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ABSTRACT. We compute the K-theory of the C*-algebra of symmetric words
in two universal unitaries. This algebra is the fixed point C*-algebra for the
order-two automorphism of the full C*-algebra of the free group on two gen-
erators which switches the generators. Our calculations relate the K-theory of
this C*-algebra to the K-theory of the associated C*-crossed-product by Z,.
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1. INTRODUCTION

This paper investigates an example of a C*-algebra of symmetric words in
noncommutative variables. Our specific interest is in the C*-algebra of symmetric
words in the two universal unitaries generating the full C*-algebra C*(F;) of the
free group on two generators. Our main result is the computation of the K-theory
[1] of this algebra.

The two canonical unitary generators of C*(F,) are denoted by U and V.
The C*-algebra of symmetric words in two universal unitaries U, V is precisely
defined as the fixed point C*-algebra C*(F,); for the order-2 automorphism o
which maps U to V and V to U. Our strategy to compute the K-theory of C*(F),
relies upon the work of Rieffel ([6], Proposition 3.4]) about Morita equivalence
between fixed point C*-algebras and C*-crossed-products.

The first part of this paper describes the two algebras of interest: the fixed
point C*-algebra C*(F,); and the crossed-product C*(F») %, Zy [8], [5]. We also
exhibit anideal J in C*(F,) X Z; which is strongly Morita equivalent to C*(F;);
and can be easily described as the kernel of an very simple *-morphism. We thus
reduce the problem to the calculation of the K-theory of C*(Fy) x4 Z;.

The second part of this paper starts with this calculation. We use a standard
result from Cuntz [4] to calculate the K-theory of C*(IFy) X Z;. We then deduce
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the K-theory of C*(F,)1, using the ideal 7 and the six-terms exact sequence in
K-theory.

We conclude the paper by looking a little closer at the obstruction to the
existence of unitaries of nontrivial K-theory in C*(F;);. This amounts to com-
paring the structure of the ideal J and an ideal in C*(IF3); related to the same
representation as J.

We also should mention that, in principle, using the results in [3], one could
derive information on the representation theory of C*(IF,) Xy Z; from the repre-
sentations of C*(TF,).

2. THE FIXED POINT C*-ALGEBRA

Let C*(F2) = C*(U, V) be the universal C*-algebra generated by two uni-
taries U and V. We consider the order-2 automorphism ¢ of C*(F,) uniquely
defined by o(U) = V and ¢(V) = U. These relations indeed define an auto-
morphism by universality of C*(IF»). The automorphism ¢ will be called the flip
automorphism in this paper.

Our main object of interest is the fixed point C*-algebra C*(F,); defined by

C*'(F2)1 ={ae C'(Fy):0(a) = a}

which can be seen as the C*-algebra of symmetric words in two universal uni-
taries. The C*-algebra C*(IF); is related [6] to the C*-crossed-product C*(Fy) %,
Zp, which we will consider in our calculations. By definition, C*(Fy) X, Z; is
the universal C*-algebra generated by three unitaries U, V and W subjects to the
relations W2 = 1 and WUW* = V. Our objective is to gain some understanding
of the structure of the unitaries and projections in C*(IFy);.

The first step in our work is to describe concretely the two C*-algebras
C*(F2)1 and C*(IFp) %, Zp. Using Proposition 3.4 of [6], we also exhibit an ideal
in the crossed-product C*(F;) %, Zp which is Morita equivalent to C*(F,);.

The following easy lemma will be useful in our work:

LEMMA 2.1. Let A be a unital C*-algebra and o an order-two automorphism of
A. The fixed-point C*-algebra of A for o is the set Ay = {a+o(a) : a € A}. Set
Aq1={a—c(a):ac A}. Then A=A +A _1and AN A_1 ={0}.

