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1. INTRODUCTION

This paper investigates an example of a C∗-algebra of symmetric words in
noncommutative variables. Our specific interest is in the C∗-algebra of symmetric
words in the two universal unitaries generating the full C∗-algebra C∗(F2) of the
free group on two generators. Our main result is the computation of the K-theory
[1] of this algebra.

The two canonical unitary generators of C∗(F2) are denoted by U and V.
The C∗-algebra of symmetric words in two universal unitaries U, V is precisely
defined as the fixed point C∗-algebra C∗(F2)1 for the order-2 automorphism σ
which maps U to V and V to U. Our strategy to compute the K-theory of C∗(F2)1
relies upon the work of Rieffel ([6], Proposition 3.4]) about Morita equivalence
between fixed point C∗-algebras and C∗-crossed-products.

The first part of this paper describes the two algebras of interest: the fixed
point C∗-algebra C∗(F2)1 and the crossed-product C∗(F2) oσ Z2 [8], [5]. We also
exhibit an ideal J in C∗(F2) oσ Z2 which is strongly Morita equivalent to C∗(F2)1
and can be easily described as the kernel of an very simple ∗-morphism. We thus
reduce the problem to the calculation of the K-theory of C∗(F2) oσ Z2.

The second part of this paper starts with this calculation. We use a standard
result from Cuntz [4] to calculate the K-theory of C∗(F2) oσ Z2. We then deduce
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the K-theory of C∗(F2)1, using the ideal J and the six-terms exact sequence in
K-theory.

We conclude the paper by looking a little closer at the obstruction to the
existence of unitaries of nontrivial K-theory in C∗(F2)1. This amounts to com-
paring the structure of the ideal J and an ideal in C∗(F2)1 related to the same
representation as J .

We also should mention that, in principle, using the results in [3], one could
derive information on the representation theory of C∗(F2) oσ Z2 from the repre-
sentations of C∗(F2).

2. THE FIXED POINT C∗-ALGEBRA

Let C∗(F2) = C∗(U, V) be the universal C∗-algebra generated by two uni-
taries U and V. We consider the order-2 automorphism σ of C∗(F2) uniquely
defined by σ(U) = V and σ(V) = U. These relations indeed define an auto-
morphism by universality of C∗(F2). The automorphism σ will be called the flip
automorphism in this paper.

Our main object of interest is the fixed point C∗-algebra C∗(F2)1 defined by

C∗(F2)1 = {a ∈ C∗(F2) : σ(a) = a}

which can be seen as the C∗-algebra of symmetric words in two universal uni-
taries. The C∗-algebra C∗(F2)1 is related [6] to the C∗-crossed-product C∗(F2) oσ

Z2, which we will consider in our calculations. By definition, C∗(F2) oσ Z2 is
the universal C∗-algebra generated by three unitaries U, V and W subjects to the
relations W2 = 1 and WUW∗ = V. Our objective is to gain some understanding
of the structure of the unitaries and projections in C∗(F2)1.

The first step in our work is to describe concretely the two C∗-algebras
C∗(F2)1 and C∗(F2) oσ Z2. Using Proposition 3.4 of [6], we also exhibit an ideal
in the crossed-product C∗(F2) oσ Z2 which is Morita equivalent to C∗(F2)1.

The following easy lemma will be useful in our work:

LEMMA 2.1. Let A be a unital C∗-algebra and σ an order-two automorphism of
A. The fixed-point C∗-algebra of A for σ is the set A1 = {a + σ(a) : a ∈ A}. Set
A−1 = {a− σ(a) : a ∈ A}. Then A = A1 + A−1 and A1 ∩ A−1 = {0}.

