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ABSTRACT. We consider the additive subsemigroup £ := N\ {1} of N, and
study representations of X by isometries on Hilbert space with commuting
range projections. Our main theorem says that each such representation is
unitarily equivalent to the direct sum of a unitary representation, a multiple

of the Toeplitz representation on ¢%(X), and a multiple of a representation
by shifts on ¢?(N). We consider also the C*-algebra C*(X) generated by a
universal isometric representation with commuting range projections, and use
our main theorem to identify the faithful representations of C*(X) and prove
a structure theorem for C*(Z).
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INTRODUCTION

Coburn proved in 1967 that all C*-algebras generated by non-unitary isome-
tries are canonically isomorphic [1]. Coburn’s result can be viewed as a theorem
about the isometric representations of the semigroup N, and this theorem has
been generalised to other semigroups: to the positive cones of ordered subgroups
of R by Douglas [2], to the positive cones of totally ordered abelian groups by
Murphy [5], and to amenable quasi-lattice ordered groups by Nica [6] and Laca-
Raeburn [4].

On the other hand, Murphy [5] and Jang [3] have proved that this theorem
does not hold for the semigroup X := N\ {1}, by writing down explicit isomet-
ric representations S on ¢%(N) and T on ¢%(X) such that C*(S) is not canonically
isomorphic to C*(T). Here we explore this phenomenon by analysing the isomet-
ric representations of X, and investigating the structure of the C*-algebras they
generate. Our main result says that every isometric representation of X with com-
muting range projections is equivalent to a direct sum of a unitary representation,
a multiple of S, and a multiple of T. The assumption that the range projections
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commute is a standard one in the area: it is automatic for the positive cones of
total orders, and for quasi-lattice ordered groups it is a consequence of the Nica
covariance condition used in [6] and [4].

We begin in Section 1 by describing the class of isometric representations of
interest to us. We set up our conventions, particularly concerning the two main
examples S and T, and establish some basic properties of isometric representa-
tions. We prove our main theorem in Section 2. Our main strategy is to analyse
how the isometry V3 interacts with the Wold decomposition of the isometry V5.
In Section 3 we consider the C*-algebra C*(X) generated by a universal isometric
representation with commuting range projections. We use our main theorem to
obtain criteria which ensure that a given representation of C*(X) is faithful, and
describe the structure of C*(X) in terms of the usual Toeplitz algebra 7 = C*(N).

1. ISOMETRIC REPRESENTATIONS OF X

Throughout this paper, N denotes the additive semigroup of non-negative
integers (including 0), and X denotes the subsemigroup N\ {1}. An isometric
representation of X on a Hilbert space H with commuting range projections is a map
V : ¥ — B(H) such that each Vj, is an isometry, such that V1, = V,,V,, and
such that the range projections V,,V,; commute with each other.

We have two main examples in mind.

EXAMPLE 1.1. Let { ey, : p € Z} be the usual orthonormal basis for £2(X).
For each n € X, the set { ex,1, : p € X} is also orthonormal, and hence there
is an isometry T, on /?>(X) such that T.esp = esutp- It is easy to check that
TuTy = Twtn, and that the range projections commute. We call T the Toeplitz
representation of X.

EXAMPLE 1.2. Let R be the unilateral shift on #>(N), and define S : £ —
B(/?(N)) by S, = R™ In terms of the usual orthonormal basis { enp b, Sn is
characterised by S,en, = ennip. Then S is an isometric representation with
commuting range projections. (The letter S reminds us that the operators S, are
shifts.)

Murphy and Jang observed that these two representations are not unitarily
equivalent. To see this, we just need to note that

T;(l — TZT;)TQJ,(EZ,O) = 62/0,

so that T3 (1 — T, T;)Tj; is non-zero, whereas S3(1 — S,55)S; = 0. (In the proof of
Theorem 2.1 it will become clear why we looked at this operator.)

