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ABSTRACT. In the paper, we study the generator problem for type II1 factors.
By defining an invariant closely related to the number of generators of a von
Neumann algebra, we are able to show that a large class of type II1 factors are
singly generated, i.e., generated by two self-adjoint elements.
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1. INTRODUCTION

Let H be a separable complex Hilbert space, B(H) be the algebra consist-
ing of all bounded linear operators from H to H. A von Neumann algebraM is
defined to be a self-adjoint subalgebra of B(H) which is closed in the strong op-
erator topology. Factors are the von Neumann algebras whose centers are scalar
multiples of the identity. The factors are classified by means of a relative dimen-
sion function into type I, II, III factors. (see [10])

The generator problem for von Neumann algebras asks whether every von
Neumann algebra acting on a separable Hilbert space can be generated by two
self-adjoint elements (equivalently be singly generated). It is a long-standing
open problem (see [9]), and is still unsolved. Many people (see [3], [4], [6], [10],
[14], [15], [16], [22] ) have contributed to this topic. For example, von Neumann
[11] proved that every abelian von Neumann algebra is generated by one self-
adjoint element and every type II1 hyperfinite von Neumann algebra is singly
generated. W. Wogen [22] showed that every properly infinite von Neumann
algebra is singly generated. It follows that the generator problem for von Neu-
mann algebras, except for the non hyperfinite type II1 von Neumann algebras,
is solved (see [18] for a good introduction of the history). Theorem 3.5 in [16]
shows that a type II1 factor with Cartan subalgebras is singly generated. The-
orem 6.2 in [6] proves that certain type II1 factors are singly generated. These
type II1 factors include the ones with property Γ, those that are not prime. In [4],
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Ge and the author proved that some type II1 factors with property T, including
L(SL(Z, 2m + 1)) (m > 1), are singly generated. This result answered a question
proposed by Voiculescu.

In the early 1980s, D. Voiculescu began the development of the theory of free
probability and free entropy. This new and powerful tool was crucial in solving
some old open problems in the field of von Neumann algebras. In his influential
paper [19], Voiculescu introduced δ0(M), called “free entropy dimension” of a
finite von Neumann algebraM, by which Voiculescu was able to show that free
group factors have no Cartan subalgebras [20]. To better understand the free
entropy dimension of von Neumann algebras has become an urgent task for the
subject.

On the other hand, it is believed that the free entropy dimension is closely
related to the number of generators of a von Neumann algebra. It is expected
that a type II1 factor, whose free entropy dimension is equal to 1, is then singly
generated. The goal of this paper is to consider the generator problem for type
II1 factors from the point of view of free entropy theory.

To measure the number of generators of a diffuse finite von Neumann al-
gebra M, we introduce a new von Neumann algebra invariant G(M), whose
definition is motivated by Voiculescu’s approach to Cartan subalgebra problems
in [20]. This invariant G(M) enjoys many good properties, some of which are
listed as follow:

(i) IfM is a type II1 factor and G(M) < 1/4, thenM is singly generated.
(ii) IfM is a diffuse hyperfinite von Neumann algebra with a tracial state τ,

then G(M) = 0.
(iii) G(M) = 0 if the type II1 factor M is generated by a family of von Neu-

mann subalgebras {Nj}∞
j=1 ofM such that G(Nj) = 0 and Nj ∩Nj+1 is a diffuse

von Neumann subalgebra for all j > 1;
(iv) G(M) = 0 if the type II1 factor M is generated by {N , u1, . . . , uj, . . .},

where N is a von Neumann subalgebra of M with G(N ) = 0 and {uj}∞
j=1 is a

family of unitary elements of M such that, for every j > 1, u∗j vjuj is in N for
some Haar unitary element vj in N ;

(v) G(M) = 0 if the type II1 factorM is generated by an ascending sequence
of subalgebras {Nk}∞

k=1 such that G(Nk) = 0 for all k > 1.

Using the listed properties of G(M), we are able to compute its values for
a large class of II1 factors. In fact, we show that G(M) = 0 if M is one of the
followings: type II1 factors with Cartan subalgebras, those with property Γ, non-
prime factors or some II1 factors with property T. By property (i) this implies that
all these type II1 factorsM are singly generated. (see Theorem 5.5, 5.9, 5.10, 5.11
and 5.14) (Unfortunately we are not able to compute G(L(Fn)) where L(Fn) is the
free group factor on n (n > 2) generators.) Also, we show that G(M) = 0 if
M is one of the type II1 factors considered in [7]. As corollaries, we extend the
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results in [16], [6] and [4] (see Corollary 5.6, 5.7, 5.12 and 5.15) and provide new
examples of II1 factors which are singly generated (see Example 5.19).

The organization of the paper is as follows. In Section 2, we introduce our
new invariant G(M) of a diffuse von Neumann algebraM . The value of G(M),
whenM is a diffuse hyperfinite von Neumann algebra, is computed in Section 3.
A cut-and-paste theorem is proved in Section 4. In Section 5, we prove our main
results of the paper. We also give some examples of type II1 factors which are
singly generated in this section.

In the paper, for a subset S of B(H), we denote W∗(S) the von Neumann
algebra generated by the elements of S ∪ S∗ in B(H).

2. DEFINITION OF G(M)

In this section, we will introduce a von Neumann algebra invariant, which
is closely related to the number of the generators of this von Neumann algebra.

DEFINITION 2.1. Suppose that M is a diffuse von Neumann algebra with
a faithful normal tracial state τ. Let {pj}k

j=1 be a family of mutually orthogonal
projections ofM with τ(pj) = 1/k for each 1 6 j 6 k. For each element x ofM,
we define

I(x; {pj}k
j=1) =

|{(i, j) | pixpj 6= 0}|
k2 ,

where | · | denotes the cardinality of the set. The support of x on {pj}k
j=1 is de-

fined by

S(x; {pj}k
j=1) =

∨
{pj | pjx 6= 0, or xpj 6= 0, 1 6 j 6 k},

where
∨

denotes the union of the projections. For elements x1, . . . , xn inM, we
define

I(x1, . . . , xn; {pj}k
j=1) =

n

∑
m=1
I(xm; {pj}k

j=1).