Proof. Let ω ∈ A. Since σ2 = 1 we have σ(ω + σ(ω)) = σ(ω) + ω ∈ A1.
On the other hand, if a ∈ A then a = 1

2 (a + σ(a)) + 1
2 (a− σ(a)). Hence if a ∈ A1

then a − σ(a) = 0 and a ∈ {ω + σ(ω) : ω ∈ A}. Moreover this proves that
A = A1 + A−1. Last, if a ∈ A1 ∩ A−1 then a = σ(a) = −σ(a) = 0.

We can use Lemma 2.1 to obtain a more concrete description of the fixed-
point C∗-algebra C∗(F2)1 of symmetric words in two unitaries:
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THEOREM 2.2. Let σ be the automorphism of C∗(F2) = C∗(U, V) defined by
σ(U) = V and σ(V) = U. Then the fixed point C∗-algebra of σ is C∗(F2)1 = C∗(Un +
Vn : n ∈ N).

Proof. Obviously σ(Un + Vn) = Un + Vn for all n ∈ Z. Hence

C∗({Un + Vn : n ∈ Z}) ⊆ C∗(F2)1.

Conversely, C∗(F2)1 = {ω + σ(ω) : ω ∈ C∗(F2)} by Lemma 2.1. So C∗(F2)1
is generated by elements of the form ω + σ(ω) where ω is a word in C∗(F2),
since C∗(F2) is generated by words in U and V, i.e. by monomials of the form
Ua0 Va1 · · ·Uan with n ∈ N, a0, . . . , an ∈ Z. It is thus enough to show that for any
word ω ∈ C∗(F2) we have

ω + σ(ω) ∈ S where S = C∗(Un + Vn : n ∈ Z).

Since, if ω starts with a power of V then σ(ω) starts with a power of U, we may
as well assume that ω always starts with a power of U by symmetry. Since the
result is trivial for ω = 1 we assume that ω starts with a nontrivial power of U.
Such a word is of the form

ω = Ua0 Va1 · · ·Uan−1 Van with a0, . . . , an−1 ∈ Z\{0} and an ∈ Z.

We define the order of such a word ω as the integer o(ω) = n if an 6= 0
and o(ω) = n− 1 otherwise. In other words, o(ω) is the number of times we go
from U to V or V to U in ω. The proof of our result follows from the following
induction on o(ω).

By definition, if ω is a word such that o(ω) = 0 then ω + σ(ω) ∈ S. Let us
now assume that for some m > 1 we have shown that for all words ω starting
in U such that o(ω) 6 m− 1 we have ω + σ(ω) ∈ S. Let ω be a word of order
m and let us write ω = Ua0 ω1 with ω1 a word starting in a power of V. By
construction, ω1 is of order m − 1. Let ω2 = Va0 ω1. By construction, o(ω2) =
m− 1 or m− 2. Either way, by our induction hypothesis, we have ω1 + σ(ω1) ∈ S
and ω2 + σ(ω2) ∈ S. Now:

ω + σ(ω) = Ua0 ω1 + Va0 σ(ω1) = (Ua0 + Va0)(ω1 + σ(ω1))− (ω2 + σ(ω2))

hence ω + σ(ω) ∈ S and our induction is complete. Hence C∗(F2)1 = S as
desired.

We wish to understand more of the structure of the fixed point C∗-algebra
C∗(F2)1. Using Morita equivalence, we can derive its K-theory. According to
Proposition 3.4 of [6], C∗(F2)1 is strongly Morita equivalent to the ideal J gener-
ated in the crossed-product C∗(F2) oσ Z2 by the spectral projection p = 1

2 (1 + W)
of the canonical unitary W in C∗(F2)oσ Z2 such that WUW = V. We first provide
a simple yet useful description of C∗(F2) oσ Z2 in term of unitary generators, be-
fore providing a description of the ideal J which will ease the calculation of its
K-theory.
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LEMMA 2.3. Let σ be the flip automorphism on the universal C∗-algebra C∗(F2)
generated by two universal unitaries U and V. The C∗-crossed-product C∗(F2) oσ Z2 is
the universal C∗-algebra generated by two unitaries U and W with the relation W2 = 1,
or equivalently C∗(F2) oσ Z2 is ∗-isomorphic to C∗(Z ∗ Z2). In particular, the C∗-
subalgebra of C∗(F2) oσ Z2 generated by U and the canonical unitary W implementing
σ is actually equal to C∗(F2) oσ Z2.

