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ABSTRACT. Let (G, G4) be a quasi-lattice ordered group, Q) be the collection
of hereditary and directed subsets of G, and Q) be the collection of the maxi-
mal elements of Q. Forany H € Q, let S(H) be the closed #-invariant subset of
Q generated by H, and denote by 7 ¢ the associated Toeplitz algebra, where
Gy = G4 - H™ 1. In this paper, the concrete structure of S(H) is clarified. As a
result, it is proved that the induced ideals of the Toeplitz algebra 76+ studied
by Laca, Nica et al. can be expressed as the intersections of such kernels as

KeryC#/G+ for some H € Q, where 7C#/C+ is the natural morphism from the
Toeplitz algebra 7+ onto 7 %#. A condition is given under which the Toeplitz
algebras 75# (H € Q) become purely infinite simple. When applied to the
free groups with finite or countably infinite generators, this gives a unified
proof that the simplicity of the Cuntz algebras O, (n > 2), O implies the
purely infinite simplicity of their tensor products.
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INTRODUCTION

More than a decade ago, Nica [10] initiated the study of Toeplitz opera-
tors or Wiener—-Hopf operators on quasi-lattice ordered groups. Since then much
progress has been made, and the theory of the Toeplitz algebras associated with
quasi-lattice ordered groups has been applied to quite a few fields of modern
mathematics. For instance, these Toeplitz algebras serve as typical examples of
crossed products of C*-algebras by semigroups of endomorphisms [7], and of
topologically graded C*-algebras in the context of Hilbert C*-modules [4].

The purpose of this paper is to give a detailed description of certain aspects
of Toeplitz algebras on quasi-lattice ordered groups. In Section 1, we will recall
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some facts about quasi-lattice ordered groups. Basic examples of quasi-lattice or-
dered groups are (Z",Z") (n > 2) and the free groups. Apart from these known
examples, it might be a rather tough work to find out other kinds of concrete
quasi-lattice ordered groups. By choosing certain 2 by 2 upper triangular invert-
ible matrices, we have managed to construct an example of non-commutative
quasi-lattice ordered group (see Example 1.4). A special class of quasi-lattice or-
dered groups are ordered groups. Let (G, G4 ) be an ordered group, denote by
TG+ the corresponding Toeplitz algebra. It was proved in [8] that 7¢+ contains
a smallest ideal if and only if there exists a smallest semigroup of G strictly con-
taining G4+. An ordered group with such a property is also constructed in this
section (see Example 1.7).

Let (G, G4) be a quasi-latticed ordered group, Q2 be the collection of hered-
itary and directed subsets of G, and Q. be the collection of the maximal ele-
ments of ). Given such a pair (G, G.), two C*-algebras, namely 76+ and DS+
can be induced, and it was shown in [6] and [10] that there is a close relation-
ship between the closed #-invariant subsets of (), a-invariant ideals of DS+ and
the induced ideals of 7C+. In Sections 2 and 3, we focus on the study of the
f-invariant subsets of ). Among other things, we have clarified the detailed
structure of the closed 6-invariant subset S(H) generated by an element H € ()
(see Theorem 2.2). As a result, in Section 4 we prove that the induced ideals of the
Toeplitz algebra 7+ studied by Laca, Nica et al. all can be expressed as the in-
tersections of such kernels as Kery©H-G+ for some H € Q, where Gy = G, - H™!
and y“H/C+ is the natural morphism from the Toeplitz algebra 7+ onto 7 H (see
Corollary 4.6). In Sections 5, 6, we study the maximal ideals and the largest ideals
of the Toeplitz algebra 7 %+ respectively. Specifically, a condition is given under
which the Toeplitz algebras 7 %H (H € Qo) become purely infinite simple. When
applied to the free groups with finite or countably infinite generators, this gives
a unified proof that the simplicity of the Cuntz algebras O, (n > 2), O« implies
the purely infinite simplicity of their tensor products.

1. SOME EXAMPLES OF QUASI-LATTICE ORDERED GROUPS AND QUASI-ORDERED GROUPS

The classical Toeplitz algebra 7 on the Hardy space H?(T) can be viewed as
the Toeplitz algebra defined on the ordered group (Z, Z.. ), where Z is the integer
group and Z. is the semigroup consisting of non-negative integers. The pair
(Z,7Z+) has been generalized in a number of different directions, and the most
relevant to this paper are quasi-lattice ordered groups and quasi-ordered groups.
The relationship between these “ordered groups” can be roughly described with
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the following diagram:

Abelian ordered groups — ordered groups — quasi-ordered groups

!

quasi-lattice ordered groups.

The concept of quasi-lattice ordered group was first introduced by Nica [10]
in the study of Wiener-Hopf operators or Toeplitz operators on discrete groups.
Let G be a discrete group, G+ a subset of G such that

e€Gy, G Gy CGy and GyNG = {e},

where e is the unit of Gand G' = {¢™' : ¢ € G+ }. Forany x,y € G, we define
a partial order on G by

x<y<=xlyeG,.
Note that the order defined above is left invariant in the sense that
x<y=tx <ty foranyux,y,teG.

DEFINITION 1.1. The pair (G, G4) is said to be a quasi-lattice ordered group
if every finite subset of G with an upper bound in G4 has a least upper bound
in G+.

Equivalently, (G, G ) is a quasi-lattice ordered group if and only if every
element of G having an upper bound in G, has a least such, and every two ele-
ments in G4 having a common upper bound have a least common upper bound
([10], Section 2.1).

If (G,G,) is a quasi-lattice ordered group and x1,x2,...,x, (n > 2)in G
have a common upper bound in G, then their least common upper bound is
denoted by x1 V xo V - - - V x;,. Note for any x € G, x has an upper bound in G
if and only if x € G - Gjrl, and when x € G - Gf (so does for x71), its least
upper bound in G will be denoted by ¢ (x). Following the notation as in [10]
and [6], we also let T(x) be the least upper bound of x~1in G_; in other words,
7(x) = o(x1) for x € Gy - G. It is easy to check that for any x € G+ - G !, we
have

(1.1) 7(x) =xto(x) and x=oc(x)-7(x)"L
EXAMPLE 1.2. Forany n € N, (Z",Z'} ) is a quasi-lattice ordered group.

EXAMPLE 1.3. Let F;, be the free group with n generators a1, 4y, ..., a,, and
denote by F; the semigroup generated by ay,ay,...,a,, then (F,, E) is a non-
abelian quasi-lattice ordered group ([10], Section 2.3).

Another non-abelian quasi-lattice ordered group, which serves as a model
throughout this paper, will be constructed by choosing certain matrices of order
2 over the real line R, and the details are as follows:
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EXAMPLE 1.4. Let G= { ( aél Z; ) cap1 > 0,4 > 0,412 € R} be a class

of invertible 2 by 2 upper triangular matrices over the real line R, and put
G+—{( o e ) tapy = 1,a > 1,a10 > 0}-
0 ax
Then (G, G+) is a quasi-lattice ordered group.
Proof. 1t is obvious that G is a group, e = diag(1,1) € G4 and G4 is a

1 X

. X1 X _ E
semigroup. For any x = ( (1)1 xu ) € G,wehavex ! = < x(l)l i > It
22 1
X2

follows that G4+ N G! = {e}, and for any x = (xij),y = (vij) € G,
M2 _ yi
X2 Y»

Therefore, every two elements x = (x;;),y = (y;;) in G have a least common
upper bound z = (z;;) in G with

(1.2) x<y<=x'yeGy <= x1 <y, xn <yxp and

X12 Y12
(1.3)  zyi=max(l, x11,y11), zop=max(l, x22,y20), lezmax(o/zzzxfzzrzzzyz ,

so (G, G4) is a quasi-lattice ordered group.
Let us consider E = [1,00) x [1,00) x [0, ), a subset of Euclidean space R3,
endowed with the usual order, and define A : G — E by

a1 A 212
14 N = (a ,0a72, —)
(1.4) < 0 ay ) 1,022, >
Then by (1.2) we know that A is an order-preserving isomorphism of sets in the
sense that for any x,y € G4,

Ax) SA(y) == x <y and  (A(x)V(A[Y) =AlxVy). B

We are somehow surprised to find that when we deal with the same kind
of matrices of higher order, the method employed in the above example however
fails to work as illustrated down below:

EXAMPLE 1.5. Let n € N,n > 3, then (G, (Gn)+) is not a quasi-lattice or-
dered group, where

ann 412 0
o 0 ap - am | g;>0 (1<i<n),
" o D=0 (>)), ’
0 0 . Ann
air a2 - Aip .
0 apm o my | w21 (1<i<n),
(Gn)y = a; =0 (i>]),
: : : a; =20 (i<j),
0 0 e Ann g
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Proof. Since G, can be embedded into G, through x — diag(x, I,,—») for
n < m, where I, is the identity matrix of order m — n over the real line R, we
may as well assume that n = 3. Let

a1 a2 @3

A= 0 axn a3 | €G3,
0 0 ass
then
1 _ap __ @130 —012a%3
a1 a11a22 11022433
-1 __ 1 _ax
A - 0 axn 2033
1
0 0 i
So forany A = (a;;), B = (b;j) € (G3)+,
a; < by, 1<i<3;
a1y ~ bip a3 .~ b3,
A < B Pt @ X E/ e < Pan ’

by _ a3 5 ap (lm _ m)
bs3 33 7 ap \bsz a3z )
As in Example 1.4, we can define an isomorphism of sets A from (G3)4+ onto
[1,00)3 x [0,00)3 such that
412 A3 413
N(aj) = —=, =, =] f i G3)+.
(aij) (ﬂn,ﬂzz, A33) 4 e a%) or (a;;) € (G3)+
Thereby a partial order on [1,00)3 x [0,00)3 can be induced as
xi <Y, 1<i<5;
Y6 — X6 = x4(y5 — Xs5).
Now let x = (1,1,1,0,1,10),y = (1,1,1,1,0,0) € [1,00)3 x [0,00)3, we
prove that x, have no least common upper bound in [1,00)3 x [0,00)3. Sup-

pose on the contrary that the least common upper bound of x and y exists in
[1,00)3 x [0,00)3, let x Vy = (uq,up, uz, Uy, us, ug), then

u;z1 (1<i<b), ug—1020-(us—1), ug—0=1-(us—-0),

(x1,%2,%3,X4,X5,%¢6) < (Y1,Y2,Y3, Y4, Y5, Y6) <= {

or
(1.5) up>1 (1<i<5), ug>10,us > us.
Since z; = (1,1,1,1,1,10) is a common upper bound of x and y, we have z; >
xVy,so
(1.6) u; <1 (1§i<5), 10*1/{621/{4'(1*1/{5).
By (1.5) and (1.6), we know thatx Vy = (1,1,1,1,1,10).
On the other hand, letz, = (1,1,1,1,9,10), then z; is also a common upper

bound of x and y, therefore z; > x V y. It follows that 10 — 10 > 1- (9 — 1), which
is a contradiction. 1
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DEFINITION 1.6. Let G be a discrete group, E a subset of G, we say that
(G, E) is a quasi-ordered group if
¢e€EE-ECE, and G=EUE "
If in addition, EN E~! = {e}, then (G, E) is referred to as an ordered group.

