenvalues
have finite spectrum. We shall construct an increasing sequence {mk} of integers
and a sequence {Bk} of C∗-algebras such that Bk is an invariant finite dimensional
subalgebra of Amk , ϕmkmk+1(Bk) ⊆ Bk+1 for each k, and

⋃
k

ϕmk∞(Bk) = A. Since

the connecting maps are injective, we shall view them as inclusions.
First, we construct B1 ⊆ A1. We may choose, for the l-th minimal direct

summand of A1, a system {v1,l
ij } of matrix units consisting of generalised eigeni-

sometries. Since the range projection of each v1,l
ij is minimal, and the generalised

eigenvalue of v1,l
ij has finite spectrum, we see that the v1,l

ij s are eigenisometries in

the usual sense. Set B1 equal to the sub-C∗-algebra of A1 generated by the v1,l
ij s

for each l. Clearly B1 is invariant.
Let F1 be a finite subset of A. We may choose an n, a finite subset Gn ⊆ Aαn

n

and a system of matrix units {vn,l
ij }l for each minimal direct summand of An

consisting of generalised eigenisometies such that B1 is contained in the sub-C∗-
algebra of An generated by the vn,l

ij s and F1 is approximately contained in the

sub-C∗-algebra generated by Gn and the vn,l
ij s. Since Aα is AF, there exists a finite

dimensional subalgebra, Wn of Aα such that Gn is approximately contained in Wn.
Since Wn is finite dimensional, it is generated by its minimal projections, there are
finitely many of these, and they lift, so for some s > n we have Wn ⊆ Aαs

s . We
may choose a system of matrix units {vs,l

ij } for each minimal direct summand of
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As consisting of generalised eigenisometries in such a way that the vn,l
ij s are con-

tained in the finite dimensional subalgebra of As generated by the vs,l
ij s. As in the

case of B1, the vs,l
ij s are all eigenisometries in the usual sense. Set m2 = s and set

B2 equal to the sub-C∗-algebra of As generated by the vs,l
ij s. Since the elements

of Aαs
s having finite spectrum are all in B2, it follows that Wn ⊆ B2. It follows

that B1 ⊆ B2 and that F1 is approximately contained in B2. Proceeding in this
fashion, it is easy to see that with appropriate choices of subsets Fn and toler-
ances for approximate containments we get sequences {mk} and {Bk} meeting
our requirements. Sufficiency of the conditions follows.

Next, we describe a one parameter family of pairwise non-isomorphic ac-
tions on the CAR-algebra all having the same fixed point subalgebra, and, by the
theorem above, exactly one of which is an AF flow.

EXAMPLE 4.3. Define an inductive system {(An, αr
n), ϕnm} of C∗-dynamical

systems as follows. For n > 0, let An = C([0, 1], M2n), and [ϕn,n+1( f )](t) =
diag( f (t/2), f ((t + 1)/2)). For each r > 1, define hr

0 ∈ A0 by hr
0(t) = tr and

hr
n ∈ An by hr

n = ϕ0n(hr
0). Then it is easy to check that hr

n has distinct eigenval-
ues in every fibre of An, so setting αr

n to be the action on An generated by hr
n we

have that (An, αr
n) is of special form and the connecting maps are equivariant. Let

(A, αr) denote the limit C∗-dynamical system. Then αr is an inner action gener-
ated by a self adjoint element with spectrum [0, 1]. The ϕnm are approximately
constant in the sense of [6], and it follows from the classification theorem in [6]
that A ∼= M2∞ . Considering the maps between the fixed point subalgebras, we
see that these are also approximately constant, so from [6] Aαr

is an AF-algebra
(its K1 group is trivial). If r = 1, then all of the generalised eigenvalues have
finite spectrum, so by Theorem 4.2, (A, α1) is an AF flow. If r > 1, then there
are generalised eigenvalues with infinite spectrum, so (A, αr) is not an AF flow.
That (A, αs) À (A, αr) for r, s > 1, r 6= s is not obvious, but may be seen as
follows. We show that the projection e11 in A1 ⊆ A has a characterisation in
terms of the invariant that is independent of the inductive system, and also of
the particular value of r. This distinguished projection, along with the invariant,
will then allow us to recover the value of r. The property that characterises e11
is the following: e11 ∈ Aαr