We now investigate general properties of an isometric representation V :
X — B('H) with commuting range projections. The first and crucial property is
that V7 = V3, because both are equal to V.
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For m,n € X such that m — n is also in X, the relation V,;, = V,,V};,_,, allows
us to cancel V,;V,, = V,,_, and V;V,, = V,;_,. While we cannot expect to can-

cel expressions like V,;V,  ;, there are interesting and useful relationships among

these elements. We often use the next lemma without comment.
LEMMA 1.3. We have V5 V2 = V3V, and V2V, = V5V,

Proof. Since the second equation is the adjoint of the first, it suffices to com-
pute

ViVE = Vi (VEVa)VE = V2V V3 = VB VEV, = V3V, i

The assumption that the range projections commute implies that there are
many other commuting projections around. For example:

LEMMA 1.4. Forevery k,n € X, V'V, V;;V,_is a projection which commutes with
every range projection V,, V..

Proof. The elements V'V, ViV, are certainly self-adjoint, and
(VEVaVaVi)? = Vi VO ViVEVa Vi Vi = VE(VVE) (VaVi) 2V = ViV, ViV,
so they are projections. Then

(VEVuVa Vi) (Vi Vi) = ViV ViV Ve Ve = Vi Vi Vi Va Vi Vi

m
= ViV ) (Ve Vi Vi V).
Since the semigroup X is generated by 2 and 3, it is natural to ask which
pairs of isometries W, and W3 generate an isometric representation of X.

PROPOSITION 1.5. Suppose that Wy and W3 are commuting isometries on H such
that W3 = W2 and W,W; commutes with WyW5. Then there is an isometric represen-
tation V : X — B(H) with commuting range projections such that V, = W, and
V3 = W;.

Proof. 1t is straightforward to check that the formula V5, 3; = W) Wé gives
a well-defined map of X into B(H) such that each V;, is an isometry and V,,V;, =
Vingn. So we have to prove that the range projections commute. We begin by
showing that V,V; = V2V,2 commutes with V,Vj:
(V22V2*2)(V3V3*) = Vz*(V§V§3)(V2V3)V3* = Vf(V32V§2)(V3V2)V3*

= Vs VEVEV V3 (V3 V) = V3 Va(VaV3) (V,V3) V5 Vs

=V V3(V,V3)(VaV5) V5V = (V3 V) VaV5 V3 V32V,

= V3V (V3 V) V3 V52V = V3 (V5 V3) V3 V52V,

= V3V§<V;(V32V3*2)V2 = V3V3*V2*(V23’V§3)V2

= (,V5) (3 15?).
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Now fix m, n € X, and assume without loss of generality that m > n > 0. If
m — n belongs to X then ordinary cancellation shows that

Vi Va) (Va Vi) = Vi Vip = (Va Vi) (Vi Vig)-

We are left to handle the case where m = 1 + 1, and we deal with the cases n = 2p
and n = 2p + 1 separately. For n = 2p, we have m = 2p + 1, and
(Va Vi) ViV ) = VapiaVap 1 VapVap = (Vo 1)V3) (V3 V1)) Vap Vap
= Va1 VaVs (Va(po1y Vap) (V2 Vo(p_1y)
= Vz(pq) (V2V§)(V3V3*)V2*(p71)
= Vo V3 Va3 = Vo Vs (V3 1y Vagp1)) VaVapia
= Vo, VapVap11Vapi1 = (Vi Vi ) (Vi Vi)
For n = 2p+1, we have m = 2(p + 1), and we use the result in the first para-
graph:
ViV ) ViVt ) = Vo1 Va(pa) Vap 1 Vap
= Vaps1) Va(pe1) (Va(p-1)V3) (V3 Vo 1))
= (Vz(p_1)V22)( z*(p+1)Vz(p—1))V3V3*V;(p—1)
= Vy(po1) (VEV52) (V3V5) Vs,

2(p-1)
= Vz(p71)(V3V3*)(V22V2*2) 2*(;771)
2 2
= Vap1V3 ViVa(pin) = Vap1 Vs (V1) Vagp-1)) V2 Vo)

= V2p+lV;p+lV2(p+l)V;(p+l) = (VnV;)(VmVrZ)' 1

REMARKS 1.6. (i) The subsemigroup X is the positive cone for the partial
order on Z defined by m > n <= m —n € X. The pair (Z, X), however, is not
quasi-lattice ordered in the sense of Nica [6]: while 5 is a common upper bound
for 2 and 3, and is the smallest in the usual order on Z, it is not a least upper
bound in (Z, X) because 6 is a common upper bound which is not > 5in (Z, X).
So the general theory of [6] and [4] does not apply.