By definition, every ordered group is quasi-lattice ordered, and an example
of non-abelian ordered group is as follows:

EXAMPLE 1.7. Let G be as in Example 1.4. Set G1 = G; U Gy U G3, where

_Jfan an). _J(1 a2, _J1 0y,
G]—{( 0 6122> 1 a1 >1} , G2_{(0 ﬁzz) : a12>0} , G3—{(0 ﬂzz) : lez}l} ,

then (G, G4 ) is an ordered group with a property that
xlye Gy foranyx € Gs,y € G UG,.

And for any x € G3,y € Gz \ {e}, it is obvious that there exists n € N such that
x~1(y") € Gs. It follows that for any x € G3 and any y € G, \ {e}, there exists
n € Nsuch that x~1(y") € G4. So if we let Gy be the semigroup of G generated
by G+ and y~ !, then
U= () () S G- () S Gy,
hence Gy lc N Gy
yeGi\{e}

On the other hand, it is easy to check that G1 U G, U G3 U G5 lisa semigroup

of G which contains every y~! for y € Gz \ {e}, which implies that

Gy CGIUGUGUG;! fory € G\ {e}.
It follows that for any x € G, if x1le N Gy, then x € Gs. Therefore,

yeGy\{e}
(1.7) {x €Gi:xle Gy} — G,
yeGy\{e}
Note that ) Gy is the smallest semigroup strictly containing G4, and the

yeGi\{e}
discussion above shows that this semigroup is equal to G U G5 L

2. GENERAL CLOSED 6-INVARIANT SUBSETS OF Q)

Throughout out this section, (G, G+ ) denotes a quasi-lattice ordered group.
Given any x,y € G, as in Section 1, the notation x V y is used for the least
common upper bound of x and y in G, with the convention that x Vy = oo
when there is no common upper bound in G;. A subset H of G, is said to be
hereditary if for any x,y € G4, x < y € H implies x € H; and H is said to be
directed if any two elements of H have a common upper bound in H. Let 2 be
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the collection of hereditary and directed subsets of G;. Then ) is a compact
Hausdorff space when endowed with the topology inherited from {0,1}+ in the
following way:

Let {0,1} be the subset of the real line R which contains only two elements
0 and 1. Denote by {0,1}°+ the product space, that is,

{0,1}* = {¢: G, — {0,1} : ¥t € G, 9(t) =0or p(t) = 1}.

Since {0, 1} is a compact Hausdorff space, by Tychonoff Theorem {0,1}%+ is also
a compact Hausdorff space when endowed with the product topology: a net
{4} in {0,1}6+ converges to ¢ if and only if ¢4 (t) — ¢(t) for any t € G.
For any ¢ € {0,1}%+,let A = {t € G; : ¢(t) = 1}. Then clearly, ¢(t) =
Xa(t) forany t € G, where x4 is the characteristic function of A, so the prod-
uct space {0,1}¢+ can be regarded as the collection of the characteristic func-
tions of the subsets of G4. Therefore an injective morphism p of sets from Q)
into {0,1}¢+ can be defined by p(H) = xg for H € Q. It is easy to show that
the image of p is closed in {0,1}¢+, which implies that Q) is a compact Haus-
dorff space when endowed with the topology: a net {H,} in Q converges to
He Q<< xp,(t) = xu(t) forany t € G,.

Forany t € Gy and A € ), we consider the smallest hereditary subset of
G4 containing tA, i.e.,

le,tA] = {x € G4 : 3a € A, such that x < ta}.

Note that [e, tA] is also directed, for if x,y € [e, tA], then there exist a1,a; € A,
such that x < ta; and y < ta,. Since A is directed, we know that a; Va; € A,
hence x Vy < t(a; Vay) € tA. Note also t € [e, tA] since e is contained in A. By
Proposition 2.2 of [6] we know that for eacht € G, Oy ={B€ Q:t € B}isa
clopen subset of (3, and the map 6; : QO — ) defined by 6;(A) = [e, tA](A € Q)
is a homeomorphism from Q onto ;. Furthermore, we have 6 o 6; = 6;; for any
s,t e G+.
Forany x,t € G4 and A € ), it is easy to verify that

(2.1) x€0(A) <= tVvxeGy and t1(tVx) €A,
and when A € Q, 6,1 (A) = {t"1(t V x) : x € A} has the property that
(2.2) a€0 ' (A)<=tac A foranyac Gy.

DEFINITION 2.1. Let Kbe a non-empty subset of 2, K is said to be 8-invariant
ifforany t € G4,
0:(K) ={6:(A): Ac K} CK and 6;(Q\K)={6:B):B¢K} CO\K
By definition, K is a 6-invariant subset of Q if and only if for any t € G
and A € ), we have
AeK<«<6(A) e K
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Clearly, if K is a 6-invariant subset of ), then the closure of K, cl(K) is also 6-
invariant. Note that the intersection of any family of closed #-invariant subsets of
Q is also 6-invariant. Therefore, for any K C (), there exists a smallest closed 6-
invariant subset containing it, which is denoted by S(K) and is called the closed
f-invariant subset generated by K. In the peculiar case when K is a single point
set {H}, we denote S({H}) simply by S(H), and its detailed structure is clarified
as follows:

THEOREM 2.2. Let (G, Gy) be a quasi-lattice ordered group, H be a directed and
hereditary subset of G, and S(H) be the closed 6-invariant subset of Q generated by
{H}. Then S(H) is the closure of D, where
(2.3) D= {6:;(6;1(H)):s € G4,t € H}.

Proof. Let K be any closed ¢-invariant subset of () which contains H, then
clearly D C K, therefore cl(D) C K, it follows that cI(D) C S(H). So the conclu-
sion will hold if H € D and cl(DD) is 6-invariant.

Step 1. If we set s = t = ¢, then H = 6,(6; ' (H)) € D.

Step 2. If A € cl(D), then there exists a net { B, } in D such that B, — A. Let
By = Gsm(etzl(H)) for some s, € G4 and t, € H. So for each t € G4, we have

6:(Bx) = 015, (6, (H)) — 6:(A),

hence 6;(A) € cl(D).

Step 3. If A € O, t € G, such that 6;(A) € cl(D), then there exists a net
{By} in D which converges to 6;(A). Since t € 6;(A), there exists an «g such that
t € By for any & > . Since {B,} C D, we may put B, as follows:

By =05, (6, '(H)), su€Gy, to €H,
and since the morphism 0, 1. 0y — Qs continuous, we have
24) {6, (Bi) sy, = 165165, (6;, (H)))} o0y — 671 (6:(A)) = A
Note when a > ay,
(2.5) t € 0s,(0; '(H)) = s (s Vt) €6, (H) = ta(s, (s« V1)) € H.

Since both s, and t belong to Qsa(egl(H)) for &« > wg, we know that s, V¢t €
95“(9;1(H)) for @ > ap. So when o > ag, by (2.5) we have

6; 065,08, 1 (H) = (6; ofs,v1)o(6 065,08, 1) (H)
=O-1(5v1) 095_;11(5“w) o0;, ' (H) :et‘l(su\/t)oet_aigl(sm) (H)€D.
By (2.4) we know A € cl(D), so cl(D) is really f-invariant.

REMARK 2.3. Let (G, G4 ) be a quasi-lattice ordered group, Q2 be the collec-
tion of hereditary and directed subsets of G;. For any x € G4, let [e,x] = {y €
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Gy 1y < x}, then the closure of {[e, x] : x € G, } is equal to Q) ([10], Section 6.2)
and hence S([e, x]) = Q by Theorem 2.2.

PROPOSITION 2.4. Let (Gy, G"), (G, G) be two quasi-lattice ordered groups,
denote by Qy, Q the collection of hereditary and directed subsets of G and G5 respec-
tively. Put G = Gy x Gy and Gy = G} x G, then (G, G4.) is a quasi-lattice ordered
group with

Q=010 d:ef {Hl X Hy:Hy € O, H € 02},
where Q) is the collection of hereditary and directed subsets of G.. Furthermore, for any
H; € Oy, Hy € Qy, we have

(2.6) S(Hy x Hy) = {AxB: A€ S(H;),B € S(Hy)}.

Proof. Let us first prove that Q = Qg * Q,. Clearly, H; x Hj is a hereditary
subset of G when Hy € Q4 and H, € Qj, and for any (x1,y1), (x2,¥2) € Hy X
H,, we have (xl,yl) \Y (XZ,yz) = (X1 VX, 11 \/yz) € H; x Hy, therefore H; x Hp
is also directed. On the other hand, for any H € Q, let

Hy = {x € G : 3y € G such that (x,y) € H},
H, = {y € G5 : 3x € G{ such that (x,y) € H}.
Then it is easy to show that H; € 4, Hy € p with H = Hy X H».

Next, we prove that S(H) = {A x B: A€ S(H;),B € S(H,)}. Forany x €
G,y € Gy, Hy € O1,H; € Op,s € Hy and t € Hp, we have

O(xy) (H1 X Hp) = 0x(H1) X 0y(Ha), g1

oy (Hi x H2) = 671 (Hy) x 6, (Ha).