Proof. Let w € A. Since 0 = 1 we have o(w + o(w)) = d(w) +w € Aj.
On the other hand, ifa € A thena = 1(a+c(a)) + 1(a — o(a)). Henceif a € A;
thena —o(a) = 0and a € {w+o(w) : w € A}. Moreover this proves that
A=A+ A . Lastifac AANA_qthena=c(a)=—0c(a)=0. 1

We can use Lemma 2.1 to obtain a more concrete description of the fixed-
point C*-algebra C*(IF;); of symmetric words in two unitaries:
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THEOREM 2.2. Let o be the automorphism of C*(F,) = C*(U, V) defined by
o(U) = Vand o(V) = U. Then the fixed point C*-algebra of o is C*(Fy); = C*(U" +
V" :neN).

Proof. Obviously o(U" + V") = U" + V" for all n € Z. Hence
C'{U"+V":neZ}) CC*(Fy);.

Conversely, C*(F,); = {w +0(w) : w € C*(F2)} by Lemma 2.1. So C*(F,);
is generated by elements of the form w + o(w) where w is a word in C*(FFy),
since C*(IF,) is generated by words in U and V, i.e. by monomials of the form
usoyea ... U withn € N, ap,...,a, € Z. Itis thus enough to show that for any
word w € C*(F,) we have

w+o(w) €S whereS=C"(U"+V":neZ).

Since, if w starts with a power of V then o(w) starts with a power of U, we may
as well assume that w always starts with a power of U by symmetry. Since the
result is trivial for w = 1 we assume that w starts with a nontrivial power of U.
Such a word is of the form

w=Uumva...gm1vh  withay,...,a, 1 € Z\{0} and a,, € Z.

We define the order of such a word w as the integer o(w) = n if a, # 0
and o(w) = n — 1 otherwise. In other words, o(w) is the number of times we go
from U to V or V to U in w. The proof of our result follows from the following
induction on o(w).

By definition, if w is a word such that o(w) = 0 then w + 0(w) € S. Let us
now assume that for some m > 1 we have shown that for all words w starting
in U such that o(w) < m — 1 we have w + o(w) € S. Let w be a word of order
m and let us write w = U%w; with w; a word starting in a power of V. By
construction, w; is of order m — 1. Let wy, = V%w;. By construction, o(w;) =
m — 1 or m — 2. Either way, by our induction hypothesis, we have w; + o(w;) € S
and wy + o(wy) € S. Now:

w+o(w) =U"w; + V¥ (wy) = (U + V) (wy +0(w1)) — (wa + 0(w))

hence w + o(w) € S and our induction is complete. Hence C*(Fp); = S as
desired. 1

We wish to understand more of the structure of the fixed point C*-algebra
C*(F2);. Using Morita equivalence, we can derive its K-theory. According to
Proposition 3.4 of [6], C*(FF;); is strongly Morita equivalent to the ideal J gener-
ated in the crossed-product C*(IF2) x Z, by the spectral projection p = 1 (1+ W)
of the canonical unitary W in C*(IFp) X Z; such that WUW = V. We first provide
a simple yet useful description of C*(F,) x4 Z, in term of unitary generators, be-
fore providing a description of the ideal J which will ease the calculation of its
K-theory.
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LEMMA 2.3. Let o be the flip automorphism on the universal C*-algebra C*(IF;)
generated by two universal unitaries U and V. The C*-crossed-product C*(Fy) Xy Z; is
the universal C*-algebra generated by two unitaries U and W with the relation W? = 1,
or equivalently C*(Fy) X Zy is x-isomorphic to C*(Z * Zy). In particular, the C*-
subalgebra of C*(F,) X Zy generated by U and the canonical unitary W implementing
o is actually equal to C*(Fy) X Zy.

Proof. Let W be the canonical unitary C*(IFy) X, Z, implementing . The
C*-subalgebra C*(U, W) of C*(F2) xy Zy contains WUW = V and thus equals
C* (Fz) bl Zz.

