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ABSTRACT. We investigate the codimension of commutator spaces [I, B(H)]
of operator ideals on a separable Hilbert space, i.e., “How many traces can
an ideal support?” We conjecture that the codimension can be only zero, one,
or infinity. The conjecture is proven for all ideals not contained in the largest
arithmetic mean at infinity stable ideal and not containing the smallest am-
stable ideal, for all soft-edged ideals (i.e., I = se(I) = IK(H)) and all soft-
complemented ideals (i.e., I = scI = I/K(H)), which include most classical
operator ideals. We apply some of the methods developed to two problems
on elementary operators studied by V. Shulman.
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1. INTRODUCTION

The study of operator ideals, two-sided ideals of the algebra B(H) of the
bounded linear operators on a complex separable infinite dimensional Hilbert
space H, started with J. Calkin [7] in 1941. From early on (e.g., [17], [6], [28]
and [3]), central in this area was the notion of commutator space and the related
notion of trace. The commutator space (or commutator ideal) [I, B(H)] of an ideal
I is the linear span of the commutators of operators in I with operators in B(H).
A trace on an operator ideal is a linear functional (not necessarily positive) that
vanishes on its commutator space or, equivalently, that is unitarily invariant.

The introduction of cyclic cohomology in the early 1980’s by A. Connes and
its linkage to algebraic K-theory by M. Wodzicki in the 1990’s provided additional
motivation for the complete determination of the structure of commutator spaces.
(Cft. [8],[9], [10] and [38].)

This was achieved by K. Dykema, T. Figiel, G. Weiss and M. Wodzicki [13]
and [14] who fully characterized commutator spaces in terms of arithmetic (Ce-
saro) means of monotone sequences ([13], Theorem 5.6) thus concluding a line of



4 VICTOR KAFTAL AND GARY WEISS

research introduced in G. Weiss” Ph.D. Dissertation [34] (see also [35] and [37])
and developed significantly by N. Kalton in [26].

The introduction of arithmetic mean operations on ideals and the results in
[13] in particular, opened up a new area of investigation in the study of operator
ideals and have become an intrinsic part of the theory. To explore this area is
the goal of our program outlined in [19], of which this paper and [20] are the
beginning. In this paper we focus mainly on the question: “How many nonzero
traces can an ideal support?” and on developing tools to investigate it.

From [13] we know that an ideal supports “no nonzero traces” precisely
when the ideal is stable under the arithmetic mean (am-stable).

In Section 6 we prove that an ideal that does not contain the diagonal op-
erator diag(1, %, %, ...) supports “one” nonzero trace precisely when the ideal is
stable under the arithmetic mean at infinity (am-co stable). Here, what is meant
by “one” is that the ideal supports a trace that is unique up to scalar multiples.

In Section 7 we prove that “infinitely many” traces are supported by ideals
whose soft-interior or soft-complement are not am-stable or not am-oo stable and
by other classes of ideals as well. This motivates our conjecture that the num-
ber of traces that an ideal can support must always be either “none”, “one”, or
“infinitely many”.

In the first part of this paper we develop the above mentioned notions of
arithmetic mean, arithmetic mean at infinity, soft interior and soft complement of
ideals as their interplay provides the tools for this study.

The arithmetic mean of operator ideals was introduced and played an im-
portant role in [13]; we review some if its properties in Section 2.

While the soft-interior and soft-complement of ideals have appeared im-
plicitly in numerous situations in the literature, to the best of our knowledge they
have never been formally studied before. We introduce them briefly in Section 3
and study their interplay with the am operations; we leave to [20] a more com-
plete development of these notions and of the ensuing ideal classes.

The arithmetic mean at infinity was used among others in [1], [13], and [39]
as an operation on sequences. In Section 4 we develop the properties of the am-co
operations on ideals which parallel only in part those of the am operations and
we study their interplay with the soft-interior and soft-complement operations.
The notion of regularity for sequences, which figured prominently in the study of
principal ideals in [16] and was essential for the study of positive traces on princi-
pal ideals in [32], has a dual form for summable sequences that we call regularity
at infinity (Definition 4.11). In Theorem 4.12 we link regularity at infinity to other
sequence properties, including a Potter type inequality used by Kalton in [25] and
Varga type properties (cf. [32]) and to the Matuszewska index introduced in this
context in [13].

In Section 5, we study trace extensions from one ideal to another and in
the process we obtain hereditariness (solidity) of the cone of positive operators
(L1 4 [I, B(H)])" where L7 is the trace class. (The hereditariness of the cone
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(F+[I,B(H)])*, where F is the finite rank ideal, is obtained in Corollary 6.2.)
These results are applied in Propositions 5.7 and 5.8 to two problems on elemen-
tary operators studied by V. Shulman (private communications related to [31]).

We do not know for which ideals, if not all, the cones (] + [I, B(H)])* are
hereditary beyond the cases | = {0},F,L1,1 C Jor ] C [I, B(H)].

In Section 6 we characterize those ideals of trace class operators that support
a unique trace (up to scalar multiples): they are precisely the am-co stable ideals
(Theorem 6.6).

In Section 7 we bring the previously developed tools to bear on the question
of how many traces an ideal can support.

Ideals divide naturally into three classes from the perspective developed
here:

o the “small” ideals, i.e., the ideals contained in the largest am-co stable ideal
st (L£1) C L1, (see Definition 4.14);

e the “large” ideals, i.e., the ideals containing the smallest am-stable ideal
st?(L1), (see ibid);

o the “intermediate” ideals, i.e., all remaining ideals.

Intermediate ideals always support infinitely many traces, or more pre-
cisely, [I, B(H)] has uncountable codimension in I (Theorem 7.2(iii)).

We conjecture that the codimension of [I, B(H)] in I can be only one or in-
finity for small ideals and zero or infinity for large ideals.

The conjecture is proven for soft-edged ideals (I = sel) and soft comple-
mented ideals (I = scl) (Corollary 7.5). These include all the classical ideals we
examined including all those investigated in [13].

A stronger result (Theorem 7.2) is that if sel (or, equivalently, scl) is not
am-oo stable (for small ideals) or am-stable (for large ideals), then [I, B(H)]| has
uncountable codimension in .

This leaves the conjecture open for small ideals that are not am-co stable and
for large ideals that are not am-stable but have am-stable soft interiors.

The key technical tool for these results is Theorem 7.1 which states that
[I, B(H)] has uncountable codimension in I whenever sel is not contained in
F+[I,B(H)].

In Theorem 7.8 and Corollary 7.9 a different technique shows that I supports
infinitely many traces for a class of ideals that include some cases where sel is am-
stable.

Following this paper (the first of the program outlined in [19]) is [20] where
we study the soft-interior and soft-complement operations on ideals and their
interplay with the am and am-co operations. In forthcoming papers we will in-
vestigate:

(1) Connections between (infinite) majorization theory, stochastic matrices,
infinite convexity notions for ideals, diagonal invariance, and the am and am-co
operations [24].
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(2) Lattice structure for B(H) and for some distinguished classes of ideals
and their density properties. Example: between two distinct principal ideals, at
least one of which is am-stable (respectively, am-oco stable), lies a third am-stable
(respectively, am-co stable) principal ideal [23].

(3) First and second order arithmetic mean cancellation and inclusion prop-
erties [23]. Example: for which ideals I does I, = ], (respectively, I, C [, 1o D Ja)
imply I = ] (respectively, I C J, I D ])? Are there “optimal” ideals | for the
inclusions I, C J; and I, D J,? In the principal ideal case concrete answers are
obtained. For instance, (¢), = (1), implies () = () for every 7 if and only if &
is regular.

(4) In [21] conditions on ¢ are given which guarantee that (¢),2. = (1)
implies (), = (1), and a counterexample to this implication for the general case
is provided, which settles a question of Wodzicki.

2. PRELIMINARIES AND THE ARITHMETIC MEAN

The natural domain of the usual trace Tr on B(H) (with H a separable
infinite-dimensional complex Hilbert space) is the trace class ideal £1. However,
ideals of B(H) can support other traces.

DEFINITION 2.1. A trace T on an ideal [ is a unitarily invariant linear func-
tional on I.

In this paper, traces are neither assumed to be positive nor faithful. All ideals
are assumed to be proper.

Since UXU* — X = [UX,U*] € [I,B(H)] for every X € I and every uni-
tary operator U and since unitary operators span B(H), unitarily invariant linear
functionals on an ideal I are precisely the linear functionals on I that vanish on
the commutator space [I, B(H)|. Also known as the commutator ideal it is defined
as the linear span of commutators of operators in I with operators in B(H). Thus
traces can be identified with the elements of the linear dual of the quotient space

[LB(H)®

A constant theme in the theory of operator ideals has been its connection to
the theory of sequence spaces.

Calkin [7] established a correspondence between the two-sided ideals of
B(H) and the characteristic sets, i.e., the positive cones of ¢} (the collection of se-
quences decreasing to 0) that are hereditary and invariant under ampliations

C: 9§—>Dm€f:: <§1/"-rClr€2/-"/€2/€3/~--r€3r--'>

where each entry (; of § is repeated m-times. The order-preserving lattice isomor-
phism I — X(I) maps each ideal to its characteristic set Z(I) := {s(X) : X € I}
where s(X) denotes the sequence of s-numbers of X, i.e., all the eigenvalues of
|X| = (X*X)!/2 repeated according to multiplicity, arranged in decreasing order,
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and completed by adding infinitely many zeroes if X has finite rank. Conversely,
for every characteristic set X C ¢}, if I is the ideal generated by {diag¢ : § € X}
where diag(¢ is the diagonal matrix with entries ¢1,8»,... , then we have that
X = X(I). We shall also need the sequence space S(I) := {¢ € ¢o : |E|* € Z(I)}
where |¢|* denotes the monotonization (in decreasing order) of |¢|. Equivalently,
S(I) = {¢ € ¢, : diag¢ € I}.

More recently Dykema, Figiel, Weiss, and Wodzicki [13] characterized the
normal operators in the commutator spaces [I, B(H)] in terms of spectral se-
quences. An important feature of their result is that membership in commutator
spaces (noncommutative objects) is reduced to certain conditions on associated
sequences (commutative ones).

When X € K(H), the ideal of compact operators on H, denote an ordered
spectral sequence for X by A(X) := (A(X)1,A(X),...), i.e., a sequence of all
the eigenvalues of X (if any), repeated according to algebraic multiplicity, com-
pleted by adding infinitely many zeroes when only finitely many eigenvalues
are nonzero, and arranged in any order so that |A(X)| is nonincreasing. For any
sequence /\z(/\n>, denote by A, the sequence of its arithmetic (Cesaro) means, i.e.,

n o
Aai= <;]§/\j>n_1'

A special case of Theorem 5.6 in [13] (see also Introduction of [13]) is:

THEOREM 2.2. Let I be a proper ideal, let X € I be a normal operator, and let
A(X) be any ordered spectral sequence for X. Then X € [I, B(H)] ifand only if A\(X), €
S(I) if and only if |A(X)4| < & for some & € X(I).

In fact, the conclusion holds under the less restrictive condition that A(X) is
ordered so that |A(X)| < # for some 57 € X(I) (see Theorem 5.6 of [13]).

Arithmetic means first entered the analysis of [Lq, B(H)] for a special case
in [34] and [35] and for its full characterization in [26]. As the main result in [13]
(Theorem 5.6) conclusively shows, arithmetic means are essential for the study
of traces and commutator spaces in operator ideals. [13] also initiated a system-
atic study of ideals derived via arithmetic mean operations (am ideals for short).
For the reader’s convenience we list the definitions and first properties from Sec-
tions 2.8 and 4.3 of [13].

If I is an ideal, then the arithmetic mean ideals ;I and I, called respectively
the pre-arithmetic mean and arithmetic mean of I, are the ideals with characteristic
sets

X(l):={Cecs:Cac Z()}, X(la):={€€c):i=0(n,) forsomen € X(I)}.

The arithmetic mean-closure I~ and the arithmetic mean-interior 1° of an ideal (am-
closure and am-interior for short) are defined as

I7:= 4(I;) and I°:=(,I),
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and for any ideal I, the following 5-chain of inclusions holds:
JdcCIl°clIcI Cl,.

A restriction of Theorem 2.2 to positive operators can be reformulated in
terms of pre-arithmetic means as:

[LB(H)]" = (aI)"

where (,I)" denotes the cone of positive operators in ,I. As a consequence,
[I,B(H)]* is always hereditary, i.e., solid, ,I C [I,B(H)] C I, and ,I and I are,
respectively, the largest ideal contained in [I, B(H)], and the smallest ideal con-
taining [I, B(H)] (for the latter see Remark 6.3(iii)). Also, I = [I, B(H)] if and only
if I = ;1. Anideal with the latter property is called arithmetically mean stable (am-
stable for short) and it is easy to see, using the 5-chain mentioned above, that a
necessary and sufficient condition for am-stability is that I = I,. Am-stability for
many classical ideals and powers of ideals was studied extensively in 5.13-5.27
of [13].