DEFINITION 2.2. For each positive integer k, let

Ek = {{pj}k
j=1 | {pj}k

j=1 is a family of mutually orthogonal projections ofM .

with τ(pj) = 1/k for each 1 6 j 6 k}.

Let x1, . . . , xn be the elements inM. We define

I(x1, . . . , xn; k) = inf {I(x1, . . . , xn; {pj}k
j=1) | {pj}k

j=1 ∈ Ek}; and

G(M; k)

=

{
inf{I(x1, . . . , xn; k) | x1, . . . , xn generateM as a von Neumann algebra},
∞ ifM is not finitely generated.
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Finally, we define
G(M) = lim inf

k→∞
G(M; k).

REMARK 2.3. By the definition, for every k > 1, we know that G(M; kn) is
a decreasing function as n increases. Thus, G(M) 6 G(M; k) 6 G(x1, . . . , xn; k)
for each k > 1, each family of generators {x1, . . . , xn} ofM.

3. G(M) WHENM IS A DIFFUSE FINITE HYPERFINITE VON NEUMANN ALGEBRA

In this section, we are going to compute G(M) whenM is a diffuse hyper-
finite von Neumann algebra with a faithful normal tracial state τ.

LEMMA 3.1. SupposeM =M1⊕M2 is a von Neumann algebra with a faithful
normal tracial state τ, whereM1,M2 are the von Neumann subalgebras ofM. Then
G(M) 6 G(M1) + G(M2).

Proof. The inequality is trivial when one of G(M1),G(M2) is infinite. As-
sume that both G(M1) and G(M2) are finite. Let ci = G(Mi) for i = 1, 2. By the
definitions of G(M1) and G(M2), for each positive ε, we know there exist a large
positive integer k, elements {pj}k

j=1, {qj}k
j=1, {x1, . . . , xn} and {y1, . . . , ym} ofM

such that:

(i) {pj}k
j=1, or {qj}k

j=1, is a family of mutually orthogonal projections ofM1,
orM2 respectively, with τ(pj) = τ(IM1)/k, τ(qj) = τ(IM2)/k, ∑

j
pj = IM1 and

∑
j

qj = IM2 .

(ii) {x1, . . . , xn}, or {y1, . . . , ym}, is a family of generators of M1, or M2 re-
spectively.

(iii)
I(x1, . . . , xn; {pj}k

j=1) 6 c1 + ε

I(y1, . . . , ym; {qj}k
j=1) 6 c2 + ε.

Note thatM =M1 ⊕M2. A little computation shows

I(x1, . . . , xn, y1, . . . , ym; {pj + qj}k
j=1) 6 c1 + c2 + 2ε.

Hence, by definitions, we have G(M) 6 c1 + c2 + 2ε; whence G(M) 6 G(M1) +
G(M2).

The following two propositions are obvious.

PROPOSITION 3.2. Suppose Mk is a factor of type Ik and {eij}k
i,j=1 is a system of

matrix units of Mk. Let x1 = e11 and x2 =
k−1
∑

i=1
(ei,i+1 + e∗i,i+1). Then x1, x2 are two

self-adjoint elements that generate Mk as a von Neumann algebra.
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PROPOSITION 3.3. Suppose M ' A ⊗ N is a von Neumann algebra with a
tracial state τ, where A,N are finitely generated von Neumann subalgebras ofM. If A
is a von Neumann subalgebra with G(A) = 0, then G(M) = 0. In particular, if A is a
diffuse abelian von Neumann subalgebra ofM, then G(M) = 0.

The following theorem can be obtained as a corollary of Theorem 5.11. But
the proof we present here motivates the proof of Proposition 5.4, our main tech-
nical result in the paper. So we include it here.

THEOREM 3.4. Suppose thatR is the hyperfinite type II1 factor. Then G(R) = 0.

Proof. Let {nk}∞
k=1 be a sequence of positive integers with nk > 3 for k =

1, 2, . . . . It is well-known that R '
∞⊗

k=1
Mnk (C) where Mnk (C) is the algebra of

nk × nk matrices with complex entries. Assume that {e(k)
i,j }

nk
i,j=1 is the canonical

system of matrix units of Mnk (C). We should identify Mnk (C) with its canonical

image in
∞⊗

k=1
Mnk (C) if it causes no confusion. Let

x1 = e(1)
11 +

∞

∑
k=1

1
3k e(1)

22 ⊗ e(2)
22 ⊗ · · · ⊗ e(k)

22 ⊗ e(k+1)
11 ,

x2 =
n1

∑
j=2

(e(1)
j−1,j + e(1)

j,j−1) +
∞

∑
k=1

nk+1

∑
j=2

1
3k e(1)

22 ⊗ e(2)
22 ⊗ · · · ⊗ e(k)

22 ⊗ (e(k+1)
j−1,j + e(k+1)

j,j−1 ).

Note
{e(1)

11 , e(1)
22 ⊗ e(2)

11 , . . . , e(1)
22 ⊗ e(2)

22 ⊗ · · · ⊗ e(k)
22 ⊗ e(k+1)

11 , . . .}
is a family of mutually orthogonal projections in R. By functional calculus, we
get that

{e(1)
11 , e(1)

22 ⊗ e(2)
11 , . . . , e(1)

22 ⊗ e(2)
22 ⊗ · · · ⊗ e(k)

22 ⊗ e(k+1)
11 , . . .}

is in the von Neumann subalgebra generated by x1. Thus e(1)
11 x2 = e(1)

12 and

x2e(1)
11 = e(1)

21 are W∗({x1, x2}). Hence e(1)
22 = e(1)

21 e(1)
12 is in W∗({x1, x2}). It fol-

lows that
n1
∑

j=2
(e(1)

j−1,j + e(1)
j,j−1) = x2 − e(1)

22 x2e(1)
22 is in W∗({x1, x2}). Now

e(1)
32 =

( n1

∑
j=2

(e(1)
j−1,j + e(1)

j,j−1)
)

e(1)
22 − e(1)

11

( n1

∑
j=2

(e(1)
j−1,j + e(1)

j,j−1)
)

e(1)
22

is in W∗({x1, x2}). Repeating this process, we get that {e(1)
j,j−1, e(1)

j−1,j}
nk
j=2 are in

W∗({x1, x2}). Similarly, for each k > 1, {e(k)
ij }

nk
i,j=1 is in the von Neumann subal-

gebra generated by x1, x2 inR. Thus x1, x2 are two self-adjoint elements that gen-
erateR. Moreover, we have I(x1, x2; {e(1)

jj }
n1
j=1) 6 3/n1. Therefore, G(R) 6 3/n1.