Let us now prove that the C*-subalgebra C* (U, W) is universal for the given
relations. Let u, w be two arbitrary unitaries in some arbitrary C*-algebra such
that w?> = 1. Letv = wuw € C*(u,w). By universality of the crossed-product
C*(Fy) X¢ Z; there exists a unique *-morphism ¢ : C*(Fy) x5 Zy — C*(u,w)
such that ¢(U) = u, (V) = v and ¢(W) = w. Thus C*(U, W) is universal
for the proposed relations. In particular, it is *-isomorphic (by uniqueness of the
universal C*-algebra for the given relations) to C*(Z * Z,). 1

Now, the ideal [ can be described as the kernel of a particularly explicit
s-morphism of C*(F,) X Z, to C(T).

PROPOSITION 2.4. Let o be the flip automorphism of the universal C*-algebra
C*(IF,) generated by two universal unitaries U and V. Let W be the canonical uni-
tary of the crossed-product C*(Fy) Xy Zy such that WUW = V. The fixed point C*-
algebra C* () is strongly Morita equivalent to the kernel J in C*(F2) X¢ Zy of the
s-morphism ¢ : C*(Fy) xg Zy — C(T) defined by ¢(W) = —1and ¢(U)(z) =
¢(V)(z) =zforallz € T.

Proof. Let ¢ be the unique *-morphism from C*(U, W) into C(T) defined
using the universal property of Lemma 2.3 by: ¢(W)(z) = —1 and ¢(U)(z) = z
for all z € T. Since ¢(p) = 0 by construction, J C ker ¢.

On the other hand, if 77 is the canonical surjection C*(U, W) — C*(U,W)/J
then 7(W) = —1, so

(V) =n(WUW) = n(W)r(U)(W) = n(U).

Hence any representation ¢ of C*(U, W)/ J lifts to C*(U, V) as a representation
of the form i = 5 o ¢ for some representation # of C(T). Hence kerp C J =
kermt. 1

Our goal now is to compute the K-theory of the fixed point C*-algebra
C*(Fp);. Since C*(FF;); and the ideal J are Morita equivalent, they have the
same K-theory. By Proposition 2.4, we have the short exact sequence 0 — J —

C*(Fp) X Zy % c (T) — 0, and it seems quite reasonable to use the six-term
exact sequence of K-theory to deduce the K-groups of J from the K-groups of
C*(Fy) X¢ Zjy, as long as the later can be computed. The next section precisely
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follows this path, starting by computing the K-theory of the crossed-product
C* (Fz) bl Zz.

3. K-THEORY OF THE C*-CROSSED PRODUCT AND THE FIXED POINT C*-ALGEBRA

We use the homotopy-based result in [4] to compute the K-theory of the
crossed-product C*(Fy) Xy Zy.

PROPOSITION 3.1. Let C*(IFp) = C*(U, V) be the universal C*-algebra gener-
ated by two unitaries U and V and let o be the order-2 automorphism of C*(IF,) defined
byo(U) = Vand o(V) = U. Then Ko(C*(F2) 3, Zo) = 72 is generated by the classes
of the spectral projections of W and Ky (C*(IFp) X ¢Zy) =Z is generated by the class of U.

Proof. By Lemma 2.3, the crossed-product C*(F,) X, Z; is *-isomorphic to
C*(Z % Zy) = C*(Z) ¢ C*(Z*) = C(T) ¢ C?

where the free product is amalgamated over the C*-algebra generated by the
respective units in each C*-algebra. More precisely, we embed C via, respec-
tively, iy : A € C +— Al € C(T) and i, : A € C +— (A,A) € C?% There are
natural *-morphisms from C(T) and from C? onto C defined respectively by
r1:fe€C(T) — f(1)and rp : A@ pu — A. Now, rj 0 iy = rp oip is the iden-
tity on C. By [4], we conclude that the following sequences for e = 0,1 are exact:

0 — Ke(C) %5 Ko(C(T) & C?) 5 Ke(C(T) #¢ €2) — 0

where jo = K¢(i1) ® K¢(—i2) and ke = K¢(k1 + k) where kj is the canonical em-
bedding of C(T) into C(T) x¢ C? and k; is the canonical embedding of C? into
C(T) *C C2.