For ¢ € cf, denote by (&) the principal ideal generated by diagl. Notice
that if §, 7 € ¢, then () C (7) if and only if { = O(Dyn) for some m € N;
so (&) = () if and only if both { = O(Dy,57) and 7 = O(Dx¢) hold for some
m,k € N. Thus (¢) = (1) implies ¢ < 7 (i.e.,, { = O(r) and n = O(¢)) if and only
if ¢ (and hence 77) satisfies the A, /»-condition, i.e., ¢ < D¢ (which is equivalent
to ¢ < Dy,¢ for all m € N). In this context recall the well-known A,-condition for
nondecreasing sequences supggin” < 00, i.e., g < Dy, g where (Dy/,,8)n = Qmn-

n

The arithmetic mean ¢, of a sequence ¢ € c always satisfies the elementary
inequality D¢, < 2¢, and hence also the A /y-condition. From this it follows
easily that (¢,) = (). and hence that the principal ideal (¢) is am-stable if and
only if { < &, i.e., ¢ is regular (cf. p. 143 (14.12) of [16]). The notion of regularity
plays a crucial role in Varga’s study of positive traces on principal ideals [32].

Of special importance in [13] and in this paper is the principal ideal (w),
where w denotes the harmonic sequence <%> Elementary computations show
that F;, = (L£1)s = (w) and that ,(w) = L£1. Hence ,I # {0} if and only if
w € X(I). An immediate but important consequence of Theorem 2.2 which will
be used often throughout this paper is that w € X(I) if and only if L1 C [I, B(H)]
ifand only if F C [I, B(H)].

3. SOFT INTERIOR AND SOFT COVER OF IDEALS

As mentioned in the Introduction, Theorem 7.1, which is one of our main
results, is formulated in terms of the notion of the soft interior of an ideal.
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DEFINITION 3.1. Given an ideal I, the soft interior of I is the product ideal
sel := IK(H) with characteristic set

X(sel):=={fec}:¢<anforsomen € c;,n e X(I)}.
The soft cover of I is the ideal scI with characteristic set
X(scI):={¢eci:af e X(I)foralla € c}}.

An ideal I is called soft-edged if sel = I and it is called soft-complemented if
scl = I. A pair of ideals I C ] is called a soft pair if I = se] and scl = J.

It is immediate to verify that the sets X(sel) and X(scI) are indeed charac-
teristic sets and that in the notations of Section 2.8 of [13], scI := I/K(H). Notice
that sel is the largest soft-edged ideal contained in I and scl is the smallest soft-
complemented ideal containing I. Also needed in this paper and easy to show is
that, for every ideal I, scsel = scl, sescl = sel, sel C I C scl, and sel C sclis a
soft pair. (cf. [19], [20]).

REMARK 3.2. This terminology is motivated by the fact that I is soft-edged
if and only if for every 1 € X(I) there is some { € X(I) such that n = 0o({).
Similarly, I is soft-complemented if and only if, for every ¢ € ¢} \ X(I), there is
some 17 € ¢\ X(I) such that 7 = 0({).

Soft-edged and soft-complemented ideals and soft pairs are common among
the classical operator ideals, that is, ideals I whose S(I)-sequence spaces are clas-
sical sequence spaces. In [20] we show that the following are soft-complemented:
countably generated ideals, the normed ideals &, induced by a symmetric norm-
ing function ¢, Orlicz ideals L, Lorentz ideals generated by a nondecreasing
Ar-function and, more generally, ideals whose characteristic set is a quotient of
the characteristic set of a soft-complemented ideal by an arbitrary set of sequences
X clo, 0)Z" and hence, in particular, Kothe duals £ /X and quotients I/] of a
soft-complemented ideal by an arbitrary ideal (see Section 2.8 of [13] for a discus-

sion on quotients). Also the following are soft-edged: the ideals 65)0) (the closure

of F under the norm of &), small Orlicz ideals ng), and Lorentz ideals gen-

erated by a nondecreasing A,-function. Moreover, 6((1,0) C &y and LE\?) CLym
are natural examples of soft pairs. (See [13] for a convenient reference for these
classical ideals.)

The condition sel ¢ F + [I, B(H)] in Theorem 7.1 will need to be reformu-
lated in terms of arithmetic means and arithmetic means at infinity. The first step
is established by the following commutation relations between the arithmetic and
pre-arithmetic mean ideal operations and the soft interior and soft complement
operations.

LEMMA 3.3. Let I be an ideal. Then:
(@) sc(al) C alscl).
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(i) sc(oI) = a(scl) ifand only if w & X(scl) \ X(I).
(i) se(I;) C (sel),.
(ii") se(ls) = (sel)q if and only if either I ¢ L1 or I = {0}.

Proof. (i) For { € X(sc(,I)) and all « € ¢, by the definition of soft com-
plement, a¢ € X(,I), that is, (a¢), € X(I). But clearly ai, < (ag), and hence
al, € X(I). Thus &, € X(scl) and ¢ € X(,(scl)).

(i") Recall from the end of Section 2 that for any ideal , ,J] = {0} if and only
if w ¢ Z(J). Consider separately the three cases: w ¢ X(scl), w € X(scI) \ X(I),
and w € XZ(I). If w ¢ X(scI), then 4(scI) = {0} and equality holds. If w €
X(scI) \ Z(I), then 4(scI) # {0} but ,] = {0}, so sc(sI) = {0} and equality
fails. Finally assume that w € X(I) and let { € X(,(scI)) and a € c}. In case
& € (' then aZ € ¢!, hence (a&), = O(w), af € X(,I) and thus ¢ € X(sc(,1)), so

equality holds. In case ¢ ¢ ¢!, it is easy to verify that &, := <(“§?” ) o= %‘%f/ 10

and hence (a¢), = &¢, € XZ(I). Thus af € X(,I) and hence ¢ € X(sc(,I)) and
equality holds.

(i) If ¢ € X(se(l,)) then & < ay, for some 7 € X(I) and « € ¢. Then from
the inequality in the proof of (i), ¢ < (an), € Z((sel)a).

(ii") Consider separately the three cases: I = {0}, {0} # I C Lyand I ¢ L;.
In the case I = {0} the equality is trivial, and if {0} # I C L, it fails trivially
since (sel), = I, = (w) (recalling that F, = (£1), = (w)) and since (w) is not
soft-edged. In the case that I ¢ L, for each { € X((sel)s), { < pa for some
p € X(sel),ie., p < an for some 7 € X(I) and « € c. By adding to 7 if necessary
an element of X(I) \ ¢!, one can insure that # ¢ ¢!, in which case, from the proof of
(i’), again there is an & € ¢}, for which (a7), = &1,. Butthen & < an, € Z((se(I,)).
By (ii) equality holds. &

PROPOSITION 3.4. Let I be an ideal. Then the following are equivalent:
(i) sel is am-stable;
(ii) scl is am-stable;
(iii) sel C ,I;
(iii’) sel C [I,B(H)];
(iv) scI D 1.
Proof. Assume first that I ¢ L.
(i) = (iii) Since sel C I and the pre-arithmetic mean is inclusion preserving,
it follows that sel = ,(sel) C ,I.
(iii) <> (iii’) Obvious since [I, B(H)|" = ,I* by Theorem 2.2.
(iii) = (ii) Condition (ii) is immediate from the chain of relations

scl = scsel C sc(,I) C 4(scl) C scl

which implies equality. For the first equality, recall the paragraph following Def-
inition 3.1; sc being inclusion preserving implies the first inclusion; Lemma 3.3(i)



TRACES ON IDEALS 11

implies the second inclusion; and the 5-chain of inclusions implies the last inclu-
sion.

(if) = (iv) From I C scl it follows that I, C (scI), = scl.

(iv) = (i) Incase I ¢ L1, (sel)q = se(l;) C sescl = sel C (sel),,
where the first equality follows from Lemma 3.3(ii’), the first inclusion holds since
se is inclusion preserving, the second equality holds for all ideals (recall again
the paragraph following Definition 3.1) and the last inclusion follows from the
5-chain.

In case I C L4, if I = {0} then all four conditions are trivially true and if
I # {0} then all four are false. Indeed the arithmetic mean of any nonzero ideal,
and hence every nonzero am-stable ideal, must contain (w) while I C £L; implies
that sel C scI C L1 € (w), which shows that (i), (ii), and (iv) are false. And since
al C 4(Lq) = {0} (recall the last paragraph of Section 2) but sel # {0}, (iii) too
is false. &

REMARK 3.5. The se and sc operations preserve am-stability by Lemma 3.3(i)
and Proposition 3.4. But am-stability of sel (or scI) does not imply am-stability of
I as shown by the construction in Theorem 7.8.

4. ARITHMETIC MEAN AT INFINITY

Since &, < w for every 0 # ¢ € (¢1)* := ' Nc}, nonzero ideals I C L4
all have arithmetic mean I, = (w). Thus the (Cesaro) arithmetic mean is not
adequate for distinguishing between ideals contained in £;. For such ideals, one
needs to employ instead the arithmetic mean at infinity

1 [e9)
= (5 L6
(see Section 2.1 (16) of [13], and [25], [39]).

In this section we develop properties of the am-co operation on sequences
including a characterization of co-regular sequences which is dual to the known
characterization of regular sequences and we introduce and investigate the am-co
operations on ideals. This will lead us to Proposition 4.20, which we find essential
for Section 7.

The following lemma analyzes the relations between the am-co operation
and the D, operations on sequences. Recall that if j = mn — p with n, p integers,
n>1,and 0 < p <m—1,then (Dmg)]- =

LEMMA 4.1. Let & € (¢1)*. Then form = 2,3,... one has:
() DinGace < (DG )acos
(i) (Dméam)]’ > ((Dmflé)ﬂoo)]' when j = (m —1)(m —2);
>
] =

(iii) (Dméa,) Z(mlfl) (Dy—18); when j = 2m(m —1);
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(iV) (Dl/mg)' = gm]' < ﬁ(gaw)for all ]

Proof. (i) Let j = mn — p withn, p 1ntegers n>1and 0 < p < m—1. Then
1 (0]
(Dm&)as)j= (DmG)i = pén+m ) G
" mn - p mng+1 ( 71; )
__Pr __7P mn > 4
mnipgn mn— p(gﬂoo)n mnﬁpén_._mnip(Dmgﬂoo)]/(Dmgaw>]

(ii) Let j = mn — p as above. Then

(Dmas)j = (Cac)n = (Dim-18a) (m—-1)n = (Dm-18)as) m—1)n = ((Dm-18)acs);-

The third equality follows from the proof of (i) for the case p = 0, and the in-
equality holds since (D,;,_1§),., is nonincreasing and j > (m — 1)(m — 2) implies
j = (m —1)n by elementary calculation.

(iii) Let2m(m—1) <j=mn—p = (m—1)(n+k) —p’ where0 < p <m—1
and 0 < p’ < m —2,and hence k > 1. Then

1n+k 1
(Dmgﬂoo) ‘:aoq 7;16]/ 7;‘:]/ §n+k—*< mfl‘:)j>m(Dm71§)]'

where the latter inequality holds since mn > j > 2m(m — 1) and hence

%Zml—l(l_'—p;p) —i-1) >2(ml_1)‘

(iv) Immediate by the monotonicity of ¢ since then

(m _1]€m] Z Gi<] gﬂoo 1

i=j+1

REMARK 4.2. Itis easy to see that the bounds in (i), (ii), and (iv) are sharp.
In lieu of the bound (7 in (iii)

e =0,1i.e., DyCu, does not majorize ml 1Dm-1¢, even for j large enough. Indeed,
forany j, set {; = 1for1 < i < 2j — 1 and 0 elsewhere. Then

—1
(D28as)2j-1 = (Gan)j = ]T <1=2Gj1.

COROLLARY 4.3. If & € (£1)* then (&) C (&an,)-

Proof. By Lemma 4.1(iii) for m = 2 we have ¢; < 2(D2¢,,,); for j > 4, and
thus¢ € 2((8a.)).