Proof. Let W be the canonical unitary C∗(F2) oσ Z2 implementing σ. The
C∗-subalgebra C∗(U, W) of C∗(F2) oσ Z2 contains WUW = V and thus equals
C∗(F2) oσ Z2.

Let us now prove that the C∗-subalgebra C∗(U, W) is universal for the given
relations. Let u, w be two arbitrary unitaries in some arbitrary C∗-algebra such
that w2 = 1. Let v = wuw ∈ C∗(u, w). By universality of the crossed-product
C∗(F2) oσ Z2 there exists a unique ∗-morphism ϕ : C∗(F2) oσ Z2 −→ C∗(u, w)
such that ϕ(U) = u, ϕ(V) = v and ϕ(W) = w. Thus C∗(U, W) is universal
for the proposed relations. In particular, it is ∗-isomorphic (by uniqueness of the
universal C∗-algebra for the given relations) to C∗(Z ∗Z2).

Now, the ideal J can be described as the kernel of a particularly explicit
∗-morphism of C∗(F2) oσ Z2 to C(T).

PROPOSITION 2.4. Let σ be the flip automorphism of the universal C∗-algebra
C∗(F2) generated by two universal unitaries U and V. Let W be the canonical uni-
tary of the crossed-product C∗(F2) oσ Z2 such that WUW = V. The fixed point C∗-
algebra C∗(F2)1 is strongly Morita equivalent to the kernel J in C∗(F2) oσ Z2 of the
∗-morphism ϕ : C∗(F2) oσ Z2 −→ C(T) defined by ϕ(W) = −1 and ϕ(U)(z) =
ϕ(V)(z) = z for all z ∈ T.

Proof. Let ϕ be the unique ∗-morphism from C∗(U, W) into C(T) defined
using the universal property of Lemma 2.3 by: ϕ(W)(z) = −1 and ϕ(U)(z) = z
for all z ∈ T. Since ϕ(p) = 0 by construction, J ⊆ ker ϕ.

On the other hand, if π is the canonical surjection C∗(U, W)� C∗(U, W)/J
then π(W) = −1, so

π(V) = π(WUW) = π(W)π(U)π(W) = π(U).

Hence any representation ψ of C∗(U, W)/J lifts to C∗(U, V) as a representation
of the form ψ = η ◦ ϕ for some representation η of C(T). Hence ker ϕ ⊆ J =
ker π.

Our goal now is to compute the K-theory of the fixed point C∗-algebra
C∗(F2)1. Since C∗(F2)1 and the ideal J are Morita equivalent, they have the
same K-theory. By Proposition 2.4, we have the short exact sequence 0 → J →
C∗(F2) oσ Z2

ϕ→ C(T) → 0, and it seems quite reasonable to use the six-term
exact sequence of K-theory to deduce the K-groups of J from the K-groups of
C∗(F2) oσ Z2, as long as the later can be computed. The next section precisely
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follows this path, starting by computing the K-theory of the crossed-product
C∗(F2) oσ Z2.

3. K-THEORY OF THE C∗-CROSSED PRODUCT AND THE FIXED POINT C∗-ALGEBRA

We use the homotopy-based result in [4] to compute the K-theory of the
crossed-product C∗(F2) oσ Z2.

PROPOSITION 3.1. Let C∗(F2) = C∗(U, V) be the universal C∗-algebra gener-
ated by two unitaries U and V and let σ be the order-2 automorphism of C∗(F2) defined
by σ(U) = V and σ(V) = U. Then K0(C∗(F2) oσ Z2) = Z2 is generated by the classes
of the spectral projections of W and K1(C∗(F2)oσZ2)=Z is generated by the class of U.