Now, K1 (C(T) @ C?) = Z generated by the identity map Idy € C(T). Since
K{(C) = 0 we conclude that K;(C(T) ¢ C?) = Z generated by the canonical
unitary generator of C(T). On the other hand, Ko(C(T) @ C?) = Z> (where the
first copy of Z is generated by the unit 1¢ () of C(T) and the two other copies are
generated by each of the projections (1,0) and (0,1) in C2). Now, the range of jy
is the subgroup of Z> generated by the class of le(r) ® —1¢2 where 1¢: is the unit
of C2. This class is (1, —1, —1), so we conclude easily that Ky(C(T) ¢ C?) = Z?
is generated by the two projections in C? (whose classes are (0,1,0) and (0,0, 1)).

Using the x-isomorphism between C(T) ¢ C? and C*(F) x4 Z, we con-
clude that Ko(C*(FF2) 3, Zy) = Z? is generated by the spectral projections of W
while K1 (C*(Fy) %y Zy) = Z is generated by the class of U (or V as these are
equal by construction). 1

REMARK 3.2. It is interesting to compare our results with the K-theory of
the C*-crossed-product by Z instead of Z,. One could proceed with the standard
six-terms exact sequence ([1], Theorem 10.2.1), but it is even simpler to observe
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the following similar result to Lemma 2.3: the C*-crossed-product C*( Fy) X, Z
is *-isomorphic to C*(F,). If C*(IFy) is generated by the two universal unitaries
U,V and W is the canonical unitary in C*(F,) %, Z such that WUW = V then
once again C*(U,V,W) = C*(U, W) and, following a similar argument as for
Lemma 2.3 we observe that C*(U, W) is the C*-algebra universal for two arbitrary
unitaries.

Hence, Ko(C*(F2) %, Z) = Z is generated by the identity, while the classes
of U and W generate K{(C*(Fy) x, Z) = Z2.

We can now deduce the K-theory of C*(IF); from Proposition 2.4 and The-
orem 3.1.

THEOREM 3.3. Let C*(Fy) = C*(U, V) be the universal C*-algebra generated
by two unitaries U and V and let o be the order-2 automorphism of C*(IFp) defined by
oc(U) =Vand (V) = U. Let C*(F)1 = {a € C*(F,) : 0(a) = a} be the fixed point
C*-algebra for 0. Then Ko(C*(Fy)1) = Z is generated by the identity in C*(IFp)y and
K1 (C*(F)y) = 0.

Proof. By Proposition 3.4 of [6], C*(IF); is strongly Morita equivalent to the
ideal J generated in C*(FF,) X Z; by the projection p = (1 + W). Using Propo-
sition 2.4, we can apply the six-terms exact sequence to the short exact sequence

(3.1) 0— T 5 C*(Fy) %g Zy —2 C(T) — 0

where 7 is the canonical injection and ¢ is the *-morphism of Proposition 2.4.
Since we know the K-theory of C*(F3) X Zy by Theorem 3.1, including a set of
generators of the K-groups, and the K-theory of C(T), we can easily deduce the
K-theory of J. Indeed, using the six-term exact sequence Theorem 9.3 of [1]
applied to (3.1), the following six-terms cyclic sequence is exact:

Ko() 29 k() meZa) =22 O Ko(c(T))
(3.2) 51 ' LB
KET) 99 ke E) ) =2 k)

Each statement in the following argument follows from the exactness of (3.2).
Trivially, Ko(¢) is a surjection, so f = 0. Hence Kj (i) is injective. Yet, as ¢(U) :
z € T +— z, we conclude that K;(¢) is an isomorphism (since it maps a gen-
erator to a generator), and thus K;(i) = 0. Now K;(i) = 0 and = 0 im-
plies that K;(J) = 0. Since K;(¢) is surjective, § = 0 and thus Ky(i) is injec-
tive. Its image is thus isomorphic to Ko(7) and coincide with ker Ko (¢). Now,
Ko(@)(p) = 0 and Ko(¢)(1 —p) = 1 (by Theorem 3.1, p and 1 — p generate
Ko(C*(FFy) X¢ Zy)). Hence the image of Ky (i) is isomorphic to the copy of Z gen-
erated by p in Ko(C*(Fy) X¢ Z3). 1

We go a little deeper in the structure of the fixed point C*-algebra C*(Fy);.
Of interest is to compare the ideal J and its natural restrictions to C*(IF,) and
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C*(F2)1. The motivation for this comparison is to understand the obstruction to
the existence of any nontrivial unitary in C*(F,); in the sense of K-theory.

