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ABSTRACT. Let A be a C∗-algebra, J ⊂ A a C∗-subalgebra, and let B be a stable
C∗-algebra. Under modest assumptions we organize invertible C∗-extensions
of A by B that are trivial when restricted onto J to become a group Ext−1

J (A, B),
which can be computed by a six-term exact sequence which generalizes the ex-
cision six-term exact sequence in the first variable of KK-theory. Subsequently
we investigate the relative K-homology which arises from the group of relative
extensions by specializing to abelian C∗-algebras. It turns out that this relative
K-homology carries substantial information also in the operator theoretic set-
ting from which the BDF theory was developed and we conclude the paper by
extracting some of this information on approximation of normal operators.
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1. INTRODUCTION

Let X be a compact metric space. By results of Brown, Douglas and Fill-
more, [2], the K-homology of X is realized by Ext(X), the equivalence classes of
unital and essential extensions of C(X) by the compact operators K on a separa-
ble infinite dimensional Hilbert space H, or equivalently, the equivalence classes
of unital and injective ∗-homomorphisms C(X)→ Q, where Q = L(H)/K is the
Calkin algebra. This discovery came out of questions and problems related to
essential normal operators, and it led quickly to the development of a vast new
area of mathematics which combines operator theory with algebraic topology. In
particular, the BDF-theory was generalized by Kasparov in form of KK-theory,
which has proven to be a powerful tool in the theory of operator algebras as well
as in algebraic topology.

It is the purpose of the present paper to develop a relative theory in this con-
text. The point of departure here is a generalization of the six-term exact sequence
of extension theory which relates the group of extensions of a unital C∗-algebra
to the group of unital extensions. This sequence was discovered by Skandalis, cf.
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[14], and a construction of it was presented in [10]. It is the latter construction
which we here generalize to get a relative extension theory. Subsequently we in-
vestigate the relative K-homology which arises from it by specializing to abelian
C∗-algebras. It turns out that relative K-homology carries substantial information
also in the operator theoretic setting from which the BDF-theory departed, cf. [1],
and we conclude the paper by extracting some of this information.

In the remaining part of this introduction we give a more detailed account of
the content of the paper. Let A be a C∗-algebra, J ⊆ A a C∗-subalgebra, and let B
be a stable C∗-algebra. Under modest assumptions we organize the C∗-extensions
of A by B that are trivial when restricted onto J to become a semi-group ExtJ(A, B)
which is the semi-group Ext(A, B) of Kasparov, [8], when J = {0}. The group
Ext−1

J (A, B) of invertible elements in ExtJ(A, B) can be effectively computed by a
six-term exact sequence which generalizes the excision six-term exact sequence in
the first variable of KK-theory, and it turns out that there is a natural identification
Ext−1

J (A, B) = KK(Ci, B), where Ci is the mapping cone of the inclusion i : J → A.
Thus, as an abstract group, the relative extension group is a familiar object, and
the six-term exact sequence which calculates it is a version of the Puppe exact
sequence of Cuntz and Skandalis; [5]. But the realization of KK(Ci, B) as a relative
extension group has non-trivial consequences already in the set-up from which
KK-theory developed, namely the setting of (essential) normal operators, and the
second half of the paper is devoted to the extraction of the information which
the relative extension group contains about normal operators when specialized
to the case where B = K and X and Y are compact metric spaces, and f : X → Y
is a continuous surjection giving rise to an embedding of J = C(Y) into A =
C(X). In this setting ExtJ(A, K) is a group, and we denote it by ExtY, f (X). As
an abstract group this is the even K-homology of the mapping cone of f , and the
above mentioned six-term exact sequence takes the form

(1.1) ExtY, f (X) // K1(X)
f∗ // K1(Y)

��
K0(Y)

OO

K0(X)
f∗

oo ExtSY,S f (SX)oo

where S is the reduced suspension. An element of ExtY, f (X) consists of a com-
muting diagram

(1.2) C(X)
ϕ // Q

C(Y)

f ∗
OO

ϕ0 // L(H)

OO

where ϕ and ϕ0 are unital and injective ∗-homomorphisms. Thus ϕ is an ex-
tension of C(X) by K, in the sense of Brown, Douglas and Fillmore, which is
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trivial (or split) when restricted to C(Y), and ϕ0 is a specified splitting of the re-
striction. ExtY, f (X) can be defined as the homotopy classes of such diagrams,
or pairs (ϕ, ϕ0), but as one would expect from experience with BDF-theory and
KK-theory, the group admits several other descriptions where the equivalence
relation is seemingly stronger and/or the diagrams are required to have special
properties. In particular, triviality of the diagram (1.2) is equivalent to the exis-
tence of ∗-homomorphisms ψn : C(X) → L(H) such that the upper triangle in
the diagram

(1.3) C(X)
ϕ //

ψn

##GGGGGGGG
Q

C(Y)

f ∗
OO

ϕ0 // L(H)

OO

commutes for each n, and the lower triangle asymptotically commutes in the
sense that lim

n→∞
ψn ◦ f ∗(g) = ϕ0(g) for all g ∈ C(Y). Thus the relative extension

group ExtY, f (X) presents the obstructions for the existence of a splitting of the
whole extension ϕ which respects the given splitting over C(Y) up to any given
tolerance. These obstructions are naturally divided in two classes, where the first
is the rather obvious obstruction that the diagram (1.3) can only exist when the
extension ϕ is split. This obstruction is described by the presence of an obvious
map ExtY, f (X) → Ext(X). In many cases this map is injective, and then the
obvious obstruction is the only obstruction. But generally the map to Ext(X) is
not injective, and the kernel of it consists of the non-trivial obstructions — those
that arise because we insist that the given splitting over C(Y) should be respected,
at least asymptotically. The six-term exact sequence (1.1) shows that the kernel
of the forgetful map ExtY, f (X) → Ext(X) is isomorphic to the co-kernel of the
map f∗ : K0(X) → K0(Y). This part of the relative K-homology contains the
obstructions for finding a ∗-homomorphic lift C(X) → L(H) of ϕ which agrees
with ϕ0 on C(Y) up to an arbitrarily small compact perturbation. We show that
this part of the relative K-homology vanishes in many cases, and in particular
when Y is a compact subset of the complex plane C. This then serves as the main
ingredient in the proof of the following operator-theoretic fact:

THEOREM 1.1. Let M, N1, N2, N3, . . . , Nk be bounded normal operators such that
Ni Nj = NjNi for all i, j, and let F be a continuous function from the joint spectrum of
the Ni’s onto the spectrum of M such that

F(N1, N2, . . . , Nk)−M ∈ K.

For every ε > 0 there are normal operators Nε
1, Nε

2, Nε
3, . . . , Nε

k such that Nε
i Nε

j = Nε
j Nε

i ,
Ni − Nε

i ∈ K for all i, j, and

‖F(Nε
1, Nε

2, . . . , Nε
k)−M‖ 6 ε.
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2. THE RELATIVE EXTENSION GROUP

We begin by recalling the definition of the group of C∗-extensions, as it ap-
pears in KK-theory. Let A, B be separable C∗-algebras, B stable. As is well-known,
the C∗-algebra extensions of A by B can be identified with Hom(A, Q(B)), the set
of ∗-homomorphisms A → Q(B), where Q(B) = M(B)/B is the generalized
Calkin algebra. Let qB : M(B) → Q(B) be the quotient map. Two extensions
ϕ, ψ : A → Q(B) are unitarily equivalent when there is a unitary u ∈ M(B)
such that Ad qB(u) ◦ ψ = ϕ. The unitary equivalence classes of extensions of
A by B have the structure of an abelian semi-group thanks to the stability of B:
Choose isometries V1, V2 ∈ M(B) such that V1V∗1 + V2V∗2 = 1, and define the sum
ϕ⊕ ψ : A→ Q(B) of ϕ, ψ ∈ Hom(A, Q(B)) to be

(2.1) (ψ⊕ ϕ)(a) = Ad qB(V1) ◦ ψ(a) + Ad qB(V2) ◦ ϕ(a).

An extension ϕ : A → Q(B) is split when there is a ∗-homomorphism π : A →
M(B) such that ϕ = qB ◦ π. To trivialize the split extensions and obtain a neutral
element for the composition we declare two extensions ϕ, ψ : A → Q(B) to be
stably equivalent when there is a split extension π such that ψ⊕ π and ϕ⊕ π are
unitarily equivalent. The semigroup of stable equivalence classes of extensions of
A by B is denoted by Ext(A, B). As is well-documented by now, the semi-group
is generally not a group, and we denote by

Ext−1(A, B)

the abelian group of invertible elements in Ext(A, B).
An absorbing ∗-homomorphism π : A → M(B) is a ∗-homomorphism with

the property that for every completely positive contraction ϕ : A → M(B) there
is a sequence Vn ∈ M(B) of isometries such that V∗n π(a)Vn − ϕ(a) ∈ B for all
n, and lim

n→∞
V∗n π(a)Vn = ϕ(a) for all a ∈ A. When A is unital, a unitally ab-

sorbing ∗-homomorphism π : A → M(B) is a unital ∗-homomorphism with the
property that for every completely positive contraction ϕ : A → B there is a
sequence Wn ∈ M(B) such that lim

n→∞
W∗n π(a)Wn = ϕ(a) for all a ∈ A, and

lim
n→∞

W∗n b = 0 for all b ∈ B. We refer the reader to [15] for alternative characteri-

zations of absorbing and unitally absorbing ∗-homomorphisms which justify the
names, and a proof that they always exist in the separable case. Of particular im-
portance here is the essential uniqueness of such ∗-homomorphisms. Specifically,
when π, λ : A → M(B) are ∗-homomorphisms that are either both absorbing
or both unitally absorbing, there is a sequence Un of unitaries in M(B) such that
Unπ(a)U∗n − λ(a) ∈ B for all n, and lim

n→∞
U∗nπ(a)Un = λ(a) for all a ∈ A.

Let now J ⊆ A be a C∗-subalgebra of A, and consider an absorbing ∗-
homomorphism α0 : A→ M(B). Set α = qB ◦ α0 : A→ Q(B), and let

0 // B // E0 // J // 0
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be the extension of J by B whose Busby invariant is α|J . Let i : J → A be the inclu-
sion. We consider extensions E of A by B which fit into a commutative diagram

0 // B // E // A // 0

0 // B // E0 //

OO

J

i

OO

// 0

of C∗-algebras. In terms of the Busby invariant this corresponds to extensions
ϕ : A → Q(B) such that ϕ|J = α|J . We say that ϕ equals α on J. Two such
extensions, ϕ, ψ : A → Q(B), that both equal α on J, are said to be unitarily
equivalent when there is a unitary v connected to 1 in the unitary group of the
relative commutant α(J)′ ∩Q(B) such that Ad v ◦ ϕ = ψ.

LEMMA 2.1. For each n ∈ N, there are isometries v1, v2, . . . , vn in α(A)′ ∩Q(B)

such that v∗i vj = 0, i 6= j, and
n
∑

i=1
viv∗i = 1.