Since n1 can be arbitrarily large, G(R) = 0.
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Now we are able to compute G(M) for a diffuse hyperfinite von Neumann
algebraM.

THEOREM 3.5. SupposeM is a diffuse hyperfinite von Neumann algebra with a
tracial state τ. Then G(M) = 0.

Proof. Note a diffuse hyperfinite von Neumann algebra M with a faithful
normal tracial state can always be decomposed as

M' A0 ⊗R⊕
( ∞⊕

k=1

Ak ⊗Mnk (C)
)

,

where R is the hyperfinite type II1 factor, A0 is an abelian von Neumann subal-
gebra ofM, andAk is a diffuse abelian von Neuamnn subalgebra ofM. The rest
follows from Lemma 3.1, Proposition 3.2 and 3.3, and Theorem 3.4.

4. CUT-AND-PASTE THEOREM

The proof of following theorem, needed in Section 5, is based on a “cut-and-
paste” trick from [6] or [4].

THEOREM 4.1. Suppose thatM is a von Neumann algebra with a tracial state τ.

Suppose {eij}k
i,j=1 is a system of matrix units of a type Ik subfactor inMwith

k
∑

j=1
ejj = I.

If x1, . . . , xn are the elements inM such that

I(x1, . . . , xn; {ejj}k
j=1) = c2

with c 6 1/2− 1/k, then there exists a projection q in W∗({x1, . . . , xn, eij; 1 6 i, j 6
k}) so that

τ(S(q; {ejj}k
j=1)) 6 2c +

2
k

and
W∗({q, eij; 1 6 i, j 6 k}) = W∗({x1, . . . , xn, eij; 1 6 i, j 6 k}),

where
I(x1, . . . , xn; {ejj}k

j=1), and S(q; {ejj}k
j=1)

are as defined in Definition 2.1 and 2.2.

Proof. Let

T = {(i, j, p) | eiixpejj 6= 0, 1 6 i, j 6 k, 1 6 p 6 n}.
Note that

|T | = k2 · I(x1, . . . , xn; {ejj}k
j=1) = c2k2,

and the cardinality of the set

{(s, t) | 1 6 s 6 [ck] + 1, [ck] + 2 6 t 6 2[ck] + 2}
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is equal to ([ck] + 1)2 > c2k2. There exists an injective mapping from (i, j, p)∈T to

(s, t) ∈ {(s, t) | 1 6 s 6 [ck] + 1, [ck] + 2 6 t 6 2[ck] + 2},
and denote this map by (i, j, p) 7→ (s(i, j, p), t(i, j, p)). Then each eiixpejj may be
replaced by es(i,j,p)i xpejt(i,j,p) for all (i, j, p) ∈ T . Let

y = ∑
(i,j,p)∈T

(es(i,j,p)ixpejt(i,j,p) + (es(i,j,p)ixpejt(i,j,p))
∗),

q1 =
[ck]+1

∑
s=1

ess and q2 =
2[ck]+2

∑
t=[ck]+2

ett.

Without loss of generality, we can assume that ‖y‖ 6 1. Then let

q =
1
2

q1(1 + (1− y2)1/2)q1 +
1
2

y +
1
2

q2(1− (1− y2)1/2)q2.

Note that

y = q1yq2 + q2yq1 and y2 = q1yq2yq1 + q2yq1yq2.

Let u = q1(1− y2)1/2q1 + y− q2(1− y2)1/2q2. Thus, u = u∗ and

u2 = (q1(1− y2)1/2q1 + y− q2(1− y2)1/2q2)2

= ((q1 − q1yq2yq1)1/2 + q1yq2 + q1yq2 − (q2 − q2yq1yq2)1/2)2

= q1 + q2.

Now it is not hard to check that

q =
q1 + q2 + u

2
=

(q1 + q2) + (q1(1− y2)1/2q1 + y− q2(1− y2)1/2q2)
2

is a projection inM with τ(S(q; {ejj}k
j=1)) 6 2c + 2/k. By the construction of q,

we know that W∗({q, eij; 1 6 i, j 6 k}) = W∗({x1, . . . , xn, eij; 1 6 i, j 6 k}).

The following theorem indicates the relationship between G(M) and singly
generated type II1 factors.

THEOREM 4.2. SupposeM is a type II1 factor with the tracial state τ. If G(M) <
1/4, thenM is singly generated.

Proof. Note that M is a type II1 factor. From the preceding theorem and
the definition of G(M), for a sufficiently large integer k, there exist a system of
matrix units, {eij}k

i,j=1, of a Ik subfactor ofM and a projection q inM so that the
following hold:

(i) {q} ∪ {eij}k
i,j=1 generatesM; and

(ii) τ(S(q; {ejj}k
j=1)) 6 2

√
G(M) + 2/k < 1− 1/k.

Therefore we can assume that e11 and q are two mutually orthogonal pro-

jections ofM. Let x1 = e11 + 2q and x2 =
k−1
∑

i=1
(ei,i+1 + e∗i,i+1). Since e11 and q are
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mutually orthogonal, we know that e11 and q are in the von Neumann subalgebra
generated by x1. Thus {eij}k

i,j=1 is in the von Neumann algebra generated by x1

and x2. Combining with the fact that {q} ∪ {eij}k
i,j=1 generatesM, we obtain that

x1, x2 are two self-adjoint elements of M that generate M as a von Neumann
algebra.

REMARK 4.3. Instead of constructing a projection q in Theorem 4.1, if we are
interested in constructing a self-adjoint element, then the result in Theorem 4.2
can be improved as follows. SupposeM is a type II1 factor with the tracial state
τ. If G(M) < 1/2, thenM is singly generated.