THEOREM 3.4. Let 6 be the x-epimorphism C*(U, V) — C(T) defined by 6(U) =
O(V):z€ T+ z Let T =ker6. Then Ko(Z) = 0and Ky(Z) = Z where the generat-
ing unitary in the smallest unitization T of T of the Ky group is UV*.

Let Iy = C*(TF)1 N Z. We then have C*(F2)1/Z7 = C(T). Then K1(Z1) = 0
while Ko(Z7) = Z.

Proof. The K-theory of the ideal 7 is based upon the simple six-term exact
sequence:

K@ =0 20 kem)=2z 9 kcm)=z
5=071 o 1p=0
Kem)=z Y kem)=2 Y o=z

corresponding to the defining exact sequence 7 < C*(IFy) S C(T) with i the
canonical injection. Now, Ko(C*(F,)) is generated by 1, and as 6(1) = 1 we see
that Ko(0) is the identity. Hence p = 0 and Ky(i) = 0 so Ko(Z) = 6(Z). On
the other hand, K (C*(IF)) is generated by U and V, respectively identified with
(1,0) and (0,1) in Z2. We have 6(U) = 6(V) : z — z which is the generator of
K1(C(T)), so K1(0) is surjective and thus = 0. Hence Ky(Z) = 0. On the other
hand, ker Kj () is the group generated by (1, —1), the class of UV*. Thus K; (i),
which is an injection, is in fact a bijection from K;(Z) onto its range ker K;(0)
and thus K;(Z) = Z generated by UV*, as indeed (UV* — 1) = 0 and thus
uvs—-1eZl.

Now, we turn to the ideal Z;. We recall from Lemma 2.1 the notation C*(F,)_4
= {a—oc(a) : a € C*(F,)}. Our first observation is that C*(F,) 1 C Z. In-
deed, since 6(U) = (V) we have # o = 0 and thus 6(a — o(a)) = 0 for all
a € C*(F,). Therefore, C*(IF)/Z = C*(F2)1/(Z N C*(F2)1) since C*(Fp) =
C*(FFp)1 & C*(F,) 1 as vector spaces by Lemma 2.1.

Using the six-terms exact sequence and Theorem 3.3, we can compute the
K-theory of the ideal Z;:

Ko(7) Ko (6)

Ko(Zy) Ko(C*(Fo)1) =Z — Ko(C(T)) =Z
51 ' LB
Kemy=z Y okeE) =0 k)

where i is again the canonical injection and we denote the restriction of 6 to
C*(FF)1 by 0 again. Note that 6 thus restricted is still an epimorphism. Each
subsequent argument follows from the exactness of the six-terms sequence. Since
Ko(C*(FF5)1) is generated by the class of the unit in C*(F,); and 6(1) = 1 gener-
ated Ko(C(T)), we conclude that Ky(6) is the identity, so Ko(i) = 0 and = 0.
Hence Ky(Z7) = 6(Z) and K(i) is injective. Since K1(C*(F3);) = 0and p = 0
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we conclude that Kj(Z7) = 0. Therefore K;(6) = 0, so ¢ is injective and we get
Ko (Il) =7Z. 1