(ii) Since X is generated by the two elements 2 and 3, the map ¢ : (p,j) —
2p + 3j is a surjection of N2 onto X. If V is an isometric representation of X with
commuting range projections, then V o ¢ is also a semigroup homomorphism.
One might suspect that our “commuting range projections” hypothesis would
imply that V o ¢ is a Nica covariant representation of (Z?, N?) (which is equiva-
lent to saying that Vf = (Vo ¢(1,0))* and V; = V 0 ¢(0, 1) commute). However,
this is not the case: when V' = S, for example, the operator S35, is the unilateral
shift, and hence is injective, whereas S;S;3 is not (for example, 5,55 (en) = 0).
One consequence of our main theorem is that V o ¢ is only Nica covariant when
every Vj, is unitary (see Corollary 2.8).
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2. THE DECOMPOSITION THEOREM

Suppose that V and W are isometric representations of a semigroup P on
Hilbert spaces Hy and Hyy. We say that V is a multiple of W if there are a Hilbert
space H and a unitary isomorphism U : Hy — Hy @ H such that UV,U* =
Wy, @1 for p € P. For our concrete representations S and T we can identify the
tensor products ¢2(N) ® H and ¢*(X) ® H with ¢2(N,’H) and ¢?(X,’H), and we
move freely from one realisation to the other.

THEOREM 2.1. Suppose that V : ¥ — B('H) is an isometric representation of
XY := N\ {1} with commuting range projections. Then there is a unique direct-sum
decomposition H = Hy @& Hr ® Hg such that Hy, Ht and Hg are reducing for V,
such that V|y,, consists of unitary operators, such that V|3, is a multiple of T, and such
that V|3, is a multiple of S.

Since 2 and 3 generate X, the representation V is determined by the two
isometries V, and V3. Our strategy is to apply the following version of the Wold
decomposition to the single isometry V5, and to analyse how V3 interacts with
this decomposition.

PROPOSITION 2.2 (Wold Decomposition). Let Z be an isometry on a Hilbert
space H. Let Hy = () Z"(H) and Ho := Z(H)*. Then Hy is a reducing sub-
n=0

space of H for Z with complement H{; = span{ Ejo Z”(HO)}, Z|y,, is unitary, and
n=

there is a unitary isomorphism W: Hi; — (*(N, Hp) such that WZW* ({k,}>_,) =
{0, ko,kl,kz, .. .}fOT’ all {kn};ozo S éZ(N, Ho)

As motivation for our argument, we apply the Wold decomposition to S,
and T,. For both isometries we have Hy; = {0}, and both

Sy(P*(N))*: = span{eng,en1} and To(¢*(X))* = span{esg exs}
are 2-dimensional. Sending
eN,i — P 1f1‘:2]‘, and ey, o 1fz‘:2].,
’ e ifi=2j+1, ’ e ifi=2j+3,

gives unitary isomorphisms of ¢2(N) and ¢?(X) onto ¢*(N x {0,1}) which carry
S and T into the representations determined on

_(fo fu fa fm -
fi= (foo fio f0  fao )

by

_ (0 fo fu fa - — (9 Jo S0 fo o
(2.1) Szf—(o foo fio fo ) and S3f_(0 0 for fu )
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and

(0 for fu fa - _(foo fuo fo foo fao -
(2.2) Tzf—<0 foo fio fo ) andT3f_<0 0 0 fu fn )

We now turn to the proof of Theorem 2.1. Applying the Wold decomposi-
tion to the isometry V, gives a reducing subspace H; such that V5|, is unitary,
and since V32 = V23 it follows that V3 and every other V5,3, = Vzp V3] are also
unitary on H;. The Wold decomposition also tells us that the complement H;
can be identified with ¢(N, Hy) for Ho := Va(H)+ = ker(V,V,). Our goal is
to identify the subspaces Hyy and g of H consisting of vectors which behave
under V3 as the vector egg € *(N x {0,1}) does under T3 and S;. The crucial
property we isolate is that Tzeqo belongs to Hy = ker T, T;, whereas Szeqo belongs
to S»(H) and is orthogonal to S3(H).

