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ABSTRACT. We study a generalisation of operator spaces modelled on
Lp spaces, instead of Hilbert spaces, using the notion of p-complete bound-
edness, as studied by Pisier and Le Merdy. We show that the Figà-Talamanca–
Herz algebras Ap(G) become quantised Banach algebras in this framework,
and that amenability of these algebras corresponds to amenability of the lo-
cally compact group G, extending the result of Ruan about A(G). We also
show that various notions of multipliers of Ap(G) (including Herz’s generali-
sation of the Fourier–Stieltjes algebra) naturally fit into this framework.
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1. INTRODUCTION

The Fourier algebra, A(G), of a locally compact group G is the collection of
coefficient functionals f : G → C of the form

f (g) = [λ(g)(x), y] (g ∈ G),

where x, y ∈ L2(G) and λ is the left-regular representation of G on L2(G). Eymard
defined and studied this commutative Banach algebra in [10]. For an abelian
group G, the Fourier transform shows that A(G) is nothing but L1(Ĝ), where Ĝ
is the dual group of G. As such, A(G) is amenable as a Banach algebra, and for
another abelian group H, we have that A(G)⊗̂A(H) = A(G × H). However,
as first noted by Johnson in [19], there exist compact groups G for which A(G)
is not amenable. Thus the Banach algebra A(G) does not seem to capture some
properties of the group G.

In [30], Ruan showed that when A(G) is considered as an operator space
(and hence as a quantised Banach algebra), we have that A(G) is amenable if and
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only if G is amenable, and that A(G)⊗̂A(H) = A(G × H) for all locally com-
pact groups G and H (here we use the operator space projective tensor product).
These results provide some compelling evidence that A(G) is best viewed as an
operator space, and not simply as a Banach algebra. We remark that the original
question of when A(G) is amenable as a Banach algebra was finally settled in
[13], where it is shown that A(G) is amenable if and only if G has a finite-index
abelian subgroup.

In [11], Figà-Talamanca introduced a natural generalisation of the Fourier
algebra, for abelian and compact groups, by replacing L2(G) by Lp(G). In [18],
Herz extended the definition to arbitrary groups, leading to the commutative
Banach algebra Ap(G), now called the Figà-Talamanca–Herz algebras. In many
ways these algebras behave like A(G); for example, Leptin’s theorem (see Theo-
rem 6 of [17] or Section 10 of [27]) states that G is an amenable group if and only
if Ap(G) has a bounded approximate identity.

There have been a number of attempts to give Ap(G) an operator space
structure. In [32], Runde used some of Pisier’s work on interpolation spaces
to define an operator space version of Ap(G), denoted OAp(G). Unfortunately,
while OA2(G) = A(G) as Banach spaces, the operator space structure can dif-
fer; furthermore, OAp(G) can fail to be equal to Ap(G), even as a Banach space,
for p 6= 2. In [22], the authors use Lambert’s ideas of row and column operator
spaces to define an operator space structure on Ap(G) which turns Ap(G) into a
bounded (but not contractive) quantised Banach algebra, and in such a way that
A2(G) = A(G) completely isometrically. Furthermore, Ap(G) is amenable in this
framework if and only if G is an amenable group.

In this paper, we shall use ideas of Pisier and Le Merdy to define the notion
of a p-operator space (for 1 < p < ∞, with a 2-operator space being simply an
operator space). We show that the algebras Ap(G) then carry a natural p-operator
space structure. We investigate the amenability of Ap(G) in this framework, and
also study the p-completely bounded multipliers of Ap(G).

2. BANACH SPACES

In this section we shall gather together some basic results on Banach spaces.
Let E be a Banach space, and denote by E′ the dual space of E. For x ∈ E and
µ ∈ E′, we write 〈µ, x〉 for µ(x) (we use angle brackets for bilinear products, and
occasionally use square brackets for sesquilinear products). There is a canonical
isometry κE : E→ E′′ defined by 〈κE(x), µ〉 = 〈µ, x〉. When κE is an isomorphism,
we say that E is reflexive.

Let E and F be Banach spaces, and consider the algebraic tensor product
E⊗ F. We define the projective tensor norm ‖ · ‖π on E⊗ F by

‖τ‖π = inf
{

∑
k
‖xk‖‖yk‖ : τ = ∑

k
xk ⊗ yk

}
(τ ∈ E⊗ F).
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The completion of E⊗ F with respect to ‖ · ‖π is denoted by E⊗̂F. It is a simple
exercise to show that (E⊗̂F)′ = B(E, F′) ∼= B(F, E′) by the identification

〈T, x⊗ y〉 = 〈T(x), y〉 (T ∈ B(E, F′), x ∈ E, y ∈ F).

Here we write B(E, F) for the Banach space of bounded linear operators from E
to F. We write B(E) for B(E, E).

Alternatively, we may embed E⊗ F into B(E′, F), which leads to the defi-
nition of the injective tensor norm ‖ · ‖ε, and the injective tensor product E⊗̌F. Then
E′ ⊗ F can be identified with the finite rank operators from E to F, denoted by
F (E, F). The closure of F (E, F) in B(E, F) is the approximable operators from E to
F, denoted by A(E, F). Thus E′⊗̌F = A(E, F).

There is an obvious norm-decreasing map J : E′⊗̂E → E′⊗̌E = A(E),
whose image is the nuclear operators, N (E). We give N (E) the quotient norm
coming from N (E) ∼= E′⊗̂E/ ker J. When J is injective, we say that E has the
approximation property. See [34] or [7] for further details on these ideas.

3. AMENABLE BANACH ALGEBRAS

We shall eventually apply our results to the study of when certain Banach
algebras are amenable (in various senses). However, we shall also need some ideas
from this area as we go along, so we introduce the needed ideas now.

Let A be a Banach algebra, and let E be an A-bimodule. A linear map d :
A → E is a derivation if d(ab) = a · d(b) + d(a) · b for a, b ∈ A. We shall assume
that all our derivations are bounded. For x ∈ E, define dx : A → E by dx(a) =
a · x− x · a, for a ∈ A. Then dx is a derivation, called an inner derivation. A Banach
algebra A is amenable when every derivation from A to a dual bimodule is inner.
See the book [31] for details about amenable Banach algebras, for example.

Johnson showed in [20] that for a locally compact group G, one has that G is
amenable if and only if the group algebra L1(G) is amenable. Recall that a group
G is amenable when there is a left-invariant mean for L∞(G). See [26] or [27] for
details about amenable groups. Johnson also provided a useful characterisation
of when an algebra is amenable.

DEFINITION 3.1. Let A be a Banach algebra. A bounded net (dα) in A⊗̂A
is an approximate diagonal if

lim
α
‖a · dα − dα · a‖ = 0, lim

α
‖a∆A(dα)− a‖ = 0 (a ∈ A).

Here ∆A : A⊗̂A→A is the linearisation of the product, defined by ∆A(a⊗b)= ab.

THEOREM 3.2. LetA be a Banach algebra. ThenA is amenable if and only ifA has
an approximate diagonal. When G is an amenable group, we may choose an approximate
diagonal for L1(G) which is bounded by 1.

Proof. See Chapter 2 of [31] for example.
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Let A be a Banach algebra, and let E be a left A-module. Let Ac
E = {T ∈

B(E) : T(a · x) = a · T(x) (a ∈ A, x ∈ E)}, the commutant of A in E. Then a
projection Q : B(E) → Ac

E is a quasi-expectation when Q(TSR) = TQ(S)R for
T, R ∈ Ac

E and S ∈ B(E).

PROPOSITION 3.3. Let A be an amenable Banach algebra, and let E be a reflexive
left A-module. Then there is a quasi-expectation Q : B(E)→ Ac

E.

Proof. We sketch a proof (see Theorem 4.4.11 of [31] for example). Let (dα)

be an approximate diagonal for A, and let dα =
∞
∑

n=1
a(α)

n ⊗ b(α)
n for each α. As E is

reflexive, by moving to a subnet if necessary, we may define

〈µ,Q(T)(x)〉 = lim
α

∞

∑
n=1
〈µ, a(α)

n · T(b(α)
n · x)〉 (x ∈ E, µ ∈ E′, T ∈ B(E)).

Then Q is a linear operator, and ‖Q‖ 6 lim sup
α
‖dα‖. Clearly, if T ∈ Ac

E, then

Q(T) = T. Moreover, as dα is an approximate diagonal, for x ∈ E, µ ∈ E′, a ∈ A
and T ∈ B(E),

〈µ,Q(T)(a · x)−a · Q(T)(x)〉= lim
α

∞

∑
n=1
〈µ, a(α)

n · T(b(α)
n a · x)−aa(α)

n · T(b(α)
n · x)〉=0,

so that Q(T) ∈ Ac
E. Thus Q is a projection onto Ac

E. Similarly, for T, R ∈ Ac
E and

S ∈ B(E), it is easy to check that Q(TSR) = TQ(S)R.

It is shown in [5] that, in a certain sense, the converse to the above is true.
When A is a von Neumann algebra, we follow [31] and define A to be Connes-
amenable using the same definition as for amenability, but insisting that every-
thing is suitably weak∗-continuous (this is commonly just referred to as the suit-
able definition of “amenable” for von Neumann algebras). Then A is Connes-
amenable if and only if there is an expectation (that is, a norm-one projection)
from B(H) to A, where H is any Hilbert space such that A ⊆ B(H) is a concrete
realisation of the von Neumann algebra A. It is well-known (see Chapter III,
Theorem 3.4 of [37]) that an expectation is always a quasi-expectation.

4. p-OPERATOR SPACES

Let SQp be the collection of subspaces of quotients of Lp spaces, where we
identify spaces which are isometrically isomorphic. Let µ be a measure, and E a
Banach space. We define a norm on the algebraic tensor product Lp(µ) ⊗ E by
embedding Lp(µ) ⊗ E into Lp(µ, E) in the obvious way. Let the completion be
denoted by Lp(µ) ⊗p E. It is easy to see that Lp(µ) ⊗ E is dense in Lp(µ, E), so
that Lp(µ)⊗p E = Lp(µ, E) isometrically. An important property of SQp spaces
is the following. For E, F ∈ SQp, we have that for T ∈ B(Lp(µ)) and S ∈ B(E, F),
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the operator T⊗ S is bounded as an operator from Lp(µ)⊗p E to Lp(µ)⊗p F, with
norm ‖T‖‖S‖. See Section 7 of [7] or the survey paper [8] for further information.

For n ∈ N, let `n
p be Cn with the `p-norm. Similarly, `p(I) is the usual `p

space over an index set I; we set `p to be `p(N). Throughout, we shall let p′ be
the conjugate index to p, so that p−1 + p′−1 = 1.

An abstract characterisation of SQp spaces is the following, which goes back
to Kwapien (see Theorem 3.2 of [25] for example). For a square matrix a = (aij) ∈
Mn, we let a induce an operator on `n

p, which leads to the norm

‖a‖B(`n
p) = sup

{( n

∑
i=1

∣∣∣ n

∑
j=1

aijxj

∣∣∣p)1/p
: (xj)n

j=1 ⊆ C,
n

∑
j=1
|xj|p 6 1

}
.

We have that E∈SQp if and only if, for each n and each a=(aij)∈Mn, we have that

sup
{( n

∑
i=1

∥∥∥ n

∑
j=1

aijxj

∥∥∥p)1/p
: (xj)n

j=1 ⊆ E,
n

∑
j=1
‖xj‖p 6 1

}
6 ‖a‖B(`n

p).

4.1. p-OPERATOR SPACES. We now introduce some ideas studied in [29], and es-
pecially [25], although we introduce some new notation. A concrete p-operator
space is a closed subspace of B(E), for some E ∈ SQp. Notice that we could
equally define this by using B(E, F) instead, for E, F ∈ SQp. This follows, as we
can identify B(E, F) with a closed subspace of B(E⊕p F), where E⊕p F is the di-
rect sum of E and F together with the norm ‖e⊕ f ‖ = (‖e‖p + ‖ f ‖p)1/p for e ∈ E
and f ∈ F.

For a concrete p-operator space X ⊆ B(E), for each n > 0, we define a norm
‖ · ‖n on Mn(X) = Mn ⊗ X by identifying Mn(X) as a subspace of B(`n

p ⊗p E). It
is easy to see that the norms ‖ · ‖n satisfy:
D∞ : for u ∈Mn(X) and v ∈Mm(X), we have that ‖u⊕ v‖n+m = max(‖u‖n,
‖v‖m). Here u⊕ v ∈Mn+m(X) has block representation

( u 0
0 v
)
.

Mp : for u ∈ Mm(X), α ∈ Mn,m and β ∈ Mm,n, we have that ‖αuβ‖n 6
‖α‖‖u‖m‖β‖. Here αuβ is the obvious matrix product, and we define
‖α‖ to be the norm of α as a member of B(`m

p , `n
p), and similarly for β.

An abstract p-operator space is a Banach space X together with a family of
norms ‖ · ‖n defined by Mn(X) satisfying the above two axioms. When p = 2, the
above axioms are just Ruan’s axioms, and so 2-operator spaces are just operator
spaces. Here, and throughout, we refer to [9] for details on operator spaces. Then
Theorem 4.1 of [25] shows that an abstract p-operator space X can be isometrically
embedded in B(E) for some E ∈ SQp, and in such a way that the canonical norms
on Mn(X) arising from this embedding agree with the given norms. Henceforth,
we shall just talk of p-operator spaces. We shall tend to abuse notation, and write
‖ · ‖ instead of ‖ · ‖n, where there can be no confusion.

The natural morphisms between p-operator spaces are the p-completely
bounded maps, as first studied in [29]. A linear map u : X → Y between p-operator
spaces induces a map (u)n : Mn(X)→Mn(Y) in an obvious way. We say that u is
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p-completely bounded if ‖u‖pcb := sup
n
‖(u)n‖ < ∞. Similarly, we have the notions

of p-completely contractive and p-completely isometric. We write CBp(X, Y) for
the Banach space of all p-completely bounded maps from X to Y.

Pisier proved a factorisation scheme for p-completely bounded maps. Let
E ∈ SQp, let J be some index set, and let φj be a measure, for each j ∈ J. Let U be
an ultrafilter on J, so that we may form the ultraproduct Ê = (Lp(φj, E))U . Notice
that Ê ∈ SQp (see [14] for details about ultraproducts of Banach spaces). For each
j ∈ J, B(E) acts naturally on Lp(φj, E), and so we get a canonical homomorphism
π : B(E) → B(Ê). Now suppose that X ⊆ B(E) is a p-operator space. Let
N ⊆ M ⊆ E and N̂ ⊆ M̂ ⊆ Ê be closed subspaces such that, for each x ∈ X, π(x)
maps N into N̂ and M into M̂. Hence, for each x ∈ X, π(x) naturally induces a
map, denoted π̂(x), from G = M/N to Ĝ = M̂/N̂. Notice that G, Ĝ ∈ SQp. We
call the map π̂ a p-representation from X to B(G, Ĝ).

THEOREM 4.1. Let E, F ∈ SQp, let X ⊆ B(E) be a p-operator space, and let
u : X → B(F) be a linear map. Then u is p-completely bounded with ‖u‖pcb 6 C if and
only if there exists a p-representation π̂ : X → B(G, Ĝ) and operators U : F → G and
V : Ĝ → F such that

u(x) = Vπ̂(x)U (x ∈ X).

Proof. This is Theorem 2.1 of [29], although we have followed the presenta-
tion of [25].

As noted by Pisier after the statement of Theorem 2.1 in [29], if X ⊆ B(E)
is a unital closed subalgebra, we may suppose that M = M̂ and N = N̂, so that
G = Ĝ.

As for operator spaces, we define a norm on Mn(CBp(X, Y)) by identifying
this space with CBp(X, Mn(Y)). It is then an easy check to see that these norms
satisfy the above axioms, and so Le Merdy’s theorem tells us that CBp(X, Y) is
itself a p-operator space.

For the next result, we give C the obvious p-operator space structure: that
is, Mn(C) = B(`n

p).

LEMMA 4.2. Let X be a p-operator space, and let µ ∈ X′, the Banach dual space
of X. Then µ is p-completely bounded as a map to C, and ‖µ‖pcb = ‖µ‖.

Proof. We cannot simply follow the usual operator-space proof. In the p = 2
case, we have Smith’s Lemma available, which tells us that for a map u : X →Mn,
we have that ‖u‖cb = ‖(u)n‖. An examination of the proof of Lemma 2.2.1 in [9]
shows that we cannot hope for an extension to the general p case.

We wish to show that (µ)n : Mn(X) → B(`n
p) is bounded, with norm ‖µ‖.

Let x = (xij)n
i,j=1 ∈ Mn(X), so that (µ)n(x) = (〈µ, xij〉). Let α = (αi)n

i=1 ∈ `n
p and
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β = (β j)n
j=1 ∈ `n

p′ . Then

〈β, (µ)n(x)(α)〉 =
n

∑
i,j=1

βi〈µ, xij〉αj =
〈

µ,
n

∑
i,j=1

βixijαj

〉
.

We may regard α as a member of Mn,1, from which it follows that ‖α‖B(`1
p ,`n

p) =
‖α‖p, and similarly β ∈ M1,n with ‖β‖B(`n

p ,`1
p)

= ‖β‖p′ . So from axiom Mp it

follows that ‖βxα‖1 6 ‖β‖p′‖x‖n‖α‖p, and so

|〈β, (µ)n(x)(α)〉| 6 ‖µ‖‖β‖p′‖x‖n‖α‖p.

This implies that ‖(µ)n(x)‖ 6 ‖µ‖‖x‖n, which in turn implies that ‖(µ)n‖ 6 ‖µ‖,
as required.

As this proof indicates, we shall have significant problems extending many
results from operator spaces to p-operator spaces. Indeed, the evidence below
suggests that the current definitions might be wrong, in that we are unable to
prove simple properties which one would naturally want to hold.

We may hence identify X′ with CBp(X, C), and from this it follows that X′ is
also a p-operator space. We may use Le Merdy’s Theorem to show that X′ admits
a representation X′ ⊆ B(E) for some E ∈ SQp. In fact, in this special case, we
have a more concrete embedding.

THEOREM 4.3. Let X be a p-operator space. There exists a p-complete isometry
Φ : X′ → B(`p(I)) for some index set I.

Proof. We follow Proposition 3.2.4 of [9]. For each n ∈ N, let sn be the unit
sphere of Mn(X), and let s =

⋃
n

sn. For x ∈ s, let n(x) ∈ N be such that x ∈ sn(x).

Then let E be the `p-direct sum of the spaces {`n(x)
p : x ∈ s}, so that E is isometric

to `p(I) for some index set I. For µ ∈ X′ and x ∈ s, we have that x(µ) :=

(µ)n(x) ∈ Mn(x) = B(`n(x)
p ), with ‖x(µ)‖ 6 ‖x‖‖µ‖ = ‖µ‖. For a = (ax)x∈s ∈ E

and µ ∈ X′, we may hence define

Φ(µ)(a) = (x(µ)(ax))x∈s,

and we see that Φ is norm-decreasing. Indeed, clearly µ attains its norm on s1, so
that Φ is an isometry.

For µ ∈Mm(X′), by definition,

‖µ‖ = sup{|〈〈µ, x〉〉| : n ∈ N, x ∈Mn(X), ‖x‖ = 1} = sup{|〈〈µ, x〉〉| : x ∈ s}.

Following the notation in [9], for x = (xij) ∈ Mn(X) and µ = (µkl) ∈ Mm(X′),
we let 〈〈µ, x〉〉 = (〈µkl , xij〉)(k,i),(l,j) ∈ Mm ⊗Mn = Mm×n. We then see that
(Φ)n(µ) = (〈〈µ, x〉〉)x∈s, so that (Φ)n is an isometry, and hence Φ is a p-complete
isometry as required.
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We now come to our first problem. Let X be a Banach space, and recall the
isometric map κ = κX : X → X′′ defined by 〈κX(x), µ〉 = 〈µ, x〉 for x ∈ X and
µ ∈ X′.

PROPOSITION 4.4. Let X be a p-operator space. Then κX is a p-complete con-
traction. Furthermore, κX is a p-complete isometry if and only if X ⊆ B(Lp(φ)) p-
completely isometrically for some measure φ.

Proof. For x = (xij) ∈Mn(X), by definition,

‖(κ)n(x)‖n = sup{‖〈〈(κ(xij)), µ〉〉‖ : m ∈ N, µ ∈Mm(X′), ‖µ‖m = 1}
= sup{‖〈〈µ, x〉〉‖ : m ∈ N, µ ∈Mm(X′), ‖µ‖m = 1} 6 ‖x‖n,

so that κ is a p-complete contraction.
Suppose now that κ is a p-complete isometry. From the above theorem, we

know that X′′ ⊆ B(`p(I)) for some index set I. Thus X = κ(X) ⊆ B(`p(I)), as
required.

Conversely, suppose that X ⊆ B(E) for E = Lp(φ) for some measure φ. To
show that κ is a p-complete isometry, we need to show that for each x ∈ Mn(X)
and ε > 0 there exists m ∈ N and a p-complete contraction u ∈ CBp(X, Mm) =
Mm(X′) with ‖u(x)‖m > ‖x‖n − ε. When p = 2, we may use Lemma 2.3.4 of
[9] and take n = m and ε = 0. However, for other values of p we have to work
harder.

Let x = (xij) ∈ Mn(X) ⊆ B(`n
p ⊗p E). For ε > 0, there exists (ai)n

i=1 ⊆ E

with
n
∑

i=1
‖ai‖p 6 1 and

( n
∑

i=1

∥∥∥ n
∑

j=1
xij(aj)

∥∥∥p)1/p
> ‖x‖n − ε. Let bi =

n
∑

j=1
xij(aj) for

1 6 i 6 n. Let δ > 0 to be chosen later. By standard properties of E = Lp(φ),
there exists m ∈ N and an isometry U : `m

p → E such that for each j, there exists
f j ∈ `m

p with ‖U( f j)− aj‖ < δ. Similarly, there exists a contraction V : E → `m
p

such that (1− δ)‖bi‖ 6 ‖V(bi)‖ 6 (1 + δ)‖bi‖ for each i.
Define u : X → B(`m

p ) by u(x) = VxU for x ∈ X. A simple calculation
shows that u is a p-complete contraction, as ‖U‖‖V‖ 6 1. Then

‖(u)n(x)‖
( n

∑
j=1
‖ f j‖p

)1/p
>
( n

∑
i=1

∥∥∥ n

∑
j=1

VxijU( f j)
∥∥∥p)1/p

> ‖x‖n − 2ε,

if δ>0 is sufficiently small. Similarly, if δ>0 is sufficiently small, then
n
∑

j=1
‖U( f j)‖p

6
n
∑

j=1
‖aj‖p + ε 6 1 + ε. Hence ‖(u)n(x)‖m can be chosen to be arbitrarily close to

‖x‖n, as required.

The following was communicated to us by Christian Le Merdy. Suppose
that X ⊆ B(Lp(φ)) for some measure φ, and that X is finite dimensional with
Mn,1(X) = `n

p(X) for each n. Pick ε > 0, and let (x1, . . . , xn) be an ε-dense subset
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of the unit sphere of X (which exists as X is finite dimensional). Then( n

∑
k=1
‖xk‖p

)1/p
=‖(xk)‖Mn,1(X) :=sup

{( n

∑
k=1
‖xk(w)‖p

)1/p
: w∈Lp(φ), ‖w‖61

}
.

Hence there exists wε ∈ Lp(φ) with ‖wε‖ = 1 and ‖xk(wε)‖ > ‖xk‖ − ε = 1− ε
for each k. Define Tε : X → Lp(φ) by T(x) = x(wε) for x ∈ X. For x ∈ X with
‖x‖ = 1, let ‖x− xk‖ < ε, so that

1 = ‖x‖ > ‖Tε(x)‖ = ‖x(wε)‖ > ‖xk(wε)‖ − ε > 1− 2ε.

By homogeneity, (1− 2ε)‖x‖ 6 ‖Tε(x)‖ 6 ‖x‖ for each x ∈ X. A simple ultra-
power argument then shows that we may construct an isometry X → Lp(ψ) for
some measure ψ (recall that an ultrapower of Lp(φ) is equal to Lp(ψ) for some ψ).

Now let E ⊆ `m
p be some subspace. We give `m

p the p-operator space struc-
ture given by the identification `m

p = B(C, `m
p ), and then make E a subspace. Then

Mn,1(`m
p ) ⊆ B(C, `m

p ⊗p `n
p), so that Mn,1(`m

p ) = `n
p(`m

p ), and similarly for E. In
particular,

Mn,1(`m
p /E) = Mn,1(`m

p )/Mn,1(E) = `n
p(`

m
p )/`n

p(E) = `n
p(`

m
p /E).

So, if `m
p /E ⊆ B(Lp(φ)) for some measure φ, then `m

p /E ⊆ Lp(ψ) for some mea-
sure ψ. However, for suitable chosen E, this is nonsense. In particular, there
exist p-operator spaces X (which may be finite-dimensional) such that κX is not a
p-complete isometry.

LEMMA 4.5. Let X and Y be p-operator spaces, and let u ∈ CBp(X, Y). Then
u′ ∈ CBp(Y′, X′) and ‖u′‖pcb 6 ‖u‖pcb.

Proof. This follows as for operator spaces, see Proposition 3.2.2 of [9]. We
cannot conclude that ‖u′‖pcb = ‖u‖pcb because of the problems we encountered
above.

Combining Theorem 4.3 and Proposition 4.4, we see that for every p-operator
space X, we have that κX′ : X′ → X′′′ is a p-complete isometry. Actually, there is
a much easier way to see this result. A simple calculation shows that κ′XκX′ = IX′ ,
and as the identity map if a p-complete isometry, so also must κX′ be, as by the
lemma, κ′X is a p-complete contraction.

Let X and Y be p-operator spaces, and let u ∈ CBp(X, Y). Then u is a p-
complete quotient map if, for each n, (u)n takes the open unit ball of Mn(X) onto
the open unit ball of Mn(Y).

LEMMA 4.6. Let X and Y be p-operator spaces, and let u : X → Y be a p-complete
quotient map. Then u′ : Y′ → X′ is a p-complete isometry.

Proof. Let µ ∈Mn(Y′) and ε > 0, so that for some m, there exists y ∈Mm(Y)
with ‖y‖m < 1 and |〈〈µ, y〉〉| > ‖µ‖n− ε. By assumption, we can find x ∈Mm(X)
with ‖x‖m < 1 and u(x) = y, and so

‖(u′)n(µ)‖n > ‖〈〈µ, u(x)〉〉‖ > ‖µ‖n − ε,
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which, as ε > 0 was arbitrary, shows that ‖(u′)n(µ)‖n = ‖µ‖n, as required.

The lack of a suitable Hahn–Banach theorem for p-operator spaces (when
p = 2 we have the Arveson–Wittstock theorem Theorem 4.1.5 of [9]) means that
we cannot show the converse to the above.

We define subspaces of p-operator spaces in the obvious way. Given a p-
operator space X and a closed subspace Y ⊆ X, we define a norm on Mn(X/Y)
by identifying this space with Mn(X)/Mn(Y). Then, as for operator spaces (see
Proposition 3.11 of [9]) it is easy to check that X/Y becomes a p-operator space,
and that the quotient map π : X → X/Y is a p-complete quotient map. The above
lemma then tells us that π′ : (X/Y)′ → X′ is a p-complete isometry. A simple
calculation shows that the image of π′ is

Y⊥ := {µ ∈ X′ : 〈µ, y〉 = 0 (y ∈ Y)},

so that we may identify (X/Y)′ with Y⊥ p-completely isometrically. Again, we
have no such identification of Y′ with a suitable quotient of X′.

4.2. TENSOR PRODUCTS. We define the p-operator space projective tensor norm on
the tensor product of two p-operator space X and Y to be

‖τ‖∧ = inf{‖α‖‖u‖‖v‖‖β‖ : τ = α(u⊗ v)β} (τ ∈Mn(X⊗Y)).

Here we let u ∈Mr(X) and v ∈Ms(Y), so that u⊗ v ∈Mr×s(X⊗Y) in a natural
way, and we take α ∈ Mn,r×s and β ∈ Mr×s,n, so that α(u⊗ v)β ∈ Mn(X ⊗ Y) as
required. This is exactly the definition for operator spaces, except that as above,
we evaluate ‖α‖ as a member of B(`n

p, `s×r
p ), and similarly ‖β‖. We shall prove

below that ‖ · ‖∧ gives X ⊗ Y an abstract p-operator space structure. Denote by
X⊗̂pY the completion.

PROPOSITION 4.7. Let X be a vector space, and for each n, let ‖ · ‖n : Mn(X)→
[0, ∞) be a map such that:

D′∞ : for u∈Mn(X) and v∈Mm(X), we have that ‖u⊕v‖n+m 6max(‖u‖n, ‖v‖m);
Mp : for u∈Mm(X), α∈Mn,m and β∈Mm,n, we have that ‖αuβ‖n 6‖α‖‖u‖m‖β‖.

Then each ‖ · ‖n is a norm, and the completion of X becomes an abstract p-operator space.

Proof. This follows exactly as for operator spaces, ([9], Proposition 2.3.6).

PROPOSITION 4.8. Let X and Y be p-operator spaces. Then ‖ · ‖∧ induces a p-
operator space structure on X ⊗ Y. Furthermore, ‖ · ‖∧ is the largest such p-operator
space norm with the additional property that ‖u⊗ v‖ 6 ‖u‖r‖v‖s for u ∈ Mr(X) and
v ∈Ms(Y).
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Proof. This follows as for operator space (see Theorem 7.1.1 of [9]) with mi-
nor alterations. In [9], the authors use the C∗-identity, in the p = 2 case, to esti-
mate the norm of a matrix α ∈Mr,s = B(`s

p, `r
p) of the block form

α =
(

α1 0 0 0
0 0 0 α2

)
.

However, we get the entirely elementary estimate that ‖α‖ 6 max(‖α1‖, ‖α2‖),
which is all that is required.

Let X, Y and Z be p-operator spaces, and let ψ : X × Y → Z be a bilinear
map. We define bilinear maps

(ψ)r,s;t,u : Mr,s(X)×Mt,u(Y)→Mr×t,s×u(Z); (x, y) 7→ (ψ(xi,j, yk,l)).

Then we let (ψ)r;s = (ψ)r,r;s,s, and define

‖ψ‖pcb = sup{‖(ψ)r;s‖ : r, s ∈ N}.

This leads to the definition of CBp(X × Y, Z), which can be turned into a p-
operator space in the same way as for CBp.

PROPOSITION 4.9. Let X, Y and Z be operator spaces. Then we have natural
completely isometric identifications

CBp(X⊗̂pY, Z) = CBp(X×Y, Z) = CBp(X, CBp(Y, Z)).

Proof. This follows as for operator spaces, see Proposition 7.1.2 of [9].

We hence see that, for example, (X⊗̂pY)′ = CBp(X, Y′). As for operator
spaces (see Chapter 7 of [9]), we can now easily show that X⊗̂pY = Y⊗̂pX nat-
urally, and that the operator ⊗̂p is associative. Furthermore, if ui : Xi → Yi are
complete contractions for i = 1, 2, then u1 ⊗ u2 extends to a complete contraction
X1⊗̂

pX2 → Y1⊗̂
pY2.

PROPOSITION 4.10. Let X, Y, X1 and Y1 be p-operator spaces, and let u : X →
X1 and v : Y → Y1 be p-complete quotient maps. Then u⊗ v : X⊗̂pY → X1⊗̂

pY1 is
also a p-complete quotient map. Furthermore, ker(u⊗ v) is the closure of the space

(ker u)⊗Y + X⊗ (ker v) ⊆ X⊗̂pY.

Proof. A careful examination of the proof for operator spaces ([9], Proposi-
tion 7.1.7) shows that the proof is equally valid for p-operator spaces.

5. ALGEBRAS

In this section, we shall study weak∗-closed subalgebras of B(E) for an SQp
space E. The starting point is to look at B(E) itself, and in particular, its predual
E′⊗̂E.
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Let φ be a measure, and consider the space N (Lp(φ)) of nuclear operators
on Lp(φ), so that N (Lp(φ))′ = B(Lp(φ)) as explained above. Thus N (Lp(φ))
carries a natural p-operator space structure by duality.

LEMMA 5.1. With notation as above, B(Lp(φ)) = N (Lp(φ))′ p-completely iso-
metrically.

Proof. To ease notation, write N = N (Lp(φ)) and B = B(Lp(φ)). By defi-
nition, for τ ∈Mn(N ), we have that

‖τ‖n = sup{‖〈〈τ, T〉〉‖ : m ∈ N, T ∈Mm(B), ‖T‖m 6 1}.

Here we have identified Mn(N ) with a subspace of Mn(B′) = CBp(B, Mn), and
it is easy to see that this subspace coincides with the space CBσ

p(B, Mn) of weak∗-
continuous p-completely bounded maps from B to Mn.

For T ∈ Mn(B), let ‖T‖N ′ be the norm of T considered as a member of
Mn(N ′) = CBp(N , Mn), so that

‖T‖N ′ = sup{‖〈〈τ, T〉〉‖ : m ∈ N, τ ∈Mm(N ), ‖τ‖ 6 1} 6 ‖T‖.

To show the converse, for ε > 0, we wish to find τ ∈Mm(N ) = CBσ
p(B, Mn) with

|〈〈τ, T〉〉| > ‖T‖ − ε.
By Proposition 4.4, we know that there exists τ ∈ CBp(B, Mm) with this

property. Following that proof, we see that τ is defined to be τ(T) = VTU for
T ∈ B, for suitable U : `m

p → Lp(φ) and V : Lp(φ) → `m
p . A simple calculation

shows that such a map is actually in CBσ
p(B, Mn), which completes the proof.

It will be useful to have a more concrete description of the norm onN(Lp(φ)).
For ease of notation, let N = N (Lp(φ)) and B = B(Lp(φ)). Let n ∈ N and
τ ∈ Mn(N ). Then, as above, ‖τ‖n = sup{‖〈〈T, τ〉〉‖ : T ∈ Mm(B), ‖T‖m 6 1}.
For T ∈Mm(B), we have that

‖〈〈T, τ〉〉‖ = sup
{∣∣∣ n

∑
i=1

m

∑
k=1

n

∑
j=1

m

∑
l=1

βki〈Tkl , τij〉αl j

∣∣∣ : ∑
l,j
|αl j|p 6 1, ∑

k,i
|βki|p

′
6 1

}
.

Suppose that τij =
∞
∑

r=1
µ

(ij)
r ⊗ x(ij)

r ∈ Lp′(φ)⊗̂Lp(φ) for each i, j. Treat T = (Tkl) ∈

Mm(B) as an operator on `m
p ⊗p Lp(φ), given by T(δl ⊗ x) =

m
∑

k=1
δk ⊗ Tkl(x). Then

‖〈〈T, τ〉〉‖=sup
{∣∣∣ ∑

i,j,k,l

∞

∑
r=1

βki〈µ
(ij)
r , Tkl(x(ij)

r )〉αl j

∣∣∣ : ∑
l,j
|αl j|p 6 1, ∑

k,i
|βki|p

′
6 1

}
=sup

{∣∣∣ ∑
i,j,k,l

∞

∑
r=1
〈βkiδ

∗
k⊗µ

(ij)
r , T(αl jδl⊗x(ij)

r )〉
∣∣∣ : ∑

l,j
|αl j|p 61, ∑

k,i
|βki|p

′
61
}

=sup
{∣∣∣∑

i,j

∞

∑
r=1
〈ηi ⊗ µ

(ij)
r , T(γj ⊗ x(ij)

r )〉
∣∣∣ : ∑

j
‖γj‖p 6 1, ∑

i
‖ηi‖p′ 6 1

}
,
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where we have (ηi) ⊆ `m
p′ and (γj) ⊆ `m

p . Thus, by the usual duality between
N (`m

p ⊗p Lp(φ)) and B(`m
p ⊗p Lp(φ)), we see that

(5.1) ‖τ‖n =sup
{∥∥∥ ∞

∑
r=1

n

∑
i,j=1

(ηi⊗µ
(ij)
r )⊗(γj⊗x(ij)

r )
∥∥∥

π
: ∑

i
‖ηi‖p′61, ∑

j
‖γj‖p 61

}
,

where now m is also free to vary.
Let N p

n = N (`n
p), so by the lemma, (N p

n )′ = B(`n
p) = Mn. For a p-operator

space X, we hence have that

(N p
n ⊗̂

pX)′ = CBp(X, (N p
n )′) = CBp(X, Mn) = Mn(X′).

In particular, (N p
n ⊗̂

pN p
m)′ = Mn((N p

m)′) = Mn(Mm) = Mn×m, and so, as every-
thing is finite-dimensional,

N p
n ⊗̂

pN p
m = N p

n×m,

isometrically.

PROPOSITION 5.2. We have a natural isometric identification

N (`p)⊗̂
pN (`p) = N (`p ⊗p `p).

Proof. We follow the proof of Proposition 7.2.1 in [9]. For n ∈ N, let ιn :
`n

p → `p be the inclusion onto the first n co-ordinates, and let pn : `p → `n
p be the

natural projection. Thus the maps

jn : N (`n
p)→ N (`p); τ 7→ ιnτpn, Pn : N (`p)→ N (`n

p); σ 7→ pnσιn,

are, respectively, a complete isometry and a complete quotient map such that Pn jn
is the identity. Thus jnPn is a completely contractive projection ofN (`p) ontoN p

n .
For n, m, we have the commutative diagram

N n
p ⊗̂

pNm
p

//

jn⊗jm
��

N (`n
p ⊗p `m

p )

��
N (`p)⊗̂

pN (`p) // N (`p ⊗p `p) .

As above, we know that the top row is a isometry. From the previous para-
graph, we know that jn ⊗ jm is a complete isometry, and similarly, the right col-
umn is a complete isometry. The union of the spaces N n

p ⊗ Nm
p is norm dense

in N (`p)⊗̂
pN (`p), and the union of the spaces N (`n

p ⊗p `m
p ) is norm dense in

N (`p ⊗p `p). Hence, as all the maps are coherent, we conclude that the bottom
row must also be a isometry, as required.

PROPOSITION 5.3. Let φ and λ be measures. We have a natural isometric identi-
fication

N (Lp(φ))⊗̂pN (Lp(λ)) = N (Lp(φ× λ)).
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Proof. Spaces of the form Lp(µ) admit a net of subspaces (Ei) whose union
is dense, and such that each Ei is 1-complemented, and isometric to `n

p for some
n. Hence we may directly adapt the above proof.

Suppose that such a net of subspaces (Ei) exists for some E ∈ SQp. Then it
is easily seen that E is aLg

p,1 space, as defined in Section 23 of [7]. By Theorem 23.2
of [7], E is thus isometric to a 1-complemented subspace of some Lp space, and is
thus isometric to an Lp space (see [39]). Hence the above proposition is the best
we can do, at least using this method of proof.

We wish to further study the norm on Mn(N (E)), for E ∈ SQp. Suppose
that E has the approximation property (eventually, we shall have to assume that
E = Lp(φ) anyway) so that K(E)′ = N (E). Define Tn(K(E)) to be the vector
space Mn(K(E)) together with the norm defined by, for K = (kij)n

i,j=1,

‖K‖Tn(K(E)) = inf
{
‖T‖m

(
∑
i,k
|αik|p

)1/p(
∑
i,k
|βik|p

′)1/p′}
,

where we take the infimum over m ∈ N and T ∈Mm(K(E)) such that for each i, j,

kij =
m
∑

k,l=1
βkiTklαl j. We define a bilinear mapping Mn(N (E))×Tn(K(E))→C by

〈τ, K〉 =
n

∑
i,j=1
〈τij, Kij〉 (τ = (τi,j) ∈Mn(N (E)), K = (kij) ∈ Tn(K(E))).

By formula (5.1) it is immediate that |〈τ, K〉| 6 ‖τ‖n‖K‖Tn(K(E)).
Let Γ ∈ Tn(K(E))′, and for each i, j, define τij∈N (E) by 〈τij, k〉= 〈Γ, δij⊗k〉

for k ∈ K(E). Here δij ⊗ k ∈ Tn(K(E)) is the matrix with k in the (i, j) entry,
and 0 elsewhere. Then ‖δij ⊗ k‖Tn(K(E)) 6 ‖k‖, so that τij is well-defined, and

‖τij‖ 6 ‖Γ‖. Let τ = (τij) ∈Mn(N (E)). Let τij = ∑
r

µ
(ij)
r ⊗ x(ij)

r for each i, j. Then

let T ∈Mm(K(E)), so that

‖〈〈T, τ〉〉‖=sup
{∣∣∣ ∑

i,j,k,l

∞

∑
r=1

βki〈µ
(ij)
r , Tkl(x(ij)

r )〉αl j

∣∣∣ : ∑
l,j
|αl j|p61, ∑

k,i
|βki|p

′
61
}
=|〈τ, K〉|,

where K = (kij) ∈ Tn(K(E)) is defined by kij =
m
∑

k,l=1
βkiTklαl j. By definition,

‖K‖Tn(K(E)) 6 ‖T‖, so by the definition of Mn(N (E)), we conclude that
Tn(K(E))′ = Mn(N (E)) isometrically. Here we move from taking a supremum
over Mm(B(E)) to Mm(K(E)), which we may do by approximation, as E has the
(metric) approximation property.

Define Tn(B(E)) in a similar way to the definition of Tn(K(E)). Given T =
(Tij) ∈ Mn(B(E)) and τ = (τij) ∈ Mn(N (E)), so that we see that |〈T, τ〉| 6
‖T‖n‖τ‖n immediately. Proceeding as above, we may at least identify Mn(N (E))′

with Tn(B(E)) as vector spaces.
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PROPOSITION 5.4. Let φ be a measure, and let E = Lp(φ). Then Mn(N (E))′ =
Tn(B(E)) isometrically.

Proof. Suppose firstly that E is finite-dimensional (that is, E = `N
p for some

N). Then B(E) = K(E), and as the space Mn(N (E)) is finite-dimensional, we
see that Mn(N (E))′ = Tn(B(E)). The general case then follows by a finite-
dimensional decomposition argument, as used in Proposition 5.2.

Indeed, let F ⊆ E be a 1-complemented finite-dimensional subspace. Thus
N (`m

p ⊗p F) ⊆ N (`m
p ⊗p E) isometrically, for each m. It follows that Mn(N (F))

⊆ Mn(N (E)) isometrically, and so the natural map Mn(N (E))′ → Mn(N (F))′

is a quotient map. Similarly, we may check that the natural map Tn(B(E)) →
Tn(B(F)) (induced by the projection of E onto F) is a quotient map. Thus we
have the following diagram

Mn(N (F))′ Mn(N (E))′oo

Tn(B(F))

∼=

OO

Tn(B(E)).
φF

oo

ψ

OO

The map on the left is norm-decreasing, while the map on the right is an isometric
isomorphism. Let T ∈ Tn(B(E)), and we may easily check that

‖T‖Tn(B(E)) = sup{‖φF(T)‖Tn(B(F)) : F ⊆ E}.
The supremum is taken over 1-complemented subspaces of E, of course. A simi-
lar equality holds for ψ(T), and it follows that ‖ψ(T)‖Mn(N (E))′ = ‖T‖Tn(B(E)), as
required.

As before, this method of proof does not readily generalise to spaces other
than Lp(φ).

5.1. GENERAL WEAK∗-CLOSED ALGEBRAS. Let E = Lp(φ) for some measure φ,
and letA ⊆ B(E) be a weak∗-closed algebra. The predual ofA, denotedA∗, may
be identified with the quotient A∗ = N (E)/⊥A, where

⊥A = {τ ∈ N (E) : 〈a, τ〉 = 0 (a ∈ A)}.
Clearly A carries a canonical p-operator space structure, and we can use this to
induce a p-operator space structure on A∗. We shall call this the dual structure
on A∗.

PROPOSITION 5.5. Let A ⊆ B(Lp(φ)) be a weak∗-closed subalgebra, for some
measure φ. Give A∗ the dual structure. Then A′∗ = A p-completely isometrically.

Proof. This follows in an analogous way to the proof of Lemma 5.1. To be
precise, let T ∈ Mn(A) and ε > 0. Then there exists m ∈ N and maps U : `m

p →
Lp(φ) and V : Lp(φ) → `m

p such that ‖U‖ = ‖V‖ = 1 and, if τ ∈ CBp(A, Mm) is
defined by τ(a) = VaU, then ‖〈〈a, τ〉〉‖ > (‖a‖ − ε)‖τ‖.
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Define σ ∈Mm(A∗) = CBσ
p(A, Mm) by setting

σij = τij + ⊥A ∈ N (Lp(φ))/⊥A = A∗ (1 6 i, j 6 m).

Then 〈〈a, τ〉〉 = 〈〈a, σ〉〉, and we claim that ‖σ‖ 6 ‖τ‖, which will complete the
proof. To show this claim, it suffices to show that as an operator in CBp(A, Mm),
σ is a contraction. This is immediate however, as σ agrees with τ on A.

Notice A∗ is also a quotient of N (E), and so we could define a p-operator
space structure on A∗ by insisting that the quotient map π : N (E) → A∗ is
a p-complete quotient mapping. We shall call this the quotient structure. By
Lemma 4.6, when A∗ has the quotient structure, the inclusion π′ : A = A′∗ →
N (E)′ = B(E) is a p-complete isometry. Thus A carries the same p-operator
space structure, irrespective of the p-operator space structure put on A∗. We also
see that, in general, the quotient norm dominates the dual norm on Mn(A∗) for
each n. When p = 2, we may immediate conclude that the two structures on
A∗ coincide, but for other values of p, the lack of a suitable Hahn–Banach result
means that we cannot conclude this. We shall later show that this problem seems
to have some link with amenability (see Theorem 7.1), a result we prepare for
now.

Let E = Lp(φ) for some measure φ. From Proposition 5.4, we know that
Mn(N (E))′ = Tn(B(E)) isometrically. We may regard (π)n as a map from
Mn(N (E)) to Mn(A∗), which is defined to be a quotient map when A∗ carries
the quotient structure. Thus (π)′n : Mn(A∗)′ → Mn(N (E))′ = Tn(B(E)) is an
isometry which maps onto (ker(π)n)⊥. It is easy to see that τ ∈Mn(N (E)) lies in
ker(π)n if and only if τij ∈ ker π for each i, j. Hence it follows that T ∈ Tn(B(E))
lies in the image of (π)′n if and only if Tij ∈ A for each i, j.

From the definition of Tn(B(E)), we see that the quotient structure norm
on Mn(A∗) may be computed by considering matrices T = (Tij) such that Tij =
∑
k,l

βikSklαl j ∈ A for some S ∈ Mm(B(E)) of norm one, and suitable α and β.

By definition, the dual structure norm may be computed by exactly the same
method, only now we must ensure that Skl ∈ A for each k, l, and not only that
Tij ∈ A for each i, j.

PROPOSITION 5.6. Let A and A∗ be as above, and suppose that there is a p-
completely contractive projection from B(E) onto A. Then the two p-operator space
structures on A∗ coincide.

Proof. This is immediate, as given T = (Tij) with Tij = ∑
k,l

βikSklαl j ∈ A

for each i, j, then we have that P(Tij) = ∑
k,l

βikP(Skl)αl j ∈ A, where P(Skl) ∈ A

for each k, l. As ‖(P(Skl))‖n = ‖(P)n(S)‖n 6 ‖P‖pcb‖S‖n = ‖S‖n, the claim
follows.
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6. TENSOR PRODUCTS OF ALGEBRAS

For two von Neumann algebras R and S, there is a natural tensor product
of their preduals R∗ and S∗ such that R∗ ⊗ S∗ is the predual of the von Neumann
algebra tensor product R⊗S. A key fact about operator spaces ([9], Theorem 7.2.4)
is that R∗⊗̂

2S∗ agrees with the predual of R⊗S. In this section, we shall explore
how this result is proved, and shall lay the foundations for analogous proofs, in
the p 6= 2 case, in some rather special cases.

We shall now study Slice Maps, following the presentation in Section 7.2 of
[9]. Let φ1, φ2 be measures, and set E = Lp(φ1) and F = Lp(φ2). Let w1 ∈ N (E),
so that we have a map w1 ⊗ I : B(E)⊗B(F)→ B(F) given by (w1⊗ I)(T⊗ S) =
〈T, w1〉S.

LEMMA 6.1. There exists a weak∗-continuous map R(w1) : B(E⊗p F) → B(F)
such that R(w1), when restricted to B(E) ⊗ B(F), agrees with w1 ⊗ I. Furthermore,
R(w1) is p-completely bounded with ‖R(w1)‖pcb = ‖w1‖.

Proof. For u ∈ B(E⊗p F), define R(w1)(u) ∈ B(F) = N (F)′ by

〈R(w1)(u), τ〉 = 〈u, w1 ⊗ τ〉 (τ ∈ N (F)).

Then clearly R(w1)(u) ∈ B(F) and ‖R(w1)(u)‖ 6 ‖u‖‖w1‖. Obviously R(w1) :
B(E⊗p F)→ B(F) is linear, and is thus a bounded operator which clearly extends
w1 ⊗ I. Furthermore, we may define r(w1) : N (F)→ N (E⊗p F) by

r(w1)(τ) = w1 ⊗ τ ∈ N (E)⊗N (F) ⊆ N (E⊗p F) (τ ∈ N (F)),

and then we clearly see that r(w1)′ = R(w1), so that R(w1) is weak∗-continuous.
By Proposition 5.3, N (E)⊗̂pN (F) = N (E ⊗p F), and so B(E ⊗p F) =

CBp(N (E),B(F)) p-completely isometrically. Concretely, this second identifica-
tion is given as follows. For u∈B(E⊗p F), we define Λ(u)∈CBp(N (E),B(F)) by

Λ(u)(w1) = R(w1)(u) (w1 ∈ N (E)).

Let U ∈Mn(B(E⊗p F)) so that (R(w1))n(U) ∈Mn(B(F)). Then

(R(w1))n(U) = (R(w1)(Uij)) = (Λ(Uij)(w1)) = (Λ)n(U)(w1),

so that ‖(R(w1))n(U)‖ = ‖(Λ)n(U)(w1)‖ 6 ‖Λ‖pcb‖U‖‖w1‖ = ‖U‖‖w1‖, and
so ‖(R(w1))n‖6‖w1‖, implying that ‖R(w1)‖pcb6‖w1‖. Clearly then ‖R(w1)‖pcb
= ‖w1‖, as required.

Similarly, we may work “on the left”, leading to the definition of L(w2) :
B(E⊗p F)→ B(E) for w2 ∈ N (F).

Given weak∗-closed subalgebras A ⊆ B(E) and B ⊆ B(F), we define A⊗B
to be the weak∗-closure of A⊗B in B(E⊗p F) = B(Lp(φ1 × φ2)). We define the
Fubini product A⊗F B to be the subspace

{u ∈ B(E⊗p F) : R(w1)(u) ∈ B, L(w2)(u) ∈ A (w1 ∈ N (E), w2 ∈ N (F))}.
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As R(w1) and L(w2) are weak∗-continuous, we immediately see that A⊗B ⊆
A⊗F B.

In general, we can only say a little about A⊗B. Let w1 ∈ N (E), and con-
sider the map R(w1) restricted to A⊗B, which by weak∗-continuity maps into B.
Suppose that w2 ∈ N (E) is such that w1 − w2 ∈ ⊥A. Then, for any τ ∈ N (F),
clearly (w1 − w2)⊗ τ annihilates A⊗B, and so

〈R(w1 − w2)(T), τ〉 = 〈T, (w1 − w2)⊗ τ〉 = 0 (T ∈ A⊗B).

Hence R becomes a well-defined map N (E)/⊥A = A∗ → CBp(A⊗B,B), and
similarly for L.

Now define a map δ : A⊗B → (A∗⊗̂
pB∗)′ = CBp(B∗,A) by

〈δ(T), τ ⊗ σ〉 = 〈R(τ)(T), σ〉 = 〈L(σ)(T), τ〉 (T ∈ A⊗B, τ ∈ A∗, σ ∈ B∗).

Here we identify (A∗⊗̂
pB∗)′ with CBp(B∗,A), instead of CBp(A∗,B), for conve-

nience, as above we have been working mainly with the map R, and not L. The
other choice follows by symmetry, of course.

PROPOSITION 6.2. With notation as above, and givingA∗ and B∗ the dual struc-
tures, we have that δ is a p-complete contraction.

Proof. Let T ∈ Mn(A⊗B), let σ ∈ Mm(B∗), and let a = ((δ)n(T))m(σ) ∈
Mn×m(A). Notice that

aik,jl = δ(Tij)(σkl) = L(σkl)(Tij) (1 6 i, j 6 n, 1 6 k, l 6 m).

We shall, for the proof, give A∗ the quotient structure in order to evaluate the
norm on Mn×m(A). Let τ ∈ Mr(A∗), and let ε > 0. We may find τ̂ ∈ Mr(N (E))
such that τ̂ maps to τ, and ‖τ̂‖r 6 ‖τ‖r + ε. As in the proof of Lemma 6.1, we
p-completely isometrically identify B(E⊗p F) with CBp(N (E),B(F)) by the map
Λ. Then we have that

‖〈〈a, τ〉〉‖ = ‖〈〈L(σkl)(Tij), τst〉〉‖ = ‖〈〈R(τst)(Tij), σkl〉〉‖ = ‖〈〈Λ(Tij)(τ̂st), σkl〉〉‖
6 ‖((Λ)n(T))r(τ̂)‖n×r‖σ‖m 6 ‖((Λ)n(T))‖n‖τ̂‖r‖σ‖m

6 ‖Λ‖pcb‖T‖n‖τ̂‖r‖σ‖m 6 ‖T‖n‖σ‖m(‖τ‖r + ε).

As τ was arbitrary, we see that ‖a‖n×m 6 ‖T‖n‖σ‖m. As σ was arbitrary, we see
that ‖(δ)n(T)‖pcb 6 ‖T‖n. Finally, as T was arbitrary, we conclude that δ is a
p-complete contraction, as required.

Now give A∗ and B∗ the quotient structures. Then by Proposition 4.10, the
obvious map

π∗ : N (E)⊗̂pN (F)→ A∗⊗̂
pB∗

is a p-complete quotient map. Thus

π := π′∗ : (A∗⊗̂
pB∗)′ → B(E⊗p F)

is a p-complete isometry.
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THEOREM 6.3. With notation as above, the map π is a weak∗-homeomorphic p-
completely isometric map with range equal to A ⊗F B. Furthermore, π takes A⊗B,
defined to be the weak∗-closure of A⊗B in (A∗⊗̂

pB∗)′, onto A⊗B.

Proof. This follows as for operator spaces (given properties of ⊗̂p which we
established in Proposition 4.10), see Proposition 7.2.3 of [9].

Finally, we study maps on algebras, and links to complete boundedness.

THEOREM 6.4. Let φ1 and φ2 be measures, and let E = Lp(φ1) and F = Lp(φ2).
Let A ⊆ B(E) be a weak∗-closed algebra, and let M ∈ CBp(A) be weak∗-continuous.
For any weak∗-closed algebra B ⊆ B(F), there exists a weak∗-continuous map M̂ ∈
B(A⊗B) such that M̂(a⊗ b) = M(a)⊗ b for a ∈ A and b ∈ B, and ‖M̂‖ 6 ‖M‖pcb.

Proof. We may suppose that φ1 = φ2 is the counting measure on N. The
general case will follow in the same way as Proposition 5.3 follows from Propo-
sition 5.2. Hence E = F = `p.

Let Pn : `p → `n
p be the projection onto the first n coordinates, and ιn : `n

p →
`p be the canonical inclusion map. Define αn : B(`p(N×N)) → B(`p)⊗B(`n

p) =
Mn(B(`p)) by

αn(T) = (L(P′n(δ∗i )⊗ ιn(δj))(T))ij (T ∈ B(`p(N×N)), 1 6 i, j 6 n).

Let x = (xj)n
j=1 ⊆ `p and µ = (µi)n

i=1 ⊆ `p′ , and define y =
n
∑

j=1
xj ⊗ ιn(δj) ∈

`p ⊗p `p and λ =
n
∑

i=1
µi ⊗ P′n(δ∗i ). Then

‖y‖ =
∥∥∥(I ⊗ ιn)

( n

∑
j=1

xj ⊗ δj

)∥∥∥ 6
( n

∑
j=1
‖xj‖p

)1/p
,

and similarly ‖λ‖p′ 6 ∑
i
‖µi‖p′ . Then

|〈µ, αn(T)(x)〉| =
∣∣∣ n

∑
i,j=1
〈µi, L(P′n(δ∗i )⊗ ιn(δj))(T)(xj)〉

∣∣∣
=
∣∣∣ n

∑
i,j=1
〈T, ((µi ⊗ xj)⊗ P′n(δ∗i )⊗ ιn(δj))〉

∣∣∣
=
∣∣∣〈T,

n

∑
i,j=1

(µi ⊗ P′n(δ∗i ))⊗ (xj ⊗ ιn(δj))
〉∣∣∣

= |〈T, λ⊗ y〉| 6 ‖T‖
( n

∑
i=1
‖µi‖p′

)1/p′( n

∑
j=1
‖xj‖p

)1/p
.

Thus ‖α(T)‖ 6 ‖T‖, so that α is a contraction. It is easy to show that α is weak∗-
continuous. We have defined α in such a way that α(T ⊗ S) = T ⊗ PnSιn for
S, T ∈ B(`p).
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In a similar way, we may define a weak∗-continuous contraction β :
Mn(B(`p)) → B(`p(N × N)) such that β(T ⊗ S) = T ⊗ ιnSPn for T ∈ B(`p)
and S ∈Mn.

By weak∗-continuity, we see that αn(T) ∈ Mn(A) for T ∈ A⊗B(`p). As
M ∈ CBp(A), by definition, we have that (M ⊗ In)αn : A⊗B(`p) → Mn(A)
is bounded, with ‖(M ⊗ In)αn‖ 6 ‖M‖pcb. Thus βn(M ⊗ In)αn : A⊗B(`p) →
A⊗B(`p) is bounded with ‖βn(M⊗ In)αn‖ 6 ‖M‖pcb. As αn, βn and M⊗ In are
weak∗-continuous, so is βn(M⊗ In)αn.

Let (nα) be a subnet of N such that the net βnα(M ⊗ Inα)αnα(T) converges
in the weak∗-topology, for each T ∈ A⊗B(`p), say converging to M0(T) ∈
A⊗B(`p). Then M0 is linear and bounded, with ‖M0‖ 6 ‖M‖pcb. Then, for
i, j, k, l ∈ N, a ∈ A and S ∈ B(`p),

lim
α
〈δ∗i ⊗ δ∗j , βnα(M⊗ Inα)αnα(a⊗ S)(δk ⊗ δl)〉

= lim
α
〈δ∗i , M(a)(δk)〉〈δ∗j , ιnα Pnα Sιnα Pnα(δl)〉 = 〈δ∗i , M(a)(δk)〉〈δ∗j , S(δl)〉,

as eventually, ιnα Pnα(δl) = δl and so forth. Thus

M0(a⊗ S) = lim
α

βnα(M⊗ Inα)αnα(a⊗ S) = M(a)⊗ S (a ∈ A, S ∈ B(`p)),

with the limit taken in the weak∗-topology.
Let A∗ = N (`p)/⊥A be the predual of A, and let m ∈ B(A∗) be such that

m′ = M. Let θ : A∗ ⊗N (`p)→ (A⊗B(`p))∗ = N (`p(N×N))/⊥(A⊗B(`p)) be
the canonical map given by

〈a⊗ S, θ(τ ⊗ σ)〉 = 〈a, τ〉〈S, σ〉 (a ∈ A, S ∈ B(`p), τ ∈ A∗, σ ∈ N (`p)).

Then θ is injective, and we claim that θ has dense range. If not, then there exists
a non-zero T ∈ A⊗B(`p) such that 〈T, θ(τ ⊗ σ)〉 = 0 for τ ∈ A∗ and σ ∈ N (`p).
There hence exists x ∈ `p ⊗p `p and µ ∈ `p′ ⊗p′ `p′ with 〈µ, T(x)〉 6= 0. By

approximation, we may suppose that x =
N
∑

n=1
xn ⊗ yn and µ =

M
∑

m=1
µm ⊗ λm.

Then

0 6= ∑
n,m
〈µm ⊗ λm, T(xn ⊗ yn)〉 = ∑

n,m
〈T, θ((µm ⊗ xn + ⊥A)⊗ (λm ⊗ yn))〉,

a contradiction. For a ∈ A, S ∈ B(`p), τ ∈ A∗ and σ ∈ N (`p), we have that

〈M0(a⊗ S), θ(τ ⊗ σ)〉 = 〈a, m(τ)〉〈S, σ〉 = 〈a⊗ S, θ(m(τ)⊗ σ)〉.

We hence see that m⊗ I extends continuously to a bounded map on (A⊗B(`p))∗,
and so by weak∗-density, M0 is weak∗-continuous.

Finally, for a ∈ A and b ∈ B, we have that a ⊗ b ∈ A⊗B ⊆ A⊗B(`p),
and M0(a ⊗ b) = M(a) ⊗ b. As M0 is weak∗-continuous, we hence see that
M0(A⊗B) ⊆ A⊗B, and so we may set M̂ to be M0 restricted to A⊗B, com-
pleting the proof.
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7. FIGÀ-TALAMANCA–HERZ ALGEBRAS

We shall briefly introduce the Figà-Talamanca–Herz algebras, following the
notation of [18] (which means that, compared to some authors, we swap the in-
dexes p and p′).

Let G be a locally compact group, and let λp : G → B(Lp(G)) be the left
regular representation, defined by

λp(s)( f )(t) = f (s−1t) (s, t ∈ G, f ∈ Lp(G)).

We shall also need to use the right regular representation, which is defined by

ρp(s)( f )(t) = f (ts)∆G(s)1/p (s, t ∈ G, f ∈ Lp(G)),

where ∆G is the modular function of G. See Section 8 for further details about
group representations. Let C(G) be the space of continuous functions from G to
C, let C00(G) ⊆ C(G) be the subspace of functions with compact support, and let
C0(G) be its closure. We then define a map Λp : Lp′(G)⊗̂Lp(G)→ C0(G) by

Λp(g⊗ f )(s) = 〈g, λp(s)( f )〉 (s ∈ G, f ∈ Lp(G), g ∈ Lp′(G)).

That Λp maps into C(G) follows as λp is continuous; that Λp maps into C0(G)
follows as C00(G) is dense in Lp(G) and Lp′(G). Then Ap(G) is defined to be
the coimage of Λp. That is, we identify the image of Λp with the Banach space
Lp′(G)⊗̂Lp(G)/ ker Λp, the latter defining the norm on Ap(G). As shown in [18],
Ap(G) becomes a Banach algebra under pointwise operations. When p = 2,
A2(G) agrees with the Fourier Algebra A(G), as studied in [10].

By standard Banach space results, we see that the dual of Ap(G) may be
identified with the space

PMp(G) = {T ∈ B(Lp(G)) : 〈T, τ〉 = 0 (τ ∈ ker Λp)}.

Notice that λp(G) = {λp(s) : s ∈ G} ⊆ PMp(G), and that the weak∗-closure of
λp(G) is equal to PMp(G). It is then easy to show that PMp(G) is a subalgebra
of B(Lp(G)) (see, for example, Section 10 of [27]). When p = 2, we have that
PM2(G) = VN(G), the group von Neumann algebra of G. The duality between
Ap(G) and PMp(G) is

〈T, Λp(g⊗ f )〉 = 〈g, T( f )〉 (T ∈ PMp(G), g ∈ Lp′(G), f ∈ Lp(G)).

As PMp(G) ⊆ B(Lp(G)), we see that PMp(G) carries a natural p-operator
space structure. As in Section 5.1, we may hence induce the dual p-operator
space structure on Ap(G). Alternatively, we may induce the quotient structure
on Ap(G), by defining the map Λp : N (Lp(G)) → Ap(G) to be a p-complete
quotient map.

When G is amenable, the algebra PMp(G) is easier to handle. In particular,
we have Theorem 5 of [17], which shows that when G is amenable, we have that
PMp(G) = CONVp(G) := {T ∈ B(E) : Tρp(s) = ρp(s)T (s ∈ G)}
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THEOREM 7.1. Let G be an amenable locally compact group. Then the two natural
p-operator space structures on Ap(G), as defined above, agree.

Proof. Let E = Lp(G). By Proposition 5.6, it suffices to prove that there is a
p-completely contractive projection from B(E) onto PMp(G). We shall now show
that when G is amenable, such a projection exists.

We may regard E as a left L1(G)-module for the ρp action, so that L1(G)c
E =

CONVp(G), in the notation of Section 3. Combining Theorem 3.2 and Proposi-
tion 3.3 yields that there is a contractive projection Q : B(E) → CONVp(G) =
PMp(G).

However, we need to show that Q is actually p-completely contractive. Let

(dα) be an approximate diagonal of bound one for L1(G), and let dα =
∞
∑

n=1
a(α)

n ⊗

b(α)
n ∈ L1(G)⊗̂L1(G) for each α. Let T ∈ Mn(B(E)), let (xj)n

j=1 ⊆ E, and let
(µi)n

i=1 ⊆ E′, so that∣∣∣ n

∑
i,j=1
〈µi,Q(Tij)(xj)〉

∣∣∣=lim
α

∣∣∣ n

∑
i,j=1

∑
k
〈µi, ρp(a(α)

k )Tijρp(b(α)
k )(xj)〉

∣∣∣
6lim

α
∑
k

∣∣∣ n

∑
i,j=1
〈ρp(a(α)

k )′(µi), Tijρp(b(α)
k )(xj)〉

∣∣∣
6lim

α
∑
k
‖T‖n

( n

∑
i=1
‖ρp(a(α)

k )′(µi)‖p′
)1/p′( n

∑
j=1
‖ρp(b(α)

k )(xj)‖p
)1/p

6‖T‖nlim
α

∑
k
‖ρp(a(α)

k )‖‖ρp(b(α)
k )‖

( n

∑
i=1
‖µi‖p′

)1/p′( n

∑
j=1
‖xj‖p

)1/p

6‖T‖n

( n

∑
i=1
‖µi‖p′

)1/p′( n

∑
j=1
‖xj‖p

)1/p
.

Thus ‖Q‖n 6 1, and so ‖Q‖pcb = 1, as required.

In Section 1.31 of [26], the class of groups G such that PF2(G) is an amenable
Banach algebra is discussed: it is somewhat larger than the class of amenable
groups. When PF2(G) is amenable, by weak∗-density, we see that VN(G) =
PM2(G) is Connes-amenable, and this is enough to ensure a projection B(L2(G))
to PM2(G) (actually, such a projection is automatically completely positive, and
hence completely contractive, see Chapter XV, Corollary 1.3 of [38]). For example,
page 84 of [26] shows that VN(SL(2, R)) is Connes-amenable, while SL(2, R) is
not amenable. Of course, in the p = 2 case the above theorem is not necessary. In
the p 6= 2 case, we are not aware of a systematic investigation of when PMp(G),
for p 6= 2, is Connes-amenable (see Theorem 4.4.13 of [31] for some partial re-
sults). Furthermore, even if we have a projection B(Lp(G)) → PMp(G), it is un-
clear that this projection is necessarily p-completely contractive. It seems possible
that the above proof could hence be extended to some non-amenable groups.
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However, the existence of a projection onto PMp(G) is very far from being
necessary, so it also seems possible that another method of proof could extend the
above result to a much larger class of groups (or even maybe all groups).

We know that p-operator spaces are much easier to work with when they
embed into an Lp space. Henceforth, we shall assume that Ap(G) carries the dual
structure. We shall resort to the above theorem when it is necessary to use the
quotient structure (which is in many ways the more natural structure).

Our next task is to show that Ap(G) is an algebra is the category of p-
operator spaces. This is equivalent to saying that the algebra product defines a
bounded (indeed, contractive) map ∆ : Ap(G)⊗̂p Ap(G) → Ap(G). Suppose that
∆′ : PMp(G)→ (Ap(G)⊗̂Ap(G))′=CBp(Ap(G), Ap(G)′)=CBp(Ap(G), PMp(G))
is a p-complete contraction. Then so is ∆′′, and hence also ∆′′κAp(G)⊗̂p Ap(G) =
κAp(G)∆. As κAp(G) is a p-complete isometry, we conclude that ∆ is a p-complete
contraction.

Define PMp(G)⊗PMp(G) ⊆ B(Lp(G× G)), as in Section 6.

PROPOSITION 7.2. Let G and H be locally compact groups. Then PMp(G)⊗
PMp(H) = PMp(G× H).

Proof. By definition, PMp(G)⊗PMp(H) is the weak∗-closure of PMp(G)⊗
PMp(H) in B(Lp(G)⊗p Lp(H)) = B(Lp(G × H)). For this proof, let λG

p : G →
B(Lp(G)) be the left-regular representation, and define λH

p and λG×H
p similarly.

Then it is simple to verify that

λG
p (s)⊗ λH

p (t) = λG×H
p (s, t) (s ∈ G, t ∈ H).

Hence we see immediately that PMp(G×H) ⊆ PMp(G)⊗PMp(H), as PMp(G×
H) is the weak∗-closure of the span of the image of λG×H

p .
Conversely, we shall show that λG

p (G)⊗ PMp(H) ⊆ PMp(G× H), and by
symmetry that PMp(G)⊗ λH

p (H) ⊆ PMp(G × H). Thus, for S ∈ PMp(G) and
T ∈ PMp(H), we have that

S⊗ T = (S⊗ λH
p (eH))(λG

p (eG)⊗ T) ∈ PMp(G× H),

where eG, eH , is the unit of G, respectively H. As PMp(G × H) is weak∗-closed,
we conclude that PMp(G)⊗PMp(H) ⊆ PMp(G× H), completing the proof.

To show that λG
p (G)⊗PMp(H)⊆PMp(G×H) we shall show that ker ΛG×H

p

⊆ ⊥(λG
p (G) ⊗ PMp(H)). Let τ =

∞
∑

n=1
µn ⊗ xn ∈ ker ΛG×H

p ⊆ Lp′(G × H) ⊗

Lp(G× H). We regard Lp(G× H) as Lp(G, Lp(H)), and so we regard each xn as
a function from G to Lp(H). Similarly Lp′(G× H) = Lp′(G, Lp′(H)). Fix u ∈ G,
so that

0 = 〈λG
p (u)⊗ λH

p (v), τ〉 =
∞

∑
n=1

∫
G

〈µn(s), λH
p (v)(xn(u−1s))〉 ds (v ∈ H).
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For each n, define yn ∈ Lp(G, Lp(H)) by yn(s) = xn(u−1s) for s ∈ G. Thus

0 =
∞

∑
n=1
〈µn, (I ⊗ λH

p (v))(yn)〉 (v ∈ H).

By using Herz’s ideas in Lemma 0 of [18], this implies that

0 =
∞

∑
n=1
〈µn, (I ⊗ T)(yn)〉 = 〈λG

p (u)⊗ T, τ〉 (T ∈ PMp(H)).

As u ∈ G was arbitrary, the proof is complete.

Define W : Lp(G× G)→ Lp(G) by

(W f )(s, t) = f (s, st) ( f ∈ Lp(G× G), s, t ∈ G),

so that W is an invertible isometry. Define

Γ : PMp(G)→ PMp(G)⊗PMp(G); T 7→W−1(T ⊗ I)W (T ∈ PMp(G)).

Let f ∈ Lp(G× G) and s ∈ G. Then

(Γ(λp(s))( f ))(r, t) = (W−1(λp(s)⊗ I)W( f ))(r, t) = ((λp(s)⊗ I)W( f ))(r, r−1t)

= (W f )(s−1r, r−1t) = f (s−1r, s−1t),

for r, t ∈ G. Thus Γ(λp(s)) = λp(s)⊗ λp(s).
Recall the definition of the map δ : PMp(G)⊗PMp(G)→ (Ap(G)⊗̂pAp(G))′,

which is a p-complete contraction by Proposition 6.2. For a, b ∈ Ap(G) and s ∈ G,
we have that

〈δΓ(λp(s)), a⊗b〉= 〈λp(s)⊗λp(s), a⊗b〉= a(s)b(s)=(ab)(s)= 〈λp(s), ∆(a⊗b)〉.
Thus ∆′ = δΓ. In particular, as Γ is clearly a p-complete contraction, so is ∆′, as
required.

THEOREM 7.3. Let G and H be amenable locally compact groups. Then Ap(G)⊗̂p

Ap(H) = Ap(G× H) isometrically.

Proof. This proof is an adaptation of Theorem 7.2.4 in [9]. By Theorem 7.1,
we have that the two p-operator space structures agree on Ap(G) and Ap(H).
By Theorem 6.3, the map π∗ : N (Lp(G))⊗̂pN (Lp(H)) → Ap(G)⊗̂p Ap(H) is a
p-complete quotient map, so that π = π′∗ : (Ap(G)⊗̂p Ap(H))′ → B(Lp(G× H))
is a p-complete isometry onto its range, which is PMp(G)⊗F PMp(H).

For w ∈ N (Lp(G)), recall the definition of R(w) from Section 6. Let T ∈
PMp(G)⊗F PMp(H)⊆ B(Lp(G)⊗p Lp(H)), so by definition R(w)(T) ∈ PMp(H)
= CONVp(H) for each w ∈ N (Lp(G)). Thus, for s ∈ H, R(w)(T)ρp(s) =
ρp(s)R(w)(T). By weak∗-continuity, this implies that

R(w)(T(I ⊗ ρp(s))) = R(w)((I ⊗ ρp(s))T).

As w is arbitrary, this is that T(I ⊗ ρp(s)) = (I ⊗ ρp(s))(T) for each s ∈ H. By
symmetry, we also see that (ρp(t)⊗ I)T = T(ρp(t)⊗ I) for t ∈ G. Consequently
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T commutes with ρp((t, s)) for (t, s) ∈ G × H, that is, T ∈ CONVp(G × H) =
PMp(G× H), as G× H is amenable.

Thus PMp(G) ⊗F PMp(H) = PMp(G)⊗PMp(H) = PMp(G × H). As π

is a homeomorphism, we conclude that (Ap(G)⊗̂p Ap(H))′ = Ap(G × H)′ =
PMp(G × H) p-completely isometrically. As the quotient and dual structures
agree on Ap(G×H), and π = π′∗ is weak∗-continuous, this implies that Ap(G)⊗̂p

Ap(H) = Ap(G× H), as required.

In the above proof we use the fact that when G is an amenable group, we
have that PMp(G) = CONVp(G). As communicated to us by Professor Figà-
Talamanca, in [3], Cowling shows that PMp(G) = CONVp(G) for G = SL(2, R)
and G = F2. Actually, the proof for F2 is not correct, but can be corrected using
results of Haagerup, as done in Theorem 4.9, Chapter 8 of [12]. It is apparently
unknown if PMp(G) = CONVp(G) for all groups G. We conclude that the main
sticking point in this section is Theorem 7.1.

Finally, we shall show that Ap(G) is amenable in the category of p-operator
spaces if and only if G is an amenable group. By “amenable in the category of
p-operator spaces”, we mean that every p-completely bounded derivation from
Ap(G) to a p-completely contractive dual Ap(G)-bimodule is inner. The equiv-
alence of this to Ap(G) having an approximate diagonal in Ap(G)⊗̂p Ap(G) fol-
lows from exactly the same argument as used for amenability of Banach algebras
(compare with Section of [30]). We shall make heavy use of the already estab-
lished result in the p = 2 case, which is Theorem 3.6 of [30].

THEOREM 7.4. Let G be a locally compact group. Then Ap(G) is p-operator space
amenable if and only if G is an amenable group.

Proof. Suppose that Ap(G) is p-operator space amenable. Then, in partic-
ular, Ap(G) has a bounded approximate identity, and so by Leptin’s Theorem
(compare Theorem 6 of [17]) G is amenable. We remark that the proof, for a
Banach algebra A, that A amenable implies that A has a bounded approximate
identity easily transfers to the category of p-operator spaces (see, for example,
Proposition 1.19 of [20]).

Conversely, suppose that G is an amenable group. Then Ap(G)⊗̂p Ap(G) =
Ap(G× G). As G× G is amenable, by Theorem C of [18], identification of func-
tions gives a norm-decreasing homomorphism A2(G× G) → Ap(G× G) which

has dense range. By Ruan’s Theorem, A2(G × G) = A2(G)⊗̂2 A2(G) contains a
bounded approximate diagonal, and hence so does Ap(G × G). Thus Ap(G) is
p-operator space amenable.

7.1. FURTHER HOMOLOGICAL PROPERTIES. Amenability fits into the
study of Hochschild cohomology of Banach algebras, and there are further
(co)homological properties of Banach algebras which are widely studied. See
Chapter 4 of [31] for an introduction to these ideas. As for amenability, when
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A(G) is considered as an operator space, homological properties of A(G) depend
upon the group G in the same (or dual) way to the way that properties of L1(G)
depend upon G.

In [40], Wood considers biprojectivity, and shows that A(G) is biprojective
(with the operator space structure) if and only if G is discrete. Conversely, Helem-
skii (see [15]) showed that L1(G) is biprojective (as a Banach alegbra) if and only
if G is compact (and we view discreteness and compactness as being dual prop-
erties, as in the abelian case).

First, some terminology. Let A be a Banach algebra, let E and F be A-
bimodules, and let θ ∈ B(E, F). We say that θ is an module homomorphism if
θ(a · x · b) = a · θ(x) · b for a, b ∈ A and x ∈ E. We say that θ is admissible if
there exists φ ∈ B(F, E) with θφθ = θ. We say that an A-bimodule E is bipro-
jective when, given A-bimodules F and G, a surjective, admissible module map
φ : F → G and a module map θ : E → G, there exists a module map ψ : E → F
with φψ = θ.

In [40], Wood first adapts these ideas to the category of operator spaces.
Subject to some technicalities (as usual, to do with duality) it seems rather likely
that this carries over easily to the p-operator space situtation. Wood next proves
that the multiplication map A(G)⊗̂2 A(G) → A(G) is surjective. This uses a
number of results, including that A(G)⊗̂2 A(G) = A(G × G) for all groups G,
which we have not been able to generalise to the Ap(G) case. Furthermore, this
fact is again used in the proof of the main theorem, ([40], Theorem 4.5).

A Banach algebra A is weakly-amenable when every bounded derivation to
A′ is inner. When A is commutative, this is equivalent to the (more natural)
condition that every derivation into a symmetric A-bimodule E is zero. Here an
A-bimodule E is symmetric if a · x = x · a for each a ∈ A and x ∈ E. It is easy to
translate these conditions into the category of operator spaces, and in [36] Spronk
shows that A(G) is always weakly-amenable in the category of operator spaces.

Again, we can translate these ideas over to p-operator spaces, but, again,
we find that we need properties of the projective tensor norm which we have
not been able to establish in full generality (it is, of course, pointless to restrict
to amenable groups G, as then Ap(G) is amenable, and so trivially weakly-ame-
nable). Furthermore, Spronk uses simple facts about representations on Hilbert
spaces which seem unlikely to hold for SQp spaces, as we lack things like orthog-
onal projections.

In [35], Samei develops the theory of algebras he called hyper-Tauberian, and
uses this theory to give a simple and elegant proof that A(G) is weakly-amenable,
as an operator space. Indeed, Samei’s argument easily extends to the Ap(G) alge-
bras, when given the operator space structure constructed in [22]. This operator
space structure suffers from the same issue we have, in that Ap(G)⊗̂2 Ap(G) need
not, seemmingly, be anything useful, when G is not amenable. Samei sidesteps
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this issue by first working with A(G) and then transfering the result to Ap(G),
see Theorem 28 of [35] for details.

We can immediately adapt Samei’s definition of what it means to be hyper-
Tauberian to the p-operator space setting, and show that a hyper-Tauberian alge-
bra is weakly-amenable. It remains to show that Ap(G) is indeed hyper-Tauberian
as a p-operator space. Unfortunately, we again hit a problem here, as we cannot
lift results from A(G) to Ap(G) (as A(G) is not a p-operator space!) and a di-
rect argument, at least following Samei, would again require us to know what
Ap(G)⊗̂p Ap(G) is. It at least seems possible that a new direct argument could
work for Ap(G) in the p-operator space setting, but we have not been able to
make progress in this direction.

8. MULTIPLIERS

In this section we shall study multipliers of Figà-Talamanca–Herz Algebras.
Much of the hard work is already in the literature, but often without direct con-
nections being drawn. We try to collect together these results in a unified setting
here.

It shall be helpful to sketch some results on group representations. Let G be
a locally compact group, and let E be a reflexive Banach space. We shall define a
group representation of G on E to be a group homomorphism π : G → B(E) such
that π(s) is an isometry for each s ∈ G, and for each x ∈ E and µ ∈ E′, the map
G → C; s 7→ 〈µ, π(s)(x)〉 is continuous. Then π extends to a norm-decreasing
homomorphism π : L1(G)→ B(E) by integration.

We shall now sketch the converse to this, which is folklore. Let π : L1(G)→
B(E) be a norm-decreasing homomorphism. As is standard (see Theorem 3.3.23
of [4] for example) L1(G) contains an approximate identity (eα) of bound 1. For
s ∈ G and f ∈ L1(G), define s · f ∈ L1(G) by (s · f )(t) = f (s−1t) for t ∈ G. We
may define a map σ : G → B(E) by

〈µ, σ(s)(x)〉 = lim
α
〈µ, (s · eα)(x)〉 (x ∈ E, µ ∈ E′).

Then there exists a subspace F of E such that, by restriction, σ becomes a group
representation σ : G → B(F). In fact, there is a contractive projection P : E → F
such that Pπ( f )P = π( f ) for f ∈ L1(G), so that the action of π on the kernel
of P is trivial, and so we loose nothing by restricting to F. Applying the previ-
ous paragraph to σ yields the homomorphism π, restricted to F. By the Cohen
Factorisation Theorem, we have that F = {π( f )(x) : x ∈ E, f ∈ L1(G)}.

Now define a map Π : E′⊗̂E→ C(G) by

Π(µ⊗ x)(s) = 〈µ, π(s)(x)〉 (µ⊗ x ∈ E′⊗̂E, s ∈ G).

Here C(G) is the space of continuous functions on G; that Π maps into C(G)
follows by the continuity assumption on π. We let A(π) be the co-image of Π:
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that is, A(π) is the image of Π in C(G), but with the norm induced by identifying
A(π) with the quotient E′⊗̂E/ ker Π. As explained by Herz in [18], the obvious
definition of equivalent group representations is a rather strong condition, while
A(π) gives a more interesting notion of equivalence (for example, A(π) is one-
dimensional if and only if π is trivial).

Recall the left-regular representation λp : G → B(Lp(G)). Then Ap(G) =
A(λp). Let π : G → B(E) be some group representation, and let IE : G → B(E)
be the trivial representation on E. Herz shows that λp has the useful property
that A(λp ⊗ π) = A(λp ⊗ IE) (this is also referred to as Fell’s absorption principle).
Furthermore, if E ∈ SQp (or, in Herz’s terminology, E is a p-space) then A(λp ⊗
IE) = A(λp) ([18], Lemma 0).

For a commutative Banach algebra A, we say that a linear map T : A → A
is a multiplier, denoted by T ∈ M(A), if T(ab) = aT(b) for a, b ∈ A. Then
M(A) becomes a Banach algebra with respect to the operator norm. For a locally
compact group G, using the fact that Ap(G) is a regular tauberian algebra (see [17],
Section 3), we may use the Closed Graph Theorem to show that each multiplier
on Ap(G) is bounded, and furthermore, each multiplier is given by pointwise
multiplication by some (necessarily continuous) function u : G → C. Henceforth
we shall treatM(Ap(G)) as a subspace of C(G), with the norm

‖u‖M = sup{‖ua‖Ap : a ∈ Ap(G), ‖a‖Ap 6 1} (u ∈ M(Ap(G))).

It is common in the literature to write Bp(G) forM(Ap(G)). This is confus-
ing, as it is standard to denote by B(G) the Fourier–Stieltjes Algebra of G. However,
by results of Nebbia and Losert (see [24]) we have that B2(G) = B(G) if and only
if G is amenable (see page 187 of [26] for an example where this confusion arises).
To further confuse the issue, Herz himself defined a space Bp(G) in [16], using a
notion of Schur multipliers (which we shall study further below). Finally, Runde
defined a generalisation of B(G) in [33] which he, reasonably, denotes by Bp(G).
We shall stick to writingM(Ap(G)).

In [6], De Cannière and Haagerup study completely bounded multipliers of
Ap(G), denoted by M0(Ap(G)). We have that B2(G) = M0(Ap(G)) in Herz’s
notation (see [2] where unpublished results of J. Gilbert are used to show this).
Similar ideas are explored [21]. We use [6] and [21] to motivate the following
definitions.

DEFINITION 8.1. Let G be a locally compact group, let 1 < p < ∞, and let
u ∈ M(Ap(G)). Then u ∈ Mcb(Ap(G)) if and only if u defines a member of
CBp(Ap(G)) where Ap(G) is given the dual p-operator space structure. We give
Mcb(Ap(G)) the p-completely bounded norm.

We define M0(Ap(G)) to be the space of those functions u : G → C such that
there exists E ∈ SQp and bounded continuous maps α : G → E and β : G → E′

such that u(ts−1) = 〈β(t), α(s)〉 for s, t ∈ G. We give M0(Ap(G)) the obvious
norm.
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Then, for example, Jolissaint shows in [21] thatM0(A2(G)) =Mcb(A2(G)).

LEMMA 8.2. Let G be a locally compact group, and let u : G → C be a function.
Then the following are equivalent:

(i) u ∈ M(Ap(G));
(ii) There exists a bounded, weak∗-continuous operator M : PMp(G) → PMp(G)

such that M(λp(s)) = u(s)λp(s) for s ∈ G.

Proof. Suppose that (i) holds, let m ∈ B(Ap(G)) be the operator defined by
pointwise multiplication by u, and let M = m′ ∈ B(PMp(G)). Then obviously
M(λp(s)) = u(s)λp(s) for s ∈ G.

Conversely, if (ii) holds, then as M is weak∗-continuous, there exists m ∈
B(Ap(G)) with m′ = M. For a ∈ Ap(G), we then have that

u(s)a(s) = 〈M(λp(s)), a〉 = 〈λp(s), m(a)〉 = m(a)(s) (s ∈ G),

so that m is pointwise multiplication by u, and hence u ∈ M(Ap(G)).

When p = 2 the above can be significantly improved, essentially because
A(G) is a closed ideal in B(G); see Proposition 1.2 of [6].

THEOREM 8.3. Let G be a locally compact group, and let 1 < p < ∞. Then
M0(Ap(G)) and Mcb(Ap(G)) are commutative Banach algebras. Furthermore,
Mcb(Ap(G)) = M0(Ap(G)) isometrically, and Mcb(Ap(G)) ⊆ M(Ap(G)) con-
tractively.

Proof. For the proof, writeM forM(Ap(G)) and so forth. ObviouslyMcb
⊆ M contractively, from which it follows easily thatMcb is a commutative Ba-
nach algebra. For E, F ∈ SQp, by considering the space E⊕ F with the `p norm
‖(x, y)‖ = (‖x‖p + ‖y‖p)1/p for x ∈ E, y ∈ F, it follows thatM0 is a vector space.
Similarly, by considering the infinite `p sum of a countable family (En)∞

n=1 ⊆ SQp,
it follows thatM0 is a Banach space. Finally, by using a suitable tensor product
construction for SQp spaces (see Section 3 of [33]) it follows thatM0 is a commu-
tative Banach algebra.

Now let u ∈ M0 be defined by u(ts−1) = 〈β(t), α(s)〉, using some E ∈ SQp.
Let x ∈ Lp(G) and µ ∈ Lp′(G), and let a = Λp(µ ⊗ x) ∈ Ap(G). Define x̂ ∈
Lp(G, E) = Lp(G)⊗p E and µ̂ ∈ Lp′(G, E′) by

x̂(s) = x(s)α(s−1), µ̂(s) = µ(s)β(s−1) (s ∈ G).

Then ‖x̂‖ 6 ‖α‖∞‖x‖, ‖µ̂‖ 6 ‖β‖∞‖µ‖, and for s ∈ G,

〈µ̂, (λp(s)⊗ IE)(x̂)〉 =
∫
G

〈µ̂(t), x̂(s−1t)〉 dt =
∫
G

〈β(t−1), α(t−1s)〉µ(t)x(s−1t) dt

=
∫
G

u(tt−1s)µ(t)x(s−1t) dt = u(s)a(s).
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By Herz, we have that A(λp ⊗ IE) = Ap(G), so that ua ∈ Ap(G) and ‖ua‖Ap 6
‖α‖∞‖β‖∞‖x‖‖µ‖. As u was arbitrary, and by linearity and the definition of the
norms on Ap(G) andM0, we see thatM0 ⊆M is a norm-decreasing inclusion.

We can “amplify” this argument to show thatM0 ⊆Mcb contractively. Let
u ∈ M0 be as before, and let M ∈ B(PMp(G)) be induced by u, as given by the
previous lemma. Given x ∈ Lp(G) and µ ∈ Lp′(G), define x̂ ∈ Lp(G, E) and
µ̂ ∈ Lp′(G, E′) as above. It is a simple calculation to show that

〈µ, M(T)(x)〉 = 〈µ̂, (T ⊗ IE)(x̂)〉 (T ∈ PMp(G)).

Let n ∈ N and let T = (Tij) ∈Mn(PMp(G)). Let µ = (µi)n
i=1 ∈ Lp′(G)⊗p `n

p′ and

x=(xj)n
j=1∈Lp(G)⊗p`n

p. Define x̂∈Lp(G)⊗p E⊗p`n
p by x̂=

n
∑

j=1
x̂j⊗δj, so that

‖x̂‖ =
( n

∑
j=1
‖x̂j‖p

)1/p
6 ‖α‖∞

( n

∑
j=1
‖xj‖p

)1/p
= ‖α‖∞‖x‖.

Similarly define µ̂, so that ‖µ̂‖6‖β‖∞‖µ‖. Finally, define S∈B(Lp(G)⊗pE⊗p`n
p) by

S(x⊗ y⊗ δj) =
n

∑
i=1

Tij(x)⊗ y⊗ δi (x ∈ Lp(G), y ∈ E, 1 6 j 6 n).

If φ : Lp(G) ⊗p E ⊗p `n
p → Lp(G) ⊗p `n

p ⊗p E is the canonical isometry, then
φSφ−1 = T ⊗ IE, so that ‖S‖ = ‖T‖. Then

|〈µ, (M)n(T)(x)〉| =
∣∣∣ n

∑
i,j=1
〈µi, M(Tij)(xj)〉

∣∣∣ =
∣∣∣ n

∑
i,j=1
〈µ̂i, (Tij ⊗ IE)(x̂j)〉

∣∣∣
= |〈µ̂, S(x̂)〉| 6 ‖µ̂‖‖x̂‖‖S‖ 6 ‖α‖∞‖β‖∞‖T‖‖µ‖‖x‖,

so that M ∈ CBp(PMp(G)) with ‖M‖pcb 6 ‖α‖∞‖β‖∞, as required.
To show that Mcb ⊆ M0, one can easily adapt Jolissaint’s proof in [21]

by combining it with Pisier’s representation theorem for p-completely bounded
maps (Theorem 4.1), a task we now sketch. Let u ∈ Mcb ⊆ M, and let M ∈
B(PMp(G)) be given as in the lemma above. By definition, M ∈ CBp(PMp(G)),
so as PMp(G) is a unital algebra, by the comment after Theorem 4.1, there ex-
ists E ∈ SQp, a p-representation π̂ : PMp(G) → B(E) and U : Lp(G) → E
and V : E → Lp′(G) with ‖U‖‖V‖ 6 ‖M‖pcb, such that M(T) = Vπ̂(T)U
for T ∈ PMp(G). It is clear from the definitions that π̂ is a norm-decreasing
algebra homomorphism, and so π̂ ◦ λp : L1(G) → B(E) is a norm-decreasing
algebra homomorphism. By the discussion at the beginning of this section, there
hence exists a one-complemented subspace F of E and a group representation
σ : G → B(F). As the action of π̂ ◦ λp is only non-trivial of F, and F is one-
complemented, we loose nothing by assuming that actually E = F. We then
notice that

Vσ(s)U = u(s)λp(s) (s ∈ G).
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Choose µ0 ∈ Lp′(G) and x0 ∈ Lp(G) with ‖x0‖ = ‖µ0‖ = 〈µ0, x0〉 = 1, and
define α : G → E and β : G → E′ by

α(s) = σ(s−1)Uλp(s)(x0), β(s) = σ(s)′V′λp(s−1)′(µ0) (s ∈ G),

so that ‖α‖∞ 6 ‖U‖ and ‖β‖∞ 6 ‖V‖. Hence, for s, t ∈ G, we have that

〈β(t), α(s)〉 = 〈σ(t)′V′λp(t−1)′(µ0), σ(s−1)Uλp(s)(x0)〉

= 〈µ0, λp(t−1)Vσ(ts−1)Uλp(s)(x0)〉

= u(ts−1)〈µ0, λp(t−1)λp(ts−1)λp(s)(x0)〉 = u(ts−1).

It remains to show that α and β are continuous. However, this follows immedi-
ately, as a weakly-continuous group representation is strongly continuous. Thus
Mcb ⊆M0 contractively, completing the proof.

8.1. HERZ’S MULTIPLIER ALGEBRAS. We shall now show how these ideas relate
to Herz’s algebras Bp(G). To avoid confusion, we shall write instead
HSp(G), for Herz–Schur multiplier. Let I be an index set, and let ψ : I × I → C be
a function. We say that ψ ∈ Vp(I) if and only if, for each T ∈ B(`p(I)), we have
that Tψ ∈ B(`p(I)), where Tψ is defined by

〈δ∗i , (Tψ)(δj)〉 = ψ(i, j)〈δ∗i , T(δj)〉 (i, j ∈ I).

By the closed-graph theorem, Vp(I) ⊆ B(B(`p(I))), which gives the obvious
norm on Vp(I).

Let X be a separable locally compact space, and let Xd be the space X
equipped with the discrete topology. Then we set Vp(X) to be C(X×X)∩Vp(Xd).
Finally, suppose that G is a separable locally compact group, and let u ∈ HSp(G)
if and only if ψ ∈ Vp(G) where ψ is defined by ψ(s, t) = u(st−1) for s, t ∈ G.
For an arbitrary G, recall that there is an open and closed separable subgroup H
such that G is the union of left cosets of H. As such, we can reduce topological
questions about G to questions about H, as G/H has the discrete topology. To
avoid tedious calculations, we shall not mention such topological issues further.

PROPOSITION 8.4. Let I be an index set, let ψ : I × I → C be a function, and let
C > 0. Then the following are equivalent:

(i) ψ ∈ Vp(I) and ‖ψ‖Vp 6 C.
(ii) There is a measure space (Ω, ν) and elements (xj)j∈I ⊆ Lp(ν) and (µi)i∈I ⊆

Lp′(ν) such that ψ(i, j) = 〈µi, xj〉 for each i, j ∈ I, and sup
i
‖µi‖ sup

j
‖xj‖ 6 C;

(iii) ψ is a p-completely bounded multiplier on B(`p(I)), with ‖ψ‖pcb 6 C.

Proof. These follow from Theorems 5.11 and 8.2 in [28].

Notice that if G is a discrete group, then using conditions (ii) and (iii) above,
it is easy to show that HSp(G) = M0(Ap(G)) with equal norms. However, for
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general G, we have the problem that the above proposition works with Gd, hence
losing continuity conditions.

Herz shows in Lemme 1 and Lemme 2 of [16] that we have the following
alternative definition of Vp(X).

PROPOSITION 8.5. Let X be a separable locally compact space, and let µ be a
Radon measure on X such that each non-empty open subset of X has non-zero µ-measure.
Then ψ ∈ Vp(X) if and only if ψ is continuous and there exists C > 0 such that for λ ∈
Lp′(X, µ) and x ∈ Lp(X, µ), there exists (µn)∞

n=1 ⊆ Lp′(X, µ) and (xn)∞
n=1⊆Lp(X, µ)

with the following almost everywhere in µ, and
∞
∑

n=1
‖µn‖p′‖xn‖p 6C‖λ‖p′‖x‖p:

λ(s)x(t)ψ(s, t) =
∞

∑
n=1

µn(s)xn(t) (s, t ∈ X).

That is, Vp(X) coincides with the space of continuous multipliers of Lp′(X, µ)
⊗̂Lp(X, µ), once we have made sense of what this means. Let G be a locally com-
pact group with the Haar measure. Then the above applies to Vp(G), and hence
also to HSp(G).

Let G be a locally compact group, let ψ ∈ Vp(G), and let n ∈ N. Let Gn =
G×{1, 2, . . . , n}where {1, 2, . . . , n} is given the counting measure, so that Lp(G×
{1, 2, . . . , n}) = Lp(G)⊗p `n

p. Define ψn : Gn × Gn → C by

ψn((s, i), (t, j)) = ψ(s, t) (s, t ∈ G, 1 6 i, j 6 n),

so that ψn is continuous. We shall now show that ψn ∈ Vp(Gn), using the original
definition of Vp. Let T ∈ B(`p(Gn)), so we may also view T as a member of
Mn(B(`p(G))), say T = (Tij), where

〈δ∗s , Tij(δt)〉 = 〈δ∗s ⊗ δ∗i , T(δt ⊗ δj)〉 (s, t ∈ G, 1 6 i, j 6 n).

Let S = ψn · T, so viewing S ∈Mn(B(`p(G))),

〈δ∗s , Sij(δt)〉 = 〈δ∗s ⊗ δ∗i , (ψn · T)(δt ⊗ δj)〉
= ψn((s, i), (t, j))〈δ∗s ⊗ δ∗i , T(δt ⊗ δj)〉 = ψ(s, t)〈δ∗s , Tij(δt)〉,

for s, t ∈ G and 1 6 i, j 6 n. By Proposition 8.4, as ψ is automatically p-completely
bounded, we see that ψn ∈ Vp(Gn) with ‖ψn‖Vp 6 ‖ψ‖Vp .

Now let u ∈ HSp(G), so that when ψ(s, t) = u(st−1) for s, t ∈ G, we have
that ψ ∈ Vp(G). Let Mu ∈ B(Lp′(G)⊗̂Lp(G)) be the multiplier defined by ψ,
using Herz’s alternative definition of Vp(G) as shown in Proposition 8.5. Let
x ∈ Lp(G) and µ ∈ Lp′(G), so that a = Λp(µ⊗ x) ∈ Ap(G). Then

Λp(Mu(µ⊗ x))(s) =
∫
G

u(tt−1s)µ(t)x(s−1t) dt = u(s)a(s) (s ∈ G),
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so that Mu drops under Λp to pointwise multiplication of Ap(G) by u. We hence
immediately see that HSp(G) ⊆M(Ap(G)) contractively. Combining this obser-
vation with the previous paragraph, we immediately have the following.

THEOREM 8.6. Let G be a locally compact group. Then HSp(G) =Mcb(Ap(G))
isometrically.

8.2. ALGEBRAIC DEFINITIONS. In [6], a more group-theoretic characterisation of
Mcb(Ap(G)) is shown, and this is used in [2] to show that HS2(G) =Mcb(A(G))
(which we generalised above, using another method).

Given sets I and J and functions u : I → C, v : J → C, let u× v : I × J → C
be defined by (u× v)(i, j) = u(i)v(j) for i ∈ I and j ∈ J.

PROPOSITION 8.7. Let G be a locally compact group, let 1 < p < ∞, and let u ∈
Mcb(Ap(G)). Then, for every locally compact group H, u× 1H ∈ M(Ap(G × H))
and ‖u× 1H‖M 6 ‖u‖pcb.

Proof. By Proposition 7.2, we know that PMp(G)⊗PMp(H) = PMp(G ×
H). By the above lemma, there exists a weak∗-continuous map M ∈ B(PMp(G))
such that M(λp(s)) = u(s)λp(s) for s ∈ G. Again, by the lemma, we wish to
show that there exists a weak∗-continuous map M̂ ∈ PMp(G× H), such that

M̂(T ⊗ S) = M(T)⊗ S (T ∈ PMp(G), S ∈ PMp(H)).

However, this follows immediately from Theorem 6.4, which also shows that
‖u× 1H‖M = ‖M̂‖ 6 ‖M‖pcb = ‖u‖pcb.

In [6], the converse to the above is shown in the case p = 2. Further-
more, to check that u is completely-bounded, it suffices to check that u × 1K ∈
M(Ap(G × K)) in the special case that K = SU(2). However, we do not have a
simple description of what PMp(SU(2)) is, unless p = 2.

8.3. MULTIPLIERS AND AMENABILITY. In [33], Runde suggests a definition of a
p-generalisation of the Fourier–Stieltjes algebra, which he denotes by Bp(G). In
what follows, we shall follow the conventions of Herz, which means that we
sometimes swap p with p′ as compared to Runde. We define Bp(G) ⊆ C(G) to be
functions of the form

a(s) = 〈µ, π(s)(x)〉 (s ∈ G),

where π : G → B(E) is a representation on some E ∈ SQp, and x ∈ E, µ ∈ E′.
We set ‖a‖Bp = inf{‖µ‖‖x‖} where the infimum runs over all representations.
Runde shows that Bp(G) is a commutative Banach algebra. It is immediate that
Bp(G) ⊆M0(Ap(G)) contractively.

It is shown in Corollary 5.3 of [33] that when G is an amenable locally
compact group, we have that M(Ap(G)) = Bp(G) isometrically, where Bp(G)
is Runde’s generalisation of the Fourier–Stieltjes algebra. We thus immediately
have the following.



80 MATTHEW DAWS

PROPOSITION 8.8. Let G be an amenable locally compact group, and let 1 < p <
∞. Then Bp(G) =Mcb(Ap(G)) =M(Ap(G)) isometrically.

As stated above, Nebbia and Losert (see [24]) show thatM(A(G)) = B(G)
if and only if G is amenable. In [1], Bożejko showed that for a discrete group G,
Mcb(A(G)) = B(G) if and only if G is amenable. A key point in the proof is
that, as a Banach space, B(G) has cotype 2. We conjecture that Runde’s algebra
Bp(G) has cotype max(p, p′), but we seem to be rather far from having the tools
available to prove this.

In unpublished lecture notes, [23], Losert shows in full generality that
Mcb(A(G)) = B(G) only when G is amenable. The arguments are very close
to those used in [24], but it appears that it is not possible to simply take the result
of [24] and directly deduce the corresponding result for Mcb(A(G)). Further-
more, Losert’s arguments in [24] seem to depend upon the Hilbert space basis of
A(G) much more than Nebbia’s and Bożejko’s arguments. We hence seem to be
rather far from being able to show that Mcb(Ap(G)) = Bp(G) only when G is
amenable, when p 6= 2.

9. CONCLUSIONS

Compared to the operator space structure on Ap(G) considered in [22], we
get a contractive quantised Banach algebra, and not just a bounded algebra prod-
uct. It could also be argued that our approach is more natural, as Ap(G) is an
Lp-space generalisation of A(G), so arguably Lp spaces should be used to de-
fine a quantised structure on Ap(G). However, our approach seems to require
amenability to be introduced to get the theory to work perfectly. We are not
aware of anyone considering multipliers in the framework of [22]. It would be
interesting to see if Herz’s ideas appear naturally in that setting, as they do in our
setting.

It would be interesting to investigate if Theorem 7.3 holds for any non-
amenable groups, when p 6= 2. Furthermore, it would be interesting to try to
extend the tentative results in Section 8.2. Surely a first step in this programme
would be to study the algebras PMp(G) for, say, G = SU(2). Finally, surely the
ideas in Section 7.1 have scope for further study.

We have hinted that perhaps the definition of a p-operator space is not cor-
rect. To be precise, for operators spaces, we consider not just a space E, but also
the spaces `n

2 ⊗ E. This is reasonable, as `n
2 is (up to isometric isomorphism)

the only n-dimensional Hilbert space. For p-operator spaces, we replace `n
2 with

`n
p, but we have less justification for this, as there are many n-dimensional SQp

spaces. Of course, Pisier’s and Le Merdy’s results suggest that maybe this is
enough, as we do get an intrinsic characterisation of SQp spaces, for example. A
more technical problem here is seemingly we do not have a well-defined way to
define a tensor product of two SQp spaces. In Section 3 of [33], Runde shows that
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given E, F ∈ SQp, we may define a completion of E⊗ F in such a way as to get
another SQp space, and with a suitable mapping property holding. However, it
seems that Runde’s construction depends upon the chosen representation of E
and F as subspaces of quotients of Lp spaces.
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