, 2[e11] = [1] in K0(A), and there exists a number
v ∈ (0, 1) with the property that if 0 < γ < v, and ε > 0 is given, then there
exist projections e, f , q ∈ Aαr

with e, f 6 e11, q ⊥ e11 and self adjoint elements
a, b ∈ Aαr

such that ([e], [q], b) ∈ E(A, αr), sp(b) ⊆ (1− ε, 1], ([e], [ f ], a) ∈ E(A, αr)
and sp(a) ⊆ (γ − ε, γ + ε); and if ν > v, then there exists a δ > 0 such that
there do not exist projections x, y ∈ Aαr

and a self adjoint element c ∈ Aαr
with

x, y 6 e11, ([x], [y], c) ∈ E(A, αr), and sp(c) ⊆ (ν− δ, ν + δ). To see this, consider
Aαr

m
m for some m > 1. The spectrum of Aαr

m
m consists of 2m disjoint compact in-

tervals. Identify these with their images under the canonical map from sp(Aαr
m

m )
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to sp(A0) = [0, 1] induced by ϕ0m. They then correspond to the intervals of the
partition {k/2m : k = 0, . . . , 2m} of [0, 1]. For each pair of minimal projections in
Aαr

m
m , any partial isometry from the second to the first is a generalised eigenisome-

try, and its generalised eigenvalue may be described as follows. Suppose the two
projections correspond to the intervals [j/2m, (j + 1)/2m] and [k/2m, (k + 1)/2m]
respectively under the identification above. Then the generalised eigenvalue, as
a function on [j/2m, (j + 1)/2m] is a(t) = tr − (t− j/2m + k/2m)r. Now if P is a
projection having the property above, then 2[P] = [1] in K0(A) implies that the
collection of subintervals corresponding to P contains half the total number. The
next condition implies that the image of the subset corresponding to P contains
the interval [0, v1/r), and the last part implies that it is disjoint from (v1/r, 1] (note
that going further out in the inductive systems results in refining the partition). It
is now easy to see that e11, which corresponds to [1, 1/2], is the unique projection
with these properties, and that v = (1/2)r is the unique number that meets the
conditions.

Our next example shows that we may not drop the third part of our invari-
ant.

EXAMPLE 4.4. For n > 0, let An = C(T, M2n) ∼= M2n ⊗ C(T). Let ϕ0,1 :

A0 → A1 be defined by z 7→
(

z 0
0 z

)
and let ψ0,1 : A0 → A1 be defined by

z 7→
(

z 0
0 z

)
, where z is the canonical generator of C(T). For n > 1, define

ϕn,n+1, ψn,n+1 : An → An+1 by ϕn,n+1 = id⊗ ϕ0,1 and ψn,n+1 = id⊗ ψ0,1. Let

h1 be the constant matrix
(

0 0
0 1/2

)
, in A1, and for n > 1, let hn+1 = 1⊗ hn +(

0 0
0 1

)
⊗ (1/2n) ∈ An+1

∼= M2 ⊗ An. Then for all n, hn is a constant matrix with

distinct eigenvalues. Let αn be the real action on An defined by hn. Then (An, αn)
is of special form, and the maps ψnm and ϕnm are all equivariant. Consider the
inductive systems {(An, αn), ϕnm} and {(An, αn), ψnm}, with limits (A, α) and
(B, β) respectively. These systems fall within our classified class. It is easy to see
that Aαn

n ∼= C2n ⊗ C(T). In the case of ϕn,n+1, each partial map from a minimal
direct summand of Aαn

n to a minimal direct summand of Aαn+1
n,n+1 is just the iden-

tity map, whereas for ψn,n+1 some are the identity while others are the canonical
orientation reversing map on the circle, where we have chosen an orientation on
each minimal direct summand of Aαn

n that is consistent with a choice on the whole
algebra An. Thus we may define a sequence of automorphisms γn : Aαn

n → Aαn
n
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making the diagram

Aαn
n

ϕ //

γn

��

Aαn+1
n+1

ϕ //

γn+1

��

Aαn+2
n+2

ϕ //

γn+2

��

. . . // Aα

Aαn
n

ψ // Aαn+1
n+1

ψ // Aαn+2
n+2

ψ // . . . // Bβ

commute and such that E(γn) is the identity on E(An, αn) (each partial map of
γn is either the identity or the canonical orientation reversing map). We get an
isomorphism Γ : Aα → Bβ that makes the whole diagram commute. Further-
more, the map E(Γ) is an isomorphism from E(A, α) to E(B, β). It is easy to see
that A ∼= M2∞ ⊗ C(T), but that B has trivial K1 group, so A À B. Thus we may
not drop the action of E on the fixed point subalgebra from our invariant. Notice
also that the isomorphism Γ, together with E(Γ), gives rise to an isomorphism of
the KR modules that were shown to classify AF flows in [3].

REMARK 4.5. We close this section by describing a natural groupoid struc-
ture that E(A, α) carries. Suppose that w and v are generalised eigenisometries
with generalised eigenvalues a and b respectively, such that w∗w = vv∗. Then wv
is a generalised eigenisometry with generalised eigenvalue a + wbw∗. This gives
rise to a composition law on E(A, α) by

([ww∗], [w∗w], a) ◦ ([vv∗], [v∗v], b) = ([ww∗], [v∗v], a + wbw∗).

It is easy to see that this composition is preserved by morphisms of the invariant.
This extra structure may be useful in describing the range of the invariant in some
special cases, but it is not sufficient to replace the third part of the invariant, as
the example above shows.
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