With this motivation, we define:

(2.3) Hoo := {h € Hp: V3h € Ho }, and
(2.4) Koo :={h € Hy:Vsh € V,(H)© VE(H) }.

For the rest of the proof, we write P, := V}'V;"* — VZ”‘"1 Vz*”"’l, which is the
projection of H onto the complement of V'™ (H) in V4'(). With this notation,

PROPOSITION 2.3. We have a direct-sum decomposition
(2.5) Ho = Vo(H)* = Hoo @ Va(Hoo) ® Koo @ V5 V5(Koo)

in which the orthogonal projections on the summands are given by:
(i) the projection on Hg is Py, := V5 PyVa = V5P V3P,
(ii) the projection on V3(Hoo) is VaPyy V5 = V5 P3Va Py,
(iii) the projection on Ko is Qg := V3 P1V3Py;
(iv) the projection on Vi V3 (Koo) is V3 V3Qu0 VsV, = V5 RV, P,

To compute some of these projections we need the following straightfor-
ward lemma.

LEMMA 2.4. Suppose that S € B('H) is a partial isometry and P is the orthogonal
projection onto a closed subspace K of S*S(H). Then SPS* is the orthogonal projection
onto S(K).

Proof of Proposition 2.3. For every h € Hy and k € H, we have

(Vah | VoK) = (Valt | VEVok) = (h| VaVok) = (h] VaV3k) =0,
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3 3
and hence V;h € V3 (H)t = EBO PyH. Thus V3P = Zo P,V,P) and Py =
n= n=
3
):O V3 P, V,Py. Since V3 P, Vs, is self adjoint and
n—=

(V5 P, V3)? = V5P, (V3V5)P, V3 = V5 (V3V5) PV = V5 P, Vs,

V3P, V; is a projection; since Lemma 1.4 implies that Py commutes with V3P, V;,
each V3P, V, P, is also a projection. Since their sum P is also a projection, the
projections V3P, V; Py have orthogonal ranges, and we have a direct-sum decom-

3
position Hyg = @ V5P, V3P)(H). So it remains to check that the ranges of these
n=0

projections are as claimed.
For h € Hyy we have

V3 Py Vsh = V3 (PyVsh) = V3 (V3h) = h,
so V3 PV, is the identity on Hoo. Next, note that
Vi VaPy = V3 Py V3(1 = Vo) = V5B V3 — VSRV, V3 Vs = Vi Py V3 — 0,
which gives the last equality in (i) and implies that the range of V3 P,V; is con-
tained in Hy. For every h € 'H we have
Py(V3(V5 PyV3h)) = (V3V3) (P§Vsh) = V3(V5 ByVsh),

so the range of V3 PV} is contained in Hg. Similar calculations show that Qg is
the identity on Cgg, and that every k of the form k = Qqoh satisfies Pok = k and
Py (V3k) = V3k, hence is in KCgo. This gives (iii).

To establish (ii), we use Lemma 2.4 and part (i) to see that the projection on
Vs3(Hoo) is V4(V5 PyV3) Vi = V4, V5 Py. Then we compute

V5 P3VaPy = Vi (V3P V2 ) VaPy = Vi (VEPyV52) V3 Py = V3 Py Vs Py
= (V3V5 = VsV V)P = (V3V5' = V3V V3V ) R,

which reduces to V; V5 Py because V; Py = 0.

For (iv), we apply Lemma 2.4, and deduce that the projection on V; V3(Kqp) is
We now compute using Lemma 1.3:

Vz* V3(V3*P1 V3PO)V3* V2 = Vz*Pl ‘/13‘/3;k Vap()V; V2 = P()Vz* V3P()V3* V2
= PV V3P V52V, = PoVi Py Vs,

which is V3 P,V Py because Lemma 1.4 implies that V3 PV, and Py commute. I

Applying the isometry VJ' to the decomposition (2.5) of Hy = Py(H) gives
decompositions

Py (H) = V3! (Ho) = V3'(Hoo) © V3 V3(Hoo) © V3' (Koo) © V3 V5 V3(Koo),
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and since the spaces P, H themselves give a direct-sum decomposition of H{;, we
have

H = Hu ® (@ (VF (Hoo) ® VI Va(Hoo) & VA (Koo) © V3 V5 Va(Keo)) )
n

So with

(2.6) Hr = @O(Vz”(Hoo) @ VJ'Va(Hoo)),
n=

(2.7) Hg = 690(V2”(IC00) ® V3VyVa(Koo)),
n=|

we certainly have H = Hy & Hr @ Hg. Notice also that if we start with a de-
composition H = Ky & Ks @ K1 as in the theorem, then this process will yield
Hr = Kt and Hg = Ks, so the decomposition is unique.