Proof. Let S1, S2, S3, . . . be a sequence of isometries in M(B) such that S∗i Sj =

0, i 6= j, and
∞
∑

i=1
SiS∗i = 1 with convergence in the strict topology. Set β0(a) =

∞
∑

i=1
Siα0(a)S∗i for all a ∈ A, and note that β0 is absorbing because α0 is. Set

Wi =
∞
∑

j=1
Si+jnS∗j . Then W1, W2, . . . , Wn are isometries in β0(A)′ ∩ M(B) such

that W∗i Wj = 0 when i 6= j, and
n
∑

i=1
WiW∗i = 1. The essential uniqueness property

of absorbing ∗-homomorphisms guarantees the existence of a unitary U ∈ M(B)
such that Ad U ◦ β0(a) − α0(a) ∈ B for all a ∈ A. Set vi = qB(UWiU∗), i =
1, 2, . . . , n.

Note that any choice of isometries v1, . . . , vn as in Lemma 2.1 gives us a ∗-
isomorphism, Θn, which maps the C∗-algebra Mn(α(A)′ ∩ Q(B)) onto α(A)′ ∩
Q(B). Θn is given by

Θn((xij)) =
n

∑
i,j=1

vixijv∗j .

Any other choice of isometries as in Lemma 2.1 will result in an isomorphism
which is conjugate to Θn by a unitary from α(A)′ ∩ Q(B). Thanks to Lemma 2.1
we can define a composition +α among the extensions of A by B which agree
with α on J:

(2.2) (ϕ +α ψ)(a) = w1 ϕ(a)w∗1 + w2ψ(a)w∗2 ,

where wi ∈ α(A)′ ∩Q(B) are isometries such that w1w∗1 + w2w∗2 = 1. To show that
(2.2) gives the unitary equivalence classes of extensions of A by B that agree with
α on J the structure on an abelian semi-group, consider the ∗-homomorphism
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β0 introduced in the proof of Lemma 2.1, and set β = qB ◦ β0. There are then
isometries Vi, i = 1, 2, in β0(A)′ ∩M(B) such that V1V∗1 + V2V∗2 = 1. With these
isometries we define the sum ϕ +β0 ψ of two extensions, ϕ, ψ, of A by B which
both equal β on J to be ϕ +β0 ψ = Ad qB(V1) ◦ ϕ + Ad qB(V2) ◦ ψ, in analogy with
(2.2).

LEMMA 2.2. Let P ∈ β0(A)′ ∩M(B) be a projection such that both P and 1− P
are Murray-von Neumann equivalent to 1 in β0(A)′ ∩ M(B). Let U be a unitary in
β0(A)′ ∩M(B) such that UPU∗ = P. It follows that U is connected to 1 in the unitary
group of β0(A)′ ∩M(B).

Proof. Note first that K1(β0(A)′ ∩ M(B)) = 0 by Lemma 3.1 of [15]. Since
U = [PUP + (1− P)][P + (1− P)U(1− P)], the lemma follows from this.

LEMMA 2.3. Let ϕ, ψ, λ : A → Q(B) be extensions of A by B that both equal
β on J. There are then unitaries S, T ∈ β0(A)′ ∩M(B), connected to 1 in the unitary
group of β0(A)′ ∩M(B), such that Ad qB(S) ◦ (ϕ +β0 ψ) = ψ +β0 ϕ and Ad qB(T) ◦
((ϕ +β0 ψ) +β0 λ) = ϕ +β0 (ψ +β0 λ).

Proof. Let Θ : M2(B)→ B be the ∗-isomorphism given by

Θ

(
b11 b12
b21 b22

)
=

2

∑
i,j=1

VibijV∗j ,

and let Θ : M(M2(B)) = M2(M(B)) → M(B) be the ∗-isomorphism extending
Θ. Then Θ ◦

(
β0

β0

)
= β0, so we see that

(2.3) S = V1V∗2 + V2V∗1 = Θ
(

0 1
1 0

)
is connected to 1 in the unitary group of β0(A)′ ∩M(B). Since Ad qB(S) ◦ (ϕ+β0

ψ) = ψ +β0 ϕ, this proves the first statement. To prove the second statement
we identify M3(M(B)) with LB(B⊕ B⊕ B) — the C∗-algebra of adjointable op-
erators on the Hilbert B-module B3. Define unitaries W : B3 → B and Z :
B3 → B of Hilbert B-modules such that W(b1, b2, b3) = V2

1 b1 + V1V2b2 + V2b3
and Z(b1, b2, b3) = V1b1 + V2V1b2 + V2

2 b3. Then ZW∗ ∈ M(B) and Ad qB(ZW∗) ◦
((ϕ +β0 ψ) +β0 χ) = ϕ +β0 (ψ +β0 λ). It remains to show that ZW∗ is connected to
1 in the unitary group of β0(A)′ ∩M(B). First observe that ZW∗ is connected to

Z
( 1

1
1

)
W∗

in the unitary group of β0(A)′ ∩M(B). Since the unitary S from (2.3) is connected
to 1 in the unitary group of β0(A)′ ∩M(B) we see that ZW∗ is connected to

T = SZ
( 1

1
1

)
W∗

in the unitary group of β0(A)′ ∩M(B). Note that

W∗V2V∗2 W =
( 0

0
1

)
and Z∗V1V∗1 Z =

( 1
0

0

)
,
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which implies that

Z
( 1

1
1

)
W∗V2V∗2 W

( 1
1

1

)
Z∗ = V1V∗1 ,

and hence that TV2V∗2 T∗ = V2V∗2 . It follows then from Lemma 2.2 that T, and
hence also ZW∗ is connected to 1 in the unitary group of β0(A)′ ∩M(B).

LEMMA 2.4. Let ϕ, ψ, λ : A → Q(B) be extensions of A by B that equal α on D.
There are then unitaries v, w ∈ α(A)′ ∩ Q(B), connected to 1 in the unitary group of
α(A)′ ∩ Q(B), such that Ad v ◦ (ϕ +α ψ) = ψ +α ϕ and Ad w ◦ ((ϕ +α ψ) +α λ) =
ϕ +α (ψ +α λ).

Proof. By the essential uniqueness of absorbing ∗-homomorphisms there is
a unitary U ∈ M(B) such that Ad U ◦ β0(a)− α0(a) ∈ B. Set t = w1qB(UV1U∗)∗+
w2qB(UV2U∗)∗, and let S, T be the unitaries from Lemma 2.3. Then, by Lemma 2.3,
v = tqB(USU∗)t∗ and w = tqB(UTU∗)t∗ have the stated properties.

It follows from Lemma 2.4 that (2.2) gives the set of unitary equivalence
classes of extensions of A by B which agree with α on J the structure of an abelian
semi-group. Furthermore, it follows from the proof of Lemma 2.4 that any other
choice of absorbing ∗-homomorphism instead of α would result in an isomorphic
semi-group. To obtain a neutral element we declare that two extensions ϕ, ψ :
A → Q(B) that agree with α on J are stably equivalent when ϕ +α α is unitarily
equivalent to ψ +α α. That stable equivalence is an equivalence relation follows
from Lemma 2.4 and the observation that α +α α = α. The formula (2.2) gives
a well-defined composition in the set of stable equivalence classes of extensions
that agree with α on J, giving us an abelian semi-group with a neutral element (or
0) represented by α, and we denote this semi-group by ExtJ,α(A, B). The group of
invertible elements in ExtJ,α(A, B) will be denoted by

Ext−1
J,α (A, B).

It is clear from the construction, and can be seen from the essential uniqueness of
an absorbing ∗-homomorphism, that any other choice of an absorbing ∗-homo-
morphism A → M(B) will give rise to an isomorphic group. However, at this
point it would seem as if the stable equivalence of two given extensions of A by
B, which both agree with α on J, depends on the particular choice of isometries
from α(A)′ ∩ Q(B) used to define the addition +α. The next lemma shows that
this is not the case because the addition (2.2) is independent of the wi’s up to
conjugation by a unitary from α(A)′ ∩Q(B).

Let n ∈ N. To simplify the notation, we denote by 1n⊗ α0 : A→ Mn(M(B))
the ∗-homomorphism given by

(1n ⊗ α0)(a) =


α0(a)

α0(a)
. . .

α0(a)

 .
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Set 1n ⊗ α = (IdMn(C)⊗qB) ◦ (1n ⊗ α0).

LEMMA 2.5. Let ϕ : A→ Q(B) be an extension of A by B which is equal to α on
J, and assume that v ∈ α(A)′ ∩ Q(B) is an isometry such that vv∗α(a) = α(a) for all
a ∈ A. It follows that Ad v ◦ ϕ is stably equivalent to ϕ.

Proof. Note that(
v 1− vv∗

0 v∗

)(
ϕ(a) 0

0 α(a)

)(
v∗ 0

1− vv∗ v

)
=
(

vϕ(a)v∗ 0
0 α(a)

)
and that

(
v 1−vv∗
0 v∗

)
is a unitary in M2(Q(B)) ∩ (12 ⊗ α)(A)′. It follows that there

is a unitary u ∈ Q(B) ∩ α(A)′ such that Ad w ◦ (ϕ +α α) = (Ad v ◦ ϕ) +α α. Since
( u

u∗ ) is connected to 1 in the unitary group of M2(Q(B)) ∩ (12 ⊗ α)(A)′, we
deduce that Ad v ◦ ϕ +α α +α α is unitarily equivalent to ϕ +α α +α α.

3. A SIX-TERM EXACT SEQUENCE

We will now assume that there is an absorbing ∗-homomorphism α0 : A →
M(B) such that α0|J : J → M(B) is also absorbing. This condition is known to be
automatically fullfilled in the following cases:

(i) B is nuclear, or
(ii) J is nuclear, or

(iii) J is a hereditary C∗-subalgebra of A; in particular, when J is an ideal, or
(iv) there is a surjective conditional expectation P : A→ J.

(i) follows from Kasparov’s work, [9], and (ii)–(iv) all follow from Lemma 2.1
and Lemma 2.2 of [16]. In general the existence of α0 fails, cf. the last section in
[16].

Fix an absorbing ∗-homomorphism α0 : A → M(B) such that α0|J : J →
M(B) is also absorbing, and set α = qB ◦ α0 as before. Set

Dα(J) = {m ∈ M(B) : mα0(j)− α0(j)m ∈ B ∀j ∈ J},
Xα(J) = {m ∈ Dα(J) : mα0(j) ∈ B ∀j ∈ J}.

It was shown in [15] that there is a natural isomorphism K1(Dα(J)/Xα(J)) '
KK(J, B), and then in Lemma 3.1 of [17] that K∗(Xα(J)) = 0, so that we have a
natural isomorphism

(3.1) K1(Dα(J)) ' KK(J, B).

Similarly, we set Dα(A) = {m ∈ M(B) : mα0(a)− α0(a)m ∈ B ∀a ∈ A}, and get
a natural isomorphism

(3.2) K1(Dα(A)) ' KK(A, B).
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As above i : J → A will denote the inclusion, and we denote also by i the induced
inclusion i : Dα(A)→ Dα(J). Note that the diagram

(3.3) K1(Dα(A))

��

i∗ // K1(Dα(J))

��
KK(A, B) i∗ // KK(J, B)

is commutative when the vertical arrows are isomorphisms (3.1) and (3.2).
Let v be a unitary in Mn(Dα(J)). Let Θn : Mn(Q(B)) → Q(B) be the iso-

morphism from Lemma 2.1. Then Θn ◦ (IdMn(C)⊗qB) ◦Ad v ◦ (1n ⊗ α0) : A →
Mn(Q(B)) is an extension e(v) : A → Q(B) of A by B which is equal to α on J.
Since

Θ2n ◦ (IdM2n(C)⊗qB) ( v
v∗ )

is connected to 1 in the unitary group of α(J)′ ∩Q(B), we see that e(v) +α e(v∗) is
stably equivalent to α, as an extension of A by B which is equal to α on J, proving
that e(v) is invertible, hence it represents an element in Ext−1

J,α (A, B). When vt, t ∈
[0, 1], is a norm-continuous path of unitaries in Mn(Dα(J)) there is a partition
0 = t0 < t1 < t2 < · · · < tN = 1 of [0, 1] such that (IdMn(C)⊗qB)(vti v

∗
ti+1

)
is in the connected component of 1 in the unitary group of Mn(α(J)′ ∩ Q(B)).
Hence e(v0) = e(v1) in Ext−1

J,α (A, B). It is then straightforward to check that the
construction gives us a group homomorphism

(3.4) ∂ : K1(Dα(J))→ Ext−1
J,α (A, B).

