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ABSTRACT. We consider the additive subsemigroup Σ := N \ {1} of N, and
study representations of Σ by isometries on Hilbert space with commuting
range projections. Our main theorem says that each such representation is
unitarily equivalent to the direct sum of a unitary representation, a multiple
of the Toeplitz representation on `2(Σ), and a multiple of a representation
by shifts on `2(N). We consider also the C∗-algebra C∗(Σ) generated by a
universal isometric representation with commuting range projections, and use
our main theorem to identify the faithful representations of C∗(Σ) and prove
a structure theorem for C∗(Σ).
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INTRODUCTION

Coburn proved in 1967 that all C∗-algebras generated by non-unitary isome-
tries are canonically isomorphic [1]. Coburn’s result can be viewed as a theorem
about the isometric representations of the semigroup N, and this theorem has
been generalised to other semigroups: to the positive cones of ordered subgroups
of R by Douglas [2], to the positive cones of totally ordered abelian groups by
Murphy [5], and to amenable quasi-lattice ordered groups by Nica [6] and Laca–
Raeburn [4].

On the other hand, Murphy [5] and Jang [3] have proved that this theorem
does not hold for the semigroup Σ := N \ {1}, by writing down explicit isomet-
ric representations S on `2(N) and T on `2(Σ) such that C∗(S) is not canonically
isomorphic to C∗(T). Here we explore this phenomenon by analysing the isomet-
ric representations of Σ, and investigating the structure of the C∗-algebras they
generate. Our main result says that every isometric representation of Σ with com-
muting range projections is equivalent to a direct sum of a unitary representation,
a multiple of S, and a multiple of T. The assumption that the range projections
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commute is a standard one in the area: it is automatic for the positive cones of
total orders, and for quasi-lattice ordered groups it is a consequence of the Nica
covariance condition used in [6] and [4].

We begin in Section 1 by describing the class of isometric representations of
interest to us. We set up our conventions, particularly concerning the two main
examples S and T, and establish some basic properties of isometric representa-
tions. We prove our main theorem in Section 2. Our main strategy is to analyse
how the isometry V3 interacts with the Wold decomposition of the isometry V2.
In Section 3 we consider the C∗-algebra C∗(Σ) generated by a universal isometric
representation with commuting range projections. We use our main theorem to
obtain criteria which ensure that a given representation of C∗(Σ) is faithful, and
describe the structure of C∗(Σ) in terms of the usual Toeplitz algebra T = C∗(N).

1. ISOMETRIC REPRESENTATIONS OF Σ

Throughout this paper, N denotes the additive semigroup of non-negative
integers (including 0), and Σ denotes the subsemigroup N \ {1}. An isometric
representation of Σ on a Hilbert space H with commuting range projections is a map
V : Σ → B(H) such that each Vn is an isometry, such that Vm+n = VmVn, and
such that the range projections VnV∗n commute with each other.

We have two main examples in mind.

EXAMPLE 1.1. Let { eΣ,p : p ∈ Σ } be the usual orthonormal basis for `2(Σ).
For each n ∈ Σ, the set { eΣ,n+p : p ∈ Σ } is also orthonormal, and hence there
is an isometry Tn on `2(Σ) such that TneΣ,p = eΣ,n+p. It is easy to check that
TmTn = Tm+n, and that the range projections commute. We call T the Toeplitz
representation of Σ.

EXAMPLE 1.2. Let R be the unilateral shift on `2(N), and define S : Σ →
B(`2(N)) by Sn = Rn. In terms of the usual orthonormal basis { eN,p }, Sn is
characterised by SneN,p = eN,n+p. Then S is an isometric representation with
commuting range projections. (The letter S reminds us that the operators Sn are
shifts.)

Murphy and Jang observed that these two representations are not unitarily
equivalent. To see this, we just need to note that

T∗3 (1− T2T∗2 )T3(eΣ,0) = eΣ,0,

so that T∗3 (1− T2T∗2 )T3 is non-zero, whereas S∗3(1− S2S∗2)S3 = 0. (In the proof of
Theorem 2.1 it will become clear why we looked at this operator.)

We now investigate general properties of an isometric representation V :
Σ → B(H) with commuting range projections. The first and crucial property is
that V2

3 = V3
2 , because both are equal to V6.



ISOMETRIC REPRESENTATION THEORY OF A PERFORATED SEMIGROUP 359

For m, n ∈ Σ such that m− n is also in Σ, the relation Vm = VnVm−n allows
us to cancel V∗n Vm = Vm−n and V∗mVn = V∗m−n. While we cannot expect to can-
cel expressions like V∗n Vn+1, there are interesting and useful relationships among
these elements. We often use the next lemma without comment.

LEMMA 1.3. We have V∗3 V2
2 = V∗2 V3 and V∗22 V3 = V∗3 V2.