It is not too surprising that K;(Z;) = 0 since Ki(Z) = Z is generated by
UV*(—1) which is an element in C*(F5) _1 of class (1, —1) in Ky (C*(F)), so it is
not connected to any unitary in C*(F,);. Of course, this is not a direct proof of
this fact, as homotopy in M, (Z;) + 1, (n € N) is a more restrictive notion than in
M, (C*(F,)1) (n € N). But more remarkable is the fact that Ko(Z;) contains some
nontrivial element. Of course, Z; is projectionless since C*(IF;) is by [2], so the
projection generating Ky(Z7) is at least (and in fact, exactly in) Mp(Z7) + 1,. We
now turn to an explicit description of the generator of Ky(Z;) and we investigate
why this projection is trivial in both Ko(C*(FF2)1) and Ko(Z) butnot in Ko(Z; ). By
exactness of the six-terms exact sequence, this projection is exactly the obstruction
to the nontriviality of Kq (C*(F2)1).

For any C*-algebra A, we denote by [g] 4 the Ko-class of any projection g €
M, (A)+ 1, forany n € N.

THEOREM 3.5. Let 6 : C*(F,) — C(T) be the x-homomorphism defined by
OU) =0(V):ze€ T zandlet T = ker6. Let Iy = ZNC*(Fy). Let Z =
1 (U +V) € C*(Fa)1 . Let B be the projection in My (I1) + 1, defined by:

B Z*7 7 (1= 27%)
b=\ i=zzz  1-zz }

Then the generator of Ko(I1) is [B]z, — [p2]z, where py = [ (1) 8 } On the other hand,
(

the projection B is homotopic to py in Ma(Z) + 15 and in Mp(C*(F2)1). Thus [B]z =0
in Ko(Z) and [B]c-(r,), = [P2lcsmy), = [Uc(my), in Ko(C* (F2)1).
A simple calculation shows that f is a projection. We organize the proof of

Theorem 3.5 in several lemmas. We start with the two quick observations that
is homotopic to p, in Mp(C*(F;)1) and in M»(Z) + 15, and then we prove that

[Blz, # [p2]z, in Ko(Z1).
LEMMA 3.6. The projections p and 1 — py are homotopic in Mp(C*(F2)1). Thus
[Blcx(ry), = [Her ), -
Proof. Forallt € [0,1] we set:
B — YAVA tZ*1—tZ7*
Tl @a=izzvz 1-tzzr
Then (Bt)c(o] is by construction an homotopy in Mz(C*(F2)1) between p; =

pand Bo = 1— py. Trivially 1 — py and py are homotopic, and [pa]c«(r,), =
[1] ¢+ (F,),, hence our result. 1
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The important observation in the proof of Lemma 3.6 is that although B; €
My (C*(F,),) for all t € [0,1], we have

0(tZV1—tZZ*)(z) = tzv/1—t #0

fort € (0,1) and z € T, so B does not belong to the ideals Z and 7;.

Since Ko(Z) = 0, it is trivial that the class of  in Ko(Z) is null. It is however
interesting to look for a concrete homotopy between B and the projection p; in
M;(Z) + 1, in parallel to the construction of Lemma 3.6.

LEMMA 3.7. In My(T) + 15 the projection B is homotopic to py. Hence in Ko(T)
we verify that we have indeed [B]7 = 0.

Proof. The unitary equivalence in Lemma 3.8 does not carry over to the uni-
tization of the ideal Z, but we can check that 8 is homotopic to py in My (Z) + 1,.
Set Z; = tU + (1 —t)V and set:

B = 757 ZF (1= ZiZ7)
! (/1= ZiZ7)Zs 1— ZZ}

forall t € [0,1]. As before, B; is a projection for all t € [0, 1] since || Z¢|| = 1 for all
t € [0,1]. Now, By = B1 = [ 1o } while By, = B. Of course, t € [0, 3] — By is

0 0
continuous. Moreover:
U+ (1 -HV)U+ (1 - V) =1-2(t —2) + (t — ) (UV* +VU")

so 0(1 —Z;Z}) = 0. Hence, Bt € M(Z) + 1, for all t € [0,1]. Hence B is homo-
topicto pp in Mp(Z) +1,. 1

Unlike in the case of Lemma 3.6, the homotopy used in the proof of Lem-
ma 3.8 is in My (Z), but it is not in M (C*(IF3)1) and hence not in M, (Z;).