By Theorem 2.2 we know that

S(H) = {0(xy) oG@i)(Hl X Hy):x € G,y € Gy ,s € Hy,t € Hy}

= {(6x(65"(H1))) x (6,(6, ' (H2))) : x € G,y € G ,s € Hy,t € Ha}
C{AxB:A€S(H), BeS(H)}.

On the other hand, for any A € S(Hy), B € S(H,), there exist {x,} C G, {sa} C
le {le} Q G+, {t‘B} Q H2 such that

Ox, 065, (Hy) — A, 6y, 0 9;(1{2) — B.
It follows that

(x5 © G@itﬁ)(Hl x Hy) = (8, 065 (Hyp)) x (6y, e);ﬁl(H2)) — A X B,

therefore A x B€ S(H) = S(H),so {Ax B: A € S(Hy), Be S(Hy)} C S(H).
Finally, we prove that {A x B: A € S(Hy), B € S(Ha)} is closed in ), and
thus

S(H)={AxB:AcS(H), BeS(H)}.
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In fact, suppose ExF € {Ax B: A€ S(H;),Be S(Hy)} forE € Qqand F € Q;,
then there exist Ay € S(Hp), By € S(Hy) such that the net { A, x By} converges
to E x Fin Q.

Given any xg € E,yo € F, since x4, xB, (¥0,¥0) — XExr(X0,Y0) = 1, there
exists an wg such that (xg,y9) € Ay x B, forall & > ag. So when a > ag, we know
for any x € G,

XA (%) = XA.xB, (X, Y0) — XExE(X,Y0) = XE(X),

hence E € S(H;) = S(Hz). Similarly, F € S(Hp). Since E and F are arbitrary, this
completes the proof. 1

EXAMPLE 2.5. Let G =R, G4 =R, = [0,00), then
DO={[0x]:xeR;}U{[0,x):x € (0,00)} U{G+};
(i) Vx € Ry, 5([0,x]) = ;
(ii) Vx € (0,00), 5([0,x)) = O
(iv) S(G+) ={G+}.
Proof. (i) Forany H € O, let B = sup{x : x € H}. Then
[0,8] ifBp<ooandp € H,
H=1¢ [0,8) ifp<owandp ¢ H,
Therefore, QO = {[0,x] : x e R+ } U{[0,x) : x € (0,00)} U{G+}.
(ii) By Remark 2.3, we know that S([0, x]) = Q for any x € R...
(iii) For s € (0,00) and t € R, it is easy to verify that
0:([0,8)) = [0,s+1), 6;71([0,8)) =[0,s—t) (t<5).
Therefore [0,y) = 6 06,([0,x)) for x > 0and y > 0, hence
5([0,x)) = {[0,y) : y > O}
Now for any a > 0, since the characteristic functions { Xo,a+1 )};1"’:1 converge
pointwisely to x|o, on [0, c0), we know that [0,4] € {[0,y) : ¥ > 0} = S([0,x)), it
follows that S([0,x)) 2 {[0,4] :a > 0} = Q.

(iv) Since every single-point set is closed in any Hausdorff space, {G } isa
closed subset of 2, which is also 6-invariant, and thus S(G+) = {G+}. &

EXAMPLE 2.6. Let G = Z? and G = Z2.. For any m,n € Z, put
Hun={(s,t) € Z4 :s <mt <n},  Hue={(s,t) €Z} :5 <m},
Hoo,n:{(s,i') eZi:tgn}/ Hoo,oo:Z%,-.

Then the following conclusion holds:
(1) @ = {Hun, Huoo, Hoor, Hoooo : 1,11 € Zy };
(i) Vm,n € N, S(Hp ) = Q;
(iii) Vn € N, S(Hp0) = {Z3 } U{Hmo : m € Z1. };
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(iv)Vn € N, S(Hoon) = {Z2} U{Heopm : m € Z1 };
V) S({Z%}) = {73}

Proof. Let G; = Gy = Z, Gf = G;r = Z4 and Q; be the collection of
hereditary and directed subsets of (G;)+ for i = 1,2. Obviously, Q1 = Qy =
{[0,n] :n € Z4} U{Z+}, and S({Z+}) = {Z+}, S([0,n]) = Q1 = Q for any
n € Z. The conclusion then follows from Proposition 2.4. 1

EXAMPLE 2.7. Let (G, G4 ) be as in Example 1.4. As shown in Section 1,
there is an order-preserving isomorphism of sets A : G — E = [1,00) x [1,00) x

[0, 0), which satisfies
a1 412 a2
AN = (a , 02, —)
< 0 ax > 1822,

Let Q' be A(Q) = {A(H) : H € Q}, and for the sake of convenience, the elements
of Q) are also called hereditary and directed subsets of E = [1,00) x [1,00) X
[0,00). For any H € (Y, let

a =sup{x € [1,00) : Jy € [1,00),z € [0,00), such that (x,y,z) € H},

B =sup{y € [1,00) : Ix € [1,0),z € [0,0), such that (x,y,z) € H},

v =sup{z € [0,00) : Ix € [1,00),y € [1,00), such that (x,y,z) € H}.
Then H = Iy x Ig X ]y, where

[1,a] ifa <oocand Jy € [1,00),z € [0,00) with (a,y,z) € H;

I, = [1,a) ifa <oo,but(a,yz)¢ Hforanyy € [1,00),z € [0, 00);
[1,00) ifax=o0.

Similarly, define I and J,. For simplicity, let us put:

W [,a] (1<a<oo), Y =[L,a) (1<a< o),
Y=00a (0<a<w), &= [o ®) (0<a<w),
o =19 = 1) = [1,0), Jo = JS) =& = [0,00).
Then
_{L,(><I/5><]7 1<aB< <7y < oo}

:{Ia x I ﬁ x]w 1<, p<o0,0<y< oo, 4,j,ke{1,2}}.

A topology on () can be induced by the bijection A defined by (1.4) so that (3’
becomes a compact Hausdorff space, and a net {A,} in Q' converges to A if
and only if x4, (x) — xa(x) for any x € [1,00) x [1,00) x [0,00). As shown in
Example 2.5, it is easy to verify that for any i, j, k € {1,2},

@ {1 < 1 < [ - a, By < 00} =

@) {loo x 1§ 5 J: oy < 00} = {Io X Ig X ]y B, 7 < o0};
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@) {1 x Lo x IVt < 00} = {Iy X Lo X Joy 1,7 < o0}
@ {1 % 1) X Jo 10, p < 00} = {Iu X Ip X Jeo 0, B < 0}

(5) {Ioo % Lo x [\ 1 4 < 00} = {Ioo X Lo X [y 1 7 < o0}
(6) {Ioo X If) X Juo : p < 00} = {loo X Ig X Joo : f < 00};

@) {1 X Lo X Joo ot < 00} = {Iy X Ioo X Joo : ¢ < 00}
8) {Io X Io X Joo} = {loo X oo X Joo}-
Leta,b,ce Rwithl <a,1<band0 < ¢, put

H=AY[1,4] x [1,b] x [0,¢)) = {(xij) € Gyg:ix;p <axp<h, % < c}.
2

Take the above H for example, let us study the detailed structure of S(H).

Step 1. For any x = (x;;) € H, we prove that
Ay A-1([4 @ b X22€ — X12

2.7) 071 (H) = A ( [1, xﬂ} x [1, xzz} x [0, R ))

In fact, for any y = (y;;) € H, we have x 1 (x Vy) = (z;), where
1 Vyn _x22Vyxn _x2VYyxn (xlz ]/12) (x22VY22)x12
=——— Im=—_—, Zn=—_ (V|- .

X22 X1 X22 Y22 X11X22

band 2 v Y12 ~ ¢ we know that

Since x11 Vy11 < a,%20 VY < 7 VY ¥
a b zip  xpe—xp
11—, ZImS—, —<—/———,
X11 X22 Z22 X11

SO

o) € 21 (1] o [ ] 0, 22E =)

On the other hand, for any r with 0 < r < %{1“2, choose a natural number

ng such that
1
1 xp(c— ) —x
c—— > 12 2~ ) X1z > 7.
no ~ xx’ X11
Lety = (yij) € Hwithynn = a,y0 = b,yn = (¢ — ;-)b, denote x '(x Vy) =

(Zij)r then

(c— nig)b _ xib

X11 X11X22

a
m=_—-, ZI»n=_—, 2127
X1 X22
X c 1 X
Therefore 22 = w > 7.
22 X11 b U ;
Now for any t = (t;;) € A~ le([1 ,XH] X [1,722] X [0,%)(@) letr = 2,
then by the above discussion, we know there exists z = (z;;) € 0 L(H) such that

a b Z12
n=—_—, Zp=—, ——>T,
X11 X22 222
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sot <z €0;!(H),and thus t € 6;(H). By the arbitrariness of f, we know that

1 a b X22C — X12 —1

1, — 1, — ———=) ) C H).
A ([IX11:|X|:IXZ2:|X|:O’ X11 ))_GX ( )

Step 2. Similarly, we can prove that for any x = (x;;) € G,

2.8) 0c(H) = A ([1axn] x [1,bao] x [0, 110 T12)),

X22
Step 3. We prove that for any a,b,c € Rwith1 < 4,1 < band 0 < ¢, there
exist x,y € G4 such that

29) A Y([La] x [1,b] x [0,¢)) = 8,00, (ATH({1} x {1} x [0,1))).

This can be verified by choosing a positive number s with0 < s < 1,1 — s is small
enough so that bc — a(1 —s) > 0, and putting

(1 s _(a bc—a(l-ys)
x_(o 1)’ y‘(o b )

Step 4. Let Hy = A1 ({1} x {1} x [0,1)), then
{A1([L,a] x [1,b] x [0,¢)) 1 a,b,c < 0o} = {0,060, (Hp) : y € G4, x € Hp}.
Therefore for any H = A~1([1,a] x [1,b] x [0,¢)) € Q,
S(H) = S(Ho) = {A"1([Lr] x [L,s] x [0,4)) : 7,5,t < 00}
=AT{[L ] x[Ls] x[0,t) i 1,5t <oo}) = AHQ) = Q.