Proof. By Lemma 2.3, the crossed-product C∗(F2) oσ Z2 is ∗-isomorphic to

C∗(Z ∗Z2) = C∗(Z) ∗C C∗(Z2) = C(T) ∗C C2

where the free product is amalgamated over the C∗-algebra generated by the
respective units in each C∗-algebra. More precisely, we embed C via, respec-
tively, i1 : λ ∈ C 7→ λ1 ∈ C(T) and i2 : λ ∈ C 7→ (λ, λ) ∈ C2. There are
natural ∗-morphisms from C(T) and from C2 onto C defined respectively by
r1 : f ∈ C(T) 7→ f (1) and r2 : λ ⊕ µ 7→ λ. Now, r1 ◦ i1 = r2 ◦ i2 is the iden-
tity on C. By [4], we conclude that the following sequences for ε = 0, 1 are exact:

0→ Kε(C)
jε→ Kε(C(T)⊕C2) kε→ Kε(C(T) ∗C C2)→ 0

where jε = Kε(i1)⊕ Kε(−i2) and kε = Kε(k1 + k2) where k1 is the canonical em-
bedding of C(T) into C(T) ∗C C2 and k2 is the canonical embedding of C2 into
C(T) ∗C C2.

Now, K1(C(T)⊕C2) = Z generated by the identity map IdT ∈ C(T). Since
K1(C) = 0 we conclude that K1(C(T) ∗C C2) = Z generated by the canonical
unitary generator of C(T). On the other hand, K0(C(T)⊕ C2) = Z3 (where the
first copy of Z is generated by the unit 1C(T) of C(T) and the two other copies are
generated by each of the projections (1, 0) and (0, 1) in C2). Now, the range of j0
is the subgroup of Z3 generated by the class of 1C(T) ⊕−1C2 where 1C2 is the unit
of C2. This class is (1,−1,−1), so we conclude easily that K0(C(T) ∗C C2) = Z2

is generated by the two projections in C2 (whose classes are (0, 1, 0) and (0, 0, 1)).
Using the ∗-isomorphism between C(T) ∗C C2 and C∗(F2) oσ Z2 we con-

clude that K0(C∗(F2) oσ Z2) = Z2 is generated by the spectral projections of W
while K1(C∗(F2) oσ Z2) = Z is generated by the class of U (or V as these are
equal by construction).

REMARK 3.2. It is interesting to compare our results with the K-theory of
the C∗-crossed-product by Z instead of Z2. One could proceed with the standard
six-terms exact sequence ([1], Theorem 10.2.1), but it is even simpler to observe
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the following similar result to Lemma 2.3: the C∗-crossed-product C∗( F2) oσ Z
is ∗-isomorphic to C∗(F2). If C∗(F2) is generated by the two universal unitaries
U, V and W is the canonical unitary in C∗(F2) oσ Z such that WUW = V then
once again C∗(U, V, W) = C∗(U, W) and, following a similar argument as for
Lemma 2.3 we observe that C∗(U, W) is the C∗-algebra universal for two arbitrary
unitaries.

Hence, K0(C∗(F2) oσ Z) = Z is generated by the identity, while the classes
of U and W generate K1(C∗(F2) oσ Z) = Z2.

We can now deduce the K-theory of C∗(F2)1 from Proposition 2.4 and The-
orem 3.1.

THEOREM 3.3. Let C∗(F2) = C∗(U, V) be the universal C∗-algebra generated
by two unitaries U and V and let σ be the order-2 automorphism of C∗(F2) defined by
σ(U) = V and σ(V) = U. Let C∗(F2)1 = {a ∈ C∗(F2) : σ(a) = a} be the fixed point
C∗-algebra for σ. Then K0(C∗(F2)1) = Z is generated by the identity in C∗(F2)1 and
K1(C∗(F2)1) = 0.