Proof. Since the second equation is the adjoint of the first, it suffices to com-
pute

V∗3 V2
2 = V∗3 (V∗3 V3)V2

2 = V∗23 V3V2
2 = V∗32 V2

2 V3 = V∗2 V3.

The assumption that the range projections commute implies that there are
many other commuting projections around. For example:

LEMMA 1.4. For every k, n ∈ Σ, V∗k VnV∗n Vk is a projection which commutes with
every range projection VmV∗m.

Proof. The elements V∗k VnV∗n Vk are certainly self-adjoint, and

(V∗k VnV∗n Vk)
2 = V∗k (VnV∗n )VkV∗k VnV∗n Vk = V∗k (VkV∗k )(VnV∗n )2Vk = V∗k VnV∗n Vk,

so they are projections. Then

(V∗k VnV∗n Vk)(VmV∗m) = V∗k VnV∗n Vm+kV∗m+kVk = V∗k Vm+kV∗m+kVnV∗n Vk

= (VmV∗m)(V∗k VnV∗n Vk).

Since the semigroup Σ is generated by 2 and 3, it is natural to ask which
pairs of isometries W2 and W3 generate an isometric representation of Σ.

PROPOSITION 1.5. Suppose that W2 and W3 are commuting isometries onH such
that W3

2 = W2
3 and W2W∗2 commutes with W3W∗3 . Then there is an isometric represen-

tation V : Σ → B(H) with commuting range projections such that V2 = W2 and
V3 = W3.

Proof. It is straightforward to check that the formula V2p+3j = Wp
2 W j

3 gives
a well-defined map of Σ into B(H) such that each Vn is an isometry and VmVn =
Vm+n. So we have to prove that the range projections commute. We begin by
showing that V4V∗4 = V2

2 V∗22 commutes with V3V∗3 :

(V2
2 V∗22 )(V3V∗3 ) = V∗2 (V3

2 V∗32 )(V2V3)V∗3 = V∗2 (V2
3 V∗23 )(V3V2)V∗3

= V∗2 V2
3 V∗3 V2V∗3 (V∗2 V2) = V∗2 V3(V3V∗3 )(V2V∗2 )V∗3 V2

= V∗2 V3(V2V∗2 )(V3V∗3 )V∗3 V2 = (V∗2 V2)V3V∗2 V3V∗23 V2

= V3V∗2 (V∗3 V3)V3V∗23 V2 = V3(V∗2 V∗3 )V2
3 V∗23 V2

= V3V∗3 V∗2 (V2
3 V∗23 )V2 = V3V∗3 V∗2 (V3

2 V∗32 )V2

= (V3V∗3 )(V2
2 V∗22 ).



360 IAIN RAEBURN AND SEAN T. VITTADELLO

Now fix m, n ∈ Σ, and assume without loss of generality that m > n > 0. If
m− n belongs to Σ then ordinary cancellation shows that

(VmV∗m)(VnV∗n ) = VmV∗m = (VnV∗n )(VmV∗m).

We are left to handle the case where m = n + 1, and we deal with the cases n = 2p
and n = 2p + 1 separately. For n = 2p, we have m = 2p + 1, and

(VmV∗m)(VnV∗n ) = V2p+1V∗2p+1V2pV∗2p = (V2(p−1)V3)(V∗3 V∗2(p−1))V2pV∗2p

= V2(p−1)V3V∗3 (V∗2(p−1)V2p)(V∗2 V∗2(p−1))

= V2(p−1)(V2V∗2 )(V3V∗3 )V∗2(p−1)

= V2pV∗2 V3V∗2p+1 = V2pV∗2 (V∗2(p−1)V2(p−1))V3V∗2p+1

= V2pV∗2pV2p+1V∗2p+1 = (VnV∗n )(VmV∗m).

For n = 2p + 1, we have m = 2(p + 1), and we use the result in the first para-
graph:

(VmV∗m)(VnV∗n ) = V2(p+1)V
∗
2(p+1)V2p+1V∗2p+1

= V2(p+1)V
∗
2(p+1)(V2(p−1)V3)(V∗3 V∗2(p−1))

= (V2(p−1)V
2
2 )(V∗2(p+1)V2(p−1))V3V∗3 V∗2(p−1)

= V2(p−1)(V2
2 V∗22 )(V3V∗3 )V∗2(p−1)

= V2(p−1)(V3V∗3 )(V2
2 V∗22 )V∗2(p−1)

= V2p+1V∗3 V2
2 V∗2(p+1) = V2p+1V∗3 (V∗2(p−1)V2(p−1))V2

2 V∗2(p+1)

= V2p+1V∗2p+1V2(p+1)V
∗
2(p+1) = (VnV∗n )(VmV∗m).

REMARKS 1.6. (i) The subsemigroup Σ is the positive cone for the partial
order on Z defined by m > n ⇐⇒ m− n ∈ Σ. The pair (Z, Σ), however, is not
quasi-lattice ordered in the sense of Nica [6]: while 5 is a common upper bound
for 2 and 3, and is the smallest in the usual order on Z, it is not a least upper
bound in (Z, Σ) because 6 is a common upper bound which is not > 5 in (Z, Σ).
So the general theory of [6] and [4] does not apply.