In contrast to the arithmetic mean case where the sequence ¢, always satis-
fies the A /»-condition, Example 4.5(ii) below shows that this is not always true
for ¢g,,. Moreover, Example 4.5(iii) shows that ¢, may satisfy the A, /,-condition
while ¢ does not. Corollary 4.4(ii) provides a necessary and sufficient condition
for ¢a., to satisfy the Aq/p-condition.
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COROLLARY 4.4. Let & € (£1)*,
(i) If € satisfies the A jp-condition, so does Cg.,.
(ii) &4, satisfies the Aq jp-condition if and only if ¢ = O(Ca., ).
Proof. (i) If D¢ < M¢ for some M > 0, then D&, < (D28)a., < MCa., by
Lemma 4.1(i).
(i) If Cq,, satisfies the Ay p-condition then { = O(DCs,) = O(Ea

o)
Lemma 4.1(iii). Conversely, assume that 0 # ¢ = O(a,,), i-e., §x < % r g

for some M > 0 and all k. Then &; > 0 for all k and

© .2 2n
Lot (Hgi) H(1+M) eXkni1 108(H) < @M IR w1 £ M,
Yitown & isurs Limka & kZain K

Hence ((g““’)) < 2M+1 for all n, i.e., &, satisfies the Ay /o-condition. &

Caco )2n
EXAMPLE 4.5. (i) Let { = w” where p > 1. Then §,, < ¢ satisfies the
A4 jp-condition.
(i) Let ¢ = (¢") where 0 < g < 1. Then {,, = 0(¢) and neither sequence
satisfies the A1 /,-condition.
(iii) Let 14 be an increasing sequence of integers for which n; > kny_; (with

ny = land k > 2), let (g;) € ¢ where Z ey < oo, and for ng_1 < n < ny, define
&p = e Then & := (&) € (£1)*, ¢ does not satisfy the Ay /,-condition and (&) #
(Cae ), but &, satisfies the Aq /p-condition if and only if exny = O(Z]:kJrl inj)-

(iv) & =o0(é,,)and ¢ satisfies the A1 /2-condition for ¢ any of the sequences
logp’ log(loglog)i"’ log (loglog)(logloglog - (p>1).

Proof. The verification of (i), (ii) and (iv) is left to the reader. For (iii) let
us note that if 8}(;1 < M for some constant M and all k > 1, then eknk >

M’; T €117 which is impossible because g;ny is summable. Thus the ratios T
are unbounded and hence ¢ does not satisfy the A /,-condition. Moreover, for
every m we have §,, # O(Dy¢). Indeed for every pair of integers m,p > 1,
choose k = m?p?. Since ny > kny_y > png_q > ny_q, then

( i ) _ (C“w)mlmk—l _ 1 Z &
D/ mpni_4 gpnk_l EMphy_1 mpng_q+1 /
1 Fu m?p*n_q — mpng_4
>— ) = — — =mp—1.
Exmpny_q mpng_1+1 mpng_q

Thus &, # O(Dp¢) and hence &, ¢ X((¢)). Finally, it is straightforward to
verify that the given condition, ¢, = O(nik E]?”: k+1€j1j), is equivalent to the con-
dition ¢ = O(¢&,., ), and hence by Corollary 4.4(ii), is equivalent to §,,, satisfying
the A1 /5-condition. &
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Examples (i) and (ii) are sequences regular at infinity while (iii) and (iv) are
not (see Definition 4.11 and Theorem 4.12).

An immediate consequence of Lemma 4.1(i) and (ii) is that the following
definition yields characteristic sets.

DEFINITION 4.6. Let I be an ideal. Then , I when I # {0} and I, when I
is arbitrary are the ideals with characteristic sets

E(an1) ={E € (1) : Ga € (D)},
X(L,)={Cec:f=0(na,) forsomeny € Z(INLy)}.

Notice that , I C L1 and I,, = (I N Lq),, by definition and that for all
& € (M* one has &, = o(w), ie., I, C se(w) for every ideal I and therefore
it follows that , I = 4 (INse(w)). In particular, L1 C ,_(se(w)) and hence
L1 = 4.(se(w)). And like the arithmetic and pre-arithmetic mean, the arithmetic
mean and pre-arithmetic mean at co are inclusion preserving.

LEMMA 4.7. For ¢ € ¢},

_ (‘:Hoo) lfg € 61/
(E)as = {se(a)) ifeé ¢t

In particular, if an ideal I ¢ L then 1, = se(w), and moreover (L1)q,, = se(w).

Proof. Assume first that ¢ € ¢'. By definition &, € Z((Q‘)uw) and hence
(€ae) C (&)an- For the reverse inclusion, if § € X((¢)a.,) then 3 < g, for a
summable { € X(({)). Since { < MD,,¢ for some M > 0 and m € N, by Lem-
ma 4.1(ii),

(éuw)j < M((Dmé)ao@)/’ < M(Dm+1€aw)j

forj 2 m(m - 1) Since Dm+1éaoo € Z((Cﬂoo))’ 17 € Z((Cﬂm)) and SO (g)ﬁoo - (Cﬂoo)'
Assume now that & ¢ /1. It is not hard to show that min(&,w) ¢ ¢!, so

by passing if necessary to a sequence (¢')* Z & = o(min(¢, w)), one can assume

without loss of generality that ¢ = o(w). Foreach { € X(se(w)), by passing if nec-

essary to {’ := wuni(%) > { where uni‘y is the smallest monotone nonincreasing

sequence majorizing y and is given by (uniy), := sup7j, one can assume with-
i>n

out loss of generality that { = aw for some & € ¢}, ar]1d that le 1. To prove that

¢ € X((8)aw ), set my = 0 and choose 11 > 1 so that n18,, < 5 and ucnl < 3. Since

is not summable, choose the first integer m > n; for which Z > a1, and
g j
j=m

my
since {,, < % one alsohas ) ¢; < a1+ % Now choose 1y > mq and my > np

j=m

my
so that 158y, < 212,0cn2 < 4 7 and < Y gj < 1. Iterating obtains the sequences,
f:”2
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my = ny > my_q so that, for k > 2, ; &y, < zl—k,txnk < 217 and 2,}4 < Z §] 2%2
J=ng
. form_; < n < ny,
Define 17, = n k-1 S and 7 := (4,). Theny € ¢t and < .
Cn  forme <n <my,
. ﬂkfl 1 my 1
Since Y n7j= (mg—mp_1 —1)Gn < mln < pand L 75 = Z & < 5
J=m_q+1 J=1g J=ng

one has 17 € ¢!. Moreover, for k > 2 and n;_; < n < n; one has

> 1
Z 77] Z‘:] 27 2 &ny_q Z Uy,

n+1

m
for 1 < n < ny one has 217] > Zl,éj > a1 = ay. Thusy € (él)*,iy <¢
n+1 nq

and a < < §1 11j>. Therefore { = aw < 1, and hence { € X(({)a,). Since
n

¢ € X(se(w)) was arbitrary, ({)a,, D se(w). But I, C se(w) for every ideal I, so
one has equality. Thus I, = se(w) when I ¢ L1. Moreover,

(L1)ae, = (L1N (W) = (W)a, =se(w). 1

Notice that to prove directly that se(w ) C (£1)an, it would only be nec-

essary to show that for all « € ¢, « < r 17]> for some 7 € (¢!)*. This is
n+1
equivalent to the well-known fact that « has a convex majorant in cj (see p. 203

of [4]). But for the proof that se(w) C (&)a.,, we needed to prove that the convex
majorant, < Y ;7j>, of o can be chosen so that additionally # < ¢.
n+1

Recall from Section 2 (see the paragraph following Theorem 2.2) that the am-
ideals satisfy the 5-chain of inclusions. The situation is slightly more complicated
for the am-co case since the inclusion I C I, holds if and only if I C se(w), as
we shall see in the next proposition. We shall also see there that the 5-chain of
inclusions remains valid for all ideals I contained in £4:

1] C (2 D)ae CI1C o (Iny) C I,

More generally,

PROPOSITION 4.8. Let I # {0} be an ideal.
(1) {0} # 41 C (s)a C L
() INLy C ap(lis) C Loy
(i) g I = 4 ((aDao,) and the map I — (5 1) 4, is idempotent.
({1") Lo = (a0 (Ine) )ae and the map I — 4 (I,.) is idempotent.
(iii) If | is an ideal, then J,,, C I ifand only if [N L1 C 4 1.
(iv) I C I, ifand only if I C se(w).
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Proof. (i) and (i’) The inclusions ,,I C [ and INL; C I, follow from
Definition 4.6 and Corollary 4.3. Applying the first inclusion to I, and the second
to 4,1 obtains 4 (l,) C Lo, and , I = 4, INL1 C (4])a.. The remaining
two inclusions follow directly from Definition 4.6. And since (1,0,...)4 = 0O,
4] # {0} forall I # {0}.

(i) By () and (1), 0 (D)) C a0l = 0l N L1 C a((aDin)-

(ii") Again by (i') and (i), I, = (IN£1)ae C (a0 (Iow))aeo C lne-

(iii) If Jo,, C I then, by ('), onehas JN L1 C 4. (Jao) C aol. Conversely, if
JNLy C 4,1 then, by (i) and the paragraph preceding Lemma 4.7, one has that
Jaw = (]le)am C (aool)aoo cL

(iv) That I Nse(w) C I, is a simple consequence of Corollary 4.3 and
Lemma 4.7. In particular, I C se(w) implies I C I,. The converse implication is
automatic since, by definition, I, , C se(w). 1

Immediate consequences of Proposition 4.8(iii), Lemma 4.7, and the identi-
ties scse(w) = sc(w) = (w) and sescl = sel C I are:

COROLLARY 4.9. Let I # {0} be an ideal.
(1) a I = Ly ifand only if se(w) C I ifand only if w € X(scl).
(i) I, = se(w) ifand only if L1 = 4, (Ia,)-

Am-co stability, the analog of am-stability, is defined for nonzero ideals by
any of the following equivalent conditions.

COROLLARY 4.10. Let I # {0} be an ideal. The following are equivalent:
Q)= ol
i) [N Ly = Io.
(i) I € Lyand I = I,_.

Proof. (i) = (ii) Since I = ,,I C L1, = INLy C I, by Proposition 4.8(1")
and the reverse inclusion follows by Proposition 4.8(i).

(i) = (i) If I ¢ L1, by Lemma 4.7, I, = se(w) ¢ L4, against (ii).

(iii) = (i) Onehas I = IN Ly C 4. (L) = a4l C I by Proposition 4.8(i')
and hence (i) follows. &

DEFINITION 4.11. An ideal I # {0} is called am-stable at infinity (or am-oco
stable) if I = ,I. A sequence & € (¢!)* is called regular at infinity (co-regular for

short) if (&) = ., (&).

Therefore, (¢) is co-regular if and only if (§) = (¢, ) by Corollary 4.10 and
Lemma 4.7, if and only if ,, = O(Dy¢) for some m € N by Corollary 4.3
(cf. Corollary 5.6(c) of [39]), and surprisingly and more simply, if and only if
Cae = O(&) (see Theorem 4.12 below). The notion of regularity at infinity for sum-
mable sequences is an analog of the usual notion of regularity of nonsummable
sequences that was used extensively in [16] and that plays a key role also in
Varga’s construction of positive traces on principal ideals [32].
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Several characterizations of regular sequences in the am-case have analogs
in the am-co case (Theorem 4.12 below), although the proofs have to contend
with the problem that {,, may not satisfy the A;/, condition or, equivalently
(Corollary 4.4), that ¢ may not be O(&,., ).

For convenience we recall the definition of the Matuszewska indices a(&)
and B(¢) for a monotonic sequence ¢ ([13], Section 2.4):

log ¢y _ . (1088, log¢, log¢,

logn n>2 logn and B(¢) := m logn B ilg logn

a(g) := li

where ¢, := sup ék” and ¢ := iﬁf%{". It can be shown that

a(g) = inf{'y : 3C > O such that &, < C(%)vg‘m foralln > m},

B(&) = sup {'y :3C > Osuch that &, > C(%)”Y@m foralln > m}

The above inequalities characterizing the Matuszeswka indices are the discrete
analog of the Potter type inequalities in the theory of functions of regular and
O-regular variation (cf. Proposition 2.2.1 of [5]), and were linked to regularity of
c;-sequences in Theorem 3.10 of [13], where it was proven that a sequence ¢ € ¢}
is regular if and only if (&) > —1 if and only if {, is regular. As indicated
in Remark 3.11 of [13], the equivalence of ¢ regularity and ¢, regularity is also
implicit in the work of Varga ([32], Theorem IRR).

THEOREM 4.12. If ¢ € (1), the following conditions are equivalent:
(i) € is oo-regular.

(ii) Gar = O(8).

(iii) a(¢) < —1, i.e., there are constants C > 0 and p > 1 for which &, < C(%)PCm
or all integers n > m.

f g
(iv) Cay, s co-regular.
v) 1nf ((5”“’)" > k for some integer k > 1.

ﬂook

v 1nf@ > k for all integers k > 1.
") 1nf

(gﬁoo)
V") mf ((:f e 0 for some integer k > 1.
(Cao )

(vi) sup 1r1f ("

> 0 for all integers k > 1.

= 00,

Proof. (i) = (ii) Assume that ¢ is regular at infinity, that is, () = 4. ().
Then (&) = (§)ae. = (4o, ) by Corollary 4.10 and Lemma 4.7 and therefore &, <
MD,,¢ for some m € Nand M > 0. In particular, (s )mn < My for all n. The
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case m = 11s (ii). If m > 1 then
1 &
(gum)mn:%mrgl i = mn{m;+1él+m§+1gl+m3§rlgl }
;{(m D)mng oy + (m—1)m*ng s, + (m — 1)m’ng e, + -}

m1°°

mkn
k=2

Thus mm—*zl kzz mkE x, < Mg, for all n and hence, by substituting here mn for 1,

K kn < M.