Proof. By Proposition 3.4 of [6], C∗(F2)1 is strongly Morita equivalent to the
ideal J generated in C∗(F2) oσ Z2 by the projection p = 1

2 (1 + W). Using Propo-
sition 2.4, we can apply the six-terms exact sequence to the short exact sequence

(3.1) 0 −→ J i−→ C∗(F2) oσ Z2
ϕ−→ C(T) −→ 0

where i is the canonical injection and ϕ is the ∗-morphism of Proposition 2.4.
Since we know the K-theory of C∗(F2) oσ Z2 by Theorem 3.1, including a set of
generators of the K-groups, and the K-theory of C(T), we can easily deduce the
K-theory of J . Indeed, using the six-term exact sequence Theorem 9.3 of [1]
applied to (3.1), the following six-terms cyclic sequence is exact:

(3.2)
K0(J )

K0(i)−→ K0(C∗(F2) oσ Z2) = Z2 K0(ϕ)−→ K0(C(T))
δ ↑ ↓ β

K1(C(T))
K1(ϕ)←− K1(C∗(F2) oσ Z2) = Z K1(i)←− K1(J )

Each statement in the following argument follows from the exactness of (3.2).
Trivially, K0(ϕ) is a surjection, so β = 0. Hence K1(i) is injective. Yet, as ϕ(U) :
z ∈ T 7→ z, we conclude that K1(ϕ) is an isomorphism (since it maps a gen-
erator to a generator), and thus K1(i) = 0. Now K1(i) = 0 and β = 0 im-
plies that K1(J ) = 0. Since K1(ϕ) is surjective, δ = 0 and thus K0(i) is injec-
tive. Its image is thus isomorphic to K0(J ) and coincide with ker K0(ϕ). Now,
K0(ϕ)(p) = 0 and K0(ϕ)(1 − p) = 1 (by Theorem 3.1, p and 1 − p generate
K0(C∗(F2) oσ Z2)). Hence the image of K0(i) is isomorphic to the copy of Z gen-
erated by p in K0(C∗(F2) oσ Z2).

We go a little deeper in the structure of the fixed point C∗-algebra C∗(F2)1.
Of interest is to compare the ideal J and its natural restrictions to C∗(F2) and
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C∗(F2)1. The motivation for this comparison is to understand the obstruction to
the existence of any nontrivial unitary in C∗(F2)1 in the sense of K-theory.

THEOREM 3.4. Let θ be the ∗-epimorphism C∗(U, V)� C(T) defined by θ(U) =
θ(V) : z ∈ T 7→ z. Let I = ker θ. Then K0(I) = 0 and K1(I) = Z where the generat-
ing unitary in the smallest unitization I+ of I of the K1 group is UV∗.

Let I1 = C∗(F2)1 ∩ I . We then have C∗(F2)1/I1 = C(T). Then K1(I1) = 0
while K0(I1) = Z.

Proof. The K-theory of the ideal I is based upon the simple six-term exact
sequence:

K0(I) = 0
K0(i)−→ K0(C∗(F2)) = Z K0(θ)−→ K0(C(T)) = Z

δ = 0 ↑ ↓ β = 0

K1(C(T)) = Z K1(θ)←− K1(C∗(F2)) = Z2 K1(i)←− K1(I) = Z

corresponding to the defining exact sequence I i
↪→ C∗(F2)

θ
� C(T) with i the

canonical injection. Now, K0(C∗(F2)) is generated by 1, and as θ(1) = 1 we see
that K0(θ) is the identity. Hence β = 0 and K0(i) = 0 so K0(I) = δ(Z). On
the other hand, K1(C∗(F2)) is generated by U and V, respectively identified with
(1, 0) and (0, 1) in Z2. We have θ(U) = θ(V) : z 7→ z which is the generator of
K1(C(T)), so K1(θ) is surjective and thus δ = 0. Hence K0(I) = 0. On the other
hand, ker K1(θ) is the group generated by (1,−1), the class of UV∗. Thus K1(i),
which is an injection, is in fact a bijection from K1(I) onto its range ker K1(θ)
and thus K1(I) = Z generated by UV∗, as indeed θ(UV∗ − 1) = 0 and thus
UV∗ − 1 ∈ I .