LEMMA 3.1. The following sequence is exact:

K1(Dα(J)) ∂ // Ext−1
J,α (A, B) // Ext−1(A, B)

i∗

��
K1(Dα(A))

i∗

OO

Ext−1(J, B).

Proof. Exactness at K1(Dα(J)): If v is a unitary in Mn(Dα(A)), we find that
(IdMn(C)⊗qB) ◦Ad v ◦ (1n⊗ α0) = 1n⊗ α so that e(v) = [Θn ◦ (1n⊗ α)] = [α] = 0
in Ext−1

J,α (A, B). To show that ker ∂ ⊆ Im i∗, let v ∈ Dα(J) be a unitary such that
∂[v] = 0. Then Ad qB(v) ◦ α +α α is unitarily equivalent to α +α α, which means
that there is a unitary S connected to 1 in the unitary group of M2(α(J)′ ∩ Q(B))
such that

(3.5) Ad
[
S
(

qB(v)
1

)] (
α(a)

α(a)

)
=
(

α(a)
α(a)

)
.

Since qB : Dα(J) → α(J)′ ∩ Q(B) is surjective, there is a unitary S0 connected
to 1 in the unitary group of M2(Dα(J)) such that IdM2(C)⊗qB(S0) = S. Then
[v] = [S0 ( v

1 )] in K1(Dα(J)). It follows from (3.5) that S0 ( v
1 ) belongs to the
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commutant of (12 ⊗ α)(A), hence [S0 ( v
1 )] ∈ i∗(K1(Dα(A))). The same argu-

ment works when v is a unitary in Mn(Dα(J)) for some n > 2.
Exactness at Ext−1

J,α (A, B): Let v be a unitary in Dα(J). Then (Ad qB(v) ◦ α)
is a split extension of A by B, proving that [v] ∈ K1(Dα(J)) goes to zero under
the composition K1(Dα(J)) → Ext−1

J,α (A, B) → Ext−1(A, B). The same argument
works when v ∈ Mn(Dα(J)), so we see that the composition is zero. Let ϕ :
A→ Q(B) be an extension of A by B which is equal to α over J, and assume that
[ϕ] = 0 in Ext−1(A, B). This means that there is a unitary T ∈ M(M2(B)) such
that

(3.6) Ad(IdM2(C)⊗qB)(T) ◦ ( ϕ
α ) = ( α

α ) .

Since ϕ is equal to α over J this implies that T ∈ M2(Dα(J)) and we see from
(3.6) that [ϕ] = ∂[T∗]. Note that we did not assume that ϕ represented an invert-
ible element in ExtJ,α(A, B), so besides establishing the exactness at Ext−1

J,α (A, B)
the argument also shows that every element of ExtJ,α(A, B) which goes to 0 in
Ext−1(A, B) comes from K1(Dα(J)), and hence is invertible in ExtJ,α(A, B). This
point will be used shortly.

Exactness at Ext−1(A, B): It is obvious that i∗ kills the image of Ext−1
J (A, B)

in Ext−1(A, B), so consider an invertible extension ϕ : A → Q(B) such that [ϕ ◦
i] = 0 in Ext−1(J, B). This means that there is a unitary T ∈ M(B) such that

Ad qB(T)(ϕ⊕ α)(j) = α(j)

for any j ∈ J, i.e. Ad qB(T)(ϕ⊕ α) equals α on J. Since [ϕ] = [Ad qB(T)(ϕ⊕ α)]
in Ext−1(A, B), this completes the proof, provided we can show that Ad qB(T)(ϕ
⊕α) represents an invertible element of ExtJ,α(A, B). To this end, let ψ : A →
Q(B) be an extension of A by B which represents the inverse of ϕ in Ext−1(A, B).
Then i∗[ψ] = 0 in Ext−1(J, B) so we deduce as in case of ϕ that there is a unitary
T′ ∈ M(B) such that Ad qB(T′)(ψ⊕ α)(j) = α(j) for all j ∈ J. Thus Ad qB(T′)(ψ⊕
α) and Ad qB(T)(ϕ⊕ α) both represent elements of ExtJ,α(A, B). Since the sum

Ad qB(T′)(ψ⊕ α) +α Ad qB(T)(ϕ⊕ α)

represents 0 in Ext−1(A, B), it follows from the argument that proved exactness
at Ext−1

J,α (A, B) that [Ad qB(T)(ϕ⊕ α)] is invertible in ExtJ,α(A, B).

The proof of Lemma 3.1 has the following corollary:

LEMMA 3.2. Let ϕ be an extension of A by B which equals α on J. Assume that ϕ
is invertible in Ext(A, B). It follows that ϕ is invertible in ExtJ,α(A, B).

Proof. The image of [ϕ] in Ext−1(A, B) is killed by

i∗ : Ext−1(A, B)→ Ext−1(J, B)

and the proof of Lemma 3.1, more precisely the proof of exactness at Ext−1(A, B),
shows that [ϕ] is invertible in ExtJ,α(A, B).
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In particular, ExtJ,α(A, B) is a group when Ext(A, B) is.
Consider now the suspension SB = C0(0, 1)⊗ B of B. If we combine (3.3)

with Lemma 3.1 and use the natural identification KK(−, B) = Ext−1(−, SB) we
get the exact sequence

(3.7) Ext−1(J, SB)
∂0 // Ext−1

J,α (A, B) // Ext−1(A, B)

i∗

��
Ext−1(A, SB)

i∗

OO

Ext−1(J, B)

where ∂0 is the composition of ∂ : K1(Dα(J)) → Ext−1
J (A, B) with the isomor-

phism Ext−1(J, SB)→ K1(Dα(J)) coming from (3.1).
Let now β0 : A → M(SB) be an absorbing ∗-homomorphism such that

also β0|J : J → M(SB) is absorbing. The existence of such a β0 does not re-
quire any additional asumptions because β0 can be constructed from α0 by use of
Lemma 3.2 of [17]. Hence there is also a map ∂′ : K1(Dβ(J))→ Ext−1

J,β(A, SB), de-
fined in the same way as ∂, but with SB in place of B. This leads to the following
version of (3.7):

(3.8) Ext−1(J, SB) Ext−1(A, B)

i∗

��
Ext−1(A, SB)

i∗

OO

Ext−1
J,β(A, SB)oo Ext−1(J, B),

∂1

oo

where ∂1 is the composition of ∂′ : K1(Dβ(J)) → Ext−1
J,β(A, SB) with the isomor-

phism Ext−1(J, B)=KK(J, SB)→K1(Dβ(J)). By combining (3.7) and (3.8) we get

THEOREM 3.3. The following sequence is exact:

Ext−1
J,α (A, B) // Ext−1(A, B)

i∗ // Ext−1(J, B)

∂1
��

Ext−1(J, SB)

∂0

OO

Ext−1(A, SB)
i∗

oo Ext−1
J,β(A, SB).oo

4. OTHER REALIZATIONS OF THE RELATIVE EXTENSION GROUP

As above we assume that there is an absorbing ∗-homomorphism α0 : A→
M(B) such that α0|J : J → M(B) is also absorbing. By an extension of A by B
which splits over J we mean a pair (ϕ, ϕ0) where ϕ : A → Q(B) is an extension
of A by B, and ϕ0 : J → M(B) is a ∗-homomorphism such that qB ◦ ϕ0 = ϕ|J .
We say that (ϕ, ϕ0) is invertible when ϕ is an invertible extension of A by B, i.e.



260 VLADIMIR MANUILOV AND KLAUS THOMSEN

when there is another extension ψ of A by B with the property that ϕ⊕ψ is a split
extension (of A by B). Two invertible extensions, (ϕ, ϕ0) and (ψ, ψ0), of A by B
which split over J are homotopic in norm when there is a path (Φt, Φt

0), t ∈ [0, 1],
of invertible extensions of A by B which split over J such that [0, 1] 3 t 7→ Φt(a)
is norm-continuous for all a ∈ A and [0, 1] 3 t 7→ Φt

0(j) is norm-continuous for
all j ∈ J, (Φ0, Φ0

0) = (ϕ, ϕ0) and (Φ1, Φ1
0) = (ψ, ψ0). We say that (ϕ, ϕ0) and

(ψ, ψ0) are stably homotopic in norm when there is a ∗-homomorphism π : A →
M(B) such that (ϕ⊕ qB ◦ π, ϕ0 ⊕ π|J) and (ψ⊕ qB ◦ π, ψ0 ⊕ π|J) are homotopic
in norm. We denote by Ext−1

J (A, B) the abelian semi-group of stable homotopy
classes of invertible extensions of A by B which split over J. As we shall see
shortly, Ext−1

J (A, B) is actually a group.
Choose a sequence W1, W2, W3, . . . of isometries in M(B) such that W∗i Wj =

0 when i 6= j, and
∞
∑

i=1
WiW∗i = 1, with convergence in the strict topology. Set

β0(a) =
∞
∑

i=2
Wiα0(a)W∗i , and note that β0 : A → M(B) and β0|J : J → M(B) are

both absorbing. We shall work with β0 instead of α0. The point is that unlike α0,
the absorbing ∗-homomorphisms β0 and β0|J are both guaranteed to be saturated
in the sense of [17]. Recall that a ∗-homomorphism ϕ0 : A → M(B) is saturated if
it is unitarily equivalent to (ϕ0)∞ ⊕ (0)∞, where (ϕ0)∞ = ϕ0 ⊕ ϕ0 ⊕ · · · .

Let ϕ : A → Q(B) be an extension of A by B which equals β on J. Then
(ϕ, β0) is an extension of A by B which splits over J, and it is straightforward to
see that the recipe [ϕ]→ [ϕ, β0] is a group homomorphism

(4.1) Ext−1
J,β(A, B)→ Ext−1

J (A, B).

The aim is to show that (4.1) is an isomorphism.
Set IB = C[0, 1]⊗ B, and let evt : IB → B be the ∗-homomorphism given

by evaluation at t ∈ [0, 1]. Then et extends to a ∗-homomorphism evt : M(IB)→
M(B) and induces in turn a ∗-homomorphism êvt : Q(IB)→ Q(B). Let γ0 : A→
M(IB) be the ∗-homomorphism such that (γ0(a) f )(t) = β0(a) f (t), t ∈ [0, 1], f ∈
IB. Since β0 is saturated it follows from Lemma 2.3 of [17] that γ0 is absorbing.
Set γ = qIB ◦ γ0, and note that we have, for any t ∈ [0, 1], a homomorphism

et∗ : Ext−1
J,γ(A, IB)→ Ext−1

J,β(A, B)

defined such that et∗[ϕ] = [êt ◦ ϕ] when ϕ : A → Q(IB) is an extension of A by
IB which equals γ on J.