REMARK 2.8. Let (G, G ) be as in Example 1.4. For any b,c € Rwith 1 <
b,0 < ¢, set H = A~1([1,00) x [1,b) x [0,¢)) € Q, then it can be proved that

{ATH([1e0) x [1,8) x [0,8)) : 5, < 00} = {6, 00" (H1) : y € G4, x € Hy}.
It follows that

S(Hy) = {A1([1,00) x [1,5) x [0,£)) : 5, < oo}
“1({[1,00) x [1,5) X [0,1) : 5, < c0})
{Ieo X I X Jy 2 By < 0}).

3. THE LARGEST CLOSED 6-INVARIANT PROPER SUBSET OF Q)

As before, throughout this section, (G, G4 ) is a quasi-lattice ordered group,
and Q is the collection of hereditary and directed subsets of G. Let IF be a closed
f-invariant proper subset of (), we say that I is the largest if K C I holds for any
other closed 6-invariant proper subset K of Q). In this section, we will investigate
conditions under which S(H) # Q for H € Q. In the peculiar case when (G, G4.)
is an ordered group, we will prove that in () exists a largest closed 6-invariant



46 QINGXIANG XU

proper subset if and only if there exists a smallest semigroup of G strictly con-
taining G4 (see Theorem 3.6).

LEMMA 3.1. Let (G, G4) be a quasi-lattice ordered group, and Q) be the collection
of hereditary and directed subsets of G,. Let

(3.1) M(Q)={H e Q:S(H) # Q},
then Q contains a largest closed 0-invariant proper subset if and only if @ # M(Q) C

M(Q) # Q. And if this happens, M(Q) is the largest closed 0-invariant proper subset
of Q0.

Proof. For a proof, see Proposition 5.8 of [8]. 1

PROPOSITION 3.2. Let (G, G4 ) be a quasi-lattice ordered group, and Q be the
collection of hereditary and directed subsets of G4 and M(Q) be defined by (3.1). Then
forany H € Q, the following conditions are equivalent:

(i) 3F = {ay,a2,...,a,} € G4 \ {e}, such that forany s € G4, t € H, there exists
aj, € F which is contained in 05 o 0, (H);
(i) [e,e] = {e} ¢ S(H);
(iii) S(H) # Q, ie, H € M(Q).

Proof. Since S({e}) = S([e,e]) = Q, conditions (ii) and (iii) are equivalent.

For any A € () and any non-empty finite subset F of G, let

(32) N(A;F)={BeQ:xp(x) =xalx),Vx e F} ={B€Q:BNF=ANF}
Then {N(A;F) : @ # F C Gy, F is finite} is a local base at A.

Now for any H € Q, since S(H) = {6506, '(H) : s € G+, t € H}, we know
le,e] ¢ S(H) <= 3IF = {ay,ay,...,a,} C G4\ {e}, such thatVs € G, Vt € H,

N(le,e; F)N {606, (H):s € G4, t € H} = Q,

or equivalently, there exists a;, € F which is contained in 6; o 6,” L(H), this com-
pletes the proof of the equivalence of conditions (i) and (ii). &

When applied to ordered groups, Proposition 3.2 has a much simpler ver-
sion, which can be stated as follows:

COROLLARY 3.3. Let (G, G4) be an ordered group, Q be the collection of hered-
itary subsets of G, then for any H € Q, S(H) # Q if and only if there exists some
a € G4\ {e}, such that:

(i) forany t € H, ta € H;
(ii) for any s € G4 withs~'a € G, s la € H.

Proof. Since (G,G4) is an ordered group, we know for any x € G and
y € H, either xy~! € G or yx~! € G, which implies

6,,1(H) ifxy~! € Gy,
-1 _ Xy
Ox 00" (H) = { 60-1 (H) ifyx'eG..

yx~!
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Therefore, S(H) = {65(H),6; }(H) : s € G4,t € H}. By Proposition 3.2 we know
S(H) # Q<= [e,e] ¢ S(H) <= IF = {ay,ay,...,a,} C G4+ \ {e}, such that

(3.3) N(le,el; F)N{6s(H),6;*(H) :s € G4, t € H} = @.

Let a be the smallest element of F (thatis, 2 € F and a < 4;,Va; € F), then
condition (3.3) can be simplified as

(3.4) Vs € G4, Vt € H=a € 6;(H) and a € 6, (H).
Note that for any s € G, we have
1 [ s7ha ifs<a,
s (a\/s)—{e ifa <s.

It follows that condition (3.4) is satisfied if and only if the asserted conditions (i)
and (ii) hold. 1

PROPOSITION 3.4. Let (G, G ) be an ordered group, Q be the collection of hered-
itary subsets of G4.. For any H € M(Q), let

(35 E={acG,:VtcH=—=tac H;Ys€ G, ,s lac Gy = s 'ac H}.

Then E € Q and Gg et G+ - E~Vis a semigroup of G with

GL¥ GeNG = EUE™ # {e}.

Proof. Clearly, e € E C H (since ¢ € H), and by Corollary 3.3 we know that
the set E defined as (3.5) is not equal to {e}.

Step 1. Suppose thate < x < y € E. Then for any ¢t € H, we have e <
tx < ty € H, therefore tx € H since H is hereditary; Vs € G, if s7lx € G,
then s~'y = (s7'x)(x"ly) € G+ -G+ = G4, hence s™'y € H, which implies
that s™1x € Hsincee < s~ !x < s~y € H and H is hereditary, this completes
the proof of x € E. Obviously, E is also directed since G = G4+ U Gjrl, therefore
EcO.

Step 2. Let x,y € E, then for any t € H, we have t(xy) = (tx)y € Hy C H;
let s € G such that s™!(xy) € G, we prove s~!(xy) € H so that E will be a
semigroup of G .

Case 1. s~ lx € G4. In this case, s~
(s7'x)y € Hy C H.

Case 2. s~'x € G;'. In this case, s"'x = g~! for some ¢ € Gy. Then
g ly=s1(xy) € Gy = g 'y € H,ie,s !(xy) € H.

Step 3. For any x,y € E, we prove that x 'y € EUE~!. Without loss of
generality, we may suppose that x < y. Lets € G4 with s~ !(x~1y) € G, then
(xs)"ly € G = s (x7ly) = (xs)"ly € H; lett € H, we will prove that
t(x~ly) € H, therefore x 'y € E.

Case 1. tx~ 1 € G;l. In this case, tx~! = g_1 for some g € G4, hence
txly)=¢lye Gy = ¢ 'y e H,ie, t(x ly) € H.

lx € Hsince x € E, s0 s (xy) =

1
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Case2. tx 1 € Gy. Lets=tx1 € G, thene<s<tce H=sc H—=
sy € H,ie, t(x ly) € H.

Step 4. We prove (xy~!)(st™!) € G, -E~! for any x,s € G+ and y,t € E,
therefore G, - E~! is a semigroup of G.

Case 1. y~'s € Gy. In this case, (xy !)(st™1) = x(y 's)t™! € G4 -Gy -
El=Gy-EL

Case 2. y~1s € Gjrl. In this case, e < s <y € E=s € E = sy € E.
Therefore, (xy 1) (st™!) = x(t(s 'y)) ' € Gy - (E-E)"' =G4 -E~L

Step 5. Let Gp = G, - E~! and denote by G% = GgN Ggl. Then GIOE is a
subgroup of G which contains both E and E~!. On the other hand, given any
X € Gg, ifx e Gy, thenx ! =st ! forsomes e G, andt € E, hencee < x <t €
E = x € E; otherwise, x € G{' = x 1€ G4 NG = x1 € E= x € E~.
So in any case, we have x € EUE~!, this completes the proof of G2 = EUE~L. ¥

DEFINITION 3.5. Let (G, G4 ) be an ordered group. For any ¢ € G4 \ {e},
let G, be the semigroup of G generated by G and ¢~ !. Denote by

(3.6) F(G)= () Gg F(Gy)={teGy:t"'eF(G)}
geG\fe}

As in the abelian case [9], elements of F(G) are called finite elements of G.

The semigroup F(G) defined as above may equal G;; in the case when
F(G) # G4, F(G) will be the smallest semigroup of G strictly containing G..
Note also F(G4 ) is hereditary so that F(G1) € Q. For, ife < x <y € F(Gy),
then for any ¢ € G, we have

(3.7) x ' =xlyy ! €Gy Gy =Gy

THEOREM 3.6. Let (G, G4.) be an ordered group, Q) be the collection of hereditary
subsets of G4.. Then QY contains a largest closed 6-invariant proper subset if and only if
there exists a smallest semigroup of G strictly containing G.; if and only if F(G4.) #
{e}. And if this happens, S(F(G+.)) is the largest closed 6-invariant proper subset of Q2.

Proof. Step 1. Suppose F(G;.) # {e}, we prove that S(F(G)) is the largest
closed g-invariant proper subset of Q).

Step 1.1. Choose any a € F(G4) \ {e}, since F(G4) is a semigroup of G,
we know

ta € F(G4)-F(Gy) = F(Gy) foranyt € F(Gy);
let s € G4 and suppose s~!a € G, then forany ¢ € G- \ {e},
(sla)y l=alse Gy s C Gy G =Gy, so s 'aeF(Gy).

By Corollary 3.3 we know S(F(G+)) # Q.
Step 1.2. For any H € M(Q), define the set E as (3.5). Then Gg = G - E!
is a semigroup of G which strictly contains G4, so F(G+)~! C Gg. It follows that
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foranya € F(G4+) C Gy, a € Gg N G+ = E, hence
(3.8) Vi€ H,Va € F(G+) = ta € H.

Let us prove that H € S(F(Gy)) so that S(F(G.)) will be the largest closed 6-
invariant proper subset of Q). It suffices to prove that for any open neighborhood
Uof H,

UN{6:(F(Gy)), 05 (F(Gy)) i t € Gy,s € F(Gy)} # @.
Since (G, G4 ) is an ordered group, we might as well consider the following three
cases:

Case 1. U = N(H;{x,y}) = {B € Q:x € B,y ¢ B} forsome x,y € G4
withx € Hand y € H. In this case, x < y (otherwise,y < x € H =y € H, a
contradiction). Clearly x € 6(F(G4)) and y ¢ 0x(F(G+)). For, if y € 6,(F(Gy4)),
then x~ly = x"!(x Vy) € F(G4). So by (3.8) we know y = x(x"!y) € H-
F(G4+) € H, which is a contradiction. Therefore,

0.(F(Gy)) € UN{6:(F(Gy)),0; Y (F(GL)) : t € Gy,s € F(G1)}.
Case2. U= N(H;{x}) = {B € Q:x € B} forsome x € H. In this case,
0,(F(G4)) € UN{6:(F(G4)),0; 1 (F(Gy)) : t € Gy,s € F(G4)}.