5. MAIN RESULTS

The following lemma essentially comes from Popa’s remarkable paper [17].

LEMMA 5.1. Suppose M is a type II1 factor with the tracial state τ. Suppose
{pj}k

j=1 is a family of mutually orthogonal projections in M with each τ(pj) = 1/k.
Then there exists a hyperfinite type II1 subfactor R ofM such that R′ ∩M = CI and
{pj}k

j=1 ⊆ R.

Proof. By [17], there exists a hyperfinite subfactor R0 ofM such that R′0 ∩
M = CI. Since M is a type II1 factor, there exists a unitary element w in M
such that {pj}k

j=1 ⊂ w∗R0w. Let R = w∗R0w. Then R is a hyperfinite type II1

subfactor ofM such thatR′ ∩M = CI and {pj}k
j=1 ⊆ R.

RecallM1 is called an irreducible subfactor of a type II1 factorM ifM1 ⊂
M andM′

1 ∩M = CI.

LEMMA 5.2. Suppose thatM is a type II1 factor with the tracial state τ. Suppose
N is a von Neumann subalgebra ofM with G(N ) = c. Then for each ε > 0, there exists
an irreducible subfactorMε ofM such that N ⊆Mε ⊆M and G(Mε) 6 c + ε.

Proof. Since G(N ) = c, there exist some positive integer k > 8/ε, a family
of mutually orthogonal projections {pj}k

j=1 in N with τ(pj) = 1/k for 1 6 j 6 k,
and a family of generators {x1, . . . , xn} of N , such that

I(x1, . . . , xn; {pj}k
j=1) 6 c +

ε

2
.

By Lemma 5.1, we can find an irreducible hyperfinite type II1 subfactor R ofM
such that {pj}k

j=1 ⊂ R. Thus there exists a system of matrix units {eij}k
i,j=1 of a Ik

subfactor Mk ofR such that ejj = pj for each j = 1, . . . , k. NoteR ' R1 ⊗Mk for
some hyperfinite type II1 subfactor R1 of R. By Theorem 3.4 and Theorem 4.2,
we know the hyperfinite subfactor R1 is generated by two self-adjoint elements
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y1, y2 that commute with Mk. By Proposition 3.2, Mk is generated by two self-

adjoint elements z1 = e11 = p1 and z2 =
k−1
∑

j=1
(ej,j+1 + ej+1,j) as a von Neumann

algebra. A little computation shows that

I(x1, . . . , xn, y1, y2, z1, z2; {pj}k
j=1) 6 c +

ε

2
+

2
k

+
2
k

6 c + ε.

LetMε be the von Neumann subalgebra generated by R and N inM, which is
also generated by x1, . . . , xn, y1, y2, z1, z2 inM as a von Neumann algebra. Since
R is an irreducible type II1 subfactor of M, Mε is also an irreducible type II1
subfactor ofM. Moreover G(Mε)6I(x1, . . . , xn, y1, y2, z1, z2; {pj}k

j=1)6 c+ε.

5.1. THE CASE WHEN THE INTERSECTION OF TWO VON NEUMANN SUBALGE-
BRAS IS DIFFUSE. We start this subsection with the following definition which is
just for our convenience.

DEFINITION 5.3. The family of elements {eij}k
i,j=1 is called a subsystem of

matrix units of a von Neumann algebraM if the following hold:
(i) {eij}k

i,j=1 ⊂M;

(ii) there exists a projection p inM such that
k
∑

j=1
ejj = p;

(iii) e∗ij = eji for 1 6 i, j 6 k;
(iv) eilel j = eij for 1 6 i, l, j 6 k.

Next proposition is our main technical result in the paper.

PROPOSITION 5.4. Suppose that M is a type II1 factor with the tracial state τ.
Suppose {Nk}∞

k=1 is a sequence of von Neumann subalgebras ofM such that {Nk}∞
k=1

generates M as a von Neumann algebra and Nk ∩ Nk+1 is a diffuse von Neumann
subalgebra ofM for all k > 1. Suppose, for each k > 1, ε > 0, there is an irreducible
subfactor Mk,ε ofM such that Nk ⊆Mk,ε ⊆M and G(Mk,ε) 6 ε. Then G(M) =
0. In particular,M is singly generated.

Proof. Let ε < 1/8 be a positive number. From the assumption on N1, there
exists an irreducible type II1 subfactor M1 of M such that N1 ⊆ M1 ⊆ M
and G(M1) 6 ε. By Theorem 4.1 and the definition of G(M1), for a sufficiently
large integer m1 > 3/ε, there exist a projection q1 inM1 and a system of matrix

units {e(1)
ij }

m1
i,j=1 ofM1 such that

m1
∑

j=1
e(1)

jj = I, τ(S(q1; {e(1)
jj }

m1
j=1)) 6 3ε, and {q1} ∪

{e(1)
ij }

m1
i,j=1 generatesM1 as a von Neumann algebra. Without loss of generality,

we can assume that e(1)
11 , e(1)

22 , q are mutually orthogonal projections inM1.
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CLAIM 1. There is a sequence of positive integers {mk}∞
k=1, a sequence of irre-

ducible type II1 subfactorsMk ofM, subsystems of matrix units {{e(k)
ij }

mk
i,j=1}

∞
k=1, and

a family of projections {qk}∞
k=1, such that:

(i) Nk ⊆Mk ⊆M for k > 1;

(ii)
mk+1

∑
j=1

e(k+1)
jj = e(k)

22 for k > 1;

(iii) qk+1 = e(k)
22 qk+1e(k)

22 , qk+1e(k+1)
11 = 0, qk+1e(k+1)

22 = 0 for k > 1;

(iv) W∗(M1 ∪ · · · ∪Mk) = W∗({q1, . . . , qk, e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k}) for

k > 1.