Now, we turn to the ideal I1. We recall from Lemma 2.1 the notation C∗(F2)−1
= {a − σ(a) : a ∈ C∗(F2)}. Our first observation is that C∗(F2)−1 ⊆ I . In-
deed, since θ(U) = θ(V) we have θ ◦ σ = θ and thus θ(a − σ(a)) = 0 for all
a ∈ C∗(F2). Therefore, C∗(F2)/I = C∗(F2)1/(I ∩ C∗(F2)1) since C∗(F2) =
C∗(F2)1 ⊕ C∗(F2)−1 as vector spaces by Lemma 2.1.

Using the six-terms exact sequence and Theorem 3.3, we can compute the
K-theory of the ideal I1:

K0(I1)
K0(i)−→ K0(C∗(F2)1) = Z K0(θ)−→ K0(C(T)) = Z

δ ↑ ↓ β

K1(C(T)) = Z K1(θ)←− K1(C∗(F2)1) = 0
K1(i)←− K1(I1)

where i is again the canonical injection and we denote the restriction of θ to
C∗(F2)1 by θ again. Note that θ thus restricted is still an epimorphism. Each
subsequent argument follows from the exactness of the six-terms sequence. Since
K0(C∗(F2)1) is generated by the class of the unit in C∗(F2)1 and θ(1) = 1 gener-
ated K0(C(T)), we conclude that K0(θ) is the identity, so K0(i) = 0 and β = 0.
Hence K0(I1) = δ(Z) and K1(i) is injective. Since K1(C∗(F2)1) = 0 and β = 0
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we conclude that K1(I1) = 0. Therefore K1(θ) = 0, so δ is injective and we get
K0(I1) = Z.

It is not too surprising that K1(I1) = 0 since K1(I) = Z is generated by
UV∗(−1) which is an element in C∗(F2)−1 of class (1,−1) in K1(C∗(F2)), so it is
not connected to any unitary in C∗(F2)1. Of course, this is not a direct proof of
this fact, as homotopy in Mn(I1) + 1n (n ∈ N) is a more restrictive notion than in
Mn(C∗(F2)1) (n ∈ N). But more remarkable is the fact that K0(I1) contains some
nontrivial element. Of course, I1 is projectionless since C∗(F2) is by [2], so the
projection generating K0(I1) is at least (and in fact, exactly in) M2(I1) + 12. We
now turn to an explicit description of the generator of K0(I1) and we investigate
why this projection is trivial in both K0(C∗(F2)1) and K0(I) but not in K0(I1). By
exactness of the six-terms exact sequence, this projection is exactly the obstruction
to the nontriviality of K1(C∗(F2)1).

For any C∗-algebra A, we denote by [q]A the K0-class of any projection q ∈
Mn(A) + 1n for any n ∈ N.

THEOREM 3.5. Let θ : C∗(F2) −→ C(T) be the ∗-homomorphism defined by
θ(U) = θ(V) : z ∈ T 7→ z and let I = ker θ. Let I1 = I ∩ C∗(F2)1. Let Z =
1
2 (U + V) ∈ C∗(F2)1 . Let β be the projection in M2(I1) + 12 defined by:

β =
[

Z∗Z Z∗( 2
√

1− ZZ∗)
( 2
√

1− ZZ∗)Z 1− ZZ∗

]
.

Then the generator of K0(I1) is [β]I1 − [p2]I1 where p2 =
[ 1 0

0 0

]
. On the other hand,

the projection β is homotopic to p2 in M2(I) + 12 and in M2(C∗(F2)1). Thus [β]I = 0
in K0(I) and [β]C∗(F2)1

= [p2]C∗(F2)1
= [1]C∗(F2)1

in K0(C∗(F2)1).