Case3. U = N(H;{y}) ={Be Q:y ¢ B} forsomey € G4 \ H. By (3.8)
we know F(Gy+) C H, hencey ¢ F(G4), so

F(Gy) e UN{6:(F(G+)), 0 (F(Gy)) it € Gy,s € F(Gy)}.

Step 2. Suppose that (2 contains a largest closed 6-invariant proper subset,
then by Lemma 3.1 we know this largest closed f-invariant proper subset of (2 is
equal to M(Q). In particular, M(Q) is compact since it is closed in the compact
Hausdorff space Q. As before, for any ¢ € G \ {e}, let G, be the semigroup of
G generated by G4 and ¢!, and put Hy = {t € G4 : t ! € Gy}. Then Hy € Q
demonstrated as (3.7). Obviously, tg € Hg for any t € Hg; and if s7'¢g € G4
fors € Gy, then (s7!)™1 = ¢71s € Gy - G4 = Gy, s0s g € Hg. It follows by
Corollary 3.3 that H, € M(Q). Let

D={ACM(Q):3teGy\{e},suchthatVs,e <s<t=— H; € A}

Then it is easy to verify that D is a filter on M(Q). Since M(Q) is compact, D has a
cluster point H in M(Q) ([5], Theorem 3.11). So for any open neighborhood U of
H, any A € D, the intersection of U and A is always non-empty. By Corollary 3.3,
there exists ana € H \ {e}, such that Vt € H implies ta € H.

Now for any ¢ € G4 \ {e}, let

U=N(H;{a})={BeM(Q):aecB}, A={Hs:e<s<g},

then there exists an s with e < s < gsuch thata € H;. Note thats™! = (s71)g~! €
Gy, s0 Hy C Hg and hence a € Hyg, or equivalently 2~ € G,. By the arbitrariness
of g, we know a € F(G4) and thus F(G4) # {e}. 1
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REMARK 3.7. (i) Let (G, G4 ) be an ordered group. If G is abelian, then for
anyg € Gy, Gy =Gy —Z,g={t—ng:tec Gy,neZy} Soin this case,

F(Gy) ={x € Gy :Vy € G4 \ {0}, Ing € N, such that x < noy}.

And the reader is referred to Example 1.7 for a non-abelian ordered group which
satisfies the condition stated in Theorem 3.6.

(ii) Let (G, G+) be a quasi-lattice ordered group, and Q be the collection of
hereditary and directed subsets of G;.. An element A of Q) is said to be maximal if
A C B € Qimplies A = B. Let Q be the collection of the maximal elements of
Q. It was proved in [6] that for any A € (), there exists some B € Qe such that
A C B, and the closure of Q) is the smallest closed 6-invariant subset of Q. It
follows that S(H) = Qo for any H € Qc..

4. THE INDUCED IDEALS OF THE TOEPLITZ ALGEBRAS

Let (G, G4 ) be a quasi-lattice ordered group, H be a hereditary and directed
subset of G. Denote by 7%+ and 7 CH the two associated Toeplitz algebras (for
the definitions, see below), where Gy = G4 - H~!. Then by Theorem 2.12 of [8]
we know there exists a natural C*-morphism 6+ from 76+ onto 7 ©H. In this
section, we will show that the induced ideals of 75+ studied by Laca and Nica et
al. all come from the intersection of such kernels as Ker yCH%+. As an application,
conditions under which 7 ¢+ becomes simple are given.

Let us first recall some definitions about Toeplitz algebras on discrete groups.
Let G be a discrete group and {d; : ¢ € G} be the usual orthonormal basis for
£2(G). For any g € G, a unitary operator 1y on (*(G) is defined by u¢(8;) = deh
for h € G. For any subset E of G, let /2(E) be the closed subspace of £%>(G) gener-
ated by {6, : g € E}; the projection from ¢2(G) onto ¢?(E) is denoted by pE. The

C*-algebra generated by {Tf &t pt ung : ¢ € G} is denoted by 7F and is called
the Toeplitz algebra with respect to E.

By definition we know (TgE)* = TgE,1 forany ¢ € G,and forany T € 7F, let
0F(T) be the associated diagonal operator acting on ¢2(G) which is defined by

Té, 6,)0, ifg € E,
GE(T)(Sg—{é s 0g)0% ifggE'

By definition, we know for any g,k € G,
:rgETgfi1 ifg=n,

4.1 OF(TETE ) =
(1) ( 8 h Y 0 otherwise.

The properties of 7F are generally closely related to the underlying pair (G, E).
When (G, G ) is a quasi-lattice ordered group, with the convention x lco = oo

(x € G4+) and TS = 0, we know from [10] that the following proposition holds:
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PROPOSITION 4.1. Let (G, G4 ) be a quasi-lattice ordered group. Then:

Gy Gy : -1
(i) Forany x € G, TS+ = Lot Trmr Fx€ g+ O
0 otherwise.

. Gy G Gy G G G
(ii) Forany x,y € G4, (Ta" T 1) - (Ty +Tyf]) =Ty T(ny)*l'
Gi+ G G G
(iii) For any x,y € G4, T\ T, " = ijl(x\/y) T(ytl(x\/y))—l'

Let

T°(Gy) = span{Té?*Tff] g, he Gy}, DC+ = closp{Tg(;*T(gj :g€ Gy},

then 7°°(G..) is a dense *-subalgebra of 7%+, whereas D%+ is a commutative C*-
subalgebra of 7%+, and 6§+ is a faithful positive compress linear operator from
TG+ onto D (in other words, 8°+ is a faithful conditional expectation). Since
T°(G, ) is dense in 76+ and #%+ is continuous, by (4.1) we know the following
proposition holds:

PROPOSITION 4.2 (cf. Lemma 4.1 of [6]). Let (G, G+) be a quasi-lattice ordered
group. Then forany g € G4, X € TG+ and Y € D+,
. G G G G
(i) 06+ (Tq +XTgf1) = T 06+ (X)Tgfl;
(i) 09 (T XTg™") = T746% (X)Tg™"
(i) 09+ (XY) = 6%+ (X)Y, 65+ (YX) = Y85+ (X).

Throughout the rest of this section, (G, G+ ) is a quasi-lattice ordered group,
and Q is the collection of hereditary and directed subsets of G1. By an ideal,
we always mean it is closed, two-sided, and proper. There is a correspondence
between the induced ideals of 7S+, a-invariant ideals of DS+ and the closed 6-
invariant subsets of () described as follows:

Step 1. For any s € G, a5 and &1 are two C*-automorphisms of DG+
defined by

(4.2) a(X) = T XTS,  aga(X) = TOXTSH for X € DO

Anideal 7 of DS+ is said to be a-invariant if a5(Z) C Z and a,1(Z) C T for every
s € G4. Clearly any ideal 7 of 7%+ can induce an a-invariant ideal Z of D%+
by simply letting Z = J N D%+, and it is remarkable that 7 N D%+ is nonzero
provided that J is nonzero (for the detail, see [7] or [8]). On the other hand,
any a-invariant ideal Z of D+ can induce an induced ideal Ind T of TS+ which is
defined as

(4.3) IndZ = {T € 75 : 65+ (T*T) € T}

with the property that (Ind Z) N D¢+ = Z. It follows that 75+ is simple if and
only if there is no nonzero a-invariant ideal of DC+.

Step 2. Let DG+ be the maximal ideal space of D¢+, and T be the Gelfand

transform from DS+ onto C(DC+). For any t € G, since TtG * Tﬁ 1 is a projection,
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V(T 1) € {0,1} for any 7 € D Let

Ay ={teGy: 'y(TtG+T£§) =1} forvy e DC+.
Then A, € Q, and Nica showed in [10] (also demonstrated in the proof of The-
orem 4.5 down below) that p : v — A, is a homeomorphism from the compact

Hausdorff space D&+ onto ), and thus induces an isomorphism p* : C(D6+) —
C(Q) defined as

o'(f) = fop™" for f € C(DG).
Therefore, p* o T realizes an isomorphism from D&+ onto C(Q) with the property
that

(4.4) (p* o I'(T, G*TG+))(A) =xa(t) foranyte G and A € Q.
Accordingly given any ideal Z of D¢+, since (p* o I')(Z) is an ideal of C(Q}), there
exists uniquely a nonempty closed subset K of () such that

(4.5) T =Tx ¥ {T e D+ : (p* o I'(T))(A) = 0 for any A € K}.

Laca showed that 7 is a-invariant if and only if K is 8-invariant ([6], Proposi-
tion 3.2).
Now for any closed #-invariant subset K of ), let

(4.6) T ¥ mdZyg = {x € 76+ : 65+ (x*x) € Ty}

Let Q. be the collection of the maximal elements of () and cl(Q) be the closure
of Q. Since cl(N) is the smallest closed #-invariant subset of (3, we know
Zi(0) is the largest a-invariant ideal of DS+, while Jd () 18 the largest induced

ideal of 7C+ (the reader should be aware that Zi(ay) = 0if cl(Qe) = Q).

Now given H € Q, let Gy = G4 - H L By Theorem 2.12 of [8] we know
there exists a natural C*-morphism CH#-G+ from 7%+ onto 7 ©H such that

'yGH’G+(T§+) = TgGH forany g € G.
It follows that
TOH = CHG+(T6+) = closp{TGH TGH gheGy}
and DCH = closp{TGH TGH ¢ € G4} is a commutative C*-subalgebra of 7CH
with a faithful cond1t10na1 expectation 9CH : 7CH — DCH satisfying
(4.7) GG 0 6+ (T) = §5H 0 4CHC+(T)  forany T € TC+.

Upon replacing G4 by Gy, the same propositions as Proposition 4.1 and Propo-
sition 4.2 also hold.