Proof of Claim. We have already finished the construction when k = 1. Sup-
pose that we have finished the construction till k-step. Note that, by the assump-
tion on Nk+1, there exists an irreducible subfactorMk+1 ofM such that

G(Mk+1) 6
( 1

8m1 · · ·mk

)2
,

and Nk+1 ⊆Mk+1 ⊆M, i.e., (i) holds.
By the definition of G(Mk+1), there exist a sufficiently large integer mk+1 >

4m1 · · ·mk + 6, a family of mutually orthogonal projections {pj}
m1···mk+1
j=1 inMk+1

with each τ(pj) = 1/m1 · · ·mk+1 and a family of generators {x1, . . . , xn} ofMk+1
such that

I(x1, . . . , xn; {pj}
m1···mk+1
j=1 ) 6

( 1
4m1 · · ·mk

)2
.(∗)

From the induction hypothesis on eachMj, we know that {Mj}k
j=1 are a family

of irreducible type II1 subfactors ofM, which implies W∗(M1 ∪ · · · ∪Mk) is a
type II1 subfactor ofM. And

W∗({q1, . . . , qk, e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k}) = W∗(M1 ∪ · · · ∪Mk).(∗∗)

Let {e(k+1)
ij }mk+1

i,j=1 be a subsystem of matrix units in W∗(M1 ∪ · · · ∪Mk) such that

e(k)
22 =

mk+1

∑
j=1

e(k+1)
jj , i.e., (ii) holds.

Then

Tk+1 = {e(1)
i12 · · · e

(k)
ik ,2e(k+1)

st e(k)
2,jk
· · · e(1)

2j1
| 1 6 ip, jp 6 mp, 1 6 p 6 k, 1 6 s, t 6 mk+1}

is a system of matrix units of a Im1m2···mkmk+1 subfactor of W∗(M1 ∪ · · · ∪Mk);
and

Pk+1 = {e(1)
i12 · · · e

(k)
ik ,2e(k+1)

ss e(k)
2,ik
· · · e(1)

2i1
| 1 6 ip 6 mp, 1 6 p 6 k, 1 6 s 6 mk+1}

is a family of mutually orthogonal equivalent projections in W∗(M1 ∪ · · · ∪Mk)
with sum IM. Note the following facts: (1)Mk ∩Mk+1 is a diffuse von Neumann
subalgebra; (2) Pk+1 is a family of mutually orthogonal equivalent projections
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with sum IM in the type II1 subfactor W∗(M1 ∪ · · · ∪Mk); (3) {pj}
m1···mk+1
j=1 is

a family of mutually orthogonal equivalent projections with sum IM in the type
II1 subfactor Mk+1; (4) The cardinalities of {pj}

m1···mk+1
j=1 and Pk+1 are equal to

m1 · · ·mk+1. Thus there exist unitary elements vk+1 in W∗(M1 ∪ · · · ∪Mk) and
wk+1 inMk+1 such that wk+1vk+1 maps Pk+1, one to one, onto {pj}

m1···mk+1
j=1 . By

(∗), we have that

I(v∗k+1w∗k+1x1wk+1vk+1, . . . , v∗k+1w∗k+1xnwk+1vk+1;Pk+1) 6
( 1

4m1 · · ·mk

)2
.

By Theorem 4.1, there exists a projection qk+1 inM so that

W∗({v∗k+1w∗k+1x1wk+1vk+1, . . . , v∗k+1w∗k+1xnwk+1vk+1, Tk+1})
=W∗({qk+1} ∪ Tk+1)(∗∗∗)

and

τ(S(qk+1;Pk+1)) 6
1

2m1 · · ·mk
+

2
mk+1

<
1

m1 · · ·mk
− 3

m1 · · ·mk+1
.

Because

τ(e(k)
22 ) =

1
m1 · · ·mk

, τ(e(k+1)
11 ) = τ(e(k+1)

22 ) =
1

m1 · · ·mkmk+1
,

we might assume that qk+1 = e(k)
22 qk+1e(k)

22 , qk+1e(k+1)
11 = 0, qk+1e(k+1)

22 = 0, i.e.,
(iii) holds.

Note vk+1 is in W∗(M1 ∪ · · · ∪Mk), which, by (∗∗), is in the von Neumann
algebra generated by {q1, . . . , qk} ∪ {{e

(p)
ij }i,j=1,...,mp ;16p6k}. On the other hand,

W∗(Tk+1) = W∗({e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k + 1}).

Together with (∗∗∗), we get that {w∗k+1x1wk+1, . . . , w∗k+1xnwk+1} is contained in
the von Neumann subalgebra generated by {q1, . . . , qk, qk+1} ∪ Tk+1 inM.

However{w∗k+1x1wk+1, . . . , w∗k+1xnwk+1} is also a family of generators of
Mk+1, because wk+1 is unitary element in Mk+1. Hence, Mk+1 is in the von
Neumann algebra generated by {q1, . . . , qk, qk+1} ∪ Tk+1.

Combining with the facts that

W∗(M1 ∪ · · · ∪Mk) = W∗({q1, . . . , qk, e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k}) ⊇ Tk+1,

and

qk+1 ∈W∗({v∗k+1w∗k+1x1wk+1vk+1, . . . , v∗k+1w∗k+1xnwk+1vk+1, Tk+1})
⊆W∗(M1 ∪ · · · ∪Mk ∪Mk+1 ∪ Tk+1),
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we know that
W∗(M1 ∪ · · · ∪Mk ∪Mk+1)

⊆W∗(Mk+1 ∪ {q1, . . . , qk, e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k + 1})

⊆W∗(Mk+1 ∪ {q1, . . . , qk, Tk+1}) ⊆W∗({q1, . . . , qk+1} ∪ Tk+1)

⊆W∗({q1, . . . , qk+1, e(p)
ij ; 1 6 i, j 6 mp, 1 6 p 6 k + 1})

⊆W∗(M1 ∪ · · · ∪Mk ∪Mk+1 ∪ Tk+1)

⊆W∗(M1 ∪ · · · ∪Mk ∪Mk+1);

whence (iv) holds. This finishes the construction at (k + 1)-th step.

Let

x1 =
( ∞

∑
k=1

1
2k e(k)

11

)
+
( ∞

∑
k=1

1
3k qk

)
, x2 =

∞

∑
k=1

mk

∑
j=2

1
2k (e(k)

j−1,j + e(k)
j,j−1).