(ii) Since Σ is generated by the two elements 2 and 3, the map φ : (p, j) 7→
2p + 3j is a surjection of N2 onto Σ. If V is an isometric representation of Σ with
commuting range projections, then V ◦ φ is also a semigroup homomorphism.
One might suspect that our “commuting range projections” hypothesis would
imply that V ◦ φ is a Nica covariant representation of (Z2, N2) (which is equiva-
lent to saying that V∗2 = (V ◦ φ(1, 0))∗ and V3 = V ◦ φ(0, 1) commute). However,
this is not the case: when V = S, for example, the operator S∗2S3 is the unilateral
shift, and hence is injective, whereas S3S∗2 is not (for example, S3S∗2(eN,0) = 0).
One consequence of our main theorem is that V ◦ φ is only Nica covariant when
every Vn is unitary (see Corollary 2.8).
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2. THE DECOMPOSITION THEOREM

Suppose that V and W are isometric representations of a semigroup P on
Hilbert spaces HV and HW . We say that V is a multiple of W if there are a Hilbert
space H and a unitary isomorphism U : HV → HW ⊗ H such that UVpU∗ =
Wp ⊗ 1 for p ∈ P. For our concrete representations S and T we can identify the
tensor products `2(N) ⊗H and `2(Σ) ⊗H with `2(N,H) and `2(Σ,H), and we
move freely from one realisation to the other.

THEOREM 2.1. Suppose that V : Σ → B(H) is an isometric representation of
Σ := N \ {1} with commuting range projections. Then there is a unique direct-sum
decomposition H = HU ⊕HT ⊕HS such that HU , HT and HS are reducing for V,
such that V|HU consists of unitary operators, such that V|HT is a multiple of T, and such
that V|HS is a multiple of S.

Since 2 and 3 generate Σ, the representation V is determined by the two
isometries V2 and V3. Our strategy is to apply the following version of the Wold
decomposition to the single isometry V2, and to analyse how V3 interacts with
this decomposition.

PROPOSITION 2.2 (Wold Decomposition). Let Z be an isometry on a Hilbert

space H. Let HU :=
∞⋂

n=0
Zn(H) and H0 := Z(H)⊥. Then HU is a reducing sub-

space of H for Z with complement H⊥U = span
{ ∞⋃

n=0
Zn(H0)

}
, Z|HU is unitary, and

there is a unitary isomorphism W : H⊥U → `2(N,H0) such that WZW∗({kn}∞
n=0) =

{0, k0, k1, k2, . . .} for all {kn}∞
n=0 ∈ `2(N,H0).

As motivation for our argument, we apply the Wold decomposition to S2
and T2. For both isometries we haveHU = {0}, and both

S2(`2(N))⊥ = span{eN,0, eN,1} and T2(`2(Σ))⊥ = span{eΣ,0, eΣ,3}

are 2-dimensional. Sending

eN,i 7→
{

ej0 if i = 2j,
ej1 if i = 2j + 1,

and eΣ,i 7→
{

ej0 if i = 2j,
ej1 if i = 2j + 3,

gives unitary isomorphisms of `2(N) and `2(Σ) onto `2(N× {0, 1}) which carry
S and T into the representations determined on

f :=
(

f01 f11 f21 f31 · · ·
f00 f10 f20 f30 · · ·

)
by

(2.1) S2 f =
(

0 f01 f11 f21 · · ·
0 f00 f10 f20 · · ·

)
and S3 f =

(
0 f00 f10 f20 · · ·
0 0 f01 f11 · · ·

)
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and

(2.2) T2 f=
(

0 f01 f11 f21 · · ·
0 f00 f10 f20 · · ·

)
and T3 f=

(
f00 f10 f20 f30 f40 · · ·
0 0 0 f01 f11 · · ·

)
.

We now turn to the proof of Theorem 2.1. Applying the Wold decomposi-
tion to the isometry V2 gives a reducing subspace HU such that V2|HU is unitary,

and since V2
3 = V3

2 it follows that V3 and every other V2p+3j = Vp
2 V j

3 are also
unitary on HU . The Wold decomposition also tells us that the complement H⊥U
can be identified with `2(N,H0) for H0 := V2(H)⊥ = ker(V2V∗2 ). Our goal is
to identify the subspaces H00 and K00 of H0 consisting of vectors which behave
under V3 as the vector e00 ∈ `2(N× {0, 1}) does under T3 and S3. The crucial
property we isolate is that T3e00 belongs toH0 = ker T2T∗2 , whereas S3e00 belongs
to S2(H) and is orthogonal to S2

2(H).
With this motivation, we define:

H00 := { h ∈ H0 : V3h ∈ H0 }, and(2.3)

K00 := { h ∈ H0 : V3h ∈ V2(H)	V2
2 (H) }.(2.4)

For the rest of the proof, we write Pn := Vn
2 V∗n2 − Vn+1

2 V∗n+1
2 , which is the

projection ofH onto the complement of Vn+1
2 (H) in Vn

2 (H). With this notation,

H00 = { h ∈ H0 : P0(V3h) = V3h } and K00 = { h ∈ H0 : P1(V3h) = V3h }.