PROPOSITION 4.3. Let (G, G+) be a quasi-lattice ordered group, H be a hereditary
and directed subset of G and G = G4 - H™1. Then

Ind((KeryGH'Gﬂ N DG+) = Ker'yGH'G+.
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Proof. Since 8H is faithful, we know for any T € 7 ¢+,
T € Ind((Kery®#C+) N D) <= 05+ (T*T) € KeryCrC+
= CH (yCHOH(T*T)) = 0 = yCHO+H(T*T) = 0
= T*T € KeryCHC+ = T € KeryCHC+.

The following proposition was established in [8]. For a proof, see Lemma 2.8
and Lemma 2.9 of [8].

PROPOSITION 4.4. Let (G, G+) be a quasi-lattice ordered group, H be a hereditary
and directed subset of G+ and Gy = G4 - H™L. Then forany x,y € Gy and g € G,
() g € Gy <= g € G, -Gt withT(g) € H;
(i) x 1y € G - Gj_l <= x V y # oo, and if this happens,
cixly)y=x"Yxvy) and t(x'y) =y H(xVy).
The main result of this section is as follows:

THEOREM 4.5. Let (G, G4.) be a quasi-lattice ordered group, Q be the collection
of hereditary and directed subsets of G1. Let H € Q, and denote by S(H) the closed
-invariant subset of O generated by {H}. Then

(4.8) Zsm) = (KeryCHC+) N D% and Ts(r) = KeryOH G+,
Proof. Step 1. For any y € DCH, as in Section 6.2 of [10] we define
Ay ={t€Gy i y(TPHTI) =1}

It is easy to check that A, € Q). Forany s€ G, tc H, let 7, be in DGH defined as

Yst(+) = <'5st*1/ Ogp-1 ).
We prove that

(4.9) A = 0506, 1(H).

Ys,t(+)
To this end, let us first prove that forsuch t € H,

(4.10) Gy H't=G:- (6, (H) L

For one direction, xh 't = (x- (W (hv )t~ (hvi)™ € Gy (6,1 (H))™!
whenever x € G4 and & € H. By (2.2) we know ty € H fory € 6;1(H). The
reverse direction then follows as xy~! = x(ty)~'t € G - H™!t for such y and
x € G4. Hence for any g € G4,

§EA, ()= 'ys,t(TfHT;f{) =1le=glstleG, -H!
— g lseG - H't=0G: (67(H) ! <= t(g71s) € 6,1 (H)

s (gVs) €0, (H) <= g €66, (H)).
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Step 2. Let py be a morphism from DCi to Q defined by pn(y) = A, for
Y € DGH. Then PH is continuous and one-to-one, so the compactness of Do
implies that p H(Z/)-G\H) is compact (and hence closed) in Q. It follows that pp is a
homeomorphism from DCH onto 0 H(EG\H)

—

Next we prove that the collection of all such A, is dense in py(DCH), so
that

pr(DCH) = {A,, 5 € Gy, t € H) = {0060, '(H) :s € Gy, € H} = S(H).

Toward this end, it suffices to prove that for any v € DCH, any finite nonempty
subset F of G, there exist s € G4 and t € H such that

(4.11) x € Ay <= x € 65(6;1(H)) foranyx € F.

Casel. F; ¥ Fn Ayand F, L rn (G4 \ A,) both are non-empty. Let F; =
{s1,82,...,sn} and F, = {t1,ty,...,ty}. Since A, is directed, the least common
upper bound of s;, 0(s1,52,...,5n) def so belongs to A,. Note if s € G such that
s > 5o, then for any s; in Fj, s; < sp < s € 65(A) for every A € Q, accordingly
F; C 65(8;1(H)) for all such s and any t € H. So it reduces to prove there exist

>spandt € HsuchthatF, C G \95(9[1 (H)), or equivalently, TSH Tﬁ?ést,l =
j

0 for any t; € F, (see (4.9)). Suppose on the contrary that

(4.12) ]m‘[( TGH TGH)5

-1 =0 foranyt e H,s € G withs > s,
j=1

then we show

m
(4.13) (1 H - Tk TGH )) - TSHTC = 0.
] 0

In fact, for any x € Gy and y € H, if TG” Tc_’f (Snyl # 0, then we will prove that

TS%” Tﬁ’f&xyq = Jy-1 for some t € H and s € G4 with s > sg, the conclusion
then follows by (4.12). The proof of the asserted property can be demonstrated as

follows:

Gy TG Gy G
TSOHTSa}lI‘Sxy* #0<— <T50HT551115W71’ 5xy*1> =1

<~ 59 € Gx(Ggl(H)) — xHxVsp) € Gy*l(H)
— yx Y(xVsg) € He= xy ' = (xVsy)t™! forsometc H.
m
By the definition of A, we know [] (1 — 'y(Tt(j;H TH)) -y (TGHTE!H) = 1. But by
j=1 j 0

m
(4.13) we also have [T (1 — ’y(Tt?H Tﬁ’f)) : 'y(TSgH Tgﬁ’) = 0, a contradiction.
j=1 i 0
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Case 2. F = F|,F, = @. Let sg be as in Case 1, and put s = sp,t = ¢, then
(4.11) holds.
Case 3. F = F,F; = @. In this case, 'y(Tt?HT:i’f) =0forallt; e F1<j<
j

j=1 1 ]
there exist some s € G and t € H, such that

m
Gy TG
[T =TT )6, # 0.
j:l ]

mn Gy Gy _ L Gy Gy
m). It follows that [](1 — 'y(Tt] T% )) =1, and hence (1 — Tt]_ T ) # 0, s0
. : s ;

It follows that t; ¢ 65 0 6, ' (H) for 1 < j < m.

Step 3. As before, let p}; : C (EG\H) — C(S(H)) be the induced morphism
defined by

oi(f) = fopg' for f € C(DH).

Also, let I be the Gelfand transformation from D¢H onto C (EG\H) Then it is easy
to verify that forany A € S(H) and t € G,

(4.14) (pi o T(TPMTN) (4) = xa(t).
Since the linear span of {TtG * Tﬁ T : ¢ € Gy} isdense in DO+, by (4.4) and (4.14)
we know for any T € D¢+ and A € S(H),
(4.15) (p" o L(T))(A) = (o} o T (x5S (T)))(A).
Thus we have the following C*-algebras, all of which are isomorphic:
DO = C(S(H)) = C(0)/Ag(yy) = DO /Ty(zy,
where
Asy ={f €C(Q): f(A) =0,VA € S(H)},
Is) = {T € D : (p* o I'(T))(A) = 0,VA € S(H)}.
We are now ready to prove that Zgpy = (Kery©HC+) N DG+, 1In fact, for any
x € DG+,
x € Igpyy <= [x] = 0in DG+/IS(H) < [p"oI'(x)] =0in C(Q)/Ag()
> p" ol(x)|gy =0+=VAES(H), p*oI'(x)(A)=0
= VA € S(H), (0} 0 T(v°H5+ (x)))(A) = 0 <= 9“1+ (x) = 0.
The assertion that J- S(H) = KeryCH/C+ then follows from Proposition4.3. 1
COROLLARY 4.6. Let (G, G) be a quasi-lattice ordered group, Q3 be the collection

of hereditary and directed subsets of G. Let K be a closed 6-invariant subset of ), and
define I and Jx by (4.5) and (4.6) respectively, then
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Ik = () ((KeryCHS+) N DC+) and Ty = N KeryCH/G+.
HeK HeK

Proof. Obviously K = |J S(H), the conclusion then follows by the defini-
HeK

tions of Zi, Jk and the preceeding theorem. 1

COROLLARY 4.7. Let (G, G) be a quasi-lattice ordered group, Q3 be the collection
of hereditary and directed subsets of G.. Then the following conditions are all equivalent:
() TC+ is simple;
(if) forany H € Q, yCH/G+ s q C*-isomorphism;
(iii) forany H € Q, S(H) = Q;
(iv) (Qe) = Q;
(V) the only closed 8-invariant subset of Q) is Q2 itself;
(vi) there is no nonzero a-invariant ideal of DG+;
(vii) for every finite subset F of G \ {e}, there exists z € G such that z \V/ x = oo for
allx € F;
(viii) for every nonzero element A in T G+, there exist B,C € T %+ such that BAC = 1.

Proof. Since cl(Qoo) is the smallest closed f-invariant subset of 2, S(H) =
cl(Qe) for any H € cl(Qo). The equivalence of conditions (i) through (vi) then
follows from Theorem 4.5. For the rest, see Lemma 5.2 and Theorem 5.4 of [6]. 1

5. THE MAXIMAL IDEALS OF THE TOEPLITZ ALGEBRAS

For n > 2, the Cuntz algebra O, is the universal C*-algebra generated by

n
isometries S1, Sy, ..., Sy such that }° 5;S7 = 1. It is known that for any non-zero
i=1
element A € O,, there exist B and C such that BAC = 1, which means O,, is sim-

n
ple, and thus if Ty, T, . . ., T;; are any n isometries such that ) T;T;" = 1, then the
i=1
C*-algebra generated by Ty, Ty, ..., Ty is isomorphic to O,. Meanwhile, the C*-

algebra O is the universal C*-algebra generated by countably many isometries
n
S such that ) S Sf < 1foralln > 1. The C*-algebra O is also simple. For the
k=1

details, the reader is referred to [2] and [3]. The purpose of this section is to give
a new look at these Cuntz algebras. We will show that they can be expressed as
certain Toeplitz algebras, and the property of purely infiniteness can be proved
in a unified way.

Throughout this section, (G, G4 ) is a quasi-lattice ordered group such that
G itself is not directed, which means there exist some x,y € G with x Vy = co.
Since cl(Q) is the smallest closed 6-invariant subset of Q, J(q,,) is the largest

induced ideal of TG+, which may however fail to be the largest ideal of 7C+ as
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shown in the next section. So we turn to investigate conditions under which
Jd(Q) becomes a maximal ideal of TS+ in the sense that, for any ideal J of T G+,
Ja(0e) € T = Jia.) = J- Note forany H € cl(Q«), S(H) = cl(Q),
so by Theorem 4.5 we know that J(q,,) is maximal if and only if the Toeplitz
algebras 7¢H (H € cl(Q)) are simple. Following the same lines as [2] and [6],
in this section we study the purely infinite simpleness of the Toeplitz algebras
764 (H € d(Q)).