On the other hand, the same formula for (&,., )mn yields

(G < A= V) G + (= 1) Gy + (= PG, -}

m—1 m—1&
= g )+ T Y,

m
< T(m + mZ) gmn + szgmn = Mlémn-

From this, since foreach j € N, j = mn — p forsomen € Nand0 < p <m —1,
one obtains

1 co
<Ca°° )f = mn— p {gmn*zﬂrl + gmn—p-&-Z + o+ Cmn + i:n%_;_l gl}
4 mn mn
< o < B
S mn_p‘;’mn p mn—p((‘fﬂ“’)mn\ po— f:mn p+mn—pM§mn

mn
< (mnp_p oM )emn—p < (m —l+mM)§],
which concludes the proof.

(if) = (i) Obvious from remarks following Definition 4.11.

(if) = (iii) Let ¢4, < MC for some M > 0 and without loss of generality
assume that ¢, >0 for all n. From the basic identity (n—1) (s )1 =Cn+1(Cas )n
follows the recurrence

n—1

(gam)n = m(gaw)n—l

and hence foralln > m > 1,

(Cac)n

33

m
(Cace ) < -
femp (1F %(gio );) a—{



TRACES ON IDEALS 19

m _yn log (141
= e Ha s U )

Let N be the smallest integer larger than or equal to %, p =1+ ﬁ and set
log2

K= nre 4 52) 1m > N, then Mj > 1 for all j > m + 1 and hence

1 1 1
1 1+ — —_—
og 1+ M]) Mj  2MEf
Thusifn > m > N,

—yn 11 1
(éaw)n < ﬂe Lj—m41 (M] 2Mz]»2) (Caw)m < ( a1 log 243 +2M2)(§

m
; uw)m

N

<ol az) (MY (g, )

If n > N > m, the above inequality implies

(Enn <22 (MY (@) < (™) @i

IfN>n>mthenK > NP > (%)p and hence

Gl < Goadr < K(™) G

Thus (&5 )n < K(%)”(gam) for all n > m, hence (&, )n < MK(%)pé‘m
From Lemma 4.1(iv), &, < (5,‘%0),1 S0

& < MK(2)'e,

for all n > m. Set C = 3P MK and let k > 2m. If k is even, then
p

bk (2) 20 < (1)
2

while if k is odd then
& < G < MK() e <M () 2 = c(F) e

Finally, if m < k < 2m, then since MK > M2Y/M > 1 it follows that

g <tn <2 (%) an<c() en

(iii) = (i) A direct computation shows that (s, )n < %én.

(i) = @v) If ¢,,, < ME, then ¢ 2 S M, hence by the equivalence of (i)
and (i), &4, is co-regular.

(iv) = (ii) Since (i) and (iii) are equivalent, there exists p > 1, C > 0 so
(€a)n < C(%)p(@‘uw)m for all n > m. Thus (& )km < (%)q(cjgw)m for some



20 VICTOR KAFTAL AND GARY WEISS

g > 1 and integer k > 1, and hence i & < (%) Z ¢; for all m. But then
km+1 m+1
IS km
(1-(H)7TY) ¢ &< ¥ &< (k—1)mé, and hence (ii) holds.
m+1 +1

m
(if) = (v') = (v) = (v”") For every k > 1,

(k= 1)ngn < Z i < 1)ng, foralln,
j=n+1
hence
(k=18 _ Ent1 6 (k—1)¢n
Y ke S Tong T kG

or, equivalently,

- Ckn (éuoo)n _ _ Gn
) i S G SR

Thus, for every k > 1,

gkn (C ) é
T >0= 1nf(§am)kn > k= 1nf(§aw)kn
(V') = (v) = (v”) = (i) The first implication is obvious and the second
follows from the same double inequality we used above. If (iv"”') holds, i.e., for
some M > 0and k > 1, (&s )kn < MG, for all n, then for j € N, j = kn — p with
0<p<k—-1land

1

(gam)j = m(Ckn7p+l + o+ Gk + k11(Case ) kn)

Gaw = O(8) = 1nf > 0.

< knl— p (pSn +knMgy) < (k—1+kM)Gp = (k—1+ kM)(Dkg)j‘

Thus s, = O(Dy{), that is, ¢ is co-regular.
(V') = (vi) supirnlf k(é“""gz > 1since n(&a, )n = kn(Ea., )in for all n, k. Suppose
k Aco Jkn

(gaoo

supinf 6 % = M < . Then M = 1 since otherwise, we would have for some
(

n

k
g Vl (Cﬂoo )7’1 : (gﬂoo)ﬂ 3 (glloo)kn
k that mf (N v M and hence 1nf P (en) 2, > ny}f e 1rn1f )z, > M

against the definition of M. But M =1 Contradlcts v').
(vi) = (v) Obvious. &

REMARK 4.13. (i) The Potter type inequality in (iii) (cf. Proposition 2.2.1 of
[5], and see also [2] and Theorem 3.10, Remark 3.11 of [13]) was shown by Kalton
in Corollary 7 of [25] to be necessary and sulfficient for () to support a unique
separately continuous trace. By Theorem 4.12 and Theorem 6.6 below this con-
dition is also necessary and sufficient for () to support a unique trace, which in
this case coincides with Tr and hence is separately continuous.
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(ii) In the course of the proof of (ii) = (iii) we have obtained that if ¢ is co-
regular and if &, < M¢, then a(&) < —(1+ 7). Hence a(¢) < —1— infé.

(iif) The proof of (iv) = (ii) is an adaptation of the proof in the am-case in The-
orem 3.10: (c)” = (a) of [13]. Conditions (v)—(v"’) and their proofs are am-co ana-
logues of the characterizations of regular sequences given by Varga in Lemma 1
of [32]. Albeverio et al. in [1] used conditions equivalent to the negation of (v)
and (vi) to define “generalized eccentric” operators (for the trace class case) for
which their main result showed the existence of positive singular traces.

(iv) Condition (ii) strengthens Corollary 5.19 of [13] and Corollary 5.6 of [39] by
eliminating the need for ampliations, i.e., replacing the condition ¢, = O(Dy¢)
for some m by the condition ¢,., = O({).

(v) Whereas regular sequences are those for which ¢ =< ¢, this is not true for
the am-oo case. In fact, by Corollary 4.4(ii), ¢ =< ¢, if and only if ¢ is co-regular
(ie., () = (Ca)) and satisfies the Ay /o-condition. And as Example 4.5(ii) shows,
¢ can be regular at infinity while ¢ % ¢, .

The equivalence of (ii) and (iii) is the am-co analog of the am-result obtained
in Theorem 3.10(a),(b),(b)" of [13]. We give a direct proof of the am-case that
provides also a lower bound for B(¢).

PROPOSITION 4.14. A sequence ¢ € c}y is reqular, i.e., &, = O(C), if and only if
there are constants C > 0and 0 < p < 1 for which ¢, > C(%)p Cm foralln = m, and
then B(&) > —1+ infg%.

Proof. A simple computation shows that if 5, > C(%)? ¢y for all n > m,
then &, < ﬁ .

Conversely, assume ¢ # 0 and &, = O(&), i.e., & < M¢ for some M > 1.
The identity n(s)n = &n + (n —1)(8a)n—1 implies the recurrence

and hence

for all n > m. Then

P& o i
T (- 1(0) ot (1= 2)

n 1
— r’:;neizj:rwrl log (17W)é'm 2

=

$n = Cm

n 1
g e£j:m+] Wém
Mn

+ (log & —log?2) _ 1 my1-u
eM m gm = é‘m

m m
Mn M2 \H
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But then B(¢) > —1+ 4; from the inequality characterizing the Matuszewska
index B(¢) mentioned prior to Theorem 4.12 and hence B({) > —1 + inf r;"% 1

For the readers’ convenience, we summarize the known relations between
the basic sequence properties used in this paper, the Matuszewska index §, and
the new relations to the analogous properties for Matuszewska’s index a devel-
oped here.

COROLLARY 4.15. Let ¢ € ci. Then —oo < B(¢) < a(¢) < 0and

(i) ¢ satisfies the Ay jo-condition if and only if B(§) > —oo, i.e., if and only if there
are constants C > 0 and p > 0 for which &,, > C(2)P ¢y, for all n > m, if and only if ¢
is reqular for some e > 0 ([13], 2.4(22), 2.23, Theorem 3.5).

(i) If ¢ <, for some yy € ¢, then B(&) > —1 (since for n > m, (Galn ).

(iii) & is regular if and only if B(&) > —1 ([13], Theorem 3.10).

(iv) &° is reqular for every s > 0 if and only if B(¢) = 0 ([13], Corollary 5.16).

(i) ¢ satisfies the condition sup %—: < 1ifand only if a(§) < O, i.e., if and only if
there are constants C > 0 and p > 0 for which §,, < C(2)P¢y for all n > m, if and
only if ¢¢ is co-regular for some e > 0. (Elementary from the definition and (iii’)).

(") If & < na,, for some yy € ¢, then a(&) < —1 (since forn > m, % <.

(iii") ¢ is co-regular if and only if a (&) < —1 (Theorem 4.12).
(iv’) &° is oo-reqular for every s > 0 if and only if a(&) = —oo (by (iii’)).

In [23] we study lattice properties of am-co stable ideals. Among other re-
sults there we show that every principal ideal with the exception of the finite
rank ideal F contains an am-oo stable principal ideal strictly larger than F and is
contained in an am-stable principal ideal. F is the smallest nonzero am-oco sta-
ble ideal, K(H) is the largest am-stable ideal and there is a largest am-co stable
ideal st,,, (£1) and a smallest am-stable ideal st (L) (see below). These naturally
divide all ideals into the three classes described in the Introduction, namely, the
“small ideals” contained in st, (£L1), the “large ideals” containing st*(£4), and
the “intermediate ideals” that are neither.

For every ideal I, define I »:=(I;), and similarly define I, gnl, I, and gml.

DEFINITION 4.16. The lower and upper am-stabilizers (respectively, am-oco sta-
bilizers) for an ideal I are:

(e ) (o)
Stg(l) = m aml, Sta(I) = U Iam,
m=0 m=0
Sta (1) := () anlfor I # {0}, st®(I):= |J Ly for I C sty (L1).
m=0 m=0

It is easy to verify that st,;(I) (respectively, st?(I)) is the largest am-stable
ideal contained in I (respectively, the smallest am-stable ideal containing I).
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It follows similarly from Proposition 4.8(i) that st (I) is well-defined and
is the largest am-co stable ideal contained in I.
If I C se(w), then {I,» } is an increasing nest of ideals by Proposition 4.8(iv)
and hence its union is an ideal and I C ( U Iag) = U Im. If furthermore
m=0 m=0

oo

I C stg,(L1), then also Im C sty (L1) C Ly for all m, hence U I C L
m=0

and by Corollary 4.10, st, (L) is am-co stable. Notice that if I C se(w) but
I ¢ sta,(L1), ie, Ly ¢ L1 for some m > 0, then, by Lemma 4.7, [ i1 = se(w)

andso |J Iy = se(w) which is not am-co stable.
m=0
Thus, in particular, st*(L1) = st?(F) = st?((w)) is the smallest am-stable
ideal and st,_ (L1) = stq, (K(H)) = sty ((w)) is the largest am-co stable ideal.

REMARK 4.17. (i) If I is a principal ideal which is not am-stable, then st*(I)
is a strictly increasing nested union of principal ideals. Indeed, if I = (), and
the sequence I,n were to stabilize, i.e., I, = I,ns1 = (1) for some n, this
would imply that ¢, is regular and hence as recalled before Theorem 4.12, that ¢
isregular , i.e., ¢ is am-stable.

(ii) Similarly, if I C st,,, (£1) is principal and not am-co stable, by Theorem 4.12
(the equivalence of (i) and (iv)) and Lemma 4.7, st~ (1) is also a strictly increasing
nested union of principal ideals. This phenomenon does not extend to countably
generated ideals as Example 5.5 of [23] shows by constructing a countably gener-
ated ideal L C L, = L».