PROPOSITION 2.3. We have a direct-sum decomposition

(2.5) H0 = V2(H)⊥ = H00 ⊕V3(H00)⊕K00 ⊕V∗2 V3(K00)

in which the orthogonal projections on the summands are given by:
(i) the projection onH00 is P00 := V∗3 P0V3 = V∗3 P0V3P0;

(ii) the projection on V3(H00) is V3P00V∗3 = V∗3 P3V3P0;
(iii) the projection on K00 is Q00 := V∗3 P1V3P0;
(iv) the projection on V∗2 V3(K00) is V∗2 V3Q00V∗3 V2 = V∗3 P2V3P0.

To compute some of these projections we need the following straightfor-
ward lemma.

LEMMA 2.4. Suppose that S ∈ B(H) is a partial isometry and P is the orthogonal
projection onto a closed subspace K of S∗S(H). Then SPS∗ is the orthogonal projection
onto S(K).

Proof of Proposition 2.3. For every h ∈ H0 and k ∈ H, we have

(V3h |V4
2 k) = (V3h |V2

3 V2k) = (h |V3V2k) = (h |V2V3k) = 0,
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and hence V3h ∈ V4
2 (H)⊥ =

3⊕
n=0

PnH. Thus V3P0 =
3
∑

n=0
PnV3P0 and P0 =

3
∑

n=0
V∗3 PnV3P0. Since V∗3 PnV3 is self adjoint and

(V∗3 PnV3)
2 = V∗3 Pn(V3V∗3 )PnV3 = V∗3 (V3V∗3 )P2

nV3 = V∗3 PnV3,

V∗3 PnV3 is a projection; since Lemma 1.4 implies that P0 commutes with V∗3 PnV3,
each V∗3 PnV3P0 is also a projection. Since their sum P0 is also a projection, the
projections V∗3 PnV3P0 have orthogonal ranges, and we have a direct-sum decom-

position H0 =
3⊕

n=0
V∗3 PnV3P0(H). So it remains to check that the ranges of these

projections are as claimed.
For h ∈ H00 we have

V∗3 P0V3h = V∗3 (P0V3h) = V∗3 (V3h) = h,

so V∗3 P0V3 is the identity onH00. Next, note that

V∗3 P0V3P0 = V∗3 P0V3(1−V2V∗2 ) = V∗3 P0V3 −V∗3 P0V2V3V∗2 = V∗3 P0V3 − 0,

which gives the last equality in (i) and implies that the range of V∗3 P0V3 is con-
tained inH0. For every h ∈ H we have

P0(V3(V∗3 P0V3h)) = (V3V∗3 )(P2
0 V3h) = V3(V∗3 P0V3h),

so the range of V∗3 P0V3 is contained in H00. Similar calculations show that Q00 is
the identity on K00, and that every k of the form k = Q00h satisfies P0k = k and
P1(V3k) = V3k, hence is in K00. This gives (iii).

To establish (ii), we use Lemma 2.4 and part (i) to see that the projection on
V3(H00) is V3(V∗3 P0V3)V∗3 = V3V∗3 P0. Then we compute

V∗3 P3V3P0 = V∗3 (V3
2 P0V∗32 )V3P0 = V∗3 (V2

3 P0V∗23 )V3P0 = V3P0V∗3 P0

= (V3V∗3 −V3V2V∗2 V∗3 )P0 = (V3V∗3 −V3V2V∗3 V∗2 )P0,

which reduces to V3V∗3 P0 because V∗2 P0 = 0.
For (iv), we apply Lemma 2.4, and deduce that the projection on V∗2 V3(K00) is

V∗2 V3Q00V∗3 V2 = V∗2 V3(V∗3 P1V3P0)V∗3 V2.

We now compute using Lemma 1.3:

V∗2 V3(V∗3 P1V3P0)V∗3 V2 = V∗2 P1V3V∗3 V3P0V∗3 V2 = P0V∗2 V3P0V∗3 V2

= P0V∗3 V2
2 P0V∗22 V3 = P0V∗3 P2V3,

which is V∗3 P2V3P0 because Lemma 1.4 implies that V∗3 P2V3 and P0 commute.

Applying the isometry Vn
2 to the decomposition (2.5) of H0 = P0(H) gives

decompositions

Pn(H) = Vn
2 (H0) = Vn

2 (H00)⊕Vn
2 V3(H00)⊕Vn

2 (K00)⊕Vn
2 V∗2 V3(K00),
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and since the spaces PnH themselves give a direct-sum decomposition ofH⊥U , we
have

H = HU ⊕
( ∞⊕

n=0
(Vn

2 (H00)⊕Vn
2 V3(H00)⊕Vn

2 (K00)⊕Vn
2 V∗2 V3(K00))

)
.