LEMMA 5.1 (cf. Lemma 3.9 of [10]). Let (G, G+ ) be a quasi-lattice ordered group,
and {L(t) : t € Gy} be a family of projections of a unital C*-algebra B such that
L(e) = 1and L(s)L(t) = L(s V t) (with the convention that L(co) = 0). Then for any
finite subset F of G, any Ay € C, we have

H Z/\ L(x H—max{’ t@Q#ACF, []Lx)-T]C1 L(y));«éO}.

xeA y¢EA
(Note if A = F, then the product above should be understood as T] L(x).)
x€F

LEMMA 5.2 (cf. Lemma 5.1 of [6]). Let (G, G4) be a quasi-lattice ordered group
such that G itself is not directed. Let H be in Qo and F a nonempty finite subset of G
with FOH = @. If a € H satisfies a < x for any x € F, then there exists y € H with
a < ysuchthat xVy = coforall x € F.

THEOREM 5.3. Let (G, G4 ) be a quasi-lattice ordered group such that G itself is
not directed. Suppose for any x,y € G with x # y, there exists g € G, such that

G G G G
(5.1) THT TS T =0,

Then for any H € cl(Q), the Toeplitz algebra T CH is purely infinite simple.

Proof. We need to prove that for any X € 7CH with X # 0, there exist
B, C € TCH such that BXC = 1, which is further reduced to find some B; and C;
such that By XCj is invertible.
def

Step 1. LetY € T%(Gy) = span{TgGHTth{ : g, h € Gy} with Y # 0. For
any ¢ € G4, denote Ty o Tgf{ simply by L(g). Then there exists a finite subset F
of G4, and A, € C for each x € F, such that
(5.2) 0 (Y*Y) = Y AxL(
x€F
By Lemma 5.1, there exists A C F such that

(5.3) [Tt -JI(1—-L(y) #0, and HZAL H \ZAA

xeA yEA x€F

Case 1. © # A C F,A # F. Let a be the least common upper bound of
elements in A. By (5.3) and Proposition 4.1 we know a € G. Note forany x € A
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andy € F\ A,
(L(a) — L(a Vy))L(x)
(L(a) = L(a Vy))L(y)

L(avx)—L((aVy)Vx)=L(a)—L(aVy),
L(aVy)—L(aVy)=0.

Therefore,
G4 Q- (LML) 2= (L M)e
where

Q&f [T(L@) —Lavy) =] L) [T -Ly) #o0.

y¢A xX€EA yEA

Note 0H (Y*Y) is positive, by (5.2)~(5.4) we know that | ¥ A,| = ¥ A,. There-
xeA xeA

fore,

(55) Q691 (YY) - Q = (691 (Y'Y)[|Q.

Since Q # 0 and H € cl(Q«), we know pj; - I'(Q) # 0in C(S(H)) = C(cl(Qw))-
By the density of O in cl(Qy ), there exists H; € Qo such that

[T, (@) = xy, (aVy)) = (e 0 T(Q))(Hr) # 0,

yEA
which means thata € HyandaVy ¢ Hj forally ¢ A. By Lemma 5.2 there exists
z€ Gy withz>aandzV (aVy) =ooforally € F\ A, so that L(z)Q = L(z).
Hence,

L(z)Q- 6% (YY) - QL(z) = |6 (Y*Y)||L(2).

It follows that
(5.6) TEHQ 6% (Y*Y) - QTS = 6% (y*Y)).

Case 2. © # A = F. In this case, let a be the least common upper bound of
elements in F, then L(a)L(x) = L(x)L(a) = L(a) for any x € F. Letz = a and
Q = L(a), then (5.6) also holds.

Step 2. Suppose now that condition (5.1) is satisfied. Let x;,y; € G4+ with
x; # y; for i = 1,2. By assumption there exists g; € G such that

Tgcl_q ToH Tycl_q TgH = oCnGe (TgGljl TS Tyclj1 TSH) = 0.

If the operator Tgc;“1 TgH TZ}{ TgﬁH # 0, then it is equal to ToH Tfj for some u,v €
G4 with u # v (see Proposition 4.1). Once again there exists g € Gy such that

Tng_”l TS Tf_*{ TngH = 0. Let g = g142, then TgGH = TgGl” TgGZ”, so for any Aq,A2 € C,

G Gy G Gy G G
TAMTH T + AT T T =0,

The above process indicates for any T € T*°(Gy), there exists ¢ € G such that
(5.7) T;f{ (T — 6CH(T))TgH = 0.



INDUCED IDEALS AND PURELY INFINITE SIMPLE TOEPLITZ ALGEBRAS 59

Step 3. Let X € TCH with X # 0. Since 6CH is faithful (in the sense that
0CH(S*S) = 0 <= S = 0 for any S € 7 °H), we know 0%H(X*X) # 0. Since
T>(Gy) is dense in 7 ©H, we can choose a sequence {Y,} in 7°°(Gp) such that
Y, — X in TCH. Then Y'Y, — X*X and [|6%H (Y;Y,)|| — [|6%H (X*X)| > 0. It
follows that there exists some Y € 7%°(Gp) such that
| X*X = Y*Y|| <1

1o (YY)~
Let Q and z be as in Step 1 such that (5.6) holds. By Proposition 4.2, we know
6% (TEHQ(Y"Y — 8% (YY) QTE™) = 0,
therefore by (5.6) and (5.7) we know there exists ¢ € G4 such that

(5.9) THTHQ- (YY) - QIZTH = (|69 (Y*Y)).

(5.8) 0CH (Y*Y) #0 and

Then

||||9G”(Y*Y)||’1Tgc_”1TZG_ﬁ’Q- (X*X) - QT T 1
= |6 (YY) - IITEET;{?Q- (X*X = YY) QTHTH |
<O (YY) 71X X - Y| < 1.

Let
By = |69 (Y*Y)| ' TIHTSHQ - X7, and G = QTCHTSM.

Then ||B;1XCy — 1|| < 1, therefore B; XCy is invertible. 1

By Proposition 4.1, we know Tgcfl TS = 0 for any g,x € Gy withxV g = co.
So compared with the condition (5.1) given in the preceding theorem, a stronger
condition can be stated as follows:

DEFINITION 5.4. A quasi-lattice ordered group (G, G4 ) is said to be ex-
tremely incomparable if for any x € G, \ {e}, there exists ¢ € G4 such that
XV g=oo.

Typical examples of extremely incomparable quasi-lattice ordered groups
are the free groups with finite or countably infinite generators presented below:

EXAMPLE 5.5. Let F, be the free group with n(n > 2) generators ay, ..., a,,
and F;/ be the semigroup of F, generated by a3, ...,a,. Then (F,, F;) is a quasi-
lattice ordered group with a property that

xVy#oco<=x<y or y<x foranyxye€ F .
Specifically, for any t € F," \ {e}, there exists one and only one generator 4;, sat-
isfies a;, < t, which means t V a; = oo for any i # ip. Let H = {e} U {a' : m € N}
and denote F, - H~! simply by Gy. Then H € Q, so by Theorem 5.3 we know
T CH is purely infinite simple. Clearly, the Toeplitz algebra 7 C is generated by
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n
{TGH :i=1,2,...,n}with ¥ TgH Tfj =1, and hence 761 >~ O, by the unique-
i=1 i
ness of O,,.

EXAMPLE 5.6. Let G be the free group with countably infinite generators
{a, : n € N}, and G be the semigroup of G generated by {a, : n € N}. Let
H = {e} U {a}' : m € N}, then the Toeplitz algebra 7 CH is purely infinite simple,
which is isomorphic to O.

COROLLARY 5.7. Let (Gy,G;") and (Gy, G5) be two extremely incomparable
quasi-latticed ordered groups. Denote by Qq and Qo the collection of hereditary and
directed subsets of G, and G5 respectively. Let QF and QS be the collection of the
maximal elements of Oy and Q) respectively. Then for any Hy € Qf and H, € QF,
the spatial tensor product of C*-algebras TCm @ TCM s purely infinite simple.

Proof. Let G = Gy X Gy, G+ = G x G and H = H; x Hp, then (G, G)
is also an extremely incomparable quasi-lattice ordered group and H € Qe (see
Proposition 2.4). Let U be the natural unitary operator from ¢?(G) onto ¢?(G;) ®
¢%(G,) which satisfies Ub(yy) = 6x @y forx € G and y € Gy. Itis easy to verify
that

u.T(‘jgj) u*=T H1®T forany x € G1,y € G,.
Therefore, the spatial tensor product of C*-algebras 7 © T is unitarily
equivalent to 7 4. The conclusion then follows from Theorem 5.3. &

EXAMPLE 5.8. For n,m > 2, the (spatial) tensor product of the Cuntz alge-
bras O, ® Oy, is purely infinite simple.

6. THE LARGEST IDEALS OF THE TOEPLITZ ALGEBRAS

In this section, we will study the largest ideals of the Toeplitz algebras. Let
(G,G4+), Q and Qe be as in Section 5 except that G itself might be directed.
We will prove, under a certain assumption, that if the condition (5.1) given in
Theorem 5.3 is not satisfied, then the largest induced ideal J(q,,) does fail to be

the largest ideal of TG+ (see Theorem 6.5).

DEFINITION 6.1. Let B be a unital C*-algebra. A map V from G4 to B is
said to be an isometric representation of G if it satisfies

Vie) =1, V(g)"'V(g) =1 V(g)V(h)=V(gh) foranyg,he Gy.
Moreover, V is said to be covariant if for any s,t € G4,

VOV vy = { gtV ITEVET e o
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DEFINITION 6.2. The pair (G, G ) is said to be amenable if every covari-
ant isometric representation V : G, — B can be lifted as a C*-morphism 7y :

TG+ — Bsuch that ﬂv(Tgc;+) = V(g) forany g € G+.

By Theorem 4.7 of [4] or Section 4 of [10] we know (G, G4) is amenable
provided that G is amenable. Furthermore, as in the case of the free group F;,
(n > 2), the condition of the amenability of G can be replaced by a weaker one,
which concerns certain approximation property. For the details, see Theorem 4.6
of [4] or Proposition 2 in Section 4 of [10].