The next proposition shows that st?(£1) is the union of principal ideals and
that st,_ (L1) is the intersection of Lorentz ideals. Recall from Sections 2.25, 2.27,
4.7 of [13] that if 7t is a positive nondecreasing Aj-sequence, then L (o (7)) is the

Lorentz ideal with characteristic set X(L(0(7))) := {C ect:Yiumy < oo}.
n

PROPOSITION 4.18. (i) st?(L1) = U (wlog™).
m=0

() ste (1) = 1 L(o(10g").
Proof. (i) This is clear since for every m € N,
st?(Lq) =st?((L1)a) =st'((w)) and  (w)gm = (wam) = (wlog™).
(ii) & € Z(4,L(c(log™))) if and only if & € (¢1)* and

i ( i g])log < oo if and only if Z En logm+1 < oo,
=l j=ntl " n=1

ie, & € Z(L(c(log™™))). Therefore , L(c(log™)) = L(o(log™ 1)) and hence
u&(’al> :L(U(logm)) 1
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Thus, if ¢ € ¢ is co-regular, then § € X(st,,(L1)) and hence for every m,
Z ¢nlog"n < oo (cf. Example 4.5(iv)). Notice also that the proof of (ii) shows in

=1
particular that ,(£1) = L(c(log)). In [20] we prove that st*(£1) and st, (L1)
are both soft-edged and soft-complemented.

In Section 7 we will need the following analogues of Lemma 3.3 and Propo-
sition 3.4.

LEMMA 4.19. Let I be an ideal.
(1) sc(aeI) = a(scI) when I # {0}.
(ii) (sel)am =se(lsy)-
Proof. (i) Let n € X(sc(g,I)). Since 4,1 C L1, sc(a,I) C scLq = L1 and
hence € (El) Choose a strlctly increasing sequence of positive integers 1

with n_q = ng = 0 for which Z i = Z 1 fork >
ng+1 l’lk+
For each « € ¢ set oy = a1 and define
aj:=2ap,_, form <j<mgyandk >0
Then & = <b?j) € cyand forall ny < p <mpyqandk >0,

Ng42 Mg41 Ng42

2“177] Z winj = 20, Z N+ 20, Y, 1
M1 +1
g1 00 o)
Z 277]+“”k 2 =z "‘nkzﬂj?“iﬂzﬂf
g1 +1 P |4

Thus a#ja,, < (@4)a,,. Since &y € X(,,,I) from the definition of sc, it follows
that (a7)a, € X(I) and hence that 15, € X(scl), i.e., 1 € X(a,(scI)). Hence
5C(ae 1) C aeo(scl).

Now let 7 € X(g,(scl)) and & € ¢. Then 5,, € X(scI) and therefore
atfq, € X(I). Since (a1)a, < affa,, also (an)a, € X(I), ie., ay € X(,.1) so
1 € X(sc(ay 1)), which yields the set equality.

(i) Assume first that I ¢ Lq. Since L is soft-complemented, also sel ¢ L1
since otherwise I C scl = scsel C scL1 = Lq. But then, from Lemma 4.7, it
follows that (sel),,, = se(w) and I, = se(w), hence se(,,,) = se(w) = (sel)g4,, -

Assume now that I C Lq. If { € X((sel),,,) then { < pg,, for some p €
X(sel),ie., p < anforsomew € c;andn € X(I). Butthen ¢ < (a1)a,, < ¥4, By
definition, an,,, € X(se(ls.)), hence (sel),,, C se(ls, ). For the reverse inclusion,
let § € X(se(I,.)) and hence ¢ < ap for some a € ¢ and p € X(I,,), that is,
0 < Y, for some n € X(I). As in the proof of part (i), { < afa, < (&1)g, for
some & € cj. But an € X(sel) and therefore { € X((sel),,, ), which yields the set
equality. &

PROPOSITION 4.20. The following are equivalent for ideals I # {0}:
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(i) sel is am-oo stable.

(ii) scl is am-oo stable.
(iii) sel C 4. 1.
(iii") w ¢ X(I) and sel C F+ [I, B(H)].
(iv)w ¢ Z(scI) and scI D I,

Proof. (i) = (iii) Since sel C I and the pre-arithmetic mean at infinity is
inclusion preserving, sel = ,_(sel) C 4 1.

(iil) = (ii) scI = scsel C sc(g,I) = 4o (scI) C scl where the first equality
is true for all ideals (recall comment preceding Remark 3.2), the second equality
follows from Lemma 4.19(i) and the last inclusion from Proposition 4.8(i).

(ii) = (iv) By Corollary 4.10, scI C L1 so w & X(scI). Also scI=(scI)ae, D Iy, -

(iv) = (i) I C L1 because otherwise se(w) = I, C scI by Lemma 4.7
and thus (w) = sc(se(w)) C scl, against the hypothesis. But then sel C £,
and hence sel C (sel),,, from Proposition 4.8(i'). For the reverse inclusion, by
Lemma 4.19(ii), (sel)q,, = se(ls,) C se(scl) = sel, and so (sel),, = sel. The
conclusion now follows from Corollary 4.10.

(iii) = (iii") Since (iii) implies (iv), w ¢ X(I) and by Corollary 6.2(i)

sel C 4.1 =span(,,I)" =span (F+ [I,B(H)])* C F+ [I,B(H)].

(iii") = (iii) Again by Corollary 6.2(i), (sel)™ C (F+ [[, B(H)))" = (s, 1),
hencesel C 4. 1. 1

REMARK 4.21. Analogous to Remark 3.5, the se and sc operations preserve
am-oo stability by Lemma 4.19(i) and Proposition 4.20. However, Example 4.22
below shows that sel and scI can be am-co stable while I is not.

EXAMPLE 4.22. We construct an ideal I such that se] = se(w?) and hence
scI = (w?) are am-co stable but I is not am-co stable.

Indeed, let m; = (k!)? and define = # for my_1 < j < my. Theny € ¢},
k

71 < w?buty # o(w?). Set I = se(w?)+ (17). Then sel = se(w?) and hence
scI = (w?). By Example 4.5(i), w? is co-regular, i.e., (w?) is am-co stable and thus
so are sel and scI. However [ is not am-oo stable. To prove this by contradiction,
assume that it is. Then N € X(I), ie., thereisana € ¢f,M > 0,and p € N
such that 77,,, < aw? + MD,#. Without loss of generality assume that «; j = ¢ for
my_q < j < my. Forevery my_1 <n < my,

1 &1 mp—n
77aoo n - 72 = .
n; my; nm?
In particular, for k > p by choosing n = kmk_1 = % we have km;; <

k
> 2k for k large

ek% + M(Dp1)im,_, = ek::z—zz + M . This implies g; >
k k
enough, in which case 2¢;m; > kmk_l. Now by choosing n = Lngka and k large
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enough to insure that g < %, we have kmy_1 < n < my and hence

mp —1n €k €k M
< < —+(D ==+ —.
— (acs)n < —3 + (Dpi)n = 5 + ni2

Then we have the following which is a contradiction since g;my; — oo and gy — 0:

M1 M
n

B exm? S 1 exm 1 (1 1 )
)?/

n2 7 2e (emp—1)2 g 2_(2, 1

EMye

5. NONSINGULAR TRACES AND APPLICATIONS TO ELEMENTARY OPERATORS

It is well-known that the restriction of a trace on an ideal I to the ideal F
of finite rank operators must be a (possibly zero) scalar multiple of the standard
trace Tr.

DEFINITION 5.1. A trace on an ideal that vanishes on F is called singular,
and nonsingular otherwise.

Dixmier [11] provided the first example of a (positive) singular trace. Its
domain is the am-closure, (1)~ = 4(#,), of a principal ideal (1) C se(#)a.

Theorem 2.2 yields a complete characterization of ideals that support a non-
singular trace, namely, those ideals that do not contain diagw (cf. Introduction,
Application 3 of Theorem 5.6 of [13] and also [14]). For the reader’s convenience
this argument is presented and generalized in Proposition 5.3 below. To prove it
we first need another simple consequence of Theorem 2.2.

LEMMA 5.2. Let I # {0} be an ideal for which w ¢ X(I).
(i) £1 N [I,B(H)] C {X € Ly : TrX = 0}.

-y 1:.. F+[LB(H)] _
(11)d1m7[1’B(H)] =1

Proof. (i) Since the subspace L1 N [I, B(H)] is the span of its selfadjoint ele-
ments, consider X = X* € L1 N [I,B(H)]. Then A(X), € S(I) by Theorem 2.2.

Then if ) A(X); = TrX # 0, it would follow that |A(X),| < w and hence, by the
1

hereditariness of I, w € X(I), against the hypothesis.

(ii) Fix a rank one projection P. Then A(P), = w and so P ¢ [I,B(H)]
by Theorem 2.2. For each X € F + [I, B(H)] choose T € F for which X — T €
[I,B(H)]. AsT — (TIrT)P € [F,B(H)| C [I, B(H)] from the well-known fact that a
finite complex matrix is a commutator if and only if it has zero trace (cf. Discus-
sion of Problem 230 of [18]), one obtains X — (TrT)P € [I, B(H)]. Thus

F+[I,B(H)]={AP+[,B(H)]: A€ C}. 1
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PROPOSITION 5.3. Let I and | be ideals and let T be a trace on . Then T has a
trace extension to I + | if and only if

JN[LBH) c{XeJ:7(X)=0}.

Moreover, the extension is unique if and only if I C ]+ [I, B(H)].
In particular, w ¢ X(I) if and only if Tr extends from L1 to L1 + 1 if and only if
Tr extends from F to I.

Proof. Assume that a trace T on | has a trace extension T to I + | and that
X € JN[I,B(H)]. Then X € [I + J,B(H)| and hence 7(X) = 7(X) = 0 since
every trace on | 4+ | must vanish on the commutator space of I + J.

Conversely, assume that JN[[,B(H)] C {X €] :7(X) =0}. For X € J +
[I, B(H)] choose Y € ] for which X — Y € [I, B(H)] and define 7/(X) := 7(Y). As
is easy to verify, T’ is a well-defined linear functional on | + [I, B(H)], it extends
T, it vanishes on [I, B(H)| and hence also on [I + ], B(H)| = [I, B(H)] + [], B(H)],
and it is the unique linear extension of 7 to | + [I, B(H)] that vanishes on [I, B(H)].
If I+ ] # J+ (I, B(H)], use a Hamel basis argument to further extend 7’ to a linear
functional 7’ on I + ], and this extension is never unique. Since 7" vanishes on
[[+],B(H)]itis atraceon I + J.

The case for extending Tr from L1 or F, when w ¢ X(I), follows from
Lemma 5.2(i). Conversely, if w € X(I), then £ C I and L] C [I,B(H)] by
Theorem 2.2, whence L1 C [I, B(H)]. Thus all traces on I vanish on L4, i.e., Tr
cannot extend from For Ly to . 1

A simple consequence of this is that all traces on | extend to I 4 J if and only
if JN[I,B(H)] C [J, B(H)] since, as is elementary to show,

[J,B(H)| = ﬂ{{X €J]:7(X)=0}:T1isatraceon J}.

REMARK 5.4. (i) A routine argument shows that for any ideal | and trace T
on J, the collection of the ideals to which T can be extended, i.e. the ideals I D |
for which

JN[LB(H) c{Xe]:1(X)=0},
is closed under directed unions and hence it always has maximal elements. Be-
cause this collection is hereditary with respect to inclusion, it is closed under
addition if and only if it has a unique maximal element. That this may not be the
case is easy to show for T = Tr and | = F by constructing two principal ideals I;
and hwith} # I, 1 + I = (w),but I; # (w) fori =1,2.

(ii) If a trace T on an ideal | has extensions T; to the ideals Iy C I, there is no
reason for 71 to have an extension to I,. For instance, again in the case of T = Tr,
J = F,and w ¢ X(I), there is a unique trace on I if and only if I is am-co stable
(see Theorem 6.6 below). Thus if [; is not am-co stable but is contained in an
am-co stable ideal I, then all but one of the traces on I; do not further extend
to Ip.
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(iif) By Lemma 5.2(i), the set equality
JNILB(H)] = {X € ]: 1(X) =0}

holds for T = Tr, ] = F and any ideal I § (w). By Proposition 6.4 below (see also
the remark following it), equality holds for T = Tr, ] = £; and anideal I D £ to
which Tr can be extended (i.e., w ¢ X(I)) if and only if se(w) C I. Notice that if
Tr is extendable to I, then Tr is extendable also to se(w) + I as w ¢ Z(se(w) + I).
So every maximal ideal I for the extension must contain se(w) and satisfies the
set equality.

(iv) Although Tr is positive on £1 and it has extensions to any ideal I properly
containing L1 but not containing (w) (uncountably many according to Corol-
lary 7.6(iii)), none of these extensions can be positive. Indeed, as is well known
T>1(diag(1,0,0,...))Tr, for any positive trace T (e.g., see the proof of Lemma 2.15
in [39] or Remark 2.5in [1]). Thus if I properly contains L4, then 7(diag(1,0,0,...))
= 0, so T is singular, i.e., T does not extend Tr.

The following result will also be useful.

PROPOSITION 5.5. Let I be an ideal for which w ¢ X(sel). Then

(L1 +[LB(H))) " = L.