LEMMA 4.1. The homomorphisms et∗, t∈ [0, 1], are all the same group isomor-
phism.

Proof. Define c : B → IB such that c(b)(t) = b, and note that c induces
∗-homomorphisms c : M(B) → M(IB) and ĉ : Q(B) → Q(IB). Since ĉ ◦ β = γ

there is a homomorphism c∗ : Ext−1
J,β(A, B) → Ext−1

J,γ(A, IB) such that c∗[ψ] =
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[ĉ ◦ ψ]. Since et∗ ◦ c∗ is the identity on Ext−1
J,β(A, B) for all t ∈ [0, 1], it suffices to

show that c∗ is an isomorphism. This follows from Theorem 3.3 by an obvious
application of the five-lemma.

LEMMA 4.2. Let A1 and B1 be separable ∗-algebras, B1 stable. Let ϕ, ψ : A1 →
M(B1) be ∗-homomorphisms and Wt, t ∈ [1, ∞), a continuous path of unitaries in
M(B1) such that:

(i) Wt ϕ(a)W∗t − ψ(a) ∈ B1, t ∈ [1, ∞), a ∈ A1;
(ii) lim

t→∞
Wt ϕ(a)W∗t = ψ(a), a ∈ A1.

Then [Ad W1 ◦ ϕ, ψ] = 0 in KK(A1, B1).

Proof. The lemma and its proof are essentially identical to Lemma 3.1 of [6].
Note, however, that one of the crucial assumptions has mysteriously disappeared
in the lemma in [6].

PROPOSITION 4.3. The map (4.1) is an isomorphism. In particular, Ext−1
J (A, B)

is a group.

Proof. Surjectivity: Let (ϕ, ϕ0) be an invertible extension of A by B which
splits over J. Then ϕ0 ⊕ β0 is approximately unitarily equivalent to β0 because
β0 is absorbing, i.e. there exists a sequence of unitaries Un ∈ M(B), n ∈ N, such
that Ad Un ◦ (ϕ0 ⊕ β0)(j)− β0(j) ∈ B for all n, and lim

n→∞
Ad Un ◦ (ϕ0 ⊕ β0)(j)−

β0(j) = 0 for any j ∈ J. It follows then from Lemma 2.4 of [6] that ϕ0 ⊕ (β0)∞ is
asymptotically unitarily equivalent to (β0)∞, i.e. there exists a norm-continuous
path Vt, t ∈ [1, ∞), of unitaries in M(B) such that Ad Vt ◦ (ϕ0⊕ β0)(j)− β0(j) ∈ B
for all t, and lim

t→∞
Ad Vt ◦ (ϕ0 ⊕ β0)(j) − β0(j) = 0 for any j ∈ J. Since β0 is

unitarily equivalent to (β0)∞ because β0 is saturated, we conclude that there is
a norm-continuous path Wt, t ∈ [1, ∞), of unitaries in M(B) such that Wt(ϕ0 ⊕
β0)(j)W∗t − β0(j) ∈ B for all t, and lim

t→∞
Wt(ϕ0⊕ β0)(j)W∗t − β0(j) = 0 for any j ∈

J. Since the unitary group of M(B) is connected in norm, it holds that [ϕ, ϕ0] =
[Ad qB(W1) ◦ (ϕ⊕ β), Ad W1 ◦ (ϕ0 ⊕ β0)] in ExtJ,s(A, B). Set

Ψt =

{
Ad W1/t ◦ (ϕ0 ⊕ β0) t ∈]0, 1],
β0 t = 0.

Then (Ad qB(W1) ◦ (ϕ⊕ β), Ψt), t ∈ [0, 1], is a homotopy in norm showing that

[Ad qB(W1) ◦ (ϕ⊕ β), Ad W1 ◦ (ϕ0 ⊕ β0)] = [Ad qB(W1) ◦ (ϕ⊕ β), β0].

Note that Ad qB(W1) ◦ (ϕ⊕ β) is equal to β on J, and is invertible in ExtJ,β(A, B)
by the proof of Lemma 3.1 since ϕ is an invertible extension. Thus Ad qB(W1) ◦
(ϕ⊕ β) represents an element of Ext−1

J,β(A, B), and we conclude that (4.1) is sur-

jective. In particular Ext−1
J (A, B) is a group.

Injectivity: Let ϕ, ψ be extensions of A by B which both equal β on J. As-
sume that [ϕ, β0] = [ψ, β0] in Ext−1

J (A, B). There is then a ∗-homomorphism
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π : A→ M(B) such that (ϕ⊕ qB ◦π, β0⊕π) is homotopic in norm to (ψ⊕ qB ◦π,
β0 ⊕ π). As in the proof of surjectivity we can find a norm-continuous path
Wt, t ∈ [1, ∞), of unitaries in M(B) such that Wt(π ⊕ β0)(a)W∗t − β0(a) ∈ B
for all t, and lim

t→∞
Wt(π ⊕ β0)(a)W∗t − β0(a) = 0 for all a ∈ A. Set St = 1⊕Wt

and note that this gives a homotopy in norm between (ϕ⊕ qB ◦π⊕ β, β0⊕π⊕ β)
and (ϕ⊕ β, β0⊕ β0). Similarly, there is homotopy in norm between (ψ⊕ qB ◦π⊕
β, β0 ⊕ π ⊕ β) and (ψ⊕ β, β0 ⊕ β0). It follows that there is a homotopy in norm,
(Ψt, Ψt

0), between (ϕ +β β, β0 +β β0) and (ψ +β β, β0 +β β0). This homotopy de-
fines in an obvious way an extension Φ : A → Q(IB) and a ∗-homomorphism
Φ0 : J → M(IB) such that qIB ◦Φ0 = Φ|J , (ê0 ◦Φ, e0 ◦Φ0) = (ϕ +β β, β0 +β β0)
and (ê1 ◦ Φ, e1 ◦ Φ0) = (ψ +β β, β0 +β β0) . Note that Φ is invertible since each
Ψt is. Let γ0 : A → M(IB) be the ∗-homomorphism such that (γ0(a) f )(t) =
β0(a) f (t), t ∈ [0, 1], f ∈ IB. As in the proof of surjectivity, it follows from [6] that
there is a norm-continuous path Wt, t ∈ [1, ∞), of unitaries in M(IB) such that
Wt(Φ0 ⊕ γ0)(j)W∗t − γ0(j) ∈ IB for all t, and lim

t→∞
Wt(Φ0 ⊕ γ0)(j)W∗t − γ0(j) = 0

for any j ∈ J. There is therefore also a norm-continuous path Vt, t ∈ [1, ∞), of
unitaries in M(IB) such that

Vt(Φ0+γγ0)(j)V∗t − ((γ0 +γ γ0) +γ γ0)(j) ∈ IB

for all t, and lim
t→∞

Vt(Φ0 +γ γ0)(j)V∗t − ((γ0 +γ γ0) +γ γ0)(j) = 0 for any j ∈ J. It

follows from Lemma 4.2 that

(4.2) [Ad V1 ◦ (Φ0 +γ γ0), (γ0 +γ γ0) +γ γ0] = 0

in KK(J, IB). Set Si = ei(V1), i = 0, 1, and note that it follows from (4.2) that

[Ad S0 ◦ ((β0 +β β0) +β β0), β0 +β β0) +β β0] = 0,(4.3)

[Ad S1 ◦ ((β0 +β β0) +β β0), (β0 +β β0) +β β0] = 0,(4.4)

in KK(J, B). Let W ∈ M(B) be a unitary such that Ad W ◦ β0 = (β0 +β β0). It
follows then from (4.3) and (4.4) that

(4.5) [Ad W∗S0W ◦ β0, β0] = [Ad W∗S1W ◦ β0, β0] = 0

in KK(J, B). Note that [Ad W∗S0W ◦ β0, β0] ∈ KK(J, B) is the image of the class
of the unitary W∗S0W under the isomorphism (3.1). Thus (4.5) implies that

[qB(W∗S0W)] = 0

in K1(β(J)′ ∩Q(B)). Similarly, it also implies that

[qB(W∗S1W)] = 0

in K1(β(J)′ ∩Q(B)). It follows therefore that

[ϕ]= [Ad qB(W∗S0W)◦(ê0◦Φ+β β)] and [ψ]= [Ad qB(W∗S1W)◦(ê1◦Φ+β β)]
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in Ext−1
J,β(A, B). Consider W as a unitary in M(IB) via the map c : M(B)→ M(IB)

from the proof of Lemma 4.3, and let Λ : A→ Q(IB) be the extension given by

Λ = Ad qIB(W∗V1W) ◦ (Φ +γ γ).

Then Λ is equal to γ on J. By assumption Φ is invertible which means that it
represents an invertible element of Ext(A, IB). Hence Λ represents also an in-
vertible element of Ext(A, IB). As we saw in the proof of Lemma 3.1 this implies
that Λ represents an invertible element of ExtJ,γ(A, IB). It follows therefore from
Lemma 4.1 that

[Ad qB(W∗S0W)◦(ê0◦Φ+β β)]= e0∗[Λ]= e1∗[Λ]= [Ad qB(W∗S1W)◦(ê1◦Φ+β β)]

in Ext−1
J (A, B). Hence [ψ] = [ϕ] in Ext−1

J (A, B).

The main virtue of Proposition 4.3, which we shall exploit below, is that
it gives a description of the relative extension group without any reference to
absorbing ∗-homomorphism. Furthermore, the description makes it easy to make
the relative extension group functorial, covariantly in the “coefficient algebra” B,
and contravariantly in the pair J ⊆ A.

5. MAPPING CONES AND THE RELATIVE EXTENSION GROUP

Let Ci be the mapping cone of the inclusion i : J → A which we realize as

Ci = { f ∈ IA : f (0) = 0, f (s) ∈ J, s ∈ [ 1
2 , 1]}.

Let ϕ : A → Q(B) be an invertible extension of A by B which equals α on J.
We can then choose a completely positive contraction ξ : A → M(B) such that
qB ◦ ξ = ϕ. Note that ξ(j)− α0(j) ∈ B for any j ∈ J since ϕ|J = qB ◦ α0. We define
Φ : Ci → IM(B) such that

Φ( f )(s) =

{
ξ( f (s)) s ∈ [0, 1

2 ],
(2− 2s)ξ( f (s)) + (2s− 1)α0( f (s)) s ∈ [ 1

2 , 1].

Then Φ is a completely positive contraction and Φ( f g)−Φ( f )Φ(g) ∈ SB for all
f , g ∈ Ci. Thus µ(ϕ) = qSB ◦ Φ : Ci → Q(SB) is an invertible extension of Ci
by SB. It is easy to see that we get a group homomorphism µ : Ext−1

J,α (A, B) →
Ext−1(Ci, SB) such that µ[ϕ] = [µ(ϕ)].

THEOREM 5.1. µ : Ext−1
J,α (A, B)→ Ext−1(Ci, SB) is an isomorphism.

Proof. Let ι : SA→ Ci be the natural embedding, i.e.