PROPOSITION 6.3. Let (G, G4) be a quasi-lattice ordered group, Q2 be the collec-
tion of hereditary and directed subsets of G, and Qe be the collection of the maximal

elements of Q0. Denote by Hy = (| H, then Hy - Hgl is a subgroup of G with
HeO

(6.1) Hy={xe Gy :Yye Gy, xVy # oo}

Proof. Step 1. Suppose that x € H. For any y € G4, we can choose some
Hy, € Qq such that [e,y] € Hy, where [e,y] = {s € G, : s < y}. Since x,y € H,
and H, is directed, we know x Vy € H, C G4. It follows that Hy C {x € G :
Vy € G4, xVy # oo}. On the other hand, suppose x € G4 with x Vi # oo for
any y € G4, then for any H € O, we let

Hy = |J[ex V.
teH

Clearly x € Hy € Q and H C Hj, hence H = H; by the maximality of H.
Accordingly x € H, and therefore equation (6.1) holds.

Step 2. Let x € H,. By the definition of Hj, we know that

(p* oF(Tf*Tffl))(A) =xa(x) =1 forevery A € Q.

By the density of (e in cl(Qoo ), we know p* o I'(1 — TS+ TGj) =0oncl(Nw) =
X
S(H) for any H € cl(Qw). By (4.14) and (4.15) we know

(6.2) 1-TMTEN =0 forany H € cl(Q).

In particular for h € H € Q, TxG”TxG_ﬁéh,l = J,-1 and thus (hx)~! € Gy <
hx € H. We have proved that H-x C H for any x € Hjy and H € (2, which
means that H, is a semigroup of G.

Now let x,y € Hy, by (6.2) we have ToH Tff{éy = Jy forany H € Q. So
xly € Gy <= t(x"ly) € H, and hence t(x'y) € H, by the arbitrariness
of H. Exchanging x with y, we know o¢(x~1y) = t(y~'x) € Hy. It follows
that x~'y = o(x71y)t(x"'y)~! C Hu- H,', which implies that Hy - H, ' is a
subgroup since we have already shown that H, is a semigroup of G. 1

Let

(6.3) Gy={s€Hy- Hgl 1g lsg € Hy- HA*1 forany g € G, }.
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Then the set G, is also a (possibly non-normal) subgroup of G. Since G is a
semigroup, by the definition of Gy we know that g~!- G5 - g C G, forany g € G
Define an equivalence relationship on G by x ~ y <= x~!y € G,. For any

§€Gletlg]={seG:s~g} Put[G] ={[g]: g € G} and [G4] = {[g+]: g+ €
G+ }. Then a left action of [G] on [G4 ] can be defined unambiguously as

lgllg+] & [gg+] forge G, g4 € Gy

So for any [g] € [G], a (generalized) Toeplitz operator T[[gcﬁ] on /2([G4]) def

closp{dg, ] : §+ € G4} can also be defined as

T[G+]§ 5[gg+] if [gng] [G+},
g1 Clg+l T otherwise.

[Gi]\x _ +[Gy]
) =T

PROPOSITION 6.4. Let B(¢2([G.])) be the set of all bounded linear operators on
2([G4]). If Gy = Hp - H* then the isometric representation V : G — B(£2([G4]))

defined as V(g4 ) = T[ (gJr € Gy) is covariant.

By definition, we know (T,

el for any g € G.

Proof. For any x, g+ € G4, itis easy to check that
V(x)V(x)"0g,) #0 = x € g4 -Gy~ G;' <= x<gsa forsomea € Gy
It follows that V' is covariant if and only if for any x,y, g+ € G4+ and ay,a2 € Gy,

(6.4) ¥ < g0,y < g+ = xVy < gra forsomea € Gy.
If Gy = Hy - Hy, then a; < o'(a1) V o(az) % a € Hy C Gy, hence (6.4) holds. 1

THEOREM 6.5. Let (G, G.) be an amenable quasi-lattice ordered group. Suppose
that Go = Hp - Hgl. If the condition (5.1) stated in Theorem 5.3 is not satisfied, then
Jel(0) fails to be the largest ideal of TG+,

Proof. Choose any Hy € cl(Qo) so that Ker yCHy G+ = Jei(0n)- Let us first
prove that J(q,,) is the largest ideal of TG+ if and only if 1 ¢ 6G+(J) for any
ideal J of TG+.

” = ": Suppose that Ker yCHo G+ s the largest ideal of 7%+. Then for any
ideal J of TG+, 9G+(j) C 06+ (Ker’)fGHO'G+) - Ker’yGHO’G+. Hence 05+(7) C
Ker'yGHO’G+, therefore 1 ¢ 06+ (7).

“«=": Suppose that 1 ¢ 06+ (J) for any ideal J of 7 5+. Then for any ideal
JofT G+, by Proposition 4.2 we know 6G+ (J ) is actually an a-invariant ideal of
DG+, and is thus contained in (Kery“Ho'“+) N DG+, So, x € J = 05+ (x*x) €
(Ker’yGHO’G+) NDC+ = x € Kery“Ho'C+ Tt follows that KeryHo'%+ is the largest
ideal of 7 C+.
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Since G4, = Hp - HA_1 and (G,G4) is amenable, the covariant isometric
representation V : Gy — B(£?([G4])) induces a C*-morphism 7ty : 76+ —

B(¢2([G])) such that 7TV(TG+) = T[[g J’]] forany ¢ € G. Given any x € Hy and

g+ €Gy, gy x g €gl Hyl g C gyt Gagy =GaSoxgy € Gy -Gy,
or equivalently [x~!¢.] € [G], and thus

G
(6.5) T[[ j]]CS[g_*_] = §[x‘1g+] forx € Hy and g+ € G4
We claim that
(6.6) nV(Tf}*) =1 foranyt € Gy.

In fact, for any t € Gy, we have o(t) € G4 and T(t) € Hy, so by (6.5) we know
forany g € G4,
G [G+] [G+]
v (Te)0g, ) = Tiotry) Trery-1)%18+] = Oitge] = Ilga)-
Let

M={(xy):x,ye Gy, x#y,T G+ TG+TG+ TGJr #0,Vge Gy}
By assumption, M is nonempty, so we can choose some (xg, o) € M. Then
T;j Tgf #0 and TG+ TGJr #0 foranyg € G4,

s0 X0, Yo € Ha by (6.1), and by assumption xoy, ' € (Ha- Hy ') \ {e} = Ga\ {e}.
Now let J = Kermry. By (6.6) we have 1 — TG+_1 € J. Butclearly, 1 =

06+(1 — Tf;_l) € 06+ (J). The first part of the proof 1nd1cates that J(q,,) fails
050
to be the largest ideal of 76+. 1

REMARK 6.6. (i) Suppose that (G, G) is an abelian quasi-lattice ordered
group. Replacing G by G, — G4, we may assume further that (G, G, ) is a par-
tially ordered group. In this case, cl(Qw) = {G+}, s0 Taq,,) = KeryGG+. By
Proposition 1.2 of [11] we know Ker'yG'G+ is the commutator ideal of 7+, which
definitely cannot be the largest ideal of 7° G+, Meanwhile condition (5.1) is also
definitely not satisfied.

(ii) Suppose that (G, G ) is an ordered group, H is a subset of G, then H
belongs to Q if and only if it is hereditary. Let H € Q such that Gy = G - H™!is

a subgroup of G, then G¥; = def Gy NGy' = HUH™!is an order ideal of G. Suppose
further that G is abelian, then Tf H TyG H — TyG H Tf H for any x € GH, y € G, which
means that T (x € GY%) belongs to the commutant of 7 CH. Therefore for any

irreducible representation (7, H) of 7CH, r( TSH) (x € GY 17) is the scalar multiple
of Iy. Using this fact, one can give a shorter proof of Corollary 3.4 in [1], and
the reader is referred to [12] for the details. In the non-abelian case, things may
become much more complicated.



64 QINGXIANG XU

Acknowledgements. The author would like to thank the referee for some helpful com-
ments and suggestions.

This research was partially supported by the Leading Academic Discipline Project
of Shanghai Normal University (no. DZL803), the National Natural Science Foundation of
China (no. 10371051), Shanghai Natural Science Foundation (no. 05ZR14094) and Shang-
hai Municipal Education Commission (no. 05DZ04 and no. 09YZ147).

REFERENCES

[1] S. ADj1, I. RAEBURN, The ideal structure of Toeplitz algebras, Integral Equations Oper-
ator Theory 48(2004), 281-293.

[2] J. CUNTZ, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57(1977),
173-185.

[3] K. DAVIDSON, C*-Algebras by Example, Fields Inst. Monogr., Amer. Math. Soc., vol. 6,
Providence, RI 1996.

[4] R. EXEL, Amenability for Fell bundles, ]. Reine Angew. Math. 492(1997), 41-73.

[5] K.D. JosHI, Introduction to General Topology, A Halsted Press Book, John Wiley and
Sons, Inc., New York 1983.
[6] M. LACA, Purely infinite simple Toeplitz algebras, J. Operator Theory 41(1999), 421—
435.
[7] M. LACA, I. RAEBURN, Semigroup crossed products and the Toeplitz algebras of
nonabelian groups, J. Funct. Anal. 139(1996), 415-440.
[8] J. LORCH, Q. XU, Quasi-lattice ordered groups and Toeplitz algebras, ]. Operator The-
ory 50(2003), 221-247.
[9] G. MURPHY, An index theorem for Toeplitz operators, J. Operator Theory 29(1993),
97-114.
[10] A.Nica, C*-algebras generated by isometries and Wiener—-Hopf operators, J. Opera-
tor Theory 27(1992), 17-52.
[11] Q. XU, X. CHEN, A note on Toeplitz operators on discrete groups, Proc. Amer. Math.
Soc. 126(1998), 3625-3631.

[12] Q. XU, Q. X1AO, The primitive ideals of Toeplitz algebras on discrete abelian ordered
groups, Bull. Adv. Math. 58(2006), 1-3.

QINGXIANG XU, DEPARTMENT OF MATHEMATICS, SHANGHAI NORMAL UNI-
VERSITY, SHANGHAI 200234, P.R. CHINA
E-mail address: qxxu@shnu.edu.cn

Received October 15, 2006.