Note that, by induction hypothesis (iii), we know {e(k)
11 , qk; k > 1} is a family

of mutually orthogonal projections in M. Thus, {e(k)
11 , qk; k > 1} is in the von

Neumann subalgebra generated by x1. By the construction of x2 and the fact
that {e(k)

11 ; k > 1} is in the von Neumann subalgebra generated by x1, we get that

{e(k)
ij ; 1 6 i, j 6 mk, k > 1} is in the von Neumann subalgebra generated by
{x1, x2}. Hence, by induction hypothesis (iv), {Mk}∞

k=1 is in the von Neumann
subalgebra generated by {x1, x2}, i.e., x1, x2 are self-adjoint elements in M that
generate M as a von Neumann algebra. Moreover, a little computation shows
that

I(x1, x2; {e(1)
ii }

m1
i=1) 6 I

( q1

3
; {e(1)

ii }
m1
i=1

)
+ I

( ∞

∑
k=1

1
2k e(k)

11 ,
∞

∑
k=2

1
3k qk, x2; {e(1)

ii }
m1
i=1

)
6 3ε +

3
m1

6 4ε.

Therefore, G(M) 6 4ε, for all ε > 0. It follows that G(M) = 0.

Now we are ready to show our main result in this subsection.

THEOREM 5.5. Suppose thatM is a type II1 factor with the tracial state τ. Sup-
pose {Nk}∞

k=1 is a sequence of von Neumann subalgebras ofM that generatesM as a
von Neumann algebra and Nk ∩ Nk+1 is a diffuse von Neumann subalgebra of M for
each k > 1. If G(Nk) = 0 for k > 1, then G(M) = 0. In particular, M is singly
generated.

Proof. The result follows easily from Lemma 5.2 and Proposition 5.4.

The following corollaries follow easily from Theorem 5.5 (also see [4], [6]).
Recall a unitary element v inM is called a Haar unitary element if τ(vm) = 0 for
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all m 6= 0. It is observed that a Haar unitary element v generates a diffuse abelian
von Neumann subalgebra inM.

COROLLARY 5.6. SupposeM = L(SL(Z, 2m + 1)) (m > 1) is the group von
Neumann algebra associated with SL(Z, 2m + 1), the special linear group with integer
entries. Then G(M) = 0. In particular,M is singly generated.

Proof. By the structure of L(SL(Z, 2m + 1)), there is a sequence of Haar uni-
tary elements u1, . . . , un that generate L(SL(Z, 2m + 1)) as a von Neumann al-
gebra and satisfy ukuk+1 = uk+1uk for all 1 6 k 6 n − 1. Let Nk be the von
Neumann subalgebra generated by uk, uk+1 for 1 6 k 6 n − 1. Now the result
follows from Theorem 5.5.

COROLLARY 5.7. SupposeM is a nonprime type II1 factor, i.e.M'M1⊗M2
for some type II1 subfactors N1,N2 ofM. Then G(M) = 0. In particular,M is singly
generated.

Proof. We can assume thatM1, orM2, is generated by a sequence of Haar
unitary elements u1, . . . , un, . . ., or v1, . . . , vm, . . . respectively. Let N2k−1 be the
von Neumann subalgebra generated by {uk, vk} inM and N2k be the von Neu-
mann subalgebra generated by uk+1, vk inM for all k > 1. Now the result follows
from Theorem 5.5.

5.2. THE CASE WHEN A VON NEUMANN ALGEBRA IS GENERATED BY THE NOR-
MALIZERS OF A VON NEUMANN SUBALGEBRA. Suppose thatM is a diffuse von
Neumann subalgebra with a tracial state τ.

LEMMA 5.8. Suppose thatM is a type II1 factor with the tracial state τ. Suppose
N is a von Neumann subalgebra of M such that G(N ) = c. Suppose u is a unitary
element in M such that, for some Haar unitary element v in N , u∗vu is contained in
N . Then, for every ε > 0, there exists an irreducible type II1 subfactor Mε such that
W∗(N ∪ {u}) ⊆Mε ⊆M and G(Mε) 6 c + ε.

Proof. By Lemma 5.2, there exists an irreducible type II1 subfactor Nε ofM
such that N ⊆ Nε ⊆ M and G(Nε) 6 c + ε/2. Thus, by the definition of G(Nε),
there exist some positive integer k > 8/ε, a family of mutually orthogonal pro-
jections {pj}k

j=1 in Nε with τ(pj) = 1/k for 1 6 j 6 k, and a family of generators
{x1, . . . , xn} of Nε, such that

I(x1, . . . , xn; {pj}k
j=1) 6 c +

ε

2
.

Note u is a unitary element inM such that, for some Haar unitary element v in
N , u∗vu is contained in N . It follows that there exist two families of mutually
orthogonal projections, {ej}k

j=1, { f j}k
j=1, in N with τ(ej) = τ( f j) = 1/k such

that u∗eju = f j for j = 1, . . . , k. Note Nε is a type II1 subfactor that contains N .
There exist two unitary elements w1, w2 in Nε such that pj = w∗1ejw1 = w∗2 f jw2
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for j = 1, . . . , k. Thus w∗1uw2 pj = pjw∗1uw2 for j = 1, . . . , k. It follows

I(x1, . . . , xn, w∗1uw2; {pj}k
j=1) 6 c +

ε

2
+

1
k

6 c + ε.

Let Mε be the von Neumann subalgebra generated by x1, . . . , xn, w∗1uw2 in M;
whence G(Mε) 6 c + ε. Note Nε is contained in Mε, so are w1, w2. Thus u is
also contained in Mε, whence W∗(N ∪ {u}) ⊆ Mε ⊆ M. From the fact that
N ′ε ∩M = CI, it follows thatMε is an irreducible type II1 subfactor ofM.

THEOREM 5.9. Suppose thatM is a type II1 factor with the tracial state τ. Sup-
pose N is a von Neumann subalgebra ofM and {uk} is a family of unitary elements in
M such that {N , u1, u2, . . . } generatesM as a von Neumann algebra and there exists
a family of Haar unitary elements {vk}∞

k=1 in N satisfying u∗k vkuk in N for k > 1. If
G(N ) = 0, then G(M) = 0. In particular,M is singly generated.