So with

HT :=
∞⊕

n=0
(Vn

2 (H00)⊕Vn
2 V3(H00)),(2.6)

HS :=
∞⊕

n=0
(Vn

2 (K00)⊕Vn
2 V∗2 V3(K00)),(2.7)

we certainly have H = HU ⊕HT ⊕HS. Notice also that if we start with a de-
composition H = KU ⊕KS ⊕KT as in the theorem, then this process will yield
HT = KT andHS = KS, so the decomposition is unique.

PROPOSITION 2.5. The subspacesHU ,HT andHS are reducing for V.

Proof. Since V∗3 = V∗23 V3 = V∗32 V3, to prove that a subspace K is reducing
for V, it suffices to prove that K is invariant under V2, V∗2 and V3. It is obvious

that each of our subspaces is invariant under V2. Since HU =
∞⋂

n=0
Vn

2 (H) =
∞⋂

n=1
Vn

2 (H), it is invariant under V∗2 , and since V3(Vn
2 (H))=Vn

2 (V3(H))⊂Vn
2 (H),

it is also invariant under V3. We have

V∗2 (
⋃

n>1,j=0,1Vn
2 V j

3(H00)) =
⋃

n>0,j=0,1
Vn

2 V j
3(H00) ⊂ HT ,

and since H00 and V3(H00) are contained in H0 = V2(H)⊥ = ker V∗2 , they are
trivially invariant under V∗2 . Thus HT is invariant under V∗2 , and the same argu-
ment shows thatHS is invariant under V∗2 .

It follows from the identity V2
3 = V3

2 that HT is invariant under V3. Since
V3(K00) ⊂ V2V∗2 (H), we have V3(Vn

2 (K00)) = Vn
2 (V2V∗2 V3(K00)) ⊂ HS, and

V3(Vn
2 V∗2 V3(K00)) = (V∗2 V2)V3Vn

2 V∗2 V3(K00) = V∗2 V3Vn+1
2 V∗2 V3(K00)

= V∗2 V3Vn
2 (V2V∗2 V3(K00)) = V∗2 V3Vn

2 V3(K00)

= V∗2 Vn
2 V2

3 (K00) = V∗2 Vn
2 V3

2 (K00) = Vn+2
2 (K00)

is also contained inHS.

We next show that V|HT is equivalent to T ⊗ 1H00 . We identify `2(N)⊗H00
with `2(N× {0, 1},H00), so that on matrices

f :=
(

f01 f11 f21 f31 · · ·
f00 f10 f20 f30 · · ·

)
with fnj ∈ H00, T2 ⊗ 1 and T3 ⊗ 1 are defined by the same formulas (2.2) as T2
and T3. We now recall that the projection P00 on H00 is given by P00 = V∗3 P0V3,
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and define WT : HT → `2(N× {0, 1},H00) by

(WTh)nj = P00V∗j
3 V∗n2 h.

Since V∗j
3 V∗n2 is an isometry of Vn

2 V j
3(H00) ontoH00, WT is a unitary isomorphism

ofHT onto `2(N× {0, 1},H00).

PROPOSITION 2.6. We have WT(V|HT )W∗T = T ⊗ 1.

Proof. We prove that WTVi|HT = (Ti⊗ 1)WT for i = 2 and i = 3. Let h ∈ HT .
Then

(2.8) WTV2h =
(

P00V∗3 V2h P00V∗3 V∗2 V2h P00V∗3 V∗22 V2h P00V∗3 V∗32 V2h · · ·
P00V2h P00V∗2 V2h P00V∗22 V2h P00V∗32 V2h · · ·

)
and

(2.9) (T2 ⊗ 1)WTh =
(

0 P00V∗3 h P00V∗3 V∗2 h P00V∗3 V∗22 h · · ·
0 P00h P00V∗2 h P00V∗22 h · · ·

)
;

since P00V2 = 0 and

P00V∗3 V2 = (V∗3 P0V3)V∗3 V2 = V∗3 (V3V∗3 )P0V2 = 0,

the right-hand sides of (2.8) and (2.9) are the same, and WTV2|HT = (T2 ⊗ 1)WT .
Similarly,

(2.10) WTV3h=
(

P00V∗3 V3h P00V∗3 V∗2 V3h P00V∗3 V∗22 V3h P00V∗3 V∗32 V3h · · ·
P00V3h P00V∗2 V3h P00V∗22 V3h P00V∗32 V3h · · ·

)
and

(2.11) (T3 ⊗ 1)WTh =
(

P00h P00V∗2 h P00V∗22 h P00V∗32 h · · ·
0 0 0 P00V∗3 h · · ·

)
.