ι(g)(s) =

{
g(2s) s ∈

[
0, 1

2
]
,

0 s ∈
[ 1

2 , 1
]
,
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and p : Ci → J the ∗-homomorphism p( f ) = f (1). By comparing the six-term
exact sequence of Theorem 3.3 with the Puppe sequence of [5] we see that the
five-lemma will give the theorem if we show that the diagram

(5.1) Ext−1(J, SB)
∂0 // Ext−1

J,α (A, B)

µ

��

// Ext−1(A, B)

Ext−1(J, SB)
p∗ // Ext−1(Ci, SB)

S−1◦ι∗ // Ext−1(A, B)

commutes, where S−1 is the inverse of the suspension isomorphism

S : Ext−1(A, B)→ Ext−1(SA, SB).

To this end, only the left square requires some care. To prove commutativity here
we consider a unitary v in M(B) such that vα0(j) − α0(j)v ∈ B for any j ∈ J.
Under the isomorphism K1(Dα(J)) ' Ext−1(J, SB), v becomes the extension ψ =
qSB ◦ ψ0, where ψ0 : J → IM(B) is given by ψ0(j)(s) = (1− s)vα0(j)v∗ + sα0(j).
Hence p∗[v] is represented by the extension qSB ◦ Φ : Ci → Q(SB), where Φ :
Ci → IM(B) is given by

Φ( f )(s) = (1− s)vα0( f (1))v∗ + sα0( f (1)).

For comparison µ ◦ ∂0[v] is represented by the extension qSB ◦ Ψ : Ci → Q(SB),
where Ψ : Ci → IM(B) is given by

Ψ( f )(s) =

{
vα0( f (s))v∗ s ∈ [0, 1

2 ],
(2− 2s)vα0( f (s))v∗ + (2s− 1)α0( f (s)) s ∈ [ 1

2 , 1].

Set hλ(s) = max{λ, s}, and define Λ : Ci → I2M(B) such that

Λ( f )(λ, s) =

{
vα0( f (hλ(s)))v∗ s ∈ [0, 1

2 ],
(2− 2s)vα0( f (hλ(s)))v∗ + (2s− 1)α0((hλ(s))) s ∈ [ 1

2 , 1].

Then qISB ◦Λ is an extension of Ci by ISB which gives us a homotopy between
qSB ◦Ψ and qSB ◦Ψ′, where

Ψ′( f )(s) =

{
vα0( f (1))v∗ s ∈ [0, 1

2 ],
(2− 2s)vα0( f (1))v∗ + (2s− 1)α0( f (1)) s ∈ [ 1

2 , 1].

It is easy to construct a homotopy of invertible extensions connecting qSB ◦ Ψ′ to
qSB ◦Φ, and we therefore conclude that the diagram (5.1) commutes.

Theorem 5.1 has many consequences for the relative extension group. One
is that Ext−1

J,α (A, B) = Ext−1(A/J, B) when J is a semi-split ideal. Another virtue
of Theorem 5.1 is that it makes it easy to give the following description of the map
∂0 from Theorem 3.3 — a description which we shall need in Section 7.
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LEMMA 5.2. When the group Ext−1(J, SB) is identified with KK(J, B) in the
Cuntz picture, and Ext−1

J,α (A, B) is identified with Ext−1
J (A, B) via the isomorphism

(4.1), we have that ∂0[ϕ+|J , ϕ−] = [qB ◦ ϕ+, ϕ−], where ϕ+ : A → M(B) and
ϕ− : J → M(B) are ∗-homomorphisms such that ϕ+(j)− ϕ−(j) ∈ B for all j ∈ J.

Proof. Note that the map (4.1) was defined for a particular absorbing ∗-
homomorphism β0. Let u ∈ M(B) be a unitary such that Ad u ◦ α0(a)− β0(a) ∈ B
for all a ∈ A. There is then an isomorphism Ext−1

J,α (A, B) → Ext−1
J,β(A, B) defined

by [ϕ] 7→ [Ad qB(u) ◦ ϕ]. By composing with the isomorphism (4.1) we obtain
an isomorphism ν : Ext−1

J,α (A, B) → Ext−1
J (A, B). When (ψ, ψ0) is an invertible

extension of A by B which splits over J we can define Ψ : Ci → IM(B) such that

Ψ( f )(s) =

{
ξ( f (s)) s ∈ [0, 1

2 ],
(2− 2s)ξ( f (s)) + (2s− 1)ϕ0( f (s)) s ∈ [ 1

2 , 1],

where ξ : A → M(B) is a completely positive contractive lift of ϕ. Then qSB ◦ Ψ
is an invertible extension of Ci by SB and we can define a homomorphism µ′ :
Ext−1(J, SB)→ Ext−1(Ci, SB) such that µ′[ψ, ψ0] = [qSB ◦Ψ]. Then the diagram

(5.2) Ext−1(J, SB)
∂0 // Ext−1

J,α (A, B)

µ

��

ν // Ext−1
J (A, B)

µ′wwooooooooooo

Ext−1(J, SB)
p∗ // Ext−1(Ci, SB)

commutes. The commutativity of the square was established in the proof of The-
orem 5.1 and it is easy to see that the triangle commutes. The diagram (5.2) gives
us the lemma in the following way: The element of Ext−1(J, SB) corresponding
to the Cuntz pair (ϕ+|J , ϕ−) is represented by qSB ◦ Φ, where Φ : J → IM(B)
is given by Φ(j)(s) = (1− s)ϕ+(j) + sϕ−(j). Thus p∗[ϕ+|J , ϕ−] is represented
by qSB ◦ Λ, where Λ( f )(s) = (1 − s)ϕ+( f (1)) + sϕ−( f (1)). For comparison
µ′[qB ◦ ϕ+, ϕ−] is represented by the extension qSB ◦Ψ′ where

Ψ′( f )(s) =

{
ϕ+( f (s)) s ∈ [0, 1

2 ],
(2− 2s)ϕ+( f (s)) + (2s− 1)ϕ−( f (s)) s ∈ [ 1

2 , 1].

Homotopies almost identical to the ones used in the proof of Theorem 5.1 now
prove that p∗[ϕ+|J , ϕ−] = µ′[qB ◦ ϕ+, ϕ−]. The conclusion of the lemma follows
then from the commutativity in (5.2) because µ′ is injective.

Under our standing assumption that there is an absorbing ∗-homorphism
A → M(B) whose restriction to J is also absorbing, every element of KK(J, B)
can be represented by a Cuntz pair of the form considered in Lemma 5.2.
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6. WHEN A AND J HAVE THE SAME UNIT

Assume now that the pair J ⊆ A share the same unit 1 ∈ J. It is then often
natural and convenient to consider extensions that are unital. This is certainly
the case for the relative K-homology of compact spaces which we investigate in
the following section. In the present section we describe how to adjust the defi-
nitions and results of the previous sections in order to “fix the unit”. Most of the
considerations are standard, so we will be brief (but, hopefully, precise).

First of all the role of the absorbing ∗-homomorphisms must now be taken
by the unitally absorbing ∗-homomorphisms. The first lemma shows that this
does not effect the fundamental condition of Section 3.

LEMMA 6.1. There is an absorbing ∗-homomorphism α0 : A → M(B) such
that α0|J : J → M(B) is also absorbing if and only if there is a unitally absorbing ∗-
homomorphism β0 : A→ M(B) such that β0|J : J → M(B) is also unitally absorbing.

Proof. Assume first that α0 exists. Since there exists a unitally absorbing ∗-
homomorphism A → M(B), [15], it follows from Lemma 1.1 in [10] that there
is an absorbing ∗-homomorphism A → M(B) such that the image of 1 is the
range projection of an isometry in M(B), and then it follows from the essential
uniqueness of absorbing ∗-homomorphisms that this is the case for all of them.
In particular, there is an isometry W ∈ M(B) such that WW∗ = α0(1). Then
W∗α0(·)W : A → M(B) is a unital ∗-homomorphism and we claim that it is
unitally absorbing. To show this we check that condition 1) of Theorem 2.1 of
[15] is fullfilled. Let ϕ : A → B be a completely positive contraction. Extend ϕ
to A+ = A⊕C by annihilating the direct summand C. Since α+

0 : A+ → M(B)
is unitally absorbing by Theorem 2.7 of [15], there is a sequence {Wn} ⊆ M(B)
such that lim

n→∞
W∗n b = 0 for all b ∈ B and lim

n→∞
W∗n α0(a)Wn = ϕ(a) for all a ∈ A.

It follows that lim
n→∞

W∗n Wb = 0 for all b ∈ B and lim
n→∞

W∗n WW∗α0(a)WW∗Wn =

ϕ(a) for all a, verifying that W∗α0(·)W is unitally absorbing. The same argument
applies to its restriction to J, and hence β0 = W∗α0(·)W is unitally absorbing on
both A and J.

Conversely, when β0 : A → M(B) is unitally absorbing on both A and J,
Lemma 1.1 of [10] shows that there is an isometry V ∈ M(B) such that α0 =
Ad V ◦ β0 is absorbing on both A and J.

Assume now that β0 : A→ M(B) is a unitally absorbing ∗-homomorphism
such that β0|J : J → M(B) is also unitally absorbing. Set β = qB ◦ β0. We
say that two unital extensions, ϕ, ψ : A → Q(B), that are equal to β on J,
are unitarily equivalent when there is a unitary connected to 1 in the unitary
group of β(J)′ ∩ Q(B) such that Ad v ◦ ϕ = ψ. By repeating the arguments
that proved Lemma 2.4 we find that the addition +β, defined using isometries
from β(A)′ ∩ Q(B), gives the unitary equivalence classes of unital extensions
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of A by B which equal β on J the structure of an abelian semi-group. We de-
fine stable equivalence in this setting in the natural way: ϕ and ψ are stably
equivalent, as unital extensions which equal β on J, when ϕ +β α is unitarily
equivalent to ψ +β α. The stable equivalence classes of unital extensions of A
by B which equal β on J is then an abelian semi-group with 0, and the invert-
ible elements of this semi-group form an abelian group which we denote by
Ext−1

J,β(A, B). Let V, W be isometries in M(B) such that VV∗ + WW∗ = 1. By
Lemma 1.1 of [10], α0 = Ad V ◦ β0 will be absorbing on both A and J and we
can define a group homomorphism χ0 : Ext−1

J,β(A, B) → Ext−1
J,α (A, B) such that

χ0[ϕ] = [Ad qB(V) ◦ ϕ]. In the other direction, if ψ : A → Q(B) is an extension
which equals α on J, note that Ad qB(V)∗ ◦ψ is a unital extension of A by B which
equals β on J. We define a homomorphism χ1 : Ext−1

J,α (A, B) → Ext−1
J,β(A, B) such

that χ1[ψ] = [Ad qB(V)∗ ◦ ψ]. It is easy to see that χ1 is the inverse of χ0. Hence
we see that the unital version of the relative extension group agrees with non-
unital version.