The crux of this matter is that § is the obstruction to the existence of a non-
trivial element in K;(C*(F3)1). In view of Lemmas 3.6 and 3.7, we wish to see
a concrete reason why B can not have the same class as p; in Ko(Z7). We start
with a useful calculation: since p and p; are homotopic in C*(F5 ), they are uni-
tarily equivalent as well, and we now make explicit a unitary implementing this
equivalence:

* 2/1 _ 7%
LEMMA 3.8. Let Y = ) 1EZZ* 1—ZZ z Then Y is a unitary in

My (C*(F)1) such that Yp,Y* = B.

Proof. Observe that Z*(1 — ZZ*) = Z* — Z*ZZ* = (1 —Z*Z)Z*. Thus,
for any n € N we get by a trivial induction that Z*(1 — ZZ*)" = (1 — Z*Z)"Z*.
Hence, for any polynomial p, we have Z*(p(1 — ZZ2*)) = (p(1 — Z*Z))Z*. By
Stone-Weierstrass, we deduce that Z*f(1 — ZZ*) = f(1 — Z*Z)Z* for any con-
tinuous function f on the spectrum of 1 — ZZ* and 1 — Z*Z which is the compact
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space [0, 1], and in particular for the square root. Therefore:

(3.3) 721 —22* = (N1-2*2)Z".

Now, we have:

| e T e T

N-z7 -z S—7°7  —7*
[ zz+1-2"Z 0
- 0 1

using (3.3) since Z*/1 — ZZ* — (/1 — Z*Z)Z* = 0. Similarly, we get Y*Y = 1,.
Now, we compute Yp, Y*:

(2 213 8]

V1-2ZZ* ~Z —Z*Z —-zZ*
B z* V1-27Z zZ J1-277*
T V1-2ZZF ~Z 0 0

B 77 Z*M—27% ]
B [ (1—2Z9Z 1-27Z* ] =F

Last, we observe that 0(Z) = Z by construction and thus ¢(Y) = Y as well:
in other words, Y € M;,(C*(F,)1) (and we recover that B is unitarily equivalent
ian(C*(Fz)l) top). 1

Note that Z — A1 ¢ 7 forall A € C and so Y does not belong to M (Z) + 15.
Indeed, the following lemma shows that B and p, do not have the same Ky-class
in 7y, precisely because the conjunction of the conditions of symmetry and being
in the kernel of 6 make it impossible to deform one into the other, even though
each condition alone does not create any obstruction.

LEMMA 3.9. We have [B]7, — [p2]z, # 0in Ko(Zy).

Proof. We shall prove that in fact [B]7, — [p2]z, is a generator for Ky(Z;). Let
0 : K1(C(T)) — Ko(Z1) be the exponential map in the six-term exact sequence

in K-theory induced by the exact sequence 0 — Z; — C*(IFp); LN C(T) — 0.
Let us denote by z the canonical unitary z : w € T — w in C(T). Let us also
denote by 60, the map induced by 6 on M, (C*(F,)). By Proposition 9.2.3 of [7], if

0
o | thené(Zlem) =

L] sod(zler) = Yp2Ylz, -

u is any unitary in M, (C*(FF5)1) such that 6,(u) = [

[upou*]z, — [p2]z,. In particular, 6,(Y) = [ (Z)

[pz]I1 = [IB]Il - [pﬂzl'
On the other hand, by Theorem 3.4, § is an isomorphism of group. Since
[z]c(T) is a generator of K; (C(T)) we conclude that [B]7, — [p2]z; is a generator of

Ko(Zy). 1

zZ
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We have thus proven Lemma 3.9 and completed our proof of Theorem 3.5
by identifying []7, — [p2]z, as the generator of Ko(Z;) and verifying that without
the conjoint conditions of symmetry via o and 0, the difference of the classes of 8
and p; is null in both Ko (C*(F2)1) and in Ko (Z).
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