A simple calculation shows that β is a projection. We organize the proof of
Theorem 3.5 in several lemmas. We start with the two quick observations that β
is homotopic to p2 in M2(C∗(F2)1) and in M2(I) + 12, and then we prove that
[β]I1 6= [p2]I1 in K0(I1).

LEMMA 3.6. The projections β and 1− p2 are homotopic in M2(C∗(F2)1). Thus
[β]C∗(F2)1

= [1]C∗(F2)1
.

Proof. For all t ∈ [0, 1] we set:

βt =
[

t2Z∗Z tZ∗ 2
√

1− tZZ∗

( 2
√

1− tZZ∗)tZ 1− tZZ∗

]
.

Then (βt)t∈[0,1] is by construction an homotopy in M2(C∗(F2)1) between β1 =
β and β0 = 1 − p2. Trivially 1 − p2 and p2 are homotopic, and [p2]C∗(F2)1

=
[1]C∗(F2)1

, hence our result.
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The important observation in the proof of Lemma 3.6 is that although βt ∈
M2(C∗(F2)1) for all t ∈ [0, 1], we have

θ(tZ 2
√

1− tZZ∗)(z) = tz 2
√

1− t 6= 0

for t ∈ (0, 1) and z ∈ T, so βt does not belong to the ideals I and I1.
Since K0(I) = 0, it is trivial that the class of β in K0(I) is null. It is however

interesting to look for a concrete homotopy between β and the projection p2 in
M2(I) + 12, in parallel to the construction of Lemma 3.6.

LEMMA 3.7. In M2(I) + 12 the projection β is homotopic to p2. Hence in K0(I)
we verify that we have indeed [β]I = 0.

Proof. The unitary equivalence in Lemma 3.8 does not carry over to the uni-
tization of the ideal I , but we can check that β is homotopic to p2 in M2(I) + 12.
Set Zt = tU + (1− t)V and set:

βt =
[

Z∗t Zt Z∗t ( 2
√

1− ZtZ∗t )
( 2
√

1− ZtZ∗t )Zt 1− ZtZ∗t

]
for all t ∈ [0, 1]. As before, βt is a projection for all t ∈ [0, 1] since ‖Zt‖ = 1 for all

t ∈ [0, 1]. Now, β0 = β1 =
[ 1 0

0 0

]
while β1/2 = β. Of course, t ∈ [0, 1

2 ] 7→ βt is

continuous. Moreover:

(tU + (1− t)V)(tU + (1− t)V)∗ = 1− 2(t− t2) + (t− t2)(UV∗ + VU∗)

so θ(1− ZtZ∗t ) = 0. Hence, βt ∈ M2(I) + 12 for all t ∈ [0, 1]. Hence β is homo-
topic to p2 in M2(I) + 12.

Unlike in the case of Lemma 3.6, the homotopy used in the proof of Lem-
ma 3.8 is in M2(I), but it is not in M2(C∗(F2)1) and hence not in M2(I1).

The crux of this matter is that β is the obstruction to the existence of a non-
trivial element in K1(C∗(F2)1). In view of Lemmas 3.6 and 3.7, we wish to see
a concrete reason why β can not have the same class as p2 in K0(I1). We start
with a useful calculation: since β and p2 are homotopic in C∗(F2)1, they are uni-
tarily equivalent as well, and we now make explicit a unitary implementing this
equivalence:

LEMMA 3.8. Let Y =
[

Z∗ 2
√

1− Z∗Z
2
√

1− ZZ∗ −Z

]
. Then Y is a unitary in

M2(C∗(F2)1) such that Yp2Y∗ = β.