Note that in the particular case where A is unital and J = C1 ⊆ A, the
group Ext−1

J,β(A, B) is the group Ext−1
unital(A, B) considered in [10], and the six-term

exact sequence of Theorem 3.3 is then the six-term exact sequence of Skandalis,
[14], a construction of which was exhibited in [10]. In fact, in the present setting
where J and A have a common unit the six-term exact sequence of Theorem 3.3
can be modified so that the involved extension groups are “unital” in the sense
that they are defined using unital extensions only. The key point for this is that
since β0 is unitally absorbing, the isomorphism (3.2) can be substituted by an
isomorphism K1(β(A)′ ∩ Q(B)) ' KK(A, B) because Dα(A)/Xα(A) ' β(A)′ ∩
Q(B), cf. [10]. By using this isomorphism in place of (3.2) and the isomorphism
K1(β(J)′ ∩Q(B)) ' KK(J, B) in place of (3.1), the proof of Theorem 3.3 can easily
be adopted to yield the following six-term exact sequence in the present case:

Ext−1
J (A, B) // Ext−1

unital(A, B) i∗ // Ext−1
unital(J, B)

∂1
��

Ext−1
unital(J, SB)

∂0

OO

Ext−1
unital(A, SB)

i∗
oo Ext−1

J (A, SB).oo

As one would expect by now, the alternative picture of the relative extension
group given in Section 4 is also not changed by restricting attention entirely to
unital extensions. This will be very useful in the following, so let us make it
precise: By a unital extension of A by B which splits over J we mean a pair (ϕ, ϕ0)
where ϕ : A → Q(B) is a unital extension of A by B, and ϕ0 : J → M(B) is a
unital ∗-homomorphism such that qB ◦ ϕ0 = ϕ|J . Recall that if ϕ is invertible, it
is actually unitally invertible, i.e. there is another unital extension ψ of A by B
with the property that ϕ⊕ ψ is a split extension (of A by B). Two unital invertible
extensions, (ϕ, ϕ0) and (ψ, ψ0), of A by B which split over J are now homotopic
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in norm when there is a path (Φt, Φt
0), t ∈ [0, 1], of unital invertible extensions of

A by B which split over J such that [0, 1] 3 t 7→ Φt(a) is norm-continuous for all
a ∈ A and [0, 1] 3 t 7→ Φt

0(j) is norm-continuous for all j ∈ J, (Φ0, Φ0
0) = (ϕ, ϕ0)

and (Φ1, Φ1
0) = (ψ, ψ0). We say that (ϕ, ϕ0) and (ψ, ψ0) are stably homotopic in

norm when there is a unital ∗-homomorphism π : A → M(B) such that (ϕ ⊕
qB ◦ π, ϕ0 ⊕ π|J) and (ψ ⊕ qB ◦ π, ψ0 ⊕ π|J) are homotopic in norm. The stable
homotopy classes of unital invertible extensions of A by B which split over J form
a group which we temporarily denote by Ext−1,+

J (A, B).

LEMMA 6.2. The forgetful map Ext−1,+
J (A, B) → Ext−1

J (A, B) is an isomor-
phism.

Proof. Surjectivity: Let (ϕ, ϕ0) be an invertible extension of A by B which
splits over J. By adding (0, 0) we do not change the class of (ϕ, ϕ0), but reach
a situation where there is a ∗-homomorphism π : A → M(B) such that π(1) =
ϕ0(1)⊥. Then, with Θ the ∗-isomorphism from the proof of Lemma 2.3, w =
Θ
(

ϕ0(1) π(1)
0 0

)
is a partial isometry such that Ad qB(w) ◦ (ϕ⊕ qB ◦ π) and Ad w ◦

(ϕ0 ⊕ π|J) are both unital. By choosing a unitary dilation of w and using that the
unitary group of M(B) is connected in the norm-topology, [11], [4], we see that
the class of (ϕ, ϕ0) in Ext−1

J (A, B) is also represented by the unital pair

(Ad qB(w) ◦ (ϕ⊕ qB ◦ π), Ad w ◦ (ϕ0 ⊕ π|J)).

Injectivity: Let (ϕ, ϕ0) and (ψ, ψ0) be unital and invertible extensions of A
by B which split over J and define the same element of Ext−1

J (A, B). After the
addition of a pair (qB ◦ π, π|J) we have a homotopy in norm, (Φt, Φ0

t ), t ∈ [0, 1],
connecting (ϕ⊕ qB ◦ π, ϕ0 ⊕ π|J) to (ψ⊕ qB ◦ π, ψ0 ⊕ π|J). Standard arguments
show that there is a norm-continuous path Ut, t ∈ [0, 1], of unitaries in M(B) such
that Φ0

t (1) = Ut pU∗t for all t ∈ [0, 1], where p = 1⊕ π(1). Note that U0 pU∗0 =
U1 pU∗1 = p. By the same trick of adding (0, 0) as above, we can arrange that
there is a ∗-homomorphism χ : A → M(B) such χ(1) = p⊥. Define Ψ0

t (j) =
Φ0

t (j) + Ad Ut ◦ χ(j) and Ψt(a) = Φt(a) + Ad qB(Ut) ◦ qB ◦ χ(a). Then (Ψt, Ψ0
t ) is

a homotopy in norm connecting

((ϕ⊕ qB ◦ π) + q ◦Ad U0 ◦ χ, (ϕ0 ⊕ π|J) + Ad U0 ◦ χ|J)

to
((ψ⊕ qB ◦ π) + qB ◦Ad U1 ◦ χ, (ψ0 ⊕ π|J) + Ad U1 ◦ χ|J).

Since there are unital ∗-homomorphisms π± : A→ M(B) such that

((ϕ⊕qB◦π)+qB◦Ad U0◦χ, (ϕ0⊕π)+Ad U0◦χ|J)=(ϕ⊕qB◦π+, ϕ0⊕π+|J),

((ψ⊕qB◦π)+qB◦Ad U1◦χ, (ψ0⊕π)+Ad U1◦χ|J)=(ψ⊕qB◦π−, ψ0⊕π−|J),

we conclude that (ϕ, ϕ0) and (ψ, ψ0) define the same element of Ext−1,+
J (A, B).
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Lemma 6.2 is our excuse for not distinguishing between Ext−1,+
J (A, B) and

Ext−1
J (A, B) in the following.

7. RELATIVE K-HOMOLOGY FOR SPACES

Fix a separable infinite-dimensional Hilbert space H and denote by L(H)
the algebra of bounded operators on H, and by K the ideal in L(H) consisting of
the compact operators. In this section we will study the relative extension group
Ext−1

J (A, B) in the case when the “coefficient algebra” is B = K and J ⊆ A is a
unital inclusion of one abelian C∗-algebra into another. Since the coefficients are
now fixed we drop them in the notation. In the same vein we write Q for the
Calkin algebra and q : L(H)→ Q for the quotient map. In order to draw directly
on the work of Brown, Douglas and Fillmore, [2], we will use the “unital version”
of the relative extension group, as explained in Section 6.

LEMMA 7.1. Let A ⊆ L(H) be a separable C∗-subalgebra such that q(A) ⊆ Q is
abelian. Let ωi : q(A) → C, i = 1, 2, . . . , be a sequence of characters of q(A), and let
{ai} be a dense sequence in A.

There is then a family of continuous maps χi : [1, ∞)→H, i=1, 2, 3, . . . , such that:
(i) (χ1(t), χ2(t), χ3(t), . . . ) is an orthonormal set for all t ∈ [1, ∞);

(ii) χi(t) = χi(s), i > n, when s, t ∈ [1, n];

(iii)
∞
∑

i=1
‖aiχi(t)−ωi(q(ai))χi(t)‖2 < ∞ for all t ∈ [1, ∞);

(iv) lim
t→∞

sup
i
‖aχi(t)−ωi(q(a))χi(t)‖ = 0 for all a ∈ A; and

(v) lim
t→∞

sup
i
‖kχi(t)‖ = 0 for all k ∈ K.

Proof. Let {µi} be a sequence of characters on q(A) with the property that
each ωj occurs infinitely many times in {µi}, and let b1, b2, b3, . . . , be a dense
sequence in K. By Lemma 1.3 of [2] there is an orthonormal sequence ψi, i =
1, 2, . . . , in H such that

‖akψi − µi(q(ak))ψi‖ 6 2−i

when k 6 i. Since each ωj occurs infinitely often in {µi} we can select subse-
quences {ϕk

i }∞
i=1, k = 1, 2, 3, . . . , from {ψi} such that:

(a) {ϕk
i }∞

i=1 ∩ {ϕk′
i }∞

i=1 = ∅ when k 6= k′; and
(b) sup

i
‖aj ϕ

k
i −ωi(q(aj))ϕk

i ‖ 6 1
k ;

(c) sup
i
‖bj ϕ

k
i ‖ 6 1

k ;
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for all j = 1, 2, . . . , k. Set

γk
i =

{
ϕk

i i 6 k,
ϕ1

i i > k,
and χi(t) =

√
t− nγn+1

i +
√

n + 1− tγn
i

when t ∈ [n, n + 1]. It is straigthforward to show that {χi} has the properties
(i)–(v).

Let X and Y be compact Hausdorff spaces and f : X → Y a continuous
surjection. There is then a unital embedding i : C(Y) → C(X) such that i(g) =
g ◦ f , and we will sometimes identify C(Y) with i(C(Y)) ⊆ C(X). It follows from
[9] that any unital ∗-homomorphism α0 : C(X) → L(H) such that α = q ◦ α0 is
injective, is also unitally absorbing. In particular, it follows that α0|C(Y) is unitally
absorbing whenever α0 is. We fix a unitally absorbing ∗-homomorphism α0 :
C(X)→ L(H), and denote ExtC(Y),α(C(X), K) by

ExtY, f (X).

It is this group we shall investigate in this section.

LEMMA 7.2. Let ϕ : C(X) → Q be an injective and unital extension of C(X) by
K. Let ϕ′ : C(X) → L(H) be a continuous map such that qK ◦ ϕ′ = ϕ. There is then a
continuous path Vt, t ∈ [1, ∞), of unitaries in L(H) such that:

(i) Ad q(Vt) ◦ (ϕ⊕ α) = ϕ for all t ∈ [1, ∞);
(ii) lim

t→∞
Vt(ϕ′ ⊕ α0)(g)V∗t = ϕ′(g) for all g ∈ C(X);

(iii) V1 −Vt ∈ K for all t ∈ [1, ∞).

Proof. We pick a dense sequence {xi}∞
i=1 in X and an orthonormal basis

{ei}∞
i=1 in H. We arrange that each point xj is repeated infinitely many times

in {xi}∞
i=1. Define D : C(X) → L(H) such that D(g)ψ =

∞
∑

i=1
g(xi)〈ψ, ei〉ei. Ap-

ply then Lemma 7.1 with A the C∗-algebra generated by ϕ′(C(X)) and ωi(a) =
ϕ−1(a)(xi) to get the continuous functions χi : [1, ∞) → H with the properties
listed there. Let σ1, σ2 : N → N be injective maps such that σ1(N) ∩ σ2(N) = ∅,
N = σ1(N) ∪ σ2(N) and xi = xσ1(i) = xσ2(i) for all i ∈ N (such maps exist because
each xj is repeated infinitely many times).

Set Ptψ =
∞
∑

i=1
〈ψ, χi(t)〉χi(t). Then Pt is a projection and we define Vt :

PtH → H such that Vtχi(t) = χσ1(i)(t). Define isometries St, Tt : H → H such
that St = P⊥t + VtPt and Ttei = χσ2(i)(t). It follows from the properties (i)–(v)
of {χi} that both t 7→ St and t 7→ Tt are continuous in norm, that St ϕ′(g)S∗t +
TtD(g)T∗t − ϕ′(g) ∈ K and that lim

t→∞
St ϕ′(g)S∗t + TtD(g)T∗t = ϕ′(g). Let V1, V2 be

the isometries used to define the addition ⊕, and set Ut = StV∗1 + TtV∗2 . Then

(a) Ut(ϕ′ ⊕ D)(g)U∗t − ϕ′(g) ∈ K for all t ∈ [1, ∞) and all g ∈ C(X);
(b) lim

t→∞
Ut(ϕ′ ⊕ D)(g)U∗t = ϕ′(g) for all g ∈ C(X); and
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(c) U1 −Ut ∈ K for all t ∈ [1, ∞).