Since V∗3 V∗n2 V3 = V∗n2 V∗3 V3 = V∗n2 , the top rows of these last two matrices are the
same. To see that the bottom rows are also the same, we compute:

P00V3 = (V∗3 P0V3)V3 = V∗3 P0V3
2 = 0,

P00V∗2 V3 = P00(V∗2 V3) = V∗3 P0V3(V∗3 V2
2 ) = V∗3 V3V∗3 P0V2

2 = 0, and

P00V∗22 V3 = (V∗3 P0V3)(V∗3 V2) = V∗3 V3V∗3 P0V2 = 0;

and, for n > 3,

P00V∗n2 V3 = P00(V∗(n−3)
2 V∗32 )V3 = P00V∗(n−3)

2 V∗23 V3 = P00V∗3 V∗(n−3)
2 ,

which tells us that the nth entry in the bottom rows of (2.10) and (2.11) agree.
Thus WTV3|HT = (T3 ⊗ 1)WT , and the result follows.

To see that V|HS is a multiple of S, define WS : HS → `2(N× {0, 1},K00) by

(WSh)nj = Q00V∗j
3 V j

2V∗n2 h;
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It follows from the direct sum decomposition (2.7) that WS is a unitary isomor-
phism of HS onto `2(N× {0, 1},K00). On `2(N× {0, 1},K00), S ⊗ 1 is given by
the formulas (2.1).

PROPOSITION 2.7. We have WS(V|HS)W∗S = S⊗ 1.

Proof. The proof follows the same strategy as that of Proposition 2.6, but
some of the calculations are a bit trickier, so we include the details. We prove that
WSVi|HS = (Si ⊗ 1)WS for i = 2 and i = 3. Let h ∈ HS. Then

(2.12) WSV2h =
(

Q00V∗3 V2V2h Q00V∗3 V2V∗2 V2h Q00V∗3 V2V∗22 V2h · · ·
Q00V2h Q00V∗2 V2h Q00V∗22 V2h · · ·

)
and

(2.13) (S2 ⊗ 1)WSh =
(

0 Q00V∗3 V2h Q00V∗3 V2V∗2 h Q00V∗3 V2V∗22 h · · ·
0 Q00h Q00V∗2 h Q00V∗22 h · · ·

)
.

Since Q00V2 = V∗3 P1V3P0V2 = 0 and

Q00V∗3 V2
2 = (P0V∗3 P1V3)V∗3 V2

2 = P0V∗3 (V3V∗3 )P1V2
2 = 0,

the right-hand sides of (2.12) and (2.13) are the same, and WSV2 = (S2 ⊗ 1)WS on
HS. Next we compare

(2.14) WSV3h =
(

Q00V∗3 V2V3h Q00V∗3 V2V∗2 V3h Q00V∗3 V2V∗22 V3h · · ·
Q00V3h Q00V∗2 V3h Q00V∗22 V3h · · ·

)
and

(2.15) (S3⊗1)WSh=
(

0 Q00h Q00V∗2 h Q00V∗22 h Q00V∗32 h · · ·
0 0 Q00V∗3 V2h Q00V∗3 V2V∗2 h Q00V∗3 V2V∗22 h · · ·

)
.

The necessary three entries in (2.14) do indeed vanish:

Q00V3 = P0V∗3 P1V2
3 = P0V∗3 P1V3

2 = 0,

Q00V∗3 V2V3 = Q00V∗3 V3V2 = (V∗3 P1V3P0)V2 = 0, and

Q00V∗2 V3 = (P0V∗3 P1V3)(V∗3 V2
2 ) = P0V∗3 (V3V∗3 )P1V2

2 = 0.

For n > 1, we expand the nth entry in the top row of (2.14) using the identity
P1 = P1V2V∗2 :

Q00V∗3 V2V∗n2 V3h = (P0V∗3 P1V3)V∗3 V2V∗2 V∗(n−1)
2 V3h

= P0V∗3 (V3V∗3 )P1V2V∗2 V∗(n−1)
2 V3h

= P0V∗3 (V3V∗3 )P1V∗(n−1)
2 V3h = P0V∗3 P1(V3V∗3 )V∗(n−1)

2 V3h

= (P0V∗3 P1V3)V∗(n−1)
2 V∗3 V3h = Q00V∗(n−1)

2 h,
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which is the nth entry in the top row of (2.15). Now we let n > 2, and work on
the nth entry in the bottom row of (2.14), again using P1 = P1V2V∗2 :

Q00V∗n2 V3h = Q00V∗(n−2)
2 V∗22 V3h = Q00V∗(n−2)

2 V∗3 V2h = Q00V∗3 V∗(n−2)
2 V2h

= (P0V∗3 P1V3)V∗3 V∗(n−2)
2 V2h = P0V∗3 (V3V∗3 )P1V∗(n−2)

2 V2h

= P0V∗3 (V3V∗3 )(P1V2V∗2 )V∗(n−2)
2 V2h

= (P0V∗3 P1V3)V∗3 V2V∗(n−1)
2 V2h = Q00V∗3 V2V∗(n−2)

2 h,

which is the nth entry in the bottom row of (2.15). We have now proved that
WSV2 = (S3 ⊗ 1)WS onHS, and the result follows.