Proof. Let0 < X € L1+ [[,B(H)]andso X — T € [I,B(H)] for some T €
L1. Since X = X* and [I, B(H)| = [I, B(H)]*, assume without loss of generality
that T = T*. Let f; be an orthonormal basis for N(X — T), the null space of
X — T, and let ¢; be an orthonormal basis of eigenvectors of X — T for N(X — T)+
arranged so that |((X — T)ej, ¢;)| is monotone nonincreasing. Since Y (Xf;, f;) =
Y(Tfj, fj) < oo, to prove that X € L it suffices to show that } (Xej, e;) < oo.

[ee] [e0]
But if otherwise } (Xej, ¢;) = oo, then Y((X — T)e;j,ej) = cosince T € L1, and so
1 1

i1 (X=T)ejef) L1 (X=T)eje))
n

w = o ). By Theorem 2.2, it follows that < m

some ¢ € X(I) and hence w = 0(¢), against the hypothesis. 1

><§for

REMARK 5.6. (i) The condition w ¢ X(sel) is also necessary since in Lem-
ma 6.2(iv) of [20] we show that if w € X(sel), then ;I 2 L and therefore
[LB(H)]* = (I)* 2 L}

(i) If w ¢ X(I) and I D L, then the extension of Tr to I is unique only in the
trivial case I = £j. Indeed, from Proposition 5.3, uniqueness implies I C L1 +
[I, B(H)], which implies I C L] by Proposition 5.5. Corollary 7.6(iii) will show
that with the exception of the case when I = L1, there are always uncountably
many linearly independent extensions of Tr to I.
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Trace extensions find natural applications to questions on elementary opera-
tors. If A;, B; € B(H), then the B(H )-map

n
B(H)> T — A(T) := Y ATB;
i=1

n
is called an elementary operator and A*(T) := Y, A;TB; is its adjoint B(H)-map.
i=1

Elementary operators include commutators and intertwiners and hence their the-
ory is connected to the structure of commutator spaces. The Fuglede-Putnam
Theorem [15], [29] states that for the case A(T) = AT — TB where A, B are normal
operators, A(T) = 0 implies that A*(T) = 0. Also for n = 2, Weiss [36] general-
ized this further to the case where { A;} and {B;}, i = 1,2, are separately commut-
ing families of normal operators by proving that A(T) € L, implies A*(T) € L,
and ||A(T)||2 = ||A*(T)||2- (This is also a consequence of Voiculescu’s Theorem 4.2
and Introduction to Section 4 in [33] but neither Weiss’ nor Voiculescu’s methods
seem to apply to the case n > 2.) In [31] Shulman showed that forn = 6, A(T) = 0
does not imply A*(T) € L,.

If we impose some additional conditions involving ideals on the families
{A;},{B;} and T, we can extend these implications to arbitrary n past the ob-
struction found by Shulman.

Assume that {A;}, {B;}, i =1,...,n, are separately commuting families of
normal operators and let T € B(H).

Define the following ideals:

n

[.— (Z(AiT)(Bi))zf Ly := (i(A?T)(Bi))Z,
(

I
—_

1

e

Iyri=LNL,ARNR,, S= (Z(AiTBi)) NLY2NRY?,
i=1

2
(Ai)(TBi)) , Ri:=

=

Il
—

where (X) denotes the principal ideal generated by the operator X and MN (re-
spectively, M + N) denotes the product (respectively, sum) of the ideals M, N.
Then I, 1 and S are either {0}, B(H), or a principal ideal.

PROPOSITION 5.7. If w ¢ X(IaT), then A(T) € Ly implies
ANT) €Ly and |[A(T)|2 = [[47(T)ll2-

Proof. Definel; = LNL,N(R+Ry) and , = RNR, N (L + Ly). Then
Iyt = I; N Ip. Assume first that w ¢ X(I7). We start by showing that |A*(T)|? —
|A(T)|? € [L, B(H)]. Observe that

n n
|A(T)>= ) BIT*AA;TB; and [A(T)]* = ) BT*A;AITB;.
ij=1 ij=1
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Then for each i, j,

BiT"A; AiTB;—T"Aj AiTB,B;€[(B;), (T"A})(AiT)(B;)|=[(B)), (A;T)(AT)(B;)]
= [(A;T)(Bj)(AT)(By), B(H)] C [L, B(H)].

Here use the elementary facts that (X)=(X*) for every operator X, that the prod-

uct of ideals is a commutative operation, and use the deep identity that holds for

all ideals M and N [M, N| = [MN, B(H)] ([13], Theorem 5.10) for ideals M, N. By

the Fuglede-Putnam Theorem [29] and the assumption that { B;} are normal and
commuting we get that, for all i, J:

T*A]*Al-TBl-B; = T*A;‘AiTB]’«‘Bl-.
Then, as above,
T*A;-‘AiTB]*Bi — BiT*A;‘AiTB;»‘ € [L,B(H)].

Again by the Fuglede-Putnam Theorem, BZ-T*A]’»‘ A,'TB]’»‘ = BiT"AiA}k TB]*, which
proves the claim. By interchanging the role of A and A* we obtain also that
|A*(T)|? — |A(T)|? € [L«, B(H)]. On the other hand, by the same argument, for
all i, j one has

BiT*Aj A;TB; — A A;TB;B;T" € [R,B(H)]

and by applying twice the Fuglede-Putnam Theorem,
AjATBB;T" = A;A;TB;B,T".
Similarly, A;A7TB;B;T* — BiT*A;A{TB; € [R«, B(H)] and hence
|A°(T)? = |A(T)[* € [R, B(H)] + [R«, B(H)] = [R + R+, B(H)].
A simple consequence of Theorem 2.2 is that for ideals M, N,
[M,B(H)|N[N,B(H)] = [MNN,B(H)].
Therefore |A*(T)|> — |A(T)|? € [I;, B(H)).
If A(T) € £, and hence |A(T)|? € L1, then by Proposition 5.5,
A(T)P € (L4 + [, BH)))* = £

Moreover, by Proposition 5.3, there is a trace extension 7 of Tr from £ to L1 + I7.
Since T vanishes on [I;, B(H)] C L1 + [I}, B(H)], so T(|A(T)|?) = t(]A*(T)|?)
and hence Tr(|A(T)|?) = Tr(|A*(T)|?).

If w e X(I1), then w ¢ X(Ip) and then we apply the same arguments to
show that A*(T)(A*(T))* — A(T)(A(T))* € [Ir, B(H)] and to draw the same con-
clusions. 1

A sufficient condition that insures that w ¢ X(Ip7) and is independent
of T is that w'/* # O(X(s(A;) +5(B;))). So also is the condition w!/? #
O(Y"_;5(A;)) or the condition w'/2 # O(Y"_ s(B;)).
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Propositions 5.3 and 5.5 can also be applied to a problem of Shulman. Let
n
A(T) =Y ATB;
i=1

be an elementary operator where the operators A; and B; are not assumed to
be commuting or normal. Shulman showed that the composition A*(A(T)) = 0
does not imply A(T) = 0 and conjectured that this implication holds under the
additional assumption that A(T) € L. In the case that the ideal S is “not too
large” we can prove the implication without making this assumption.

PROPOSITION 5.8. If w ¢ X(S), then A*(A(T)) € L1 implies that A(T) € L,
and ||A(T) |2 = TeT*A*(A(T)).
In particular, if A*(A(T)) = 0 then A(T) = 0.

n n
Proof. Let Sy = ( Y (Al-TBi)) NLY2 and Sg = ( v (Al-TBl-)) N RY2, so
i=1 i=1
that S = S;. N Sg. Assume that w ¢ X(Sp). Using the first step in the proof of
Proposition 5.7 one has
n
|A(T)|? = T*A*(A(T)) = Y (BiT"A; A;TB; — T"A;A;TB;B;) € [S., B(H)].
ij=1

So if A*(A(T)) € L4 then |A(T)|*> € (L1 + [SL, B(H)])™ = L] by Proposition 5.5.
The required equality then follows by the same reasoning as in the conclusion of
the proof of Proposition 5.7.

If w € X(S1), then w ¢ X(Sr) and we reach the same conclusions by con-
sidering |A(T)*|2 — A*(A(T))T* € [Sg, B(H)]. 1

6. UNIQUENESS OF TRACES

Anideal I supports a unique nonzero trace (up to scalar multiplication) pre-
cisely when dimﬁ = 1. In this section we characterize in terms of arithmetic
means at infinity when this occurs for those ideals where w ¢ X(I).

The next proposition is based on Theorem 2.2 which Kalton [27] extended
to non-normal operators for the class of geometrically stable ideals. These are the

ideals I for which X(I) is invariant under geometric means, that is,
¢ € X(I) implies &g := ((&1 -+ &a)"/") € X(1).

Notice that if X € I and A(X) and A(X) are two different orderings of the
sequence of all the eigenvalues (if any) of X, repeated according to algebraic mul-
tiplicity, augmented by adding infinitely many zeros when there are only a finite
number of nonzero eigenvalues, and arranged so that both [A(X)| and [A(X)| are
monotone nonincreasing, then [A(X)| and |A(X)| € X(I) and it is elementary to
show that |A(X),| < [A(X)a| +2|A(X)|. Similarly, when X € £; NI it follows
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that |A(X)a.| < [A(X)ae| + 2|A(X)| . For this, notice that there is an increasing
sequence of indices 1y with n; = 1 for which |A(X)[; = A(X )i = [AMX)|n, for
g < j < Nggr- Then

1 —1 ”k+1 1

ZA ZA

for all k and hence E/\(X)j = EX(X)] If ny < n < nygqq then
i

My

Al 1A a )l A XK ) )~ (A XDauhal = 1| 5 X(x); - 12 A0

n+1 n+1

ZA ‘ 2)A(X) -

Thus A(X), € S(I) (respectively, A(X),., € S(I)) if and only if A(X), € S(I) (re-
spectively, AMX)ay, € S(I)). This illustrates in an elementary way why the choice
of the ordering for A(X) does not matter in Theorem 2.2 and in Proposition 6.1
below. (See also Theorem 5.6 of [13].)

PROPOSITION 6.1. Let I be an ideal, let X € L1 N I, and assume that either X is
normal or I is geometrically stable. Then X € F + [I, B(H)] if and only if A(X),,, €
S(I).

Proof. Assume first w € X(I) and so, by Theorem 2.2, F C [I, B(H)]. Be-
cause A(X)g + A(X)a, = (TrX)w, one sees that A(X),, € S(I) if and only if
A(X)s € S(I), which, by Theorem 2.2 if X is normal or by [27] if I is geometri-
cally stable, is then equivalent to the condition X € [I, B(H)|] = F + [I, B(H)].

Assume now that w ¢ X(I). In case X is quasinilpotent, i.e., A(X) = 0, then
AX)a = AMX)s = 0 are in S(I) and so, by Theorem 2.2, if X is normal or, by
[27], if I is geometrically stable, one has that X € [I, B(H)]. On the other hand, if
A(X) # 0, let P be a rank one projection on an eigenvector of X corresponding to
the eigenvalue A(X);. From the proof of Lemma 5.2(ii) and by Lemma 5.2(i), X €
F+[I,B(H)]ifand only if Y := X — (TrX)P € [I, B(H)]. Now, by Theorem 2.2, if
X and hence Y are normal or, by [27], if I is geometrically stable, Y € [I, B(H)] if
and only if A(Y), € S(I). X can be represented as a 2 x 2 block matrix where the
upper left block is upper triangular (and A(X); lies in its (1,1) position) and the
lower right block is quasinilpotent ([12], Proposition 2.1). Also it is known that
for compact upper triangular operators, the diagonal sequence is precisely the
eigenvalue sequence repeated by algebraic multiplicity. Therefore an eigenvalue
sequence of Y counting multiplicity is

(A(X)1 — TeX, A(X)2, A(X)3, ...
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Thus a monotonization in modulus of this sequence is given by

(AMX)2, AM(X)3, .-, AX)p, AM(X)1 — Te X, A(X) ps1, - - ) for some p>1
AY) = if A(X)y # TrX,
AX)p A(X)s,...) i A(X); = TrX,

where for p = 1 we mean A(Y) = (A(X); — TrX, A(X)2,A(X)3,...). Then

n

YAX); X = — ¥ A(X);

]
YA =< i o
1 Y AX) =— ¥ AX); if A(X); = TrX forn =1,2,....
2 n—+2

if A(X)1 # TrX forn > p,

So, in either case, A(Y), € S(I) if and only if A(X),, € S(I). 1

Now we can link the cones of positive operators (,,I)" and (,I)* to the
cone (F+[I,B(H)])™".

COROLLARY 6.2. Let I # {0} be an ideal.
(i) Ifw ¢ X(I), then (F + [I, B(H)])" = (s, )™
(ii) If w € X(I), then (F+ [I, B(H)])* = (o).
(iii) (F + [I, B(H)])™ is hereditary (i.e., solid).

