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ABSTRACT. Let A be a separable C∗-algebra. We prove that its stabilized sec-
ond suspension S2 A⊗K and the C∗-algebra qA⊗K constructed by Cuntz in
the framework of his picture of KK-theory are asymptotically equivalent. This
means that there exists an asymptotic morphism from S2 A⊗K to qA⊗K and
an asymptotic morphism from qA ⊗ K to S2 A ⊗ K whose compositions are
homotopic to the identity maps. This result yields an easy description of the
natural transformation from KK-theory to E-theory. Also by Loring’s result
any asymptotic morphism from qC to any C∗-algebra B is homotopic to a ∗-
homomorphism. We prove that the same is true when C is replaced by any
nuclear C∗-algebra A and when B is stable.
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INTRODUCTION

Let A be a separable C∗-algebra. Its first suspension is the C∗-algebra SA =
C0(R) ⊗ A. There are two other C∗-algebras associated to A that are of impor-
tance in the KK-theory of Kasparov: the second suspension C∗-algebra S2 A =
C0(R2)⊗ A and the C∗-algebra qA constructed by Cuntz [3] in the framework of
his picture of KK-theory. Both C∗-algebras can replace A in the definition of the
KK-groups: for the second suspension this is Bott periodicity and for qA this is
Cuntz’s picture for KK-theory. These C∗-algebras are E-equivalent, i.e. their sta-
bilized suspensions S3 A⊗K and SqA⊗K are equivalent in the category of sep-
arable C∗-algebras with morphisms being homotopy classes of asymptotic mor-
phisms, where K denotes the C∗-algebra of compact operators. In the present pa-
per we show that they are equivalent in this category without taking the suspen-
sion of the stabilizations. More precisely we construct an asymptotic morphism
from S2 A⊗K to qA⊗K and a ∗-homomorphism from qA⊗K to S2 A⊗K such
that their compositions are homotopic to the identity maps. In general one says
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that two C∗-algebras are asymptotically equivalent if there exist asymptotic mor-
phisms from each to the other whose compositions are homotopic to the iden-
tity maps. So the main result of this paper (Theorem 3.10) says that C∗-algebras
qA⊗K and S2 A⊗K are asymptotically equivalent.

As a corollary (Corollary 3.11) we obtain a description of E-theory that
is similar in form to Cuntz’s description of KK-theory. Cuntz [3] proved that
KK(A, B) = [qA, B ⊗ K] (where [ · ] means homotopy classes of ∗-homomor-
phisms). We assert that E(A, B) = [[qA, B ⊗ K]] (where [[ · ]] means homo-
topy classes of asymptotic morphisms) and that the well known natural trans-
formation KK(A, B) → E(A, B) is then nothing but the map that sends any ∗-
homomorphism qA→ B⊗K to itself.

One more corollary (Corollary 3.12) concerns the question of when asymp-
totic morphisms are homotopic to ∗-homomorphisms. In [6] it was proved that
any asymptotic morphism from qC to any C∗-algebra B is homotopic to a ∗-
homomorphism. We prove that the same is true not only for C but for any nu-
clear (even K-nuclear) C∗-algebra A if B is assumed to be stable. Recall that a
C∗-algebra B is called stable if B⊗K ∼= B.

The plan of the paper is as follows. The first section contains all necessary
information about C∗-algebra qA. In the second one we construct an asymptotic
morphism f A : S2 A ⊗ K → qA ⊗ K and a ∗-homomorphism gA : qA ⊗ K →
S2 A⊗K and show that f A induces a natural transformation from the KK-functor
to the E-functor. In the third section we prove that f A and gA provide an as-
ymptotic equivalence of the C∗-algebras S2 A ⊗ K and qA ⊗ K and obtain the
corollaries described above.

1. NECESSARY INFORMATION ABOUT qA

Let A and B be two C∗-algebras. A C∗-algebra C is called the free product
of A and B if there are ∗-homomorphisms iA : A → C and iB : B → C with
the following (universal) property: given ∗-homomorphisms φA : A → D and
φB : B → D mapping A and B into the same C∗-algebra D, there is a unique
∗-homomorphism φ : C → D such that φ ◦ iA = φA and φ ◦ iB = φB. The
∗-homomorphisms iA and iB are referred to as the canonical inclusions. The free
product of A and B will be denoted by A ∗ B.

Consider A ∗ A. Let i1 A : A → A ∗ A and iA
2 : A → A ∗ A denote the

two canonical inclusions of A as a C∗-subalgebra of A ∗ A. The C∗-algebra qA
constructed by Cuntz [3] is the closed ideal in A ∗ A generated by the set {i1(x)−
i2(x) : x ∈ A}. One can prove that elements of the form

(iA
1 (x1)−iA

2 (x1))· · ·(iA
1 (xN)−iA

2 (xN)) and iA
1 (x)(iA

1 (x1)−iA
2 (x1))· · ·(iA

1 (xN)−iA
2 (xN)),

where x0, x1, . . . , xN ∈ A, N ∈ N, span a dense ∗-subalgebra in qA.
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Let φ, ψ : A → B be two ∗-homomorphisms. By the universal property of
A ∗ A there is a unique ∗-homomorphism Q(φ, ψ) : A ∗ A→ B such that

Q(φ, ψ) ◦ iA
1 = φ, Q(φ, ψ) ◦ iA

2 = ψ.

Let q(φ, ψ) denote the restriction of Q(φ, ψ) to qA. Note that if J is an ideal in B,
then Q(φ, ψ) maps qA into J if and only if φ(x)− ψ(x) ∈ J for all x ∈ A. So in
this case, q(φ, ψ) ∈ Hom(qA, J).

2. CONSTRUCTING AN ASYMPTOTIC EQUIVALENCE BETWEEN S2 A⊗K AND qA⊗K

Below all C∗-algebras are assumed to be separable.
For any two C∗-algebras A and B Connes and Higson define E(A, B) to be

the abelian group [[SA ⊗ K, SB ⊗ K]] of homotopy classes of asymptotic mor-
phisms from SA⊗K to SB⊗K [2]. Recall that an asymptotic morphism from A to
B is a family of maps (φt)t∈[0,∞) : A→ B satisfying the following conditions:

(i) for any a ∈ A the function t 7→ φt(a) is continuous;
(ii) for any a, b ∈ A, λ ∈ C
• lim

t→∞
‖φt(a∗)− φt(a)∗‖ = 0,

• lim
t→∞
‖φt(a + λb)− φt(a)− λφt(b)‖ = 0,

• lim
t→∞
‖φt(ab)− φt(a)φt(b)‖ = 0.

In [2] it was also shown that [[SA⊗K, SB⊗K]] ∼= [[S2 A⊗K, B⊗K]] and
we shall always mean by the E-group the group [[S2 A⊗K, B⊗K]] of homotopy
classes of asymptotic morphisms from S2 A⊗K to B⊗K.

Let βC : C0(R2) ⊗ K → K be the Bott asymptotic morphism. In fact it
is the tensor product of the identity map idK : K → K with the restriction to
C0(R2) ⊂ C(T2) of the family of maps from C(T2) to K+ constructed in the
Voiculescu’s example of almost commuting unitaries [8], but here we shall not
use an explicit form of βC but only the fact that it induces the identity map in the
K-groups. Let

βA = βC ⊗ idA : S2 A⊗K → A⊗K.

Obviously βA ∈ E(A, A). Note that since we always consider asymptotic mor-
phisms up to homotopy we denote in the same way a class of homotopy equiva-
lent asymptotic morphisms and any its representative.

For the KK-groups we will use Cuntz’s approach [3] in which, as already
was written, one regards KK(A, B) as the group [qA ⊗ K, B ⊗ K] of homotopy
classes of ∗-homomorphisms from qA⊗K to B⊗K. Let

γA = q(idA, 0)⊗ idK : qA⊗K → A⊗K.
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Then γA ∈ KK(A, A) is a unit element for the associative product KK(A, B)×
KK(B, C)→KK(A, C). Namely there exists a bilinear pairing KK(A, B)×KK(B, C)
→ KK(A, C) such that x× γB = x = γA × x for any x ∈ KK(A, B) [3].

Let A be a C∗-algebra. By [2] there exists a natural transformation from the
functor KK(A,−) into the functor E(A,−) which is unique up to its value on
γA ∈ KK(A, A). Let

IA,B : KK(A, B)→ E(A, B)

be such a natural transformation that IA,A(γA) = βA. Define an asymptotic mor-
phism f A : S2 A⊗K → qA⊗K by

f A = IA,qA(idqA⊗K).

The following easy theorem asserts that the asymptotic morphism f A induces the
natural transformation IA,B.

THEOREM 2.1. IA,B(φ) = φ ◦ f A for any φ ∈ KK(A, B).

Proof. Since φ ∈ KK(A, B) is a ∗-homomorphism from qA⊗K to B⊗K it
induces the maps φKK : KK(A, qA) → KK(A, B) and φE : E(A, qA) → E(A, B)
in the KK-groups and the E-groups respectively. By the definition of a natural
transformation of covariant functors the following diagram commutes

KK(A, B)
IA,B−−−−→ E(A, B)

φKK

x xφE

KK(A, qA)
IA,qA−−−−→ E(A, qA) .

Hence for the element idqA⊗K ∈ KK(A, qA) we get

φE(IA,qA(idqA⊗K)) = IA,B(φKK(idqA⊗K)).

But φE(IA,qA(idqA⊗K)) = φ ◦ IA,qA(idqA⊗K) = φ ◦ f A and IA,B(φKK(idqA⊗K)) =
IA,B(φ ◦ idqA⊗K) = IA,B(φ).

COROLLARY 2.2. γA ◦ f A = βA.

Proof. By Theorem 2.1 γA ◦ f A = IA,A(γA). Since we have chosen a natural
transformation to be equal to βA on the element γA we get γA ◦ f A = βA.

Now we define a ∗-homomorphism gA : qA⊗K → S2 A⊗K in the follow-
ing way. Let π1, π2 : C→C0(R2)+⊗M2 be two ∗-homomorphisms given by

π1(1) =
(

1 0
0 0

)
, π2(1) = pBott =

1
1 + zz

(
zz z
z 1

)
(we identify R2 with C). Fix once and for all some inclusion j : M2 → K and
some isomorphism i : K⊗K → K. Define π̃1, π̃2 : A→ A⊗ C0(R2)+ ⊗K by

π̃1 = (j⊗ idA⊗C0(R2)+) ◦ (idA ⊗ π1), π̃2 = (j⊗ idA⊗C0(R2)+) ◦ (idA ⊗ π2),
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respectively. Since

π̃1(a)− π̃2(a) ∈ C0(R2)⊗K⊗ A = S2 A⊗K
for any a ∈ A, the ∗-homomorphism q(π̃1, π̃2) : qA→ S2 A⊗K is defined. Set

gA = (idS2 A ⊗ i) ◦ (q(π̃1, π̃2)⊗ idK).

In the next section we show that f A and gA provide an asymptotic equivalence
between S2 A⊗K and qA⊗K.

3. PROOF OF THE MAIN ASSERTION

To prove that f A and gA provide an asymptotic equivalence between S2 A⊗
K and qA⊗K we are going to show that their compositions induce the identity
maps in E-functor and in the functor G that will be introduced in Subsection 3.2.

3.1. THE MAPS INDUCED BY f A AND gA IN E-FUNCTOR.

LEMMA 3.1. βA ◦ gA ∼ γA.

Proof. Note first of all that gA : qA ⊗ K → S2 A ⊗ K and γA : qA ⊗ K →
A ⊗ K factorize through the C∗-algebra qC⊗ A ⊗ K. Namely let η1, η2 : A →
(C ∗C)⊗ A be given by formulas

η1(a) = iC1 (1)⊗ a, η2(a) = iC2 (1)⊗ a,

for any a ∈ A. Set
sA = q(η1, η2) : qA→ qC⊗ A.

It is easy to see that the diagrams

qA⊗K γA
//

sA⊗idK &&NNNNNNNNNN A⊗K

qC⊗ A⊗K
γC⊗idA

88qqqqqqqqqqq

and

qA⊗K
gA

//

sA⊗idK &&NNNNNNNNNN S2 A⊗K

qC⊗ A⊗K
gC⊗idA

77ppppppppppp

commute, that is

γA = (γC ⊗ idA) ◦ (sA ⊗ idK), gA = (gC ⊗ idA) ◦ (sA ⊗ idK).

Since βA = βC ⊗ idA we have to establish the homotopy equivalence

(γC ⊗ idA) ◦ (sA ⊗ idK) ∼ (βC ⊗ idA) ◦ (gC ⊗ idA) ◦ (sA ⊗ idK)
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or, equivalently,
γC ∼ βC ◦ gC.

For that we use K-theory. Let γC
∗ and (βC ◦ gC)∗ be the induced homomorphisms

from K0(qC) to K0(C). For the generator [iC1 (1)]− [iC2 (1)] of K0(qC) we have

(βC ◦ gC)∗([iC1 (1)]− [iC2 (1)]) = βC
∗ ([
(

1 0
0 0
)
]− [pBott]) = [1],

γC
∗ ([iC1 (1)]− [iC2 (1)]) = [1]− [0] = [1].

We used here that [
(

1 0
0 0
)
] − [pBott] is a generator of K0(S2C) and that the Bott

map βC induces the identity homomorphism in K-theory. So γC and βC ◦ gC

induce the same homomorphisms in K-theory. This implies that these asymptotic
homomorphisms are homotopic because, by Universal coefficients theorem,

Hom(K0(qC), K0(K))⊕Hom(K1(qC), K1(K)) ∼= KK(qC,K)⊕ KK(SqC,K),

and since

K1(qC) = K1(K) = 0, KK(SqC,K) = 0, KK(qC,K) = [qC,K]
[3]
= [[qC,K]],

we get
Hom(K0(qC), K0(C)) ∼= [[qC⊗K,K]].

Let B be any C∗-algebra. Let

f A
E : E(B, S2 A)→ E(B, qA) and gA

E : E(B, qA)→ E(B, S2 A)

be the maps induced by f A and gA respectively.

PROPOSITION 3.2. (i) f A
E ◦ gA

E = id;
(ii) gA

E ◦ f A
E = id.

Here id means both the identity map from E(B, S2 A) into itself and the iden-
tity map from E(B, qA) into itself.

Proof. Consider the following diagram

E(B, A)

E(B, S2 A)

βA
E

99rrrrrrrrrr

f A
E

// E(B, qA) .

γA
E

eeLLLLLLLLLLgA
Eoo

Here βA
E and γA

E are the maps induced by βA and γA respectively. It is proved in
[2] that βA

E is an isomorphism. Furthermore γA
E also is an isomorphism. Indeed

by [3] the map induced by γA in any covariant, homotopy invariant, split exact
and stable functor is an isomorphism. Since the functor E(B,−) has all these
properties γA

E is an isomorphism.
By Lemma 3.1, βA

E ◦ gA
E = γA

E whence

(3.1) gA
E = (βA

E )−1 ◦ γA
E .
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By Corollary 2.2 γA
E ◦ f A

E = βA
E whence

(3.2) f A
E = (γA

E )−1 ◦ βA
E .

The assertions of the proposition follow from (3.1) and (3.2).

3.2. THE MAPS INDUCED BY f A AND gA IN G-FUNCTOR. Now instead of E-
functor we are going to consider another bifunctor G(B, A) and prove the result
similar to Lemma 3.2 for the maps, induced by f A and gA in the functor G(B,−),
where B is fixed. Namely let G(B, A) be the semigroup [[qB ⊗ K, A ⊗ K]] of
the classes of homotopy equivalent asymptotic homomorphisms from qB ⊗ K
to A ⊗ K. Obviously this is a contravariant functor in the first variable and
a covariant functor in the second one. We need two results about this bifunc-
tor — the Bott periodicity and the isomorphism G(B, A) ∼= G(B, qA). To prove
them we need first of all a construction which produces an asymptotic morphism
qψ : qD1 → qD2 out of an asymptotic morphism ψ : D1 → D2, where D1, D2 are
any C∗-algebras.

An asymptotic morphism ψ gives rise to a genuine ∗-homomorphism

F : D1 → Cb([0, ∞), D2)/C0([0, ∞), D2)

given by
F(x) = ψt(x) + C0([0, ∞), D2),

for any x ∈ D1. There are two ∗-homomorphisms i1, i2 : Cb([0, ∞), D2) →
Cb([0, ∞), D2 ∗ D2) given by formulas

i1( f )(t) = iD2
1 ( f (t)), i2( f )(t) = iD2

2 ( f (t)),

f ∈Cb([0, ∞), D2). Since these ∗-homomorphisms send C0([0, ∞), D2) to C0([0, ∞),
D2 ∗ D2) we have two ∗-homomorphisms

î1, î2 : Cb([0, ∞), D2)/C0([0, ∞), D2)→ Cb([0, ∞), D2 ∗ D2)/C0([0, ∞), D2 ∗ D2).

Set

Φ = Q(î1 ◦ F, î2 ◦ F) : D1 ∗ D1 → Cb([0, ∞), D2 ∗ D2)/C0([0, ∞), D2 ∗ D2).

Let p : Cb([0, ∞), D2 ∗ D2) → Cb([0, ∞), D2 ∗ D2)/C0([0, ∞), D2 ∗ D2) be the
canonical surjection. Since

Φ(iD1
1 (a)) = p(iD2

1 (ψt(a))), Φ(iD1
2 (a)) = p(iD2

2 (ψt(a))),

for any a ∈ D1, and since qD1 is the closed ideal generated by the set {iD1
1 (a)−

iD1
2 (a) : a ∈ D1}, we get

Φ(qD1) ⊂ p(Cb([0, ∞), qD2)).

We shall denote the restriction of Φ to qD1 also by Φ. Define a ∗-homomorphism

τ : p(Cb([0, ∞), qD2))→ Cb([0, ∞), qD2)/C0([0, ∞), qD2)
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by

τ(p( f )) = f + C0([0, ∞), qD2),

f ∈ Cb([0, ∞), qD2). It is well-defined because for any f ∈ Cb([0, ∞), qD2) the
condition f ∈ C0([0, ∞), D2 ∗ D2) implies f ∈ C0([0, ∞), qD2). So we have τ ◦Φ :
qD1 → Cb([0, ∞), qD2)/C0([0, ∞), qD2). Choose a continuous section

s : Cb([0, ∞), qD2)/C0([0, ∞), qD2)→ Cb([0, ∞), qD2)

(it exists by Bartle–Graves theorem, [1], [5]) and define an asymptotic morphism
qψ by

(qψ)t(x) = (s(τ ◦Φ(x)))(t).

Thus we get an asymptotic morphism qψ : qD1 → qD2 out of an asymptotic
morphism ψ : D1 → D2.

For any C∗-algebra D let

ρD = q(iD
1 ⊗ idK, iD

2 ⊗ idK) : q(D⊗K)→ qD⊗K

and let θD : qD⊗K → q2D⊗K denote the isomorphism constructed in [3].

LEMMA 3.3. The diagram

q(A⊗K)⊗K
γA⊗K

//

ρA⊗idK
��

A⊗K⊗K
idA⊗i // A⊗K

qA⊗K⊗K

idqA⊗i
��

qA⊗K

γA

77ppppppppppppppppppppppppppppp

is commutative, namely γA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) = (idA ⊗ i) ◦ γA⊗K.

Proof. Since elements of the form

(iA⊗K
1 (a⊗ T)− iA⊗K

2 (a⊗ T))⊗ S

and

(iA⊗K
1 (a0⊗T0)(iA⊗K

1 (a⊗T)− iA⊗K
2 (a⊗T)))⊗ S,

where T, S, T0 ∈ K, a, a0 ∈ A, span a dense subspace of q(A⊗K)⊗K (see [7], for
example) it is enough to check that γA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) and (idA ⊗ i) ◦
γA⊗K coincide on elements of such form. For any T, S ∈ K, a ∈ A we have

γA◦(idqA ⊗ i) ◦ (ρA ⊗ idK)((iA⊗K
1 (a⊗ T)− iA⊗K

2 (a⊗ T))⊗ S)

= a⊗ i(T ⊗ S) = (idA ⊗ i) ◦ γA⊗K((iA⊗K
1 (a⊗ T)− iA⊗K

2 (a⊗ T))⊗ S),
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for another pair T0 ∈ K, a0 ∈ A we have

γA◦(idqA ⊗ i) ◦ (ρA ⊗ idK)((iA⊗K
1 (a0⊗T))(iA⊗K

1 (a⊗T)− iA⊗K
2 (a⊗T)))⊗ S)

= a0a⊗ i(T0T ⊗ S)

= (idA ⊗ i) ◦ γA⊗K((iA⊗K
1 (a0 ⊗ T0)(iA⊗K

1 (a⊗ T)− iA⊗K
2 (a⊗ T)))⊗ S)

and we are done.

LEMMA 3.4. Let φ ∈ [[qB, A⊗K]]. Then the diagram

q2B⊗K
qφ⊗idK //

γqB

��

q(A⊗K)⊗K
γA⊗K

// A⊗K⊗K

qB⊗K
φ⊗idK

33

commutes, that is γA⊗K ◦ (qφ⊗ idK) = (φ⊗ idK) ◦ γqB.

Proof. Let x ∈ qB, T ∈ K. By the definition of qφ we have

(qφ)t(iqB
1 (x)− iqB

2 (x))− (iA⊗K
1 (φt(x))− iA⊗K

2 (φt(x)))→ 0

when t→ ∞. Hence

lim
t→∞

[γA⊗K◦((qφ)t⊗idK)((iqB
1 (x)−iqB

2 (x))⊗T)−(φt⊗idK)◦γqB((iqB
1 (x)−iqB

2 (x))⊗T)]

= lim
t→∞

[γA⊗K((iA⊗K
1 (φt(x))− iA⊗K

2 (φt(x)))⊗ T)− φt(x)⊗ T] = 0.

In a similar way we find that γA⊗K ◦ (qφ⊗ idK) and (φ⊗ idK) ◦ γqB asymptot-
ically agree on elements (iqB

1 (x0)(iqB
1 (x)− iqB

2 (x)))⊗ T when x0, x ∈ qB, T ∈ K.
Since elements of the form

(iqB
1 (x)− iqB

2 (x))⊗ T and (iqB
1 (x0)(iqB

1 (x)− iqB
2 (x)))⊗ T

span a dense subspace of qB⊗ K we see that γA⊗K ◦ (qφ⊗ idK) = (φ⊗ idK) ◦
γqB.

LEMMA 3.5. Let φ ∈ [[qB, qA⊗K]]. Then the diagram

q2B
qφ //

q(idqB , 0)
��

q(qA⊗K)
ρqA

// q2 A⊗K
γqA

// qA⊗K

qB
φ

44

is commutative, that is γqA ◦ ρqA ◦ qφ = φ ◦ q(idqB, 0).

Proof. Let x ∈ qB, t ∈ [0, ∞). Writing φt(x) in the form

φt(x) = lim
k→∞

Nk

∑
i=1

z(k)
i (t)⊗ T(k)

i (t),
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where z(k)
i (t) ∈ qA, T(k)

i (t) ∈ K, we get

lim
t→∞

[γqA ◦ ρqA ◦ (qφ)t(iqB
1 (x)− iqB

2 (x))− φt ◦ q(idqB, 0)(iqB
1 (x)− iqB

2 (x))]

= lim
t→∞

[γqA ◦ ρqA(iqA⊗K
1 (φt(x))− iqA⊗K

2 (φt(x)))− φt(x)]

= lim
t→∞

[
lim
k→∞

Nk

∑
i=1

γqA(iqA
1 (z(k)

i )⊗T(k)
i −iqA

2 (z(k)
i )⊗T(k)

i )− lim
k→∞

Nk

∑
i=1

z(k)
i ⊗T(k)

i

]
=0.

In a similar way we find that γqA ◦ ρqA ◦ qφ and φ ◦ q(idqB, 0) asymptotically

agree on elements iqB
1 (x0)(iqB

1 (x)− iqB
2 (x)), where x0, x ∈ qB. Since elements of

the form iqB
1 (x) − iqB

2 (x) and iqB
1 (x0)(iqB

1 (x) − iqB
2 (x)) span a dense subspace of

qB we conclude that the asymptotic morphisms γqA ◦ ρqA ◦ qφ and φ ◦ q(idqB, 0)
coincide.

Let ψ ∈ G(B, A). There is an asymptotic morphism φ : qB → A⊗K such
that (idA ⊗ i) ◦ (φ ⊗ idK) ∼ ψ [2]. Define an asymptotic morphism Γ(ψ) ∈
G(B, qA) by the following composition

qB⊗K θB−−−−→ q2B⊗K qφ⊗idK−−−−→ q(A⊗K)⊗K ρA⊗idK−−−−→ qA⊗K⊗K
idqA⊗i
−−−−→ qA⊗K.

Thus a map Γ : G(B, A)→ G(B, qA) is defined by formula

Γ(ψ) = (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB,

for any ψ ∈ G(B, A). Let γA
G : G(B, qA)→ G(B, A) be the map induced by γA.

PROPOSITION 3.6. Γ : G(B, A) → G(B, qA) is a semigroup isomorphism with
inverse γA

G .

Proof. Obviously Γ and γA
G are semigroup homomorphisms so we have to

check only the following:
(i) Γ(γA

G(ψ)) ∼ ψ for any ψ ∈ G(B, qA);
(ii) γA

G(Γ(ψ)) ∼ ψ for any ψ ∈ G(B, A).
(i) Let ψ ∈ G(B, qA) and φ : qB→ qA⊗K be such an asymptotic morphism

that (idqA ⊗ i) ◦ (φ⊗ idK) ∼ ψ. Then

Γ(γA
G(ψ)) = (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (q(γA ◦ φ)⊗ idK) ◦ θB

= (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qγA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB,

because clearly q(γA ◦ φ)⊗ idK = (qγA ⊗ idK) ◦ (qφ⊗ idK).
By Lemma 5.1.11 of [7] ρA ◦ qγA ∼ γqA ◦ ρqA and we have

Γ(γA
G(ψ)) = (idqA ⊗ i) ◦ (γqA ⊗ idK) ◦ (ρqA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB

Lemma 3.5= (idqA ⊗ i) ◦ (φ⊗ idK) ◦ γqB ◦ θB ∼ ψ ◦ γqB ◦ θB
[1]∼ ψ.
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(ii) Now let ψ ∈ G(B, A) and φ : qB → A ⊗ K be such an asymptotic
morphism that (idA ⊗ i) ◦ (φ⊗ idK) ∼ ψ. Then

γA
G(Γ(ψ)) = γA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB

Lemma 3.3= (idA ⊗ i) ◦ γA⊗K ◦ (qφ⊗ idK) ◦ θB

Lemma 3.4= (idA ⊗ i) ◦ (φ⊗ idK) ◦ γqB ◦ θB ∼ ψ ◦ γqB ◦ θB
[1]∼ ψ.

LEMMA 3.7. The following diagram commutes:

q(S2 A⊗K)⊗K
qβA⊗idK //

γS2 A⊗K

��

q(A⊗K)⊗K
ρA⊗idK // qA⊗K⊗K

idqA⊗i

��
qA⊗K

S2 A⊗K
��

S2 A⊗K⊗K
idS2 A⊗i

// S2 A⊗K .

Namely gA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qβA ⊗ idK) ∼ (idS2 A ⊗ i) ◦ γS2 A⊗K.

Proof. We will prove the assertion by establishing the commutativity of the
left and right triangles of the diagram

q(S2 A⊗K)⊗K
qβA⊗idK //

γS2 A⊗K

��

q(A⊗K)⊗K
ρA⊗idK // qA⊗K⊗K

idqA⊗i

��gA⊗idK

ttj j j j j j j j j j j j j j j j j j j j j

qA⊗K

S2 A⊗K
��

S2 A⊗K⊗K
idS2 A⊗i

// S2 A⊗K .

To prove the commutativity of the right triangle we have to prove

(3.3) gA ◦ (idqA ⊗ i) ∼ (idS2 A ⊗ i) ◦ (gA ⊗ idK).

Let h1, h2 : K ⊗ K ⊗ K → K be the isomorphisms which send T1 ⊗ T2 ⊗ T3 to
i(T1 ⊗ i(T2 ⊗ T3)) and i(i(A⊗ B)⊗ C) respectively for any operators T1, T2, T3 ∈
K. Then for any T, S ∈ K, a ∈ A we have

(idS2 A ⊗ (h2 ◦ h−1
1 )) ◦ gA ◦ (idqA ⊗ i)((iA

1 (a)− iA
2 (a))⊗ T ⊗ S)

= (idS2 A ⊗ (h2 ◦ h−1
1 ))(a⊗ i(j

(
1 0
0 0
)
⊗ i(T ⊗ S)))

= a⊗ i(i(j
(

1 0
0 0
)
⊗ T)⊗ S) = (idS2 A ⊗ i) ◦ (gA ⊗ idK)((iA

1 (a)− iA
2 (a))⊗ T ⊗ S)
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and for another a0 ∈ A

(idS2 A ⊗ (h2 ◦ h−1
1 )) ◦ gA ◦ (idqA ⊗ i)(iA

1 (a0)(iA
1 (a)− iA

2 (a))⊗ T ⊗ S)

= (idS2 A ⊗ (h2 ◦ h−1
1 ))(a0a⊗ i(j(

(
1 0
0 0
)
(
(

1 0
0 0
)
− pBott))⊗ i(T ⊗ S)))

= a0a⊗ i(i(j(
(

1 0
0 0
)
(
(

1 0
0 0
)
− pBott))⊗ T)⊗ S)

= (idS2 A ⊗ i) ◦ (gA ⊗ idK)(iA
1 (a0)(iA

1 (a)− iA
2 (a))⊗ T ⊗ S).

Since elements of the form

(iA
1 (a)− iA

2 (a))⊗ T ⊗ S and iA
1 (a0)(iA

1 (a)− iA
2 (a))⊗ T ⊗ S

span a dense subspace of qA⊗K⊗K we get

(idS2 A ⊗ (h2 ◦ h−1
1 )) ◦ gA ◦ (idqA ⊗ i) = (idS2 A ⊗ i) ◦ (gA ⊗ idK).

As well known any two isomorphisms from K to itself are homotopic, hence
h2 ◦ h−1

1 ∼ idK and we obtain (3.3). Now to prove the commutativity of the left
triangle of the diagram we have to prove that

(3.4) (gA ⊗ idK) ◦ (ρA ⊗ idK) ◦ (qβA ⊗ idK) ∼ γS2 A⊗K.

Like in Lemma 3.1 we will reduce the general case to the case A = C using the
map sA : qA → qC ⊗ A that was introduced in the proof of Lemma 3.1. The
right-hand side of (3.4) is

(3.5) γS2 A⊗K = (γC ⊗ idS2 A⊗K) ◦ (sS2 A⊗K ⊗ idK),

that is the diagram

q(S2 A⊗K)⊗K
γS2 A⊗K

//

sS2 A⊗K⊗idK ))SSSSSSSSSSSSSS S2 A⊗K⊗K

qC⊗ S2 A⊗K⊗K
γC⊗idS2 A⊗K

66llllllllllllll

commutes. It can be easily checked by comparing of the left-hand side and the
right-hand side of (3.5) on elements of q(S2 A⊗K)⊗K of the form

(iS2 A⊗K
1 (φ⊗ a⊗ S)− iS2 A⊗K

2 (φ⊗ a⊗ S))⊗ T

and

iS2 A⊗K
1 (φ0 ⊗ a0 ⊗ S0)(iS2 A⊗K

1 (φ⊗ a⊗ S)− iS2 A⊗K
2 (φ⊗ a⊗ S))⊗ T,

φ, φ0 ∈ S2C, a, a0 ∈ A, T, S, S0 ∈ K, that span a dense subspace in q(S2 A⊗K)⊗K.
Clearly the left-hand side of (3.4) is equal to (gA ◦ ρA ◦ qβA)⊗ idK. We assert that

(3.6) gA ◦ ρA ◦ qβA = (gC ⊗ idA) ◦ (idqC ⊗ βC ⊗ idA) ◦ sS2 A⊗K,
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that is that the diagram

q(S2 A⊗K)
qβA

//

sS2 A⊗K
��

q(A⊗K)
ρA

// qA⊗K

gA

��
qC⊗ S2 A⊗K

idqC⊗βC⊗idA ((PPPPPPPPPPPP S2 A⊗K

qC⊗ A⊗K
gC⊗idA

88ppppppppppp

commutes. Indeed it is straightforward to show that the left-hand side and the
right-hand side of (3.6) asymptotically agree on elements of q(S2 A ⊗ K) of the
form

iS2 A⊗K
1 (φ⊗ a⊗ T)− iS2 A⊗K

2 (φ⊗ a⊗ T)
and

iS2 A⊗K
1 (φ0 ⊗ a0 ⊗ T0)(iS2 A⊗K

1 (φ⊗ a⊗ T)− iS2 A⊗K
2 (φ⊗ a⊗ T)),

φ, φ0 ∈ S2C, a, a0 ∈ A, T, T0 ∈ K, that span a dense subspace in q(S2 A ⊗ K).
Now, by (3.5), (3.6), to get (3.4) it remains to prove that

(γC⊗idS2 A⊗K)◦(sS2 A⊗K⊗idK)∼(gC⊗idA⊗K)◦(idqC⊗βC⊗idA⊗K)◦(sS2A⊗K⊗idK)

or, equivalently,
γC ⊗ idS2C ∼ gC ⊗ (idqC ⊗ βC).

For that note that γC ⊗ idS2C and gC ⊗ (idqC ⊗ βC) induce the same homomor-
phisms in K-theory. Indeed they both send the generator

([
(

1 0
0 0
)
]− [pBott])⊗ ([iC1 (1)]− [iC2 (1)])

of K0(S2C⊗ qC) to the generator

[
(

1 0
0 0
)
]− [pBott]

of K0(S2C). This implies that γC ⊗ idS2C and gC ⊗ (idqC ⊗ βC) are homotopic
because, as is well known,

[[S2C⊗ qC⊗K, S2C⊗K]] ∼= Z ∼= Hom(K0(S2C⊗ qC), K0(S2C)).

Let ψ ∈ G(B, A) and as before φ : qB→ A⊗K be an asymptotic morphism
such that (idA ⊗ i) ◦ (φ ⊗ idK) ∼ ψ. Define an asymptotic morphism b(ψ) ∈
G(B, S2 A) by the composition

qB⊗K θB−−−−→ q2B⊗K qφ⊗idK−−−−→ q(A⊗K)⊗K
ρA⊗idK−−−−→ qA⊗K⊗K

idqA⊗i
−−−−→ qA⊗K gA

−−−−→ S2 A⊗K.

Thus the map b : G(B, A)→ G(B, S2 A) is defined by formula

b(ψ) = gA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB,
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for any ψ ∈ G(B, A). Let βA
G : G(B, S2 A)→ G(B, A) be the map induced by βA.

PROPOSITION 3.8. b : G(B, A) → G(B, S2 A) is a semigroup isomorphism with
inverse βA

G.

Proof. Obviously b and βA
G are semigroup homomorphisms so we have to

check only the following:
(i) (βA

G ◦ b)(ψ) ∼ ψ for any ψ ∈ G(B, A);
(ii) (b ◦ βA

G)(ψ) ∼ ψ for any ψ ∈ G(B, S2 A).
(i) Let ψ ∈ G(B, A) and φ : qB → A⊗K be such an asymptotic morphism

that ψ ∼ (idA ⊗ i) ◦ (φ⊗ idK). Then

(βA
G ◦ b)(ψ) = βA ◦ gA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB

Lemma 3.1∼ γA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB

Lemma 3.3= (idA ⊗ i) ◦ γA⊗K ◦ (qφ⊗ idK) ◦ θB

Lemma 3.4= (idA ⊗ i) ◦ (φ⊗ idK) ◦ γqB ◦ θB ∼ ψ ◦ γqB ◦ θB
[1]∼ ψ.

(ii) Let ψ ∈ G(B, S2 A) and φ : qB → S2 A⊗K be such an asymptotic mor-
phism that ψ ∼ (idS2 A ⊗ i) ◦ (φ⊗ idK). Then

(b ◦ βA
G)(ψ) = gA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (q(βA ◦ φ)⊗ idK) ◦ θB

= gA ◦ (idqA ⊗ i) ◦ (ρA ⊗ idK) ◦ (qβA ⊗ idK) ◦ (qφ⊗ idK) ◦ θB

Lemma 3.7∼ (idS2 A ⊗ i) ◦ γS2 A⊗K ◦ (qφ⊗ idK) ◦ θB

Lemma 3.4= (idS2 A ⊗ i) ◦ (φ⊗ idK) ◦ γqB ◦ θB ∼ ψ ◦ γqB ◦ θB
[1]∼ ψ.

PROPOSITION 3.9. f A
G ◦ gA

G = id, gA
G ◦ f A

G = id.

Here id means both the identity map from G(B, S2 A) into itself and the iden-
tity map from G(B, qA) into itself.

Proof. Consider the following diagram

G(B, A)

G(B, S2 A)

βA
G

88rrrrrrrrrr

f A
E

// G(B, qA) .

γA
G

ffLLLLLLLLLLgA
Goo

We shall prove that it commutes and this will imply the statement of the propo-
sition. By Propositions 3.8 and 3.6 βA

G and γA
G are isomorphisms. By Lemma 3.1

βA
G ◦ gA

G = γA
G whence

(3.7) gA
G = (βA

G)−1 ◦ γA
G .
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By Corollary 2.2 γA
G ◦ f A

G = βA
G whence

(3.8) f A
G = (γA

G)−1 ◦ βA
G.

From (3.7) and (3.8) we obtain the assertions of the proposition.

3.3. MAIN RESULT.

THEOREM 3.10. (i) gA ◦ f A ∼ idS2 A⊗K;
(ii) f A ◦ gA ∼ idqA⊗K.

Proof. (i) By Proposition 3.2 gA
E ◦ f A

E = id whence gA ◦ f A ◦ φ ∼ φ for any
φ ∈ E(B, S2 A⊗K). Set B = A⊗K, φ = idS2 A⊗K. Then

idS2 A⊗K ∼ gA ◦ f A ◦ idS2 A⊗K = gA ◦ f A.

(ii) By Proposition 3.9 f A
G ◦ gA

G = id whence f A ◦ gA ◦ φ ∼ φ for any φ ∈ [[qB⊗
K, qA⊗K]]. Setting B = A, φ = idqA⊗K we get

idqA⊗K ∼ f A ◦ gA.

So C∗-algebras S2 A⊗K and qA⊗K are asymptotically equivalent and we
obtain immediately

COROLLARY 3.11. E(A, B) = [[qA, B⊗K]] for every C∗-algebras A and B.

COROLLARY 3.12. Let A be a nuclear C∗-algebra and B be any C∗-algebra. Then
every asymptotic morphism from qA to B⊗K is homotopic to a ∗-homomorphism from
qA to B⊗K.

Proof. Let φt ∈ [[qA, B⊗K]]. Since A is nuclear IA,B is an isomorphism [2].
Define a ∗-homomorphism ψ0 : qA⊗K → B⊗K by

(3.9) ψ0 = I−1
A,B((idB ⊗ i) ◦ (φt ⊗ idK) ◦ f A).

By [7] there exists a ∗-homomorphism ψ : qA→ B⊗K such that

(3.10) (idB ⊗ i) ◦ (ψ⊗ idK) ∼ ψ0.

We will prove that φt ∼ ψ. By Theorem 2.1

(3.11) IA,B(ψ0) = ψ0 ◦ f A.

By (3.9) the left-hand side of (3.11) is IA,B(ψ0) = (idB ⊗ i) ◦ (φt ⊗ idK) ◦ f A. By
(3.10) the right-hand side of (3.11) is ψ0 ◦ f A ∼ (idB ⊗ i) ◦ (ψ⊗ idK) ◦ f A. So

(idB ⊗ i) ◦ (φt ⊗ idK) ◦ f A ∼ (idB ⊗ i) ◦ (ψ⊗ idK) ◦ f A,

(idB ⊗ i) ◦ (φt ⊗ idK) ◦ f A ◦ gA ∼ (idB ⊗ i) ◦ (ψ⊗ idK) ◦ f A ◦ gA,

and by Theorem 3.10 we obtain

(idB ⊗ i) ◦ (φt ⊗ idK) ∼ (idB ⊗ i) ◦ (ψ⊗ idK)

whence φt ∼ ψ.
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