Proof. LetNk be the von Neumann subalgebra generated byN and uk inM
for k > 1. Using Lemma 5.8 and Proposition 5.4, we easily obtain the result.

The following theorem is the generalization of Proposition 1 of [4].

THEOREM 5.10. Suppose thatM is a type II1 factor with the tracial state τ. Sup-
poseN is a von Neumann subalgebra ofM and {uk} is a family of Haar unitary elements
inM such that {N , u1, u2, . . . } generatesM as a von Neumann algebra. Suppose u1 is
inN and u∗k+1ukuk+1 is in the von Neumann subalgebra generated byN ∪{u1, . . . , uk}
for k > 1. If G(N ) = 0, then G(M) = 0. In particular,M is singly generated.

Proof. LetNk be the von Neumann subalgebra generated byN and u1,. . . ,uk
inM for k > 1. Using Lemma 5.8, inductively, and Proposition 5.4, we can easily
obtain the result.

Using Theorem 3.2 and 5.3, we have the following result.

THEOREM 5.11. Suppose thatM is a type II1 factor. Suppose that {uk}∞
k=1 is a

family of Haar unitary elements inM that generateM and u∗k+1ukuk+1 is contained in
the von Neumann subalgebra generated by {u1, . . . , uk} for k > 1. Then G(M) = 0. In
particular,M is singly generated.

As another corollary of Theorem 3.5 and Theorem 5.9, we obtain the follow-
ing result from [16].

COROLLARY 5.12. SupposeM is a type II1 factor with Cartan subalgebras. Then
G(M) = 0. In particular,M is singly generated.

5.3. THE CASE WHEN A TYPE II1 FACTOR HAS “PROPERTY Γ”. In this subsection,
we study the von Neumann algebras with “Property Γ” in the sense of Murry and
von Neumann.

LEMMA 5.13. Suppose thatM is a type II1 factor with the tracial state τ. Sup-
pose N is a von Neumann subalgebra of M such that G(N ) = 0. Suppose u is a
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unitary element inM such that, for a family of Haar unitary elements {vn, wn}∞
n=1 in

N , lim
n→∞

‖u∗vnu− wn‖2 = 0. Then, for every ε > 0, there exists an irreducible type II1

factorMε such that W∗(N ∪ {u}) ⊆Mε ⊆M and G(Mε) 6 ε.

Proof. Let ω be a free ultrafilter in β(N) \N andN ω be the ultra-product von
Neumann algebras ofN along the ultrafilter ω, i.e. the quotient of the C∗-algebra

∞
∏

m=1
N by the norm closed ideal I =

{
(xn)∞

n=1 ∈
∞
∏

m=1
N | τω((x∗nxn)∞

n=1) = 0
}

,

where τω is defined by τω((xn)∞
n=1) = lim

n→ω
τ(xn) for each (xn)∞

n=1 ∈
∞
∏

m=1
N (see

[12]).
Let

U = [(u, u, . . . , u, . . .)], V = [(v1, v2, . . . , vn, . . .)], W = [(w1, w2, . . . , wn, . . .)],

be unitary elements in N ω. Thus V, W are two Haar unitary elements so that
U∗VU = W. Let k be a positive integer and ε = 1/k. There is a family of mutually
orthogonal projections {Pi}k

i=1, or {Qi}k
i=1, in the abelian von Neumann subalge-

bra generated by V, or W respectively, in N ω such that τω(Pj) = τω(Qi) = 1/k

and U∗PiU = Qi for each 1 6 i 6 k. Or, U =
k
∑

i=1
PiU =

k
∑

i=1
PiUQi. Therefore, we

can assume that there exist families of mutually orthogonal projections {pj}k
j=1,

{qj}k
j=1 of N with each τ(pj) = τ(qj) = 1/k, such that

∥∥∥u −
k
∑

j=1
pjuqj

∥∥∥
2

< ε.

Let xk =
k
∑

j=1
pjuqj and Nk = W∗(N ∪ {xk}). Thus xk

‖·‖2−→ u. A straightforward

adaption of the proofs of Lemma 5.3 and Proposition 5.4 shows that there exist a
subsequence {kp}∞

p=1 of {k}∞
k=1 and an irreducible subfactorMε ofM such that

{Nkp}∞
p=1 ⊆ Mε ⊆ M and G(Mε) 6 ε. But xkp ∈ Nkp and xkp

‖·‖2−→ u, as p → ∞.
Thus u ∈ Mε. This completes the proof.

Using Lemma 5.13 and Proposition 5.4, we can easily obtain the following
theorem.

THEOREM 5.14. Suppose that M is a type II1 factor with the tracial state τ.
Suppose N is a von Neumann subalgebra of M and {uk} is a family of unitary ele-
ments inM such that {N , u1, u2, . . . } generatesM as a von Neumann algebra. Sup-
pose there exists a family of Haar unitary elements {vk,n, wk,n}∞

k,n=1 in N such that
lim

n→∞
‖u∗k vk,nuk − wk,n‖2 = 0 for k > 1. If G(N ) = 0, then G(M) = 0. In particular,

M is singly generated.

Using Theorem 5.3 in [1] and Theorem 3.5 and Theorem 5.14, we have the
following result from [6].



436 JUNHAO SHEN

COROLLARY 5.15. SupposeM is a type II1 factor with property Γ. Then G(M)
= 0. In particular,M is singly generated.

Proof. It follows from Theorem 5.3 in [1] that there exist a hyperfinite II1
factor R and a family of Haar unitary elements {vn}∞

n=1 of R such that ‖xvn −
vnx‖2 → 0 as n→ 0 for all x inM. The rest follows from Theorem 5.14 by letting
N to beR.