Proof. (i) By Proposition 5.5, (F+[I, B(H)])*CL; and so by Proposition 6.1,
X e (F+[ILB(H)])"ifand onlyif X € (£;N1)" and A(X)a, € Z(I),

ie, X € (s ).
(ii) That w € X(I) implies F C [I, B(H)] and [I, B(H)]* = (,I)™ both follow
from Theorem 2.2 (see also its succeeding reformulation for positive operators).
(iif) This is immediate from (i) and (ii) since the positive cone of an ideal is
hereditary.

So, for instance, by combining (i) with the proof of Proposition 4.18(ii) one
obtains (F + [£1, B(H)])T = (a.(£1))" = L(c(log))™ (the positive cone of a
Lorentz ideal).

REMARK 6.3. (i) In Theorem 5.11(i) of [13] it is shown that | X| € [I, B(H)]
if and only if (X) C [I, B(H)]. The proof depends on [I, B(H)]" = (,I)" being
hereditary. By the same argument combined with Corollary 6.2(iii), it follows that

|X| € F+[I,B(H)] ifandonlyif (X)C F+[I,B(H)].

(i) X € [I,B(H)] implies |X| € [I,B(H)] (respectively, if w ¢ X(I), X €
F+[I,B(H)] implies | X| € F+[I, B(H)]) if and only if I is am-stable (respectively,
I is am-co stable). The condition is sufficient: if I is am-stable (respectively, am-oo
stable), then [I, B(H)] = I (respectively, F + [I, B(H)] = I) is an ideal and for
ideals, containment of X and | X| are equivalent. The condition is necessary: for
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every Y € I and in particular for every Y € I,

o= D6 86 ) Y ean

where H is identified with H & H and I is identified with M (I), the set of 2 x 2
matrices with entries in I. Thus by assumption |[Y & (-=Y)| =Y @Y € [I[,B(H)],
and Y @0 € [I,B(H)| for every Y € It by hereditariness. Since every positive
X € 1 is unitarily equivalent to Y @0+ 0@ Z for some Y, Z € I, it follows that
I C [I,B(H)]t = (oI)". Thus I = I,, i.e, I is am-stable. The same argument
shows that when w ¢ X(I),if X € F+ [I, B(H)] implies | X| € F + [I, B(H)], then
I C (F+[I,B(H)])* = (4I)" by Corollary 6.2(i) and hence I is am-co stable.

(iif) Notice that the same 2 x 2 matrix argument shows that I is the smallest
ideal containing [I, B(H)].

PROPOSITION 6.4. For every ideal I # {0} with w ¢ X(I) and every ideal
J # {0}, the following conditions are equivalent:

(1) dlmijﬂ[lgflgﬁ)] =1

(i) J C F+[I,B(H)].

(iii) ] € Ly and JN[I,B(H)] = {X € J : TtX = 0}.
(iv) ] C a1
@iv)yJ]C Lyand J,, C L

Proof. (i) < (ii) Immediate from Lemma 5.2(ii) and the identity:

. _J+1[I,B(H)]

dim = dirn]+ L, B(H)] + dimw

[1, B(H)] F+[1, B(H)] [1, B(H)]

(ii) < (iv) This follows from the equivalences | C F + [I, B(H)] if and only if
J© C (F+[LB(H)])" = (a,I)" by Corollary 6.2(i), if and only if ] C ,1.

(iv) < (iv’) See Corollary 4.8(iii).

(if) = (iii) ] C L4 since (ii) implies (iv’), hence

JO[LB(H) C {X€]:TrX =0}

follows from Lemma 5.2(i) without needing to invoke hypothesis (ii). For the
reverse inclusion, let X € J and TrX = 0. By (ii), X — T € [I, B(H)] for some
T € F, hence Tr(X — T) = 0 by the previous inclusion, and therefore TrT = 0.
Then T € [F,B(H)] C [I,B(H)] as seen in the proof of Lemma 5.2(ii), hence
X € [I, B(H)] and thus (iii) holds.

(iif) = (ii) Let X € J and let P be a rank one projection. From the identity
Tr(X — (TrX)P) = 0, it follows that X — (TrX)P € [I,B(H)], and thus X € F +
[[,B(H)]. 1

The equivalence of (iii) and (iv’) also follows from Theorem 5.11(iii) of [13].
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A special case is when I = | is a principal ideal, and then Proposition 6.4
subsumes Corollary 5.19 of [13]. Another special case is when | = L, i.e,,

LiN[LB(H)] ={X € L1 : TrX =0} ifand only if L1 = 4 I (since ,,I C Lq),

which by Corollary 4.9(i) is equivalent to the condition se(w) C I.

The analog below of Proposition 6.4 for the case when w € X(I) is simpler
and its proof is left to the reader. The equivalence of (iii) and (iii") is a simple
consequence of the five chain of inclusions presented in Section 2.

PROPOSITION 6.5. For ideals I and |, if w € X(I), then the following conditions
are equivalent:

o i JHILB(H)] _
@) dlmm =0.

(i) ] < [I, B(H)].
(iii) ] C 4L
(iii") Jo C L.
Proposition 6.1 and Corollary 6.2 allow us to characterize the ideals with
w ¢ X(I) that support a unique trace up to scalar multiples.

THEOREM 6.6. If I # {0} is an ideal where w ¢ X(I), then the following condi-
tions are equivalent:
(i) I supports a nonzero trace unique up to scalar multiples.
(ii) I C Ly and every trace on I is a scalar multiple of Tr.
(iii) dim[LBiéH)] =1
(iv) I = F+[I,B(H)].
(V) I CLyand [I,B(H)]={X € I:TrX =0}
(vi) I is am-oo stable, ie., [ = ;1.

Proof. The equivalence of (iii)—(vi) is the case | = I in Proposition 6.4. The
equivalence of (i) and (iv) follows from the case | = F and 7 = Tr in Propo-
sition 5.3 which provides both the existence of a nonsingular trace on I and the
condition for its uniqueness. Since ;. C L1, (i) and (vi) imply (ii) and (ii) trivially
implies (i). 1

REMARK 6.7. By the remarks following Definition 4.16, the largest am-oo
stable ideal is st, (L1), so by Theorem 6.6, it is the largest ideal not containing
(w) that has a nonzero trace unique up to scalar multiples. We do not know
whether or not an ideal I containing (w) can have a nonzero trace unique up to
scalar multiples. However, nonuniqueness for large classes of ideals containing
(w) follows from Theorems 7.1, 7.2, Corollary 7.5, and Theorem 7.8.

As mentioned in the introduction, a principal ideal (&) supports no nonzero
trace precisely when ¢ is regular. A similar characterization of the principal ideals
supporting a unique nonzero trace in terms of regularity at infinity was obtained in
Corollary 5.6 of [39]. It is also an immediate consequence of Theorem 6.6.
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COROLLARY 6.8. Let ¢ € ¢ and w ¢ X(()). Then (&) supports a nonzero trace
unique up to scalar multiples if and only if ¢ is co-regular.

As remarked after Definition 4.11, a sequence & € ({1)* is co-regular pre-
cisely when (¢) = (&,.,) or, equivalently, &,., = O({) (see Theorem 4.12). More-
over, by Remark 6.7 such a sequence must be contained in X(st,_ (£1)) and hence

e}
Y. &nlog™n < oo for every m (see remarks succeeding Proposition 4.18).
n=1

7. INFINITE CODIMENSION

In this section we present some conditions under which [I, B(H)]| has infi-
nite codimension in I. First notice that by setting I = | in the identity in the proof
of (i) & (ii) in Proposition 6.4, [I, B(H)] has minimal codimension in I precisely
when I = F + [I,B(H)].

Thus if w € X(I), the codimension is zero precisely when I is am-stable
(Theorem 2.2), and if w ¢ X(I), the codimension is one precisely when I is am-
oo stable (Theorem 6.6). We conjecture that in all other cases, i.e., whenever I #
F + [I, B(H)], the codimension of [I, B(H)] in I is infinite, i.e., that

I {{1,00} when w ¢ X(I),

WMTEE] € (0,00} whenw € 2(1).

In order to verify this conjecture for various classes of ideals, we depend on
the following result.
; J+[LB(H)]
THEOREM 7.1. If I and | are ideals and se] ¢ F + [I, B(H)] then FrTB()] has
uncountable dimension.

In particular, if sel ¢ F + [I, B(H)] then m has uncountable dimension.

Proof. Since se] = span (se])* and F + [I, B(H)] is a linear space, it follows
that (se/)* ¢ F+[I,B(H)]. Thus, let X € (se])* \ (F+ [I,B(H)]) and let 5 =
s(X) be the sequence of s-numbers of X. Since X — UXU* € [I, B(H)] for every
unitary U, diagy € (seJ)™ \ (F + [I, B(H)]). By definition, = o(&) for some
¢ € X(J) and without loss of generality assume that 7 < ¢. Also, 7, > 0 for all
n since diagy ¢ F. Define {(t) := &'~ for t € [0,1]. Then since {(t) € ¢ and
g(t) < &, also {(t) € X(J). We claim that for any choice of

O=tg<th < - <ty=1

the cosets {diag¢(t;) + F + [, B(H )]}]I\i o are linearly independent in %.
j—1

Indeed, assuming otherwise, diag (g(t]-) + ¥ /\,((ti)) € F+ [I,B(H)] for some
i=0

0 < j < N and some constants A;, i = 0,1,...,j — 1. Since F + [I,B(H)] is
a selfadjoint linear space and ((t;) are real-valued sequences, one can choose
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all A; to be real. Define p = (t;) + Z Ail(t;) and set x = max(p,). Since

0(t;)) = o(¢(tj)) fori = 0,1,...,j—1 and 1 = o(L(t;)), one has n = o(p), so
that x, = p, for n large enough Thus diag(p — x) € F and hence diagy €
F+[I,B(H)]. Since x > n and since (F + [I, B(H)])" is hereditary by Corol-
lary 6.2(iii), it follows that diagy € F + [I, B(H)], against the hypothesis. Thus the

cosets {diag((t;) + F + [I, B(H )] ¥, are linearly independent and so %

has uncountable dimension. This 1mp11es of course that in case I = J, %ﬁ%ﬁ”

also has uncountable dimension. 1
Notice that the condition se] ¢ F + [I, B(H)] is equivalent to

wl ifwe 3(I),
se] & {az if w e ().

Notice also that if L C ] is any ideal for which (L 4 [I, B(H)])™ is hereditary,
Theorem 7.1 with the same proof remains valid if we substitute L + [I, B(H)] for
F+[I,B(H)]. So, when (L + [I, B(H)]) ™ is hereditary is a relevant question.

In the following theorem, conditions (i) and (ii) are expressed in terms of
the am-stability (respectively, am-oo stability) of sel. Recall from Propositions 3.4
and 4.20 that this is equivalent to the am-stability (respectively, am-co stability)
of scl. Recall also that st?(L1) is the smallest am-stable ideal and that st (L1) is
the largest am-oo stable ideal (Definition 4.16 and succeeding remarks).

THEOREM 7.2. Let I # {0} be an ideal. Then

if any of the following conditions hold:
(i) I C sty (L1) and sel is not am-co stable.
(ii) I D st?(Lq) and sel is not am-stable.
(iii) I ¢ sty (L1) and I 2 st?(Lq).

Proof. (i) Since w ¢ X(I) because st, (L1) C L1 by Proposition 4.20, sel ¢
F+[I,B(H)] and the conclusion follows from Theorem 7.1.

(i) F C [I,B(H)] since w € X(I), and thus sel ¢ F + [I, B(H)], by Proposi-
tion 3.4, and the conclusion follows again from Theorem 7.1.

(iii) Assume first that w € X(I). As I ¢ st,(L1), one has scl ¢ st, (L7).
Since stg,, (L1) is the largest am-oco ideal, scI is not am-co stable, hence by Propo-
sition 4.20, sel ¢ ,.1, and so by Corollary 6.2(i), sel ¢ F + [I, B(H)].

Assume now that w € X(I). Since I 2 st?(L1), one has sel 2 st?(Lq).
As st?(Lq) is the smallest am-stable ideal, sel is not am-stable, hence by Proposi-
tion 3.4, sel ¢ [I,B(H)| = F+ [I, B(H)].

In either case the result follows now from Theorem 7.1. 1

TB(E)] B( ] has uncountable dimension

Theorem 7.2(ii) and (iii) were motivated by an analysis of ideals of the form
I = se(g,) + (&) when ¢ is irregular and nonsummable.
We can extend the method of Theorem 7.2 in two directions.
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COROLLARY 7.3. Let I # {0} be an ideal. Then
sion if any of the following conditions hold:
() I pst’(Ly)and I C Jbutl ¢ sty (]) for some soft-complemented ideal ].
(i) I & sta, (L1) and J C I but st*(J) ¢ I for some soft-edged ideal ].

