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ABSTRACT. It has been a successful practice to define a canonical pre-ordering
on a normed space using the inclusion of faces of its closed dual unit ball. This
pre-ordering reflects some geometric property in a natural way. In this article,
we will give an algebraic description of this pre-ordering in the case of com-
plex C∗-algebras as well as that of their self-adjoint parts. In developing our
theory we introduce the essential support of an element, which is closely related
to the notion of peak projections studied recently by Blecher and Hay. As ap-
plications, we give some interesting facts about weak*-closed faces, and will
identify the quasi-maximal elements and the quasi-minimal elements with re-
spects to this pre-ordering. They are closely related to the extreme points and
the smooth points of the unit sphere of the C∗-algebra.
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1. INTRODUCTION

Suppose that X is a (real or complex) normed space with Banach dual space
X∗ and double dual space X∗∗. We set

(1.1) QX(x) := { f ∈ X∗ : ‖ f ‖ 6 1 and f (x) = ‖ f ‖‖x‖}, (x ∈ X∗∗ \ {0}),

and QX(0) := {0} by convention. One can understand the local geometric prop-
erty of x by looking at this set. In particular, a norm one element x in X is smooth
if the weak* compact convex set QX(x) is one-dimensional. On the other hand,
when X is a complex C∗-algebra, the maximality of QX(x) is related to the notion
of extreme points (see Section 4). In general, one can define a canonical pre-
ordering on the set of non-zero elements of X∗∗ by declaring that

(1.2) x .X y if QX(x) ⊆ QX(y).

The main objective of this paper is to give an algebraic description for the
above pre-ordering in the cases of a complex C∗-algebra A as well as that of the
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self-adjoint part Ah of A. There are already many papers devoted to the study
of the facial structure of the closed dual unit ball B1(A∗) (respectively B1(A∗h))
of A (respectively Ah) (see, e.g., [1], [4] and [5], as well as the references therein).
In particular, the ordering on the set of partial isometries studied in [1] is the
restriction of the pre-ordering in (1.2). In order to study this pre-ordering on gen-
eral arbitrary elements, however, we need to put further attention on the weak*
closed faces of B1(A∗) and B1(A∗h). In particular, using the results in [1], one
needs to find a way to obtain the canonical partial isometry (or self-adjoint par-
tial isometry) u that defines the same weak* closed face in (1.1); that is,

QA(x) = QA(u) or QAh(x) = QAh(u)

This gives rise to the interesting concept of the essential support es(x) of a given el-
ement x in A, which is related to the so-called peak projections (see e.g. [6]) defined
by Blecher and Hay, and will be studied in Section 2.

More precisely, if X = Ah and x ∈ Ah \ {0}, then QAh(x) = QA(x) ∩ A∗h
is supported by a difference of two orthogonal projections (by Theorem 3.11 of
[1]) and we will show that these two projections are closely related to the es-
sential supports of the positive part and the negative part of x (Proposition 3.7).
On the other hand, if X = A and a ∈ A \ {0}, then QA(a) is supported by a
unique partial isometry and it will be shown that this partial isometry is given
by the polar decomposition and the essential support of a. Finally, we will study,
in Section 4, the quasi-maximal and quasi-minimal elements with respect to the
geometric pre-orderings.

Throughout this article, X is a (real or complex) normed space, A is a com-
plex C∗-algebra, M is a complex von Neumann algebra with predual M∗, Ah is
the set of self-adjoint elements of A, and A+ is the positive cone of A.

NOTATