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ABSTRACT. Let A be a separable C*-algebra. We prove that its stabilized sec-
ond suspension S2A ® K and the C*-algebra A ® K constructed by Cuntz in
the framework of his picture of KK-theory are asymptotically equivalent. This
means that there exists an asymptotic morphism from S?A ® K to gA ® K and
an asymptotic morphism from A ® K to S?A ® K whose compositions are
homotopic to the identity maps. This result yields an easy description of the
natural transformation from KK-theory to E-theory. Also by Loring’s result
any asymptotic morphism from gqC to any C*-algebra B is homotopic to a *-
homomorphism. We prove that the same is true when C is replaced by any
nuclear C*-algebra A and when B is stable.
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INTRODUCTION

Let A be a separable C*-algebra. Its first suspension is the C*-algebra SA =
Co(R) ® A. There are two other C*-algebras associated to A that are of impor-
tance in the KK-theory of Kasparov: the second suspension C*-algebra S?A =
Co(R?) ® A and the C*-algebra gA constructed by Cuntz [3] in the framework of
his picture of KK-theory. Both C*-algebras can replace A in the definition of the
KK-groups: for the second suspension this is Bott periodicity and for gA this is
Cuntz’s picture for KK-theory. These C*-algebras are E-equivalent, i.e. their sta-
bilized suspensions S?A ® K and SqA ® K are equivalent in the category of sep-
arable C*-algebras with morphisms being homotopy classes of asymptotic mor-
phisms, where K denotes the C*-algebra of compact operators. In the present pa-
per we show that they are equivalent in this category without taking the suspen-
sion of the stabilizations. More precisely we construct an asymptotic morphism
from S2A ® K to A ® K and a *-homomorphism from §A ® K to S*A ® K such
that their compositions are homotopic to the identity maps. In general one says
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that two C*-algebras are asymptotically equivalent if there exist asymptotic mor-
phisms from each to the other whose compositions are homotopic to the iden-
tity maps. So the main result of this paper (Theorem 3.10) says that C*-algebras
gJA® K and S?A ® K are asymptotically equivalent.

As a corollary (Corollary 3.11) we obtain a description of E-theory that
is similar in form to Cuntz’s description of KK-theory. Cuntz [3] proved that
KK(A,B) = [gA,B ® K] (where [-] means homotopy classes of *-homomor-
phisms). We assert that E(A,B) = [[gA, B ® K]] (where [[-]] means homo-
topy classes of asymptotic morphisms) and that the well known natural trans-
formation KK(A,B) — E(A, B) is then nothing but the map that sends any *-
homomorphism gA — B ® K to itself.

One more corollary (Corollary 3.12) concerns the question of when asymp-
totic morphisms are homotopic to *-homomorphisms. In [6] it was proved that
any asymptotic morphism from gC to any C*-algebra B is homotopic to a *-
homomorphism. We prove that the same is true not only for C but for any nu-
clear (even K-nuclear) C*-algebra A if B is assumed to be stable. Recall that a
C*-algebra B is called stable if B ® IC = B.

The plan of the paper is as follows. The first section contains all necessary
information about C*-algebra gA. In the second one we construct an asymptotic
morphism f4 : S2A® K — gA ® K and a *-homomorphism g% : gA ® K —
S?2A ® K and show that f4 induces a natural transformation from the KK-functor
to the E-functor. In the third section we prove that f4 and g/ provide an as-
ymptotic equivalence of the C*-algebras S’A ® K and gA ® K and obtain the
corollaries described above.

1. NECESSARY INFORMATION ABOUT gA

Let A and B be two C*-algebras. A C*-algebra C is called the free product
of A and B if there are x-homomorphisms i* : A — C and i : B — C with
the following (universal) property: given *-homomorphisms ¢4 : A — D and
¢p : B — D mapping A and B into the same C*-algebra D, there is a unique
*-homomorphism ¢ : C — D such that ¢ 0i? = ¢4 and poi® = ¢p. The
*-homomorphisms i and i? are referred to as the canonical inclusions. The free
product of A and B will be denoted by A * B.

Consider A * A. Leti;? : A — Ax A and if : A — A x A denote the
two canonical inclusions of A as a C*-subalgebra of A * A. The C*-algebra gA
constructed by Cuntz [3] is the closed ideal in A * A generated by the set {i;(x) —
ip(x) : x € A}. One can prove that elements of the form

(if'(x1) =151 ) - -(if (xn) =8 () and i3} (x) (i (1) =8 (x1 ) - (if (e ) —i3' (2w ),

where xg,x1,..., x5 € A, N € N, span a dense *-subalgebra in gA.
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Let ¢, : A — B be two *-homomorphisms. By the universal property of
A * A there is a unique *-homomorphism Q(¢, ) : A+ A — B such that

Qlp,yp)oif =¢, Q¢ p)oif =

Let q(¢, ) denote the restriction of Q(¢, P) to gA. Note that if | is an ideal in B,
then Q(¢, ) maps gA into J if and only if ¢(x) — ¢(x) € J forall x € A. So in
this case, q(¢, ) € Hom(qA,]).

2. CONSTRUCTING AN ASYMPTOTIC EQUIVALENCE BETWEEN S?A ® K AND gA ® K

Below all C*-algebras are assumed to be separable.

For any two C*-algebras A and B Connes and Higson define E(A, B) to be
the abelian group [[SA ® K, SB ® K]] of homotopy classes of asymptotic mor-
phisms from SA ® K to SB ® K [2]. Recall that an asymptotic morphism from A to
B is a family of maps (¢);e[o,0) : A — B satisfying the following conditions:

(i) for any a € A the function t — ¢;(a) is continuous;
(ii) foranya,b € A, A € C

o Jim g:(a") = gu(a)"]| =0,
o lim [[¢1(a+Ab) — di(a) — Agi(b)]| = O,
o Jim [lg:(ab) ~ gu(a)gu(b)]| = 0.

In [2] it was also shown that [[SA ® K,SB ® K]] = [[S?A ® K, B ® K]] and
we shall always mean by the E-group the group [[S?A ® K, B ® K]] of homotopy
classes of asymptotic morphisms from S?A ® K to B ® K.

Let B : Co(R?) ® K — K be the Bott asymptotic morphism. In fact it
is the tensor product of the identity map idx : K — K with the restriction to
Co(R?) C C(T?) of the family of maps from C(T?) to K* constructed in the
Voiculescu’s example of almost commuting unitaries [8], but here we shall not
use an explicit form of B but only the fact that it induces the identity map in the
K-groups. Let

BA=pC®idy: PARK - A®K.

Obviously B4 € E(A, A). Note that since we always consider asymptotic mor-
phisms up to homotopy we denote in the same way a class of homotopy equiva-
lent asymptotic morphisms and any its representative.

For the KK-groups we will use Cuntz’s approach [3] in which, as already
was written, one regards KK(A, B) as the group [gA ® K, B ® K] of homotopy
classes of *-homomorphisms from gA ® K to B® K. Let

v = q(idy,0) ®@idx : AR K — A® K.
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Then 74 € KK(A, A) is a unit element for the associative product KK(A4, B) x
KK(B,C)— KK(A, C). Namely there exists a bilinear pairing KK(A, B) xKK(B, C)
— KK(A, C) such that x x 4 = x = 94 x x for any x € KK(A, B) [3].

Let A be a C*-algebra. By [2] there exists a natural transformation from the
functor KK(A, —) into the functor E(A, —) which is unique up to its value on
74 € KK(A, A). Let

Iap: KK(A,B) — E(A,B)
)

be such a natural transformation that I4 4(7?) = B4. Define an asymptotic mor-

phism f4: S2A® K — gA® K by
A =Iaga(idgask)-

The following easy theorem asserts that the asymptotic morphism f4 induces the
natural transformation I4 p.

THEOREM 2.1. 14 p(¢) = ¢ o f4 for any ¢ € KK(A, B).

Proof. Since ¢ € KK(A,B) is a *-homomorphism from gA ® K to B® K it
induces the maps ¢xx : KK(A,qA) — KK(A,B) and ¢ : E(A,qA) — E(A,B)
in the KK-groups and the E-groups respectively. By the definition of a natural
transformation of covariant functors the following diagram commutes

Ia

KK(A,B) —- E(A,B)

oxx | [0

Ia

KK(A,qA) —2 E(A,q4).
Hence for the element id a0 € KK(A,gA) we get
PE(Iag4(idgaek)) = 1a,B(¢Pxk(idgask))-
But ¢ (Iaga(idgack)) = ¢ o laga(idgack) = ¢ o f4 and Iy g(pkk (idgask)) =
Ipp(poidjack) = Ia(P). 1
COROLLARY 2.2. y4 o f4 = g4,

Proof. By Theorem 2.1 y4 o f4 =14 4(7y*). Since we have chosen a natural
transformation to be equal to 84 on the element 14 we get v o f4 = 4.

Now we define a *-homomorphism g% : A ® K — S?A ® K in the follow-
ing way. Let 711, 715 : C — Co(R?)* ® M, be two *-homomorphisms given by

1 0 1 72z z
= o) mO=pe=ym(Z )

(we identify R? with C). Fix once and for all some inclusion j : M, — K and
some isomorphism i : K ® K — K. Define 71,7 : A — A® Co(R?)* @ K by

M = (j®idpgcyme)+) 0 ([da®@m), Mo = (j@idggcmey+) © (ida ® m2),
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respectively. Since
t1(a) — 7(a) € R @K®A=S?A0K
for any a € A, the x-homomorphism g(7%;, 7T2) : §A — S?A ® K is defined. Set
g" = (idg24 @1) 0 (q(701, 7T2) @id).

In the next section we show that f# and g provide an asymptotic equivalence
between S?A @ K and gA ® K.

3. PROOF OF THE MAIN ASSERTION

To prove that f4 and g# provide an asymptotic equivalence between S?A ®
K and gA ® K we are going to show that their compositions induce the identity
maps in E-functor and in the functor G that will be introduced in Subsection 3.2.

3.1. THE MAPS INDUCED BY f* AND g/ IN E-FUNCTOR.
LEMMA 3.1. BAogh ~ 44

Proof. Note first of all that ¢ : JA® K — SPA®@Kand 74 : gA® K —
A ® K factorize through the C*-algebra gC ® A ® K. Namely let 171,72 : A —
(C+C) ® Abe given by formulas

m@) =it () @a, () =iz()@a,
foranya € A. Set
s =q(n,m) 1A — 4C® A.
It is easy to see that the diagrams

gA®K

A
! A®K
% %‘\

JICRA®K

and

gA

gA® K SPARK

JICRA®K

commute, that is
1 = (Y @ida)o(s? @idx), g% = (g¥®idy)o (s? @idk).
Since p4 = BC @ id4 we have to establish the homotopy equivalence
(7" ®ida) o (s* ®idx) ~ (B @ida) o (§€ @id4) o (s" @idy)
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or, equivalently,

€ ~ 60 gC.
For that we use K-theory. Let 7¢ and (BC o ¢©). be the induced homomorphisms
from Ko (qC) to Ko(C). For the generator [i¥(1)] — [i$(1)] of Ko (4C) we have

[ix
(B 0 85) (i (V] = iz (V) = BL([(§6)] — [pBou)) = [1],
e ([E (W] = W) = 1] = [0] = [1].
We used here that [(}9)] — [ppot] is a generator of Ko(S°C) and that the Bott
map BT induces the identity homomorphism in K-theory. So 4 and BC o g€

induce the same homomorphisms in K-theory. This implies that these asymptotic
homomorphisms are homotopic because, by Universal coefficients theorem,

Hom (Ko (qC), Ko(K)) ® Hom (K1 (4C), K1 (K)) = KK(qC, K) @ KK(SqC, K),
and since
Ki(4C) = Ky(K) =0, KK(SqC,K) =0, KK(qC,K) = [¢C, k] 2 [[gC, K],

we get

Hom(Ko(9C), Ko(C)) = [gC @ £, K]].
Let B be any C*-algebra. Let
f&E(B,S?A) — E(B,qA) and g#:E(B,qA) — E(B,S*A)

be the maps induced by 4 and g* respectively.

PROPOSITION 3.2. (i) f£ o gf = id;

(i) gf o ff = id

Here id means both the identity map from E(B, S?A) into itself and the iden-

tity map from E(B, gA) into itself.

Proof. Consider the following diagram

E(B,A)
s
E(B,S%A) E(B,qA).
i

Here B4 and £ are the maps induced by p* and 7 respectively. It is proved in
[2] that ﬁé is an isomorphism. Furthermore ’y? also is an isomorphism. Indeed
by [3] the map induced by 7 in any covariant, homotopy invariant, split exact
and stable functor is an isomorphism. Since the functor E(B, —) has all these
properties y4 is an isomorphism.

By Lemma 3.1, 84 o ¢# = 7# whence

(3.1) gt = () ot
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By Corollary 2.2 y# o f# = p2 whence

(3.2) fi' = (vE) o B
The assertions of the proposition follow from (3.1) and (3.2). 1

3.2. THE MAPS INDUCED BY f4 AND g¢? IN G-FUNCTOR. Now instead of E-
functor we are going to consider another bifunctor G(B, A) and prove the result
similar to Lemma 3.2 for the maps, induced by f4 and g/ in the functor G(B, —),
where B is fixed. Namely let G(B, A) be the semigroup [[jB ® K, A ® K]] of
the classes of homotopy equivalent asymptotic homomorphisms from gB ® K
to A® K. Obviously this is a contravariant functor in the first variable and
a covariant functor in the second one. We need two results about this bifunc-
tor — the Bott periodicity and the isomorphism G(B, A) = G(B,qA). To prove
them we need first of all a construction which produces an asymptotic morphism
qy : qD1 — gD, out of an asymptotic morphism ¢ : Dy — D,, where Dy, D, are
any C*-algebras.
An asymptotic morphism 1 gives rise to a genuine *-homomorphism
F: Dy — Cy([0,00),D7)/Co([0,00), D7)

given by

F(x) = 9+(x) + Co([0, 0), D),
for any x € D;. There are two *-homomorphisms i1,7p : C,([0,00), D) —
Cp([0,00), Dy x Dy) given by formulas

a(f)(8) =i 2(f(1), L) =5 (F(1),

f€Cy([0,00), Dy). Since these ¥-homomorphisms send Cy ([0, 00), D7) to Cy([0, o),
D; * D) we have two *-homomorphisms

11,12 1 Gy ([0,00), D) /Co([0,00), D2) — Cp([0,0), Dy % D3)/Co([0,00), Dy * Dy).
Set
@ = Q(i10F,ioF): Dy % Dy — Cu([0,00), Dy % Dy)/Co([0,00), Dy % Dy).

Let p : G,([0,00), Dy x D) — C,([0,00), Dy % Dy)/Co([0,00), Dy * Dy) be the
canonical surjection. Since

@(i7 (a)) = p(iy>(Ye(a)), (5" (a)) = p(iy2(pe(a))),

for any a € D, and since qD; is the closed ideal generated by the set {i? Y(a) —
:Dq .
iy'(a) :a € D1}, we get
®(qD1) C p(Co([0,00),4D2)).
We shall denote the restriction of @ to gD also by @. Define a *-homomorphism

7: p(Gp([0,00),4D2)) — Gy ([0, 00),4D2)/ Co([0,0),qDs)
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by
T(p(f)) = f + Co([0,0),4Dy),

f € Cp([0,00),gDy). It is well-defined because for any f € Cy([0,c0),gD;) the
condition f € Cy([0,00), Dy * Dy) implies f € Cy([0,00),gD;). So we have To @ :
gDy — C,([0,00),4D3)/Co([0,00),gD;). Choose a continuous section

s: Cp([0,00),4D2)/Co([0,00),qD2) — Cp([0,00),4D2)

(it exists by Bartle-Graves theorem, [1], [5]) and define an asymptotic morphism
q¢ by
(q)e(x) = (s(z 0 @(x)))(#)-
Thus we get an asymptotic morphism gq¢ : 4D; — qD; out of an asymptotic
morphism ¢ : D; — Ds.
For any C*-algebra D let
pP = q(if ®idx,if ®idg) : q(D®K) - qD®K
and let 0p : 4D ® K — ¢*D ® K denote the isomorphism constructed in [3].

LEMMA 3.3. The diagram

q(A®IC)®ICﬁ>A®IC®K@¥A®IC
lp"‘@idK

JARK @K
liqu®i

qARK

is commutative, namely y* o (idga ® 1) o (0 @idx) = (idg ® i) 0 YA,

Proof. Since elements of the form
(i @eT) - aeT) s
and
(i (a0 @To) (i (a® T) — X (a0 T))) @ S,

where T, S, Ty € K, a,ap € A, span a dense subspace of g(A ® K) @ K (see [7], for
example) it is enough to check that y4 o (idga ®1i) o (p* ®@idx) and (ids ® 1) o

7A®’C coincide on elements of such form. For any T, S € K, a € A we have

yho(idga ®1) o (p? @idic) ((({** (a® T) — 5 (a @ T)) ® S)
=a@i(T®S) = (ida ®i) o ([ aaT) - f**aeT))©S),
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for another pair Ty € K, a9 € A we have
7ho(idga @ i) o (o @idic) (i M (ao @ T)) (i (a0 T) — ;3" (a0 T))) @ S)
=apa®i(ToT®S)
= (ida ® i) o (i %" (a0 @ To) (if " (a @ T) —if*F (2 ® T))) @ 5)
and we are done. &
LEMMA 3.4. Let ¢ € [[qB, A ® K]]. Then the diagram

id ARK
PBok —T7 L jARK) ek — - AnKek

i,qu//r
®id
4B® K $p®idk

commutes, that is YA%K o (gp @ id) = (¢ ®idx) o y7P.
Proof. Let x € gB, T € K. By the definition of g¢ we have
(a9)(if” () =13 () = (' (91 () = 7 (91 (x))) — 0
when t — oco. Hence
lim [0 (g @icic) (i (0~ () & T) ~ (pr@idi) o9 (1] ()~ (x) @ T)
= lim [y SR (r(x)) = 5 (¢r(2))) @ T) = gu(x) @ T) = 0.
In a similar way we find that y4%% o (q¢ ® idx) and (¢ ® idx) o 78 asymptot-

ically agree on elements (iqB(xo)(i'iB(x) - ZZB( ))) ® T when xp,x € 4B, T € K.
Since elements of the form

(1P (x) — i’ (x))®T and (i (x0)(i1°(x) — i (x))) ® T

span a dense subspace of B ® K we see that y4%% o (g¢ ® idx) = (¢ ® idx) o
YIB.

LEMMA 3.5. Let ¢ € [[qB,qA ® K]||. Then the diagram

qA qA
2B qgAK) s pac K e gAsK
\Lq(idqlgl O)
qB ’

is commutative, that is Y14 0 p1% 0 g = ¢ o q(idys,0).
Proof. Letx € gB, t € [0,00). Writing ¢i(x) in the form

= lim Zz k) (1),

k~>oo
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where z(k)(t) € qA, Tl.(k) (t) € K, we get

i

lim [79% 0 p o (q9): (i (x) — 5 (x)) — ¢r 0 {3y, 0) (1] (x) — 5 (x))]

= lim [y 0 p?4 ({147 (g (x)) — 547" (@ (%)) — ()]

t—oo
& A B0 o®) A, () (k) &E )
:tll%[giﬁquA(ii et -t ) eT, )—I}erolo;zi o1 ]=o0.

In a similar way we find that 774 o p94 0 g¢ and ¢ o q(id;p,0) asymptotically
agree on elements i'}B(xo)(ii’B(x) - igB(x)), where xp, x € gB. Since elements of
the form ii’B(x) - igB(x) and i?B(xO)(qu(x) - igB(x)) span a dense subspace of
qB we conclude that the asymptotic morphisms 174 o p94 0 g¢ and ¢ o q(idys,0)
coincide. &

Let ¢ € G(B, A). There is an asymptotic morphism ¢ : gB — A ® K such
that (idy ® i) o (¢ ® idx) ~ ¢ [2]. Define an asymptotic morphism I'(¢) €
G(B, gA) by the following composition

. " .
gBok —% . 2Bk MU as)ek CEE jaskok < Aok,

Thusamap I' : G(B, A) — G(B,qA) is defined by formula
I(y) = (idga @) o (p" @idyc) o (99 ©idic) o 03,
forany ¢ € G(B, A). Let 74 : G(B,qA) — G(B, A) be the map induced by 7.

PROPOSITION 3.6. I' : G(B,A) — G(B,qA) is a semigroup isomorphism with
inverse 'yé.

Proof. Obviously I' and 4 are semigroup homomorphisms so we have to
check only the following:
(i) F(75(9)) ~ g forany ¢ € G(B,qA);
(i) Y& (I ()) ~ ¢ forany ¢ € G(B, A).
(i) Letyp € G(B,qA) and ¢ : 4B — qA ® K be such an asymptotic morphism
that (id;a ®1) o (¢ ® idxc) ~ ¢. Then

T(v&(y)) = (idga ®1) o (p* ®idx) o (9(v* 0 p) ®id) 0 0p
= (idga ®i) o (p* @idx) o (97" @idx) o (9¢ @ id) © Op,

because clearly g(74 o ¢) ® idx = (gy* ® idk) o (g¢ ® idk).
By Lemma 5.1.11 of [7] p% 0 g7 ~ 774 0 p94 and we have
F(16(¥)) = (idga @) o (1" @idic) o (" @idx) © (9 @ id) o O

Lemma3.5 (iqu ®i)o(p®idg)o Y18 0 0 ~ P o118 o 6p 1 P.
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(ii)) Now let ¢ € G(B,A) and ¢ : 4B — A ® K be such an asymptotic
morphism that (id4 ® i) o (¢ ®idg) ~ . Then
V&I () = 7% o (idga ®1) o (p” @idy) o (79 @ idc) 0 65
TR (ida @) 0y o (g9 @ idi) © 65
Lemma34 (idy ®i) o (p@idx) 0T 0 g ~ o478 0 g N (2 |

LEMMA 3.7. The following diagram commutes:

A®id A®id
q(SZA®IC)®ICM>q(A®IC)®K¥>4A®IC®IC

\Lidq/}@i

L S248K gA®K
SZA®RK
id , @i J/
SPARK®K SPARK.

Namely g o (idga ®1i) 0 (P2 ®@idx) o (g% ®idk) ~ (idgy ®i) 0 ,YSZA®IC.

Proof. We will prove the assertion by establishing the commutativity of the
left and right triangles of the diagram

A®id A®id
q(52A®/C)®Kw>q(A®K)®/C&>qA®K®K
///// idgagi
. Shoide -~ J’
(S2AsK - gAR K
-7 S2A®K
< = id52A®i \L
SPARK®K SPARK.

To prove the commutativity of the right triangle we have to prove
(3.3) g% o (idga ®1i) ~ (idg2y ®1i) 0 (g% ®idx).
Let hy,hp : K@ K ® K — K be the isomorphisms which send T1 ® T, ® T3 to
i(Th ®i(T, ® Tz)) and i(i(A ® B) ® C) respectively for any operators Ty, Tp, T3 €
K. Then forany T, S € K, a € A we have

(idgoy ® (hp oy t)) 0 g% o (idga ®@1)((if (a) — i4'(a)) ® T® S)

= (idgp ® (ool ) (a®i(j (§3) ®i(T®S)))

= a@i(i(j (§3) ©T)©S5) = (i[dg2y ®i) 0 (¢4 @idx)((if'(a) —i'(a)) ® T S)
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and for another ay € A
(idgaq @ (hp o hy')) 0 g% o (idga ® i) (if (a0) (if' (a) — i5'(a)) @ T @ S)
= (idg2p @ (2o by ) (a0a @i(i((38) ((§§) — Prow)) ®i(T ® 5)))
=apa ®@i(i(j((§5) ((50) — Prow)) ®T) @)
= (idg2p ®1) 0 (¢ @ idyc) (if! (a0) (if (a) — i3/ (a)) ® T @ S).
Since elements of the form
(if'(a) =3 (@) @ T®S and if (ao)(if' (a) — i3 (a)) @ T® S
span a dense subspace of A ® K ® K we get
(idgoy ® (haohyt)) 0 g% o (idga ® 1) = (idgy ® 1) 0 (¢ @idy).

As well known any two isomorphisms from K to itself are homotopic, hence
hy o hy 1~ idx and we obtain (3.3). Now to prove the commutativity of the left
triangle of the diagram we have to prove that

. . . 2
(3.4) (g% ®idi) o (p? ®idx) o (g% @id) ~ 7 A9

Like in Lemma 3.1 we will reduce the general case to the case A = C using the
map s : A — gqC ® A that was introduced in the proof of Lemma 3.1. The
right-hand side of (3.4) is

(3.5) YAEK = (1€ @idgpek) © (549K @idy),

that is the diagram

S2AgK
I(SPARK)®K ! SPARK®K
m %‘152&3;
ICRSPPARK @K

commutes. It can be easily checked by comparing of the left-hand side and the
right-hand side of (3.5) on elements of §(S?A ® K) ® K of the form

(if2A®K(4’®ﬂ®S) _ i§2A®IC(4,®a®S)) ®T
and
i ASK (9o @ ag @ So) (i AKX (pwa© S) — i§ A (pwawS) @ T

¢, ¢o € S2C,a,a9 € A, T,S,Sy € K, that span a dense subspace in q(SzA ®RK)RK.
Clearly the left-hand side of (3.4) is equal to (g 0 p 0 gf*) @ idx. We assert that

(3.6) ghoptoqpt = (35 ®ida) o (idyc ® BC @idy) 0 554K,
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that is that the diagram

A A
g(2Aek) " jasK) s gAsK

isszA@c J/gf‘

ICRS*ARK SPA® K
idqqu %
ICRARK

commutes. Indeed it is straightforward to show that the left-hand side and the
right-hand side of (3.6) asymptotically agree on elements of q(S*?A ® K) of the
form

AN gp@aT) -~ 5 A  peanT)
and
i AK (g0 000 © T) (T A*F (p 00 @ T) — 54K (900 T),

¢, ¢o € S%C, a,a90 € A, T, Ty € K, that span a dense subspace in q(SzA ® K).
Now, by (3.5), (3.6), to get (3.4) it remains to prove that
(75 ®idgop ) 0 (55 4K @id ) ~(gC@id a0 (idge @ @i acic) o (85 4K @id)
or, equivalently,

7* ®idgc ~ §¢ ® (idyc ® BC).
For that note that 7© ® idg¢ and ¢© ® (idgec ® BC) induce the same homomor-
phisms in K-theory. Indeed they both send the generator

(5] = IpBoe)) @ (HT (V] =[5 (1))
of Ko(S?C ® qC) to the generator
[(68)] — [PBote]
of Ko(S*C). This implies that 7 ® idg ¢ and g€ ® (idyc ® BT) are homotopic
because, as is well known,
[S’C ®qC ® K,S*C ® K]] = Z = Hom(Ko(S*C @ gC), Ko(S*C)). 1

Letp € G(B, A) and as before ¢ : B — A ® K be an asymptotic morphism
such that (idg ®i) o (¢ ® idx) ~ . Define an asymptotic morphism b(y) €
G(B,S?A) by the composition

id
Bok —2. PRk 2
PA®id}C iqu®i gA 5
— JARKRK —— gAR K —— STAQRK.
Thus the map b : G(B, A) — G(B, S?A) is defined by formula

b(y) = gA o (iqu ®i)o (pA ®idy) o (q¢ @ idg) o 03,

gARK)® K
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forany ¢ € G(B, A). Let B4 : G(B,S?A) — G(B, A) be the map induced by 4.
PROPOSITION 3.8. b : G(B, A) — G(B,S?A) is a semigroup isomorphism with
inverse B4.

Proof. Obviously b and B4 are semigroup homomorphisms so we have to
check only the following:
(i) (BG o b) () ~ y forany ¢ € G(B, A);
(i) (bo BA)(p) ~ ¢ for any ¢ € G(B, S*A).
(i) Let p € G(B,A) and ¢ : 4B — A ® K be such an asymptotic morphism
that ¢ ~ (idy ®1) o (¢ ® idx). Then
(BG o) () = p 0 g” o (idga ®1) o (0" @idx) 0 (99 @ idc) © 05
FemR 44 o (idgs @) 0 (p" @idx) o (¢ @ idic) 0 0p
Lemga?).l% (idA ® i) o ,)/A®}C o (q‘P ® id}g) o GB

L3 (1d @1) o (9 @ ide) 01 08 ~ g7 06 Xy,

(ii) Let ¢ € G(B,S?A) and ¢ : gB — S*A ® K be such an asymptotic mor-
phism that ¢ ~ (idg2 4 ® i) o (¢ ® id). Then
(boBE) (W) = g o (idga @) o (p" @idy) o (7(p" 0 ) @id) 0 03
=g’ o (idga @ i) o (p" @idy) o (48" ®id) o (q¢ ®idy) © O
FM37 (idgay @ 1) 0y AR o (g @ idc) © Op
Lemmad4 (14, @ 1) o (¢p@idc) 0B 0 ~ oy oy Ly, I
PROPOSITION 3.9. fAogd =id, gl o f4 =id.

Here id means both the identity map from G(B, S?A) into itself and the iden-
tity map from G(B, gA) into itself.

Proof. Consider the following diagram

G(B,A)
y \Xé
8¢
G(B,S?A) G(B,qA).
fe

We shall prove that it commutes and this will imply the statement of the propo-
sition. By Propositions 3.8 and 3.6 B4 and 4 are isomorphisms. By Lemma 3.1
B4 o gh = v2 whence

(37) g8 =(Bd) Tond
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By Corollary 2.2 72 o f4 = B2 whence
(3.8) f& = (v6) "o B
From (3.7) and (3.8) we obtain the assertions of the proposition. 1
3.3. MAIN RESULT.

THEOREM 3.10. (i) g% o f4 ~idg g0 i

(if) f4 0 g ~idgack.

Proof. (i) By Proposition 3.2 g# o f4 = id whence g/ o fA 0 ¢ ~ ¢ for any

¢ €E(B,S’A®K).Set B=A®K, ¢ =idg 45 Then
idg e ~ 840 fAoidg e = g% o fA.

(ii) By Proposition 3.9 f& o0 ¢4 = id whence fAog4o¢ ~ ¢ forany ¢ € [[gB®
K,qA ® K]]. Setting B = A, ¢ = id sk we get

So C*-algebras S?A ® K and A @ K are asymptotically equivalent and we
obtain immediately

COROLLARY 3.11. E(A, B) = [[gA, B® K]] for every C*-algebras A and B.

COROLLARY 3.12. Let A be a nuclear C*-algebra and B be any C*-algebra. Then
every asymptotic morphism from gA to B ® K is homotopic to a x-homomorphism from
gAto B® K.

Proof. Let ¢ € [[gA, B® K]]. Since A is nuclear I4 p is an isomorphism [2].
Define a *-homomorphism ¢y : JA ® K — B ® K by

(39) Yo =I;5((ids @) o (g1 @idc) o f4).

By [7] there exists a *-homomorphism ¢ : §A — B ® K such that
(3.10) (idp @) o (p @idx) ~ Yo.

We will prove that ¢; ~ . By Theorem 2.1

(3.11) Ia5(0) = oo f*.

By (3.9) the left-hand side of (3.11) is 14 g(¢o) = (idp ® i) o (¢r ® idy) o f4. By
(3.10) the right-hand side of (3.11) is g o f4 ~ (idp ® i) o (¢ ®idx) o fA. So

(idp @) o (¢r @idyc) o f4 ~ (idp @) o (p @idc) o f,
(idp @ i) o (¢r @id) o fAogh ~ (idp @i) o (p@idi) o fA0gh,
and by Theorem 3.10 we obtain
(idg ® i) o (¢r ®id) ~ (idg ® i) o (Y @ idy)
whence ¢y ~ 1p. 1
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