Proof. (i) By Theorem 7.2(iii) it remains to consider the case that I C st,, (£1).
Since I ¢ stq, (), then forsomen > 0,1 C ,Jbutl ¢ qn1]. And since gy ] is
soft-complemented as well by Lemma 4.19(i), assume without loss of generality
thatn =0,ie, I ¢ ,.J. Butthenscl ¢ , ] whilescI C J, hence ,(scI) C 4],
so scl is not am-oo stable. Hence the conclusion follows from Theorem 7.2(i) and
Proposition 4.20.

(i) By Theorem 7.2(iii) it remains to consider the case that I D st?(£) and
that for some n > 0, J;» C I but [ .11 ¢ I. In particular, this implies that J,» ¢ £
since otherwise st*(]) C st?(L1) C I against the hypothesis. Hence, since | is
soft-edged, J;» too is soft-edged by Lemma 3.3(ii’). Thus J;» C sel, and hence
Jni1r C (sel), while J,.11 ¢ sel. This shows that sel is not am-stable and hence
the conclusion follows from Theorem 7.2(ii). 1

LB B( ) has uncountable dimen-

Using a method similar to the one employed in Theorem 7.2 and building
on Propositions 6.4 and 6.5 we obtain:

PROPOSITION 7.4. If I and | are nonzero ideals and if I is soft complemented or |
is soft-edged, then

dim

J+1[I,B(H)] . 1 or uncountable if w ¢ X(I),
[I, B(H)] 0 or uncountable if w € X(I).

Proof. Assume that w ¢ X(I). If di m% # 1, then by Proposition 6.4,

] ¢ a1 If Jis soft-edged, then se] ¢ , I. If I is soft-complemented, then
se] C 4,] would imply that | C sc] = sc(se(])) C scla,I) = an(scl) = o1
(see Lemma 4.19(i)). Thus, in either case seJ] ¢ ,,I, which by Proposition 6.4
is equivalent to se] ¢ F + [I, B(H)]. Uncountable dimension then follows from
Theorem 7.1.

The case when w € X(I) (i.e., F C [I, B(H)]) follows similarly from Propo-
sition 6.5 and Lemma 3.3(i'). &

A case of special interest is when I = | which, for soft-edged and soft-
complemented ideals, proves the codimension conjecture stated in the introduc-
tion.

COROLLARY 7.5. If I is a soft-edged or soft-complemented ideal, then

dim I is {1 or uncountable if w ¢ X(I),

[I,B(H)] 0 or uncountable if w € X(I).

In particular, dim @), B 1 uncountable since w is not regular.
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Another case of interest is when [ or | are the trace class £1, which is both
soft-edged and soft-complemented.

COROLLARY 7.6. Let I be a nonzero ideal. Then

i LB feo

) dim [CoB(H)] uncountable if I ¢ 4 (L1);
0 ifw e x(I),

(i) dim < g 200 s 01 ifw e X(scl)\ X(I),
uncountable if w ¢ X(scl);

. . 0 ZfI C Ly,

I
(111) lfw g Z(I) then dim W 1S uncounmble lf'l ¢ Ll

In particular, if L1 ¢ 1, then there are uncountably many linearly independent
extensions of Tr from L4 to 1.

Proof. (i) Immediate from Propositions 7.4 and 6.4 (the equivalence of (i)
and (iv)) since w ¢ X(L1).

(ii) Recall that L1 C [I,B(H)] if and only if w € X(I). If w ¢ X(I), by
Proposition 6.4, dim % = 1when Ly C 4,1, which by Corollary 4.9(i) is

equivalent to w € X(scI), and dim % is uncountable otherwise.

(iii) First notice that if seI C IN Ly + [I, B(H)], then
(se)" c (INLy+ [LBH))T =(INLy)T cLf

and hence sel C L, where the equality follows from Proposition 5.5. Since £;
is soft-complemented, I C scI = sc(sel) C Lq. Thus, if I ¢ L1, then it fol-
lows that sel ¢ I N L1+ [I, B(H)]. By the second remark following Theorem 7.1,
dim m is uncountable. The particular case is then clear. &

REMARK 7.7. Dixmier proved in [11] that the am-closure (17)~ = ,(#,) of
a principal ideal (1) for which () C se(n)q (i.e., # = 0(4,), which is equiva-

(”/11)2;1
n

lent to U %) supports a positive singular trace. In Section 5.27 Remark 1

of [13] it was noted that Dixmier’s construction can be used to show that the di-

mention of . ] is infinite (here cl denotes the closure in the principal ideal

()
(), B(H
norm). Corollary 7.5 shows that the weaker hypothesis that 7, # O(7), i.e., 17 is

not regular, suffices to prove that % has uncountable dimension. Indeed,
by Theorem 5.20 of [13] (see also [19]), the principal ideal (7) is not am-stable

precisely when ()~ is not am-stable, i.e., dim % > 0. In [20] we show

that ()~ is always soft-complemented and so by Corollary 7.5, dim % is
uncountable.

The condition in Theorem 7.2(ii) for [I, B(H)] to have infinite codimension
in I, namely that sel be not am-stable, is only sufficient. The next theorem presents
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a class of ideals I with sel am-stable but dimm = oo. The technique used
does not depend on Theorem 7.1 nor on the method of its proof but is more com-
binatoric in nature. As indicated in Corollary 7.9, this technique can be used to

prove infinite codimension for a wider class of ideals.

THEOREM 7.8. For every am—stable principal ideal ] # {0} there is an ideal I
with se] C I C | for which dim 77 T, B( = 0 yet sel and hence scl are am-stable.

Proof. Choose a generator y for X(J). Then u is regular, i.e., u < p,, and
hence nonsummable. Now construct a sequence { € ¢ together with a strictly
increasing sequence of indices (p;);cy for which: (i) & < w, (ii) &y, = Jpp, and
(iii) (Ca)p, = %(yu)pl. Set p1 = 1, & = 1 and assume that p; < --- < p; and ¢;
for 1 < i < p; have been chosen so that (i)—(iii) hold. Define §; := min{&,,, u;}
for p; < i < pj31 — 1 where p;1q1 > p1, pi+1 2 3 is chosen large enough so that

Pra-l pr-l
Y Z i, which is possible due to the nonsummability of y. Define
i=1
1

Cpir = TiTMprs,- Then

\\/
AN

Pi+1 3 pry1—1 1 Pi+1

Z‘:z/* 2%252%,

i=1 i=1 i=1
pra—1

the inequality following from Z #i = 2pp,,- Therefore (i)—(iii) hold. Notice

that (ii), (iii) imply ¢ % Ca, ie., § is 1rregular

Define now I := seJ + (&). Since & < p, one has (¢) C (u) = ] and hence
se] C I C J. Since | = sc] because principal ideals are soft-complemented [20],
se] and | form a soft pair and hence scI = | and sel = se]. Since | is am-stable,
so are sel and scl (see Remark 3.5).

Notice that u ¢ ¢! implies w = 0(p,) and hence w € X(se]) C Z(I). Condi-
tion (iii) implies that & ¢ ¢'.

The pair ¢, I has the following property which as we will show does imply
that dim——7 i B( m = o there is a strictly increasing sequence of indices (p;)jen
such that for every x € X(I), (%)mpl — 0 for some integer m € N.

Indeed, for every x € X(I) there are « € ¢, M > 0 and m € N for which
X < ap+ MDy,¢ and so

(&) < (@p)mp, + M(Dg)mp,
Ga/mpy (Ca)mp,
< WpitpitMEp,

ST @) (by the monotonicity of « and y and the definition of D)
a)mp
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&p, tp, + MG 1
ng (since (&a)mp, = %(ga)m)
Syt TN g 6 and (i
< ZMT (by (ii) and (iii))
a’p

M
<2m (zxp, + T) — 0 (since yy > n).

We proceed now to prove that the codimension of [I, B(H)] is infinite. For
each positive integer N > 1 and 1 < j < N, choose strictly increasing sequences

of indices m,((') < n](c‘) where forall k € N:

(@) n ) e {p;} and when n( D= = p;then! > k.
n(f) m(/)
(b) Z 51/3 Z Gi-
i=m) i=1
@ m/ ™ =kn¥ +1for2 <j<N.
(d) m{") = min{i: G0 > NG}
To construct the sequences m,((j ) and n,((j )
some integer ngN) € {p;} satisfying (b), which is possible since ¢ ¢ ¢!. Then
set mngl) = ngN) + 1 according to (c). Alternating between (b) and (c), obtain
mgj),ngj) for 1 < j < N. Then choose méN) > ngl) so to satisfy (d), which is
possible since ¢ € c¢}. Continue then the construction for k = 2 and so on. So for

each k,

(N)

, start with m;"’ = 1 and choose

(N-1)

m™ < kn™ < (N-1) (1) _ (M)

< kny <o~<m,(<1)<knk < my g
Then define N sequences /) € ¢ by setting

() min(j, p)¢; if m?) <i<knlP for1 <p <N,
(71 / ) = . . (1) (N)
mm((;rknl(cl),]gz) if kn, ' <i<m].

Thus & = 7 < 7@ < - < V) and 4) < j& so that ) € (1) for every
1<j<N.

To illustrate this construction, the following figure provides a continuous
analog of the sequences 71, 7@ and 5®) for the case N = 3.

To prove that the cosets diag (7)) 4 [I, B(H)] are linearly independent, sup-
N ‘
pose diag . Ajr](]) € [I, B(H)] for some (A;) € CN. Since [I, B(H)] is selfadjoint
=1
and the sequences ;) are real-valued, one can assume without loss of gener-

N .
ality that (A;) € RN, Define  := Z)\ﬂ?(])/ Bp = Z Ajforl < p < N,
j=1 j=p
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3¢

(©)

ceccccces p@

- -

m kn kn@ kng mioy (k+1)ndy
FIGURE 1. Continuous analog of the sequences for the case N = 3

p—1
11 := 0, and 7, := jAjfor2 < p < N. A direct computation shows that
1

]:
{1 = (yn + NBn)E1 and that
(rp+pBp)&  ifm) <i<knl” for1<p <N,
Cl - ’ngi+,3p§knl(<1) if knl(cl> <i< ml(fi)l and (]9 — 1)@1 ggknl(cl) < pél for2< pgN

Setting v = max |y, + pBy|, we claim that |{;| < 7¢; for every i. When m,(cp) <

< N, then it follows that |{;| =
vp + PBpl& < vG Andif knl) < i < mY) and (p - 1)& < ) < PG for
some k > 1 and some 2 < p < N, then {; = 7,; + ‘Bpgkn,((l)' Assuming that
{; > 0, one has

0<< {m + pBp)Si if By >0,

X AN .
(vp+(p—=1)Bp)Gi = (vp—1+ (p —1)Bp-1)&; if Bp <O.

In either case, {; < 7¢;. In the case that {; < 0, the same argument can be applied

to —(; to obtain the claim.

The crux of the proof is to show that y = 0, whence an elementary compu-
tation will show that the linear system of the N equations 7y, + pB, = 0 has only
the trivial solution Ay = A» = -+ = Ay =0, i.e,, the N cosets are linear indepen-
dent. To prove that v = 0, first choose 1 < r < N for which y = |y, + rB,|. Then

i < km,(f) for some k > 1 and some 1 < p
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for every m,(:) <n < kn](() and every n’ > n, one has |{,/| < v&y < ¥&n = |Cnl.
This implies that if 7 : N — Nis an m]ectlon for which |{,| is monotone nonin-

creasing, then {(; : i= m](:),m,(c) +1,... ,n}C{gn(i) :i=1,2,...,n}. Define the set
A= {m(i) i =120\ {m”,m) +1,.. n}.

Then cardA, = m,(:) — 1 and, from the monotonicity of ¢ and since |{;| < 7¢; for
every i,

- ) gl

— icAy

(r) i€,
i=m,

- L arpaz| L a

n n n m}(:) -1

=1 L &=Ll L a- Y a)>( L e Xo4)

i€, i:m]({r) i€Ay l:m]((r> i=1

If additionally n,(;) <n kn,(:), then combining this with the inequality in (b)
>

yields that ‘ ?C,T(i)

diagl € [I, B(H)] implies, by Theorem 2.2, that |({x)a| < p for some p e X(I).
But then, by the first part of this proof, there exists an m € N for which ( )

<
i@i, that is, |(({r)a)n| = %(Za)n. The assumption that
1

A
2

mpj

0. As (a)mni’) > T forallk > m and as nk € {p;}, it follows that v = 0, which

concludes the proof. 1

In contrast to the other results on codimension in this paper, the proof of
Theorem 7.8 does not seem to yield uncountable codimension.

COROLLARY 7.9. The second part of the proof of Theorem 7.8 shows that its con-
clusion holds for a larger class: if I is an ideal for which there exists a nonsummable
sequence § € X(I) and a monotone sequence of indices {p;} so that for every x € X(I)

there is an associated m € N for which (£), —~— 0, then dim [

[LB(A)] ~ °

mpi
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