By Theorem 3.11 of [6] there is is a norm-continuous path Wt, t ∈ [1, ∞), of
unitaries in L(H) such that Ad Wt ◦D(g)− α0(g) ∈ K for all t ∈ [1, ∞), g ∈ C(X),
and lim

t→∞
Ad Wt ◦ D(g) = α0(g) for all g ∈ C(X). It follows then from Lemma 4.2

that the Cuntz-pair (Ad W1 ◦ D, α0) represents zero in KK(C(X), K), and then an
application of Theorem 3.12 of [6] shows that we can assume that Wt −W1 ∈ K
for all t. Set Vt = Ut(1⊕W∗t ).

THEOREM 7.3. Let ϕ : C(X) → Q(K) be an injective and unital extension of
C(X) by K. Assume that there is a unital ∗-homomorphism ϕ0 : C(Y) → L(H) such
that ϕ ◦ i = q ◦ ϕ0. Then the following are equivalent:

(i) (ϕ, ϕ0) represents zero in ExtY, f (X).
(ii) There is a path ψt, t ∈ [1, ∞), of ∗-homomorphisms ψt : C(X) → L(H) such

that t 7→ ψt(g) is continuous for all g ∈ C(X), ϕ = q ◦ ψt for all t ∈ [1, ∞), and
lim
t→∞

ψt ◦ i(h) = ϕ0(h) for all h ∈ C(Y).

(iii) There is a sequence of ∗-homomorphisms ψn : C(X)→ L(H) such that q ◦ ψn =
ϕ for all n, and lim

n→∞
ψn ◦ i(h) = ϕ0(h) for all h ∈ C(Y).

Proof. The implication (ii) ⇒ (iii) is trivial so it suffices to prove that (i) ⇒
(ii) and that (iii) ⇒ (i). First (i) ⇒ (ii): It follows from Section 6 that there is a
unital ∗-homomorphism π : C(X)→ L(H) such that (ϕ⊕ qB ◦ π, ϕ0 ⊕ π|C(Y)) is
homotopic in norm, as a unital extension of C(X) by K which splits over C(Y),
to the pair (qB ◦ π, π|C(Y)). It follows then from [2] that ϕ represents zero in
Ext(X). There is therefore a unital ∗-homomorphism ϕ′ : C(X)→ L(H) such that
q ◦ ϕ′ = ϕ. Then (ϕ′ ◦ i, ϕ0) is a Cuntz pair and from the description of ∂0 given
in Lemma 5.2, we find that ∂0[ϕ′ ◦ i, ϕ0] = [ϕ, ϕ0]. Since [ϕ, ϕ0] = 0, the six-term
exact sequence of Theorem 3.3 shows that [ϕ′ ◦ i, ϕ0] = i∗[ψ+, ψ−], where ψ± :
C(X) → L(H) are (not necessarily unital) ∗-homomorphisms such that ψ+(g)−
ψ−(g) ∈ K for all g ∈ C(X). By adding the same ∗-homomorphism to ψ+ and ψ−
we may assume that q ◦ ψ± are both injective. Since [ϕ′ ◦ i⊕ ψ− ◦ i, ϕ0⊕ ψ+ ◦ i] =
0 in KK(C(Y), K) and ϕ′ and ϕ0 are both unital it follows that [ψ+(1), ψ−(1)] = 0
in KK(C, K). Thus also [1− ψ+(1), 1− ψ−(1)] = 0 in KK(C, K). Let χ : C(X) →
C be any character. Then [χ(1− ψ+(1)), χ(1− ψ−(1))] = 0 in KK(C(X), K). It
follows that [ψ+, ψ−] = [ψ+, ψ−] + [χ(1 − ψ+(1)), χ(1 − ψ−(1))] can be repre-
sented by a Cuntz pair γ± of unital ∗-homomorphisms γ± : C(X) → L(H) such
that q ◦ γ+ and q ◦ γ− are both injective. Since [ϕ′ ◦ i ⊕ γ− ◦ i, ϕ0 ⊕ γ+ ◦ i] = 0
in KK(C(Y), K), it follows from Theorem 3.12 of [6] there is a continuous path
Vt, t ∈ [1, ∞), of unitaries in 1 + K such that

lim
t→∞

Ad Vt ◦ (ϕ′ ◦ i⊕ γ− ◦ i) = ϕ0 ⊕ γ+ ◦ i.
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Set γ = q ◦ γ+ = q ◦ γ−. It follows from Lemma 7.2 that there are paths of
unitaries Ut, Wt, t ∈ [1, ∞), such that:

Ad q(Wt)(ϕ⊕ γ) = ϕ = Ad q(Ut)(ϕ⊕ γ) for all t,

lim
t→∞

Ad Wt(ϕ′ ⊕ γ−)(g) = ϕ′(g) for all g ∈ C(X), and

lim
t→∞

Ad Ut(ϕ0 ⊕ γ+ ◦ i)(h) = ϕ0(h) for all h ∈ C(Y).

Set Tt = UtVtW∗t and ψt = Ad Tt ◦ ϕ′.
(iii)⇒ (i): Let Ψ : C(X)→ L(H) be the ∗-homomorphism obtained from the

representation diag(ψ1, ψ2, ψ3, . . . ). Then (q ◦Ψ, Ψ) represents zero in ExtY, f (X).
Let ϕ′ : C(X)→ L(H) be a continuous function such that q ◦ ϕ′ = ϕ and ϕ′ ◦ i =
ϕ0. Let χt, t ∈ [1, ∞), be the path of maps such that χt, t ∈ [n, n + 1], connects

diag(ψ1, ψ2, . . . , ψn−1, ϕ′, ψn, ψn+1, . . . . . . )

to
diag(ψ1, ψ2, . . . , ψn, ϕ′, ψn+1, ψn+2, . . . . . . )

by rotation. Considered as maps χt : C(X) → L(H) they give us a path of maps
such that q ◦ χt = ϕ⊕ q ◦Ψ while χt ◦ i is a ∗-homomophism, and lim

t→∞
χt ◦ i(h) =

Ψ(h) for all h ∈ C(Y). It follows that (ϕ, ϕ0)⊕ (q ◦Ψ, Ψ) is homotopic in norm to
(q ◦Ψ, Ψ).

Two injective unital extensions ϕ, ψ : C(X) → Q that equal α on C(Y) are
said to be equivalent when there is a norm-continuous path Vt, t ∈ [1, ∞), of uni-
taries in L(H) such that:

(i) Ad q(Vt) ◦ ϕ = ψ for all t ∈ [1, ∞);
(ii) lim

t→∞
Vtα0 ◦ i(h)V∗t = α0 ◦ i(h) for all h ∈ C(Y); and

(iii) V1 −Vt ∈ K for all t ∈ [1, ∞).

We write ϕ ' ψ in this case.

THEOREM 7.4. Let ϕ, ψ : C(X) → Q be injective unital extensions that equal α
on C(Y). Then the following are equivalent:

(i) ϕ and ψ define the same element of ExtY, f (X).
(ii) ϕ ' ψ.

(iii) There is a unitary V connected to 1 in the unitary group of a

D = {m ∈ L(H) : mα0 ◦ i(h)− α0 ◦ i(h)m ∈ K, h ∈ C(Y)}

such that Ad q(V) ◦ ϕ = ψ.

Proof. It is trivial that (iii) implies (i).
(i) ⇒ (ii): Assume that [ϕ] = [ψ] in ExtY, f (X). There is then a unitary V

connected to 1 in the unitary group of D such that

Ad q(V) ◦ (ϕ +α α) = ψ +α α.
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In particular, it follows that (β1, β2) = (Ad V ◦ α0 ◦ i, α0 ◦ i) is a Cuntz pair, and
since V is connected to 1 in the unitary group of D, the pair represents zero in
KK(C(Y), K). It follows therefore from Theorem 3.12 of [6] that there is a norm-
continuous path St, t ∈ [1, ∞), of unitaries in 1 + K such that lim

t→∞
Stβ1(h)S∗t −

β2(h) = 0 for all h ∈ C(Y). It follows that Ut = StV, t ∈ [1, ∞), is a norm-
continuous path of unitaries in L(H) giving rise to an equivalence ϕ +α α '
ψ +α α. By Lemma 7.2 ϕ +α α and ψ +α α are equivalent to ϕ and ψ, respectively.
Thus ϕ and ψ are equivalent.

(ii) ⇒ (iii): Let Vt, t ∈ [1, ∞), be a continuous path of unitaries in L(H)
giving rise to the equivalence ϕ ' ψ. It suffices to show that V1 is connected to 1
in the unitary group of D. Note that the Cuntz pair (Ad V1 ◦ α0, α0) represents 0
in KK(C(Y), K) by Lemma 4.2. It follows therefore from Paschke’s duality result,
[12], that q(V1) is connected to 1 in the unitary group of the relative commutant
(q ◦ α0 ◦ i(C(Y)))′ ∩ Q. It follows that there is a unitary W connected to 1 in the
unitary group of D such that q(W) = q(V1). Then V1W∗ ∈ 1 + K and since the
unitary group of 1 + K is connected, we see that also V1 is connected to 1 in the
unitary group of D.

It follows from Theorem 7.4 that ExtY, f (X) is the group of equivalence clas-
ses of injective (or essential) unital extensions of C(X) by K that equal α on C(Y)
with the addition defined by (2.1).

8. NORMAL OPERATORS

In this section we use the results of the previous sections to prove Theo-
rem 1.1 from the introduction. The key point is the following

THEOREM 8.1. Let X be a compact metric space and Y a compact subset of the
complex plane C. Let f : X → Y be a continuous surjection. Then the map f∗ :
K0(X)→ K0(Y) is surjective.

To prove this recall that for every compact metric space Y there is a natu-
ral decomposition K0(C(Y)) = K̃0(Y) ⊕ C(Y, Z), where the summand K̃0(Y) is
called the reduced K-theory of Y, at least when Y is connected. We say that Y
has trivial reduced K-theory when K̃0(Y) = 0. It is well-known and easy to see that
a compact subset of the complex plane has trivial reduced K-theory and trivial
K1-group. Therefore Theorem 8.1 is a consequence of the following more general
result.

THEOREM 8.2. Let X and Y be compact metric spaces and f : X → Y a continu-
ous surjection. Assume the Y has trivial reduced K-theory and that Ext(K1(Y), Z) = 0.
Then the map f∗ : K0(X)→ K0(Y) is surjective.
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Proof. Let
X = Xn

1 t Xn
2 t · · · t Xn

mn ,
n ∈ N, be a sequence of partitions of X into non-empty closed and open subsets
such that:

(i) the n + 1’st partition is a refinement of the n’th partition,
(ii) mn+1 6 mn + 1,

(iii) C(X, Z) =
∞⋃

n=1
An, where An is the subgroup consisting of the continuous

Z-valued functions on X that are constant on each Xn
i .

LetBn denote the subgroup of C(Y, Z) consisting of the continuous Z-valued
functions on Y that are constant on each f (Xn

i ). Then Bn ⊆ Bn+1 and C(Y, Z) =
∞⋃

n=1
Bn. Note that An = Zmn and Bn = Zkn , when kn 6 mn is the number of ele-

ments in the partition of Y which consists of unions of the f (Xn
i )’s. Hence we also

have Hom(An, Z) = Zmn and Hom(Bn, Z) = Zkn . Since the map Hom(An+1, Z)
→ Hom(An, Z) is surjective for each n, there is an identification Hom(C(X, Z), Z)
= lim←−Hom(An, Z). Similarly, there is also an isomorphism Hom(C(Y, Z), Z) =
lim←−Hom(Bn, Z). Let γX : K0(X) → Hom(K0(C(X)), Z) and γY : K0(Y) →
Hom(K0(C(Y)), Z) be the canonical maps. Combined with the above inverse
limit decompositions we get a commutative diagram

(8.1) K0(X)

f∗
��

γX // Hom(K0(C(X)), Z)

f∗
��

// lim←−Hom(An, Z)

f∗
��

K0(Y)
γY // Hom(K0(C(Y)), Z) // lim←−Hom(Bn, Z).

It follows from the universal coefficient theorem of Rosenberg and Schochet, [13],
that γY is an isomorphism since Ext(K1(Y), Z) = 0 by assumption. It follows
that the composition of the maps on the lower row is an isomorphism because
Y has trivial reduced K-theory by assumption. In the upper row the first map
γX is surjective by [13] and the second is surjective because C(X, Z) is a direct
summand of K0(C(X)). It suffices therefore to show that

(8.2) f∗ : lim←−Hom(An, Z)→ lim←−Hom(Bn, Z)

is surjective. To this end we consider a square

(8.3) Hom(An, Z)

f∗
��

Hom(An+1, Z)
in∗oo

f∗
��

Hom(Bn, Z) Hom(Bn+1, Z),
jn∗

oo

where in : An → An+1 and jn : Bn → Bn+1 are the inclusions. To prove surjec-
tivity of (8.2) it suffices to show that if we are given u ∈ Hom(An, Z) and v ∈
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Hom(Bn+1, Z) such that jn∗(v) = f∗(u), there is an element z ∈ Hom(An+1, Z)
such that in

∗(z) = u and f∗(z) = v. This is trivial when mn = mn+1 because
in∗ and jn∗ are identity maps in this case. So assume that mn+1 = mn + 1. Let
c1, c2, . . . , cmn be the elements of the partition {Xn

i }
mn
i=1 and c′0, c′1, c2, c3, . . . , cmn the

elements of the partition {Xn+1
i }mn+1

i=1 , so that c′0 and c′1 are the only new elements,
obtained by a splitting of c1. We divide the considerations into the following
cases:

kn+1 = kn + 1: In this case the diagram (8.3) takes the form

(8.4) Z⊕Zmn−1

A
��

Z2 ⊕Zmn−1Coo

D
��

Z⊕Zkn−1 Z2 ⊕Zkn−1
B

oo

where A, B, C and D are matrices of zeroes and ones such that every column
contains one and only one non-zero entry. In the present case the matrices take
the form

A=


1 ε2 ε3 . . . εmn

0 x22 x23 . . . x2mn

0 x32 x33 . . . x3mn
...

...
...

. . .
...

0 xkn ,2 xkn ,3 . . . xkn ,mn

 , B=


1 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 ,

C=


1 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 , D=



1 0 a2 a3 . . . amn

0 1 b2 b3 . . . bmn

0 0 x22 x23 . . . x2mn

0 0 x32 x33 . . . x3mn
...

...
...

...
. . .

...
0 0 xkn ,2 xkn ,3 . . . xkn ,mn


,

where ai = bi = 0, unless εi = 1 in which case (ai, bi) = (1, 0) or (ai, bi) =
(0, 1). To find the desired z ∈ Zmn+1, write u = (u1, u2, . . . , umn) and v =
(v1, v2, . . . , vkn+1). Then

z =
(

v1 −
mn

∑
i=2

aiui, v2 −
mn

∑
i=2

biui, u2, u3, . . . , umn

)
has the right properties. z is unique in this case.

kn+1 = kn: In this case diagram (8.3) takes the form

(8.5) Z⊕Zmn−1

A
��

Z2 ⊕Zmn−1Coo

D
��

Z⊕Zkn−1 Z⊕Zkn−1
B

oo
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where A and C are as before, but B and D have changed to the identity matrix
and

D =


1 1 ε2 ε3 . . . εmn

0 0 x22 x23 . . . x2mn

0 0 x32 x33 . . . x3mn
...

...
...

...
. . .

...
0 0 xkn ,2 xkn ,3 . . . xkn ,mn

 ,

respectively. In this case the solution is not unique; if α, β ∈ Z satisfy that α + β =
u1, we can use z = (α, β, u2, u3, . . . , umn).

As a first step in the proof of Theorem 1.1 from the Introduction, we prove
the following:

THEOREM 8.3. Let M, N1, N2, N3, . . . , Nk be bounded normal operators such that
Ni Nj = NjNi for all i, j, and let F be a continuous function from the joint spectrum of
the Ni’s onto the spectrum of M such that

(8.6) F(N1, N2, . . . , Nk)−M ∈ K.

Assume that the spectrum of M contains no isolated eigenvalue of finite multiplicity.
There are then norm-continuous paths Nt

i , i = 1, 2, . . . , k, t ∈ [1, ∞), of bounded normal
operators such that Nt

i Nt
j = Nt

j Nt
i , Ni − Nt

i ∈ K for all i, j, t, and

lim
t→∞
‖F(Nt

1, Nt
2, . . . , Nt

k)−M‖ = 0.

Proof. Let X0 be the joint spectrum of N1, N2, . . . , Nk, and X the joint spec-
trum of q(N1), q(N2), . . . , q(Nk). Then X is a closed subset of X0 and X/X0 is
totally disconnected. It follows therefore from Lemma 6.4 of [2] that the ex-
tension of C(X) given by the q(Ni)’s is split. Consequently there are commut-
ing normal operators N′1, N′2, . . . , N′k such that Ni − N′i ∈ K for all i, and the
joint spectrum of N′1, N′2, . . . , N′k is X. We may therefore assume from the be-
ginning that the joint spectrum of N1, N2, . . . , Nk is equal to the joint spectrum of
q(N1), q(N2), . . . , q(Nk). Let ϕ0 : C(σ(M))→ L(H) and ϕ : C(X)→ L(H) be the
unital ∗-homomorphisms coming from the spectral theory of M and N1, N2, . . . ,
Nk, respectively. With σ(M) in the role of Y and F in the role of f , we are in the
setting of Section 7. By combining the six-term exact sequence of Theorem 3.3
with Theorem 8.1 above we conclude that the pair (ϕ, ϕ0) represents zero in
Extσ(M),F(X). The desired path of normal operators arise then from condition
(ii) of Theorem 7.3 in the obvious way.

REMARK 8.4. As observed in the proof of Theorem 8.3, it is straightforward
to reduce the theorem, by use of [2], to the case where the joint spectrum of the
Ni’s is equal to the joint spectrum X of the q(Ni)’s. After this reduction the as-
sumption (8.6) is exactly that the ∗-homomorphisms ϕ+ : C(σ(M))→ L(H) and
ϕ− : C(σ(M)) → L(H) arising by spectral theory from F(N1, N2, . . . , Nk) and
M, respectively, is a Cuntz-pair, i.e. define an element of KK(C(σ(M)), K). In
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the case where this element is trivial in KK(C(σ(M)), K) the conclusion of the
theorem follows from Theorem 3.12 of [6]. On the other hand, it is clear that the
conclusion of Theorem 8.3 implies that the element [ϕ+, ϕ−] ∈ KK(C(σ(M)), K)
is in the range of F∗ : KK(C(X), K)→ KK(C(σ(M)), K), cf. Lemma 4.2. What the
proof of Theorem 8.3 does, is to show that this condition is also sufficient, and
always satisfied.

We can now give the proof of Theorem 1.1:

Proof. By spectral theory there is a finite rank projection P such that PM =
MP, and a normal operator M′ ∈ L(P⊥H) such that

‖M′ −M|P⊥H‖ 6 ε, M|P⊥H −M′ ∈ K(P⊥H) and σ(M′) = σess(M′).

Set N′i = P⊥Ni|P⊥H ∈ L(P⊥H). As in the proof of Theorem 8.3 we let X denote
the joint spectrum of q(N1), (N2), . . . , q(Nk). Both the Ni’s and the N′i ’s define an
extension of K by C(X) in the sense of [2], and as argued in the proof of The-
orem 8.3 the extension arising from the Ni’s is split. It follows therefore from
Theorem (4.3) of [2] that the same is true of the extension arising from the N′i ’s.
This means that there are commuting normal operators Di, i = 1, 2, . . . , k, acting
on P⊥H such that N′i − Di ∈ K(P⊥H) for all i, and such that the joint spectrum
of the Di’s is X. It follows from the conditions on F that F(X) = σess(M). Since
σ(M′) = σess(M′) = σess(M) and F(D1, D2, . . . , Dk) − M′ ∈ K(P⊥H), it fol-
lows from Theorem 8.3 that there are commuting normal operators Dε

i on P⊥H
such that Di − Dε

i ∈ K(P⊥H) for all i and ‖F(Dε
1, Dε

2, . . . , Dε
k) − M′‖ 6 ε. Let

µ1, µ2, . . . , µL be the eigenvalues of MP on PH, each repeated according to its
multiplicity so that L is the rank of P. Let e1, e2, . . . , eL be the corresponding one-
dimensional eigenprojections. Since F is surjective by assumption, there is an
L× k complex matrix (aij) such that F(ai1, ai2, . . . , aik) = µi for all i, and we set

Nε
j = Dε

j P⊥ +
L

∑
i=1

aijei.

Then Nj − Nε
j ∈ K and ‖F(Nε

1, Nε
2, . . . , Nε

k)−M‖ 6 2ε.

We want to point out that the approximation aspect in Theorem 1.1 and The-
orem 8.3, and hence also in the theorems of Section 7, is inevitable. Specifically,
we want to show that in general it is not possible, in the setting of Theorem 8.3 to
find commuting normal operators N0

1 , N0
2 , . . . , N0

k such that each N0
i is a compact

perturbation of Ni and F(N0
1 , N0

2 , . . . , N0
k ) = M; not even when k = 1. To this end,

let ei, i ∈ Z, be an orthonormal basis in H. Let zi, i ∈ Z, be a dense sequence in
T such that Re zi 6= Re zj when i 6= j and lim

i→∞
zi = 1√

2
+ i√

2
. Define D ∈ L(H)

such that Dei = 2 Re ziei for all i, and T ∈ L(H) such that Tei = ziei, i 6 0, while
Tei = 1√

2
ei + i√

2
ei+1 and Tei+1 = i√

2
ei + 1√

2
ei+1 when i > 1 is odd. Then T is uni-

tary with σ(T) = σess(T) = T and T∗ + T−D ∈ K. Since any normal operator N



278 VLADIMIR MANUILOV AND KLAUS THOMSEN

with N∗ + N = D must be diagonal with respect to the basis {ei}i∈Z, such an N
can not be a compact perturbation of T.
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