5.4. A SHORT SUMMARY AND SOME COROLLARIES. As a summary of the results
in this section, we have the following corollary.

COROLLARY 5.16. The following statements are true:
(i) G(M) = 0, if M is a diffuse hyperfinite von Neumann algebra with a tracial

state τ.
(ii) G(M) = 0 if the type II1 factorM is generated by a family of von Neumann sub-

algebras {Nj}∞
j=1 ofM such that G(Nj) = 0 and Nj ∩Nj+1 is a diffuse von Neumann

subalgebra for all j > 1;
(iii) G(M) = 0 if the type II1 factorM is generated by {N , u1, . . . , uj, . . .}, where
N is a von Neumann subalgebra N ofM with G(N ) = 0 and {uj}∞

j=1 is a family of
unitary elements ofM such that, for every j > 1, u∗j vjuj is in N for some Haar unitary
element vj in N ;

(iv) G(M) = 0 if a type II1 factor M is generated by an ascending sequence of
subalgebras {Nk}∞

k=1 such that G(Nk) = 0;
(v) IfM is a type II1 factor and G(M) < 1/4, thenM is singly generated.

Proof. (i) follows from Theorem 3.5. (ii) is from Theorem 5.5. (iii) is from
Theorem 5.9. (iv) follows from Theorem 5.5. (v) is from Theorem 4.2

Using Theorem 3.5, 5.10 and 5.11, we have the following result.

THEOREM 5.17. SupposeM is a type II1 factor generated by a family {uij}∞
i,j=1

of Haar unitary elements inM such that:
(i) for each i, j, u∗i+1,juijui+1,j is in the von Neumann subalgebra generated by

{u1j, . . . , uij};
(ii) for each j > 1, {u1j, u2j, . . .} ∩ {u1,j+1, u2,j+1, . . .} 6= ∅.

Then G(M) = 0. In particular,M is singly generated.

REMARK 5.18. Combining with the results in [4], [7], [8], we have shown
that most of the type II1 factors, whose free entropy dimensions are known to be
less than or equal to one, are singly generated.

EXAMPLE 5.19. New examples of singly generated II1 factors can be con-
structed by considering the group von Neumann algebras associated with some
countable discrete groups. The following are a few of them:
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(i) Let G be the group 〈g1, g2, . . . | gigi+1 = gi+1gi, i = 1, . . .〉. Then G(L(G)) =
0 and L(G) is singly generated, where L(G) is the group von Neumann algebra
associated with G.

(ii) Let G be the group 〈a, b, c | ab2a−1 = b3, ac2a−1 = c3〉. Then G(L(G)) = 0
and L(G) is singly generated.

(iii) Let R is the hyperfinite II1 factor and B is a diffuse von Neumann subal-
gebra of B. Let

M = R ∗B ∗R ∗B ∗R ∗B ∗ · · ·
be the amalgamated free product of R over B. Then by Theorem 5.5, we know
that G(M) = 0 andM is singly generated.

REFERENCES

[1] E. CHRISTENSEN, F. POP, A. SINCLAIR, R. SMITH, Hochschild cohomology of factors
with Property Γ, Ann. of Math. (2) 158(2003), 635–659.

[2] A. CONNES, A factor of type II1 with countable fundamental group, J. Operator Theory
4(1980), 151–153.

[3] R. DOUGLAS, C. PEARCY, Von Neumann algebras with a single generator, Michigan
Math. J. 16(1969), 21–26.

[4] L. GE, J. SHEN, Generators problems for certain Property T factors, Proc. Nat. Acad.
Sci. U.S.A. 99(2002), 565–567.

[5] L. GE, J. SHEN, On free entropy dimension of finite von Neumann algebras, Geom.
Funct. Anal. 12(2002), 546–566.

[6] L. GE, S. POPA, On some decomposition properties for factors of type II1, Duke Math.
J. 94(1998), 79–101.

[7] D. HADWIN, J. SHEN, Free orbit-dimension of finite von Neumann algebras, arXiv
math.OA/0510651.

[8] K. JUNG, Strongly 1-bounded von Neumann algebras, arXiv math.OA/0510576.

[9] R. KADISON, Problems on von Neumann algebras, in Proceedings Conference on
Operator Algebras and Their Applications, Louisiana State Univ., Baton Rouge, La.
1967.

[10] R. KADISON, J. RINGROSE, Fundamentals of the Operator Algebras, vols. I and II, Aca-
demic Press, Orlando 1983 and 1986.

[11] J. VON NEUMANN, Uber Funktionen von Funktionaloperatoren, Ann. of Math. (2)
32(1931), 191–226.

[12] D. MCDUFF, Central sequences and the hyperfinite factors, Proc. London Math. Soc.
21(1970), 443–461.

[13] F. MURRAY, J. VON NEUMANN, On the rings of operators. IV, Ann. of Math. (2)
44(1943), 716–808.

[14] C. OLSEN, W. ZAME, Some C∗-algebras with a single generator, Trans. Amer. Math.
Soc. 215(1976), 205–217.



438 JUNHAO SHEN

[15] C. PEARCY, W∗-algebras with a single generator, Proc. Amer. Math. Soc. 13(1962), 831–
832.

[16] S. POPA, Notes on Cartan subalgebras in type II1 factors, Math. Scand. 57(1985), 171–
188.

[17] S. POPA, On a problem of R.V. Kadison on maximal abelian ∗-subalgebras in factors,
Invent. Math. 65(1981/82), 269–281.

[18] D. TOPPING, Lectures on Operator Algebras, Lecture Notes in Math., vol. 247, Springer-
Verlag, Berlin-New York 1972.

[19] D. VOICULESCU, The analogues of entropy and of Fisher’s information measure in
free probability theory. II, Invent. Math. 118(1994), 411–440.

[20] D. VOICULESCU, The analogues of entropy and of Fisher’s information measure in
free probability theory. III: The absence of Cartan subalgebras, Geom. Funct. Anal.
6(1996), 172–199.

[21] D. VOICULESCU, Free entropy dimension 6 1 for some generators of Property T fac-
tors of type II1, J. Reine Angew. Math. 514(1999), 113–118.

[22] W. WOGEN, On generators for von Neumann algebras, Bull Amer. Math. Soc. 75(1969),
95–99.

JUNHAO SHEN, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY

OF NEW HAMPSHIRE, DURHAM, NH, 03824, U.S.A
E-mail address: junhao.shen@unh.edu

Received February 27, 2007; revised July 8, 2007.