Proof. Observe that Z∗(1 − ZZ∗) = Z∗ − Z∗ZZ∗ = (1 − Z∗Z)Z∗. Thus,
for any n ∈ N we get by a trivial induction that Z∗(1− ZZ∗)n = (1− Z∗Z)nZ∗.
Hence, for any polynomial p, we have Z∗(p(1− ZZ∗)) = (p(1− Z∗Z))Z∗. By
Stone–Weierstrass, we deduce that Z∗ f (1− ZZ∗) = f (1− Z∗Z)Z∗ for any con-
tinuous function f on the spectrum of 1− ZZ∗ and 1− Z∗Z which is the compact
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space [0, 1], and in particular for the square root. Therefore:

(3.3) Z∗ 2
√

1− ZZ∗ = ( 2
√

1− Z∗Z)Z∗.

Now, we have:

YY∗ =
[

Z∗ 2
√

1− Z∗Z
2
√

1− ZZ∗ −Z

] [
Z 2

√
1− ZZ∗

2
√

1− Z∗Z −Z∗

]
=
[

Z∗Z + 1− Z∗Z 0
0 1

]
using (3.3) since Z∗ 2

√
1− ZZ∗ − ( 2

√
1− Z∗Z)Z∗ = 0. Similarly, we get Y∗Y = 12.

Now, we compute Yp2Y∗:[
Z∗ 2

√
1− Z∗Z

2
√

1− ZZ∗ −Z

] [
1 0
0 0

] [
Z 2

√
1− ZZ∗

2
√

1− Z∗Z −Z∗

]
=
[

Z∗ 2
√

1− Z∗Z
2
√

1− ZZ∗ −Z

] [
Z 2
√

1− ZZ∗
0 0

]
=
[

Z∗Z Z∗ 2
√

1− ZZ∗

( 2
√

1− ZZ∗)Z 1− ZZ∗

]
= β.

Last, we observe that σ(Z) = Z by construction and thus σ(Y) = Y as well:
in other words, Y ∈ M2(C∗(F2)1) (and we recover that β is unitarily equivalent
in M2(C∗(F2)1) to p2).

Note that Z− λ1 6∈ I for all λ ∈ C and so Y does not belong to M2(I) + 12.
Indeed, the following lemma shows that β and p2 do not have the same K0-class
in I1, precisely because the conjunction of the conditions of symmetry and being
in the kernel of θ make it impossible to deform one into the other, even though
each condition alone does not create any obstruction.

LEMMA 3.9. We have [β]I1 − [p2]I1 6= 0 in K0(I1).

Proof. We shall prove that in fact [β]I1 − [p2]I1 is a generator for K0(I1). Let
δ : K1(C(T)) −→ K0(I1) be the exponential map in the six-term exact sequence

in K-theory induced by the exact sequence 0 → I1 → C∗(F2)1
θ→ C(T) → 0.

Let us denote by z the canonical unitary z : ω ∈ T 7→ ω in C(T). Let us also
denote by θ2 the map induced by θ on M2(C∗(F2)). By Proposition 9.2.3 of [7], if

u is any unitary in M2(C∗(F2)1) such that θ2(u) =
[ z 0

0 z∗
]
, then δ([z]C(T)) =

[up2u∗]I1 − [p2]I1 . In particular, θ2(Y) =
[ z 0

0 z∗
]

so δ([z]C(T)) = [Yp2Y∗]I1 −

[p2]I1 = [β]I1 − [p2]I1 .
On the other hand, by Theorem 3.4, δ is an isomorphism of group. Since

[z]C(T) is a generator of K1(C(T)) we conclude that [β]I1 − [p2]I1 is a generator of
K0(I1).
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We have thus proven Lemma 3.9 and completed our proof of Theorem 3.5
by identifying [β]I1 − [p2]I1 as the generator of K0(I1) and verifying that without
the conjoint conditions of symmetry via σ and θ, the difference of the classes of β
and p2 is null in both K0(C∗(F2)1) and in K0(I).
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