Proposition 2.7 completes the proof of Theorem 2.1.

COROLLARY 2.8. Define φ : N2 → Σ by φ(p, j) = 2p + 3j, and suppose V is an
isometric representation of Σ onH with commuting range projections. If V ◦ φ is a Nica
covariant representation of (Z2, N2), then every Vn is unitary.

Proof. For (Z2, N2), Nica covariance says that V∗2 = (V ◦φ(1, 0))∗ commutes
with V3 = V ◦ φ(0, 1). For both V = S and V = T, we can write down elements
ofH which are in the kernel of V3V∗2 but not in the kernel of V∗2 V3. So for general
V, if either HS or HT were non-zero, we could find elements of HS or HT with
the same property. ThusH = HU , and the result follows from Theorem 2.1.

3. THE C∗-ALGEBRA OF Σ

Modifications of the standard arguments (as in [5], for example) show that
there is a unital C∗-algebra C∗(Σ) generated by an isometric representation v :
Σ → C∗(Σ) with commuting range projections which is universal for such rep-
resentations: for every isometric representation V : Σ → B with commuting
range projections, there is a unique homomorphism πV : C∗(Σ) → B such that
V = πV ◦ v. In this section we describe conditions on V which ensure that πV is
faithful, and give a concrete description of C∗(Σ) in terms of the usual Toeplitz
algebra T .

THEOREM 3.1. Let Σ := N \ {1}, and let V : Σ → B(H) be an isometric rep-
resentation with commuting range projections. Then the representation πV of C∗(Σ) is
faithful if and only if

(3.1) V∗3 (V2V∗2 −V2
2 V∗22 )V3(1−V2V∗2 ) 6= 0 and V∗3 (1−V2V∗2 )V3 6= 0.

Since V∗3 (V2V∗2 − V2
2 V∗22 )V3(1− V2V∗2 ) and V∗3 (1− V2V∗2 )V3 are the projec-

tions on K00 andH00, (3.1) says that the subspacesHT andHS in the decomposi-
tion of Theorem 2.1 are both non-zero. So Theorem 3.1 implies in particular that
πT⊕S is faithful.
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Proof. First notice that in the representation πS, the operator

πS
(
v∗3(v2v∗2 − v2

2v∗22 )v3(1− v2v∗2)
)

= S∗3(S2S∗2 − S2
2S∗22 )S3(1− S2S∗2)

fixes the vector eN,0, and hence v∗3(v2v∗2 − v2
2v∗22 )v3(1− v2v∗2) is non-zero in C∗(Σ).

Similarly, πT(v∗3(1− v2v∗2)v3) fixes eΣ,0, and v∗3(1− v2v∗2)v3 6= 0. So if πV is faith-
ful, the images of both these elements of C∗(Σ) must be non-zero, which is exactly
what (3.1) says.

Now suppose V satisfies (3.1), and consider the decomposition H = HU ⊕
HT ⊕HS of Theorem 2.1, noticing that (3.1) implies thatHS andHT are non-zero.
Write VU := V|HU , VT := V|HT and VS := V|HS , and fix a ∈ C∗(Σ). Then we can
check on generators that πV = πVU ⊕ πVT ⊕ πVS , and hence we have

(3.2) ‖πV(a)‖ = max
{
‖πVU (a)‖, ‖πVT (a)‖, ‖πVS(a)‖

}
.

Since HT is non-zero and VT ∼ T ⊗ 1, and we can check on generators that
πT⊗1 = πT ⊗ 1, we have πVT ∼ πT ⊗ 1. Similarly, πVS ∼ πS ⊗ 1. Thus (3.2)
implies that

‖πV(a)‖ = max
{
‖πVU (a)‖, ‖πT(a)‖, ‖πS(a)‖

}
.

The operator πVU (a) ⊕ πS(a) belongs to the C∗-algebra generated by U1 ⊕ R,
where U1 = (VU)−1

2 (VU)3 is unitary and R = S∗2S3 is the unilateral shift, and
hence the Lemma on page 724 of [1] implies that ‖πVU (a)‖ 6 ‖πS(a)‖. Thus

‖πV(a)‖ = max
{
‖πT(a)‖, ‖πS(a)‖

}
.

Since every C∗-algebra has a faithful representation and every representa-
tion of C∗(Σ) has the form πW , there is a faithful representation of the form πW ,
and thenHT andHS are both non-zero by the first part of the proof. We can then
deduce from the argument of the previous paragraph that

‖a‖ = ‖πW(a)‖ = max
{
‖πT(a)‖, ‖πS(a)‖

}
= ‖πV(a)‖,

which since a is an arbitrary element of C∗(Σ) implies that πV is faithful.

We can view the Toeplitz algebra T either as the C∗-subalgebra of B(`2(N))
generated by the unilateral shift, or as the C∗-subalgebra of B(L2(T)) generated
by the Toeplitz operators Tφ with symbol φ ∈ C(T). In either realisation, T
contains the algebra K of compact operators, and the quotient T /K is naturally
isomorphic to C(T). In the proof of the following theorem we realise T as a
subalgebra of B(`2(N)).

THEOREM 3.2. Let Σ := N \ {1} and let q : T → T /K be the quotient map.
Then C∗(Σ) is isomorphic to

C := {(A, B) ∈ T ⊕ T : q(A) = q(B)}.
For the proof, we need a lemma.
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LEMMA 3.3. Let U : `2(N)→ `2(Σ) be the unitary isomorphism such that UeN,0
= eΣ,0 and UeN,n = eΣ,n+1 for n > 1. Then U∗TpU − Sp is a finite-rank operator on
`2(N) for every p ∈ Σ.

Proof. If p = 0 the result is trivial, so suppose p ∈ Σ \ {0}. We now compute,
using the notation h⊗ k for the rank-one operator g 7→ (g | k)h:

(U∗TpU)eN,0 = eN,p−1 = (Sp + eN,p−1 ⊗ eN,0 − eN,p ⊗ eN,0)eN,0,

and for n > 1,

(U∗TpU)eN,n = eN,n+p = (Sp + eN,p−1 ⊗ eN,0 − eN,p ⊗ eN,0)eN,n.

Thus U∗TpU − Sp = eN,p−1 ⊗ eN,0 − eN,p ⊗ eN,0.

Proof of Theorem 3.2. Theorem 3.1 implies that πS⊕T = πS ⊕ πT is faithful.
Take U as in Lemma 3.3, and define ψ : C∗(Σ)→ B(`2(N))⊕ B(`2(N)) by ψ(a) =
(πS(a), U∗πT(a)U). We claim that ψ is an isomorphism of C∗(Σ) onto C. It is
injective because πS ⊕ πT is. Since the operators πS(vp) = Sp are all powers of
the unilateral shift, and Lemma 3.3 implies that U∗πT(vp)U = U∗TpU differs
from Sp by a finite-rank operator, ψ has range in C. So it remains to prove that
every element of C is in the range of ψ.

Let (A, A + K) ∈ C. Since S∗2S3 = πS(v∗2v3) is the unilateral shift, πS maps
C∗(Σ) onto T . Thus there exists a ∈ C∗(Σ) such that πS(a) = A, and then

A + K = U∗πT(a)U + (πS(a)−U∗πT(a)U) + K,

which is U∗πT(a)U + L, say, where L is compact. So we need to show that (0, L)
is in the range of ψ, and to do this it suffices to show that every rank-one operator
(0, eN,i ⊗ eN,j) is in the range of ψ. Computations show that

ψ(1− (v∗2v3)
∗(v∗2v3)) = (0, eN,0 ⊗ eN,0),

ψ(v2v∗2(1− (v∗2v3)(v∗2v3)
∗)) = (0, eN,1 ⊗ eN,1), and

ψ(vi+1v∗i+1(1− viv
∗
i )) = (0, eN,i ⊗ eN,i) for i > 2,

so for each i there exists bi ∈ C∗(Σ) such that ψ(bi) = (0, eN,i ⊗ eN,i). Now some
more calculations show that if j > 1, then

ψ(b0v∗j+1) = (0, eN,0 ⊗ eN,j), and(3.3)

ψ(bivi+1v∗j+1) = (0, eN,i ⊗ eN,j) for every i > 1;

the adjoint of (3.3) shows that every (0, eN,j ⊗ eN,0) is also in the range of ψ. Thus
every (0, eN,i ⊗ eN,j) is in the range of ψ, as required.

REMARK 3.4. This structure theorem for C∗(Σ), or more precisely the lemma
used to prove it, has some interesting implications for Toeplitz operators. Let
en : z 7→ zn be the usual orthonormal basis for L2(T), let H2(Σ) be the closed
span of {en : n ∈ Σ}, let PΣ be the orthogonal projection of L2(T) on H2(Σ), and
define the Toeplitz operator TΣ

φ with symbol φ ∈ C(T) by TΣ
φ ( f ) = PΣ(φ f ). The
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usual Hardy space H2(T) is naturally isomorphic to `2(N), and the usual Toeplitz
operator Ten is then equivalent to Sn; the same isomorphism carries H2(Σ) onto
`2(Σ), and TΣ

en into Tn. Let U : H2(T)→ H2(Σ) be the unitary operator such that
Ue0 = e0 and Uen = en+1 for n > 1. Then Lemma 3.3 implies that U∗TΣ

en U − Ten

has finite rank, and we can deduce from the linearity and continuity of the maps
φ 7→ TΣ

φ and φ 7→ Tφ that U∗TΣ
φ U − Tφ is compact for every φ ∈ C(T). It fol-

lows that TΣ
φ is Fredholm if and only if Tφ is Fredholm, that is, if and only if φ is

non-vanishing, and the usual index theorem then gives

ind TΣ
φ = ind Tφ = −deg φ.
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