PROPOSITION 2.5. The subspaces Hyy, Ht and Hg are reducing for V.

Proof. Since Vi = V32V, = V;3V,, to prove that a subspace K is reducing
for V, it suffices to prove that K is invariant under V,, V;* and V;. It is obvious

(e}
that each of our subspaces is invariant under V,. Since Hy = N VJ'(H) =
n=0

ﬁ V1 (H), itis invariant under V', and since V;(V}'(H)) =V} (V3(H)) C VJ' (H),
=1

n=
it is also invariant under V;. We have

V3 (Uns1,j—01V3'V3(Hoo)) = >0U 01V2"V§(Hoo) C Hr,
nz=z0,j=0,

and since Hgo and V;(Hqg) are contained in Hy = Vo(H)Lt = ker V5, they are
trivially invariant under V. Thus Hr is invariant under V', and the same argu-
ment shows that H is invariant under V3.
It follows from the identity V32 = Vz3 that Hy is invariant under V3. Since
V4(Koo) C V,Vy (H), we have V3(V3 (Koo)) = V3 (V, V5 V5(Koo)) C Hg, and
V3(V3'V5V3(Koo)) = (Vs Vo) V3V V3 Vs (Koo) = Vo V3 V3 V3 V3 (Koo)
=V, V3V3' (V V3 V3(Koo)) = Vo V3 Vi V3 (Koo)
= V;V3'V3 (Koo) = V5 V3'V3 (Koo) = V32 (Koo)

is also contained in Hg. 1

We next show that V|3, is equivalent to T ® 14,,. We identify ¢*(N) @ Hgo
with ¢2(N x {0,1}, Hoo), so that on matrices

_(fo fuu fa fm; -
fi= (foo fio f0  fao )

with f,i € Hoo, T ® 1 and T3 ® 1 are defined by the same formulas (2.2) as T,
and T3. We now recall that the projection Pyy on Hy is given by Py = V5 PyVs,
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and define Wy: Hr — ¢2(N x {0,1}, Hoo) by
(Wrh),j = PooVy V3" h.
Since V; j V;" is an isometry of V! V3j (Hoo) onto Hgp, Wr is a unitary isomorphism
of Ht onto ZZ(N X {0, 1},7‘[00).
PROPOSITION 2.6. We have W(V|y, )W = T® 1.
Proof. We prove that WV, |y, = (T; ® 1)Wy fori = 2and i = 3. Leth € Hr.
Then

2.8) wfvzh_<P00V§‘Vzh PooV3 Vs Vo PooVs V3 Vol PooV3 Vs Vsh )

PyoV,h Poo Vs Vyh PooVy2V,h Py V3 Vyh
and

* VA *7*2
29) (T2®1)WTh_<o PooVih  PooViVih  PooViVi2h >;

0  Pyh Py Vsh PooVs2h
since PyV, = 0 and
Poo V5 Vy = (V5 PoV3) ViV, = V5 (V3 V5 PyV, = 0,
the right-hand sides of (2.8) and (2.9) are the same, and WrV, |y, = (T, ® 1)Wr.

Similarly,

(2.10) WTV3h:<P00V§V3h PooV3 Vs Vsh  PooV3 Va2 Vsh  Pog V3V, 2V )

PooVsh Poo Vs V3h Py V32 V3h Py V3 V3h
and

(211) (TS ® 1>WTh _ <P00h POOVZ*h P00V2*2h POOV2*3]’Z .. >

0 0 0 Poo V5 h

Since V3 V"V, = V"V V, = V5", the top rows of these last two matrices are the
same. To see that the bottom rows are also the same, we compute:

PooVs = (V5 PyV3) Vs = Vi Ry V3 =0,
Poo Vi Vy = Poo (V5 V) = V5 Py Vs (V5 VE) = V5 V3 V5 Py V4 =0, and
PooV32 Vs = (V5 Py V3) (V3 Vy) = V3 V3V Py Vo = 0;
and, forn > 3,
Poo V" Vs = Poo(Vs " 2V53) vy = Poo vy vy = Pog vy v Y,

which tells us that the nth entry in the bottom rows of (2.10) and (2.11) agree.
Thus Wr V3|3, = (T3 ® 1)Wr, and the result follows. 1

To see that V|, is a multiple of S, define W¢: Hg — ¢2(N x {0,1}, Koo) by

(WSh)nj = QOOV;]VZ]VQ*nh}
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It follows from the direct sum decomposition (2.7) that W is a unitary isomor-
phism of Hg onto ¢2(N x {0,1},Kg). On £2(N x {0,1},K), S ® 1 is given by
the formulas (2.1).

PROPOSITION 2.7. We have Wg(V |3 )WE = S®@ 1.

Proof. The proof follows the same strategy as that of Proposition 2.6, but
some of the calculations are a bit trickier, so we include the details. We prove that
WeVily, = (S;®1)Wg fori = 2and i = 3. Let h € Hs. Then

(2.12)  WsWhh = <Q00V3*V2Vzh QuoVaVa Vs Vol QuoVs Vo Vs Vah )

Qoo V,h QooVy Vyh Qoo V52 V,h
and

(2.13) (Sz®1)Wsh:(0 QuVs Vol QuoV3V,Vilh QuoVs VpVs2h )

0 Qooh QooVy'h Qoo V5 2h
Since Qoo V, = V3 P, V3PV, = 0 and
QuoV3 Vs = (PV3 Py V3) Vi V5 = PyV5 (V3V3)P V3 =0,

the right-hand sides of (2.12) and (2.13) are the same, and W5V, = (S, ® 1)Ws on
Hs. Next we compare

(2.14) W5V3h2<QooVs*VzV3h QuoV5 V5 Vah - QooVs V, V32 Vsl )

Qoo V3h Qoo V5 V3h Qoo V52V3h
and

0 Qooh  QooVsh Qoo Vi2h QouoViih -
2.15 S®1Wh_( 2 2 el
(215) (Ss@DWsh={; = QuoViVoh QuoViVyVih QuoViVyVi2h - -

The necessary three entries in (2.14) do indeed vanish:
QuoVs = PyV5 P VZ = PyV5 P, V3 =0,
Qoo Va Vo Vs = Qoo Va V3V, = (V5 Py V3Py)V, =0, and
QuoVs Vs = (PyVa Py Va) (V5 V3) = PyV3 (V3V5) Py V3 = 0.
For n > 1, we expand the nth entry in the top row of (2.14) using the identity
P, = P, V,V;:
Qoo V3V, V5" V3h = (P0V3*P1V3)V;V2V2*V2*(”71)V3h

S N AVAC AA T A A?

= POV;(V3V;)P1V2*("_1)V3}Z = POV;P1(V3V§)V2*(n_1)V3h

* *(n—1 * *(n—1
:(P0V3P1V3)V2(” )V:a V3h:Q00V2(” n,
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which is the nth entry in the top row of (2.15). Now we let n > 2, and work on
the nth entry in the bottom row of (2.14), again using P, = P, V, V"

QuoV3"Vsh = QooVy " 2 V32Vah = QuoVy " P V5 Vah = QuoV3 Vs P Wyl
= (V3 PV V3 V3 "2 = PoVE (VaV3) Py vy 2 ik
= PV5 (VaV5) (P VoV ) Vo "D Wk
= (PV5 PV VaV5 " DVl = QuoVs Va3 " P,

which is the nth entry in the bottom row of (2.15). We have now proved that
WsV, = (S3 ® 1)Ws on Hg, and the result follows. 1

Proposition 2.7 completes the proof of Theorem 2.1.

COROLLARY 2.8. Define ¢ : N> — X by ¢(p,j) = 2p + 3j, and suppose V is an
isometric representation of X on H with commuting range projections. If V o ¢ is a Nica
covariant representation of (Z2,N?), then every V, is unitary.

Proof. For (Z2,N?), Nica covariance says that V; = (V o $(1,0))* commutes
with V; = Vo ¢(0,1). For both V = Sand V = T, we can write down elements
of H which are in the kernel of V,V; but not in the kernel of V;'V;. So for general
V, if either Hg or Ht were non-zero, we could find elements of Hg or H with
the same property. Thus H = Hy;, and the result follows from Theorem 2.1. 1

3. THE C*-ALGEBRA OF £

Modifications of the standard arguments (as in [5], for example) show that
there is a unital C*-algebra C*(X) generated by an isometric representation v :
X — C*(X) with commuting range projections which is universal for such rep-
resentations: for every isometric representation V : £ — B with commuting
range projections, there is a unique homomorphism 7ty : C*(X) — B such that
V = my o v. In this section we describe conditions on V which ensure that 7y is
faithful, and give a concrete description of C*(X) in terms of the usual Toeplitz
algebra 7.

THEOREM 3.1. Let X := N\ {1}, and let V: X — B(H) be an isometric rep-
resentation with commuting range projections. Then the representation rty of C*(X) is
faithful if and only if
B1)  VF(WLVy = VRV V(1= V,Vs) #0 and Vi (1—V,V5)Vy #0.

Since V3 (V,V;y — VZV52)V,4(1 — V,V5) and V5 (1 — V,V;)V; are the projec-
tions on Koo and Hoo, (3.1) says that the subspaces Ht and Hg in the decomposi-

tion of Theorem 2.1 are both non-zero. So Theorem 3.1 implies in particular that
TlTas is faithful.
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Proof. First notice that in the representation 7ts, the operator
s (05 (0203 — 03057 )u3(1 — 0y03)) = S3(5,53 — 53557)S5(1 — 5,55)

fixes the vector ey o, and hence v} (v,v5 — v3032)v,(1 — v,05) is non-zero in C*(X).
Similarly, 7rr (v} (1 — v,v5)v,) fixes ex o, and v3 (1 — v,v3) v, # 0. So if 7Ty is faith-
ful, the images of both these elements of C*(X) must be non-zero, which is exactly
what (3.1) says.

Now suppose V satisfies (3.1), and consider the decomposition H = Hy; &
Ht @ Hg of Theorem 2.1, noticing that (3.1) implies that Hg and Hr are non-zero.
Write Viy := V|, V1 := V|y, and Vs := V|, and fixa € C*(XZ). Then we can
check on generators that 7ty = 7y, ® 7y, @ 7y, and hence we have

(3.2) |7ty (a)]] = max { ||ty (a)ll, I, (a)ll, [I7Tvs(a)ll}-

Since Hrt is non-zero and Vr ~ T ® 1, and we can check on generators that
Trg1 = 7r @ 1, we have 7y, ~ 7 ® 1. Similarly, 7y, ~ 7s ® 1. Thus (3.2)
implies that

I7v (a)|| = max {{|7wy, (@)ll, [l7zr(a), lI7ws(a)l}-

The operator 7y, (a) @ 7g(a) belongs to the C*-algebra generated by U; @ R,
where U; = (Vy1), ' (Vi1), is unitary and R = S3S, is the unilateral shift, and
hence the Lemma on page 724 of [1] implies that H my, (a)|| < ||7ts(a)]|. Thus

Ity (a) || = max {||rr(a) ], ||7zs(a)|}-

Since every C*-algebra has a faithful representation and every representa-
tion of C*(X) has the form 7y, there is a faithful representation of the form 7y,
and then Ht and Hg are both non-zero by the first part of the proof. We can then
deduce from the argument of the previous paragraph that

lall = [[rw (@) || = max {||7r(a)ll, l[7ws(a)l[} = [l (a)ll,
which since 4 is an arbitrary element of C*(X) implies that 71y is faithful. 1
We can view the Toeplitz algebra 7 either as the C*-subalgebra of B(¢?(N))
generated by the unilateral shift, or as the C*-subalgebra of B(L?(T)) generated
by the Toeplitz operators Ty with symbol ¢ € C(T). In either realisation, 7
contains the algebra K of compact operators, and the quotient 7 /K is naturally

isomorphic to C(T). In the proof of the following theorem we realise 7 as a
subalgebra of B(¢?(N)).

THEOREM 3.2. Let X := N\ {1} and let g: T — T /K be the quotient map.
Then C*(X) is isomorphic to

C:={(AB) eTaT:q(A) =q(B)}.

For the proof, we need a lemma.
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LEMMA 3.3. Let U: ¢2(N) — (2(X) be the unitary isomorphism such that Uey g
= exoand Uey, = exyt1 for n = 1. Then U* T,U—-S,isa finite-rank operator on
(2(N) for every p € X.

Proof. If p = 0 the resultis trivial, so suppose p € X\ {0}. We now compute,
using the notation & @ k for the rank-one operator g — (g | k)h:

(U'T,U)enp = enp-1= (S, +enp-1®eno —en,p @enp)eno,
and forn > 1,
(U T,U)enn = ennip = (Sp +enp-1@enp —enp @ENo)enn-

Thus U* TpU — SP =eNp-1® eN,0 — eN,p & eno- 1

Proof of Theorem 3.2. Theorem 3.1 implies that wger = 75 @ 77 is faithful.
Take U as in Lemma 3.3, and define ¢ : C*(X) — B(¢2(N)) @ B(¢>(N)) by y(a) =
(rtg(a), U*rp(a)U). We claim that ¢ is an isomorphism of C*(X) onto C. It is
injective because 7rg @ 717 is. Since the operators 715(v,) = S, are all powers of
the unilateral shift, and Lemma 3.3 implies that U*7r7(v,)U = U*T,U differs
from S, by a finite-rank operator, ¢ has range in C. So it remains to prove that
every element of C is in the range of .

Let (A, A +K) € C. Since 555, = ms(v5v;) is the unilateral shift, 77 maps
C*(X) onto 7. Thus there exists a € C*(X) such that 7r5(a) = A, and then

A+K=U'nr(a)U+ (rs(a) — U nr(a)U) + K,
which is U*tr(a)U + L, say, where L is compact. So we need to show that (0, L)
is in the range of ¢, and to do this it suffices to show that every rank-one operator
(0,en,; @ ey j) is in the range of 1. Computations show that
$(1 = (0303)"(0203)) = (0,enp @2np0),
¥(0205(1 = (v303)(v203)7)) = (0,en ®n1), and
P(v; 11071 (1 —0;07)) = (0,en; @) fori>2,
so for each i there exists b; € C*(X) such that ¢(b;) = (0,eyn; ® ey;). Now some
more calculations show that if j > 1, then
(3.3) lP(bQZJ;:rl) = (0, eN,0 ®EN,j)r and
P(bivi1071) = (0,en; ®en,) foreveryi>1;

the adjoint of (3.3) shows that every (0, en ; ® ey ) is also in the range of . Thus
every (0,en,; ® ey,;) is in the range of ¢, as required. &

REMARK 3.4. This structure theorem for C*(X), or more precisely the lemma
used to prove it, has some interesting implications for Toeplitz operators. Let
en : z + 2" be the usual orthonormal basis for L2(T), let H>(X) be the closed
span of {e, : n € X}, let P* be the orthogonal projection of L?(T) on H?(X), and
define the Toeplitz operator T;,: with symbol ¢ € C(T) by Tg (f) = P*(¢f). The
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usual Hardy space H?(T) is naturally isomorphic to ¢?(N), and the usual Toeplitz
operator T,, is then equivalent to S,; the same isomorphism carries H?(X) onto
£2(X),and TZ into Ty. Let U : H*(T) — H?(X) be the unitary operator such that
Uey = ep and Ue, = e;,41 for n > 1. Then Lemma 3.3 implies that U* Teznll - T,
has finite rank, and we can deduce from the linearity and continuity of the maps
¢ — Tf and ¢ — Ty that U*Tfu — T, is compact for every ¢ € C(T). It fol-
lows that Tf is Fredholm if and only if Ty is Fredholm, that is, if and only if ¢ is
non-vanishing, and the usual index theorem then gives

ind Tf =ind Ty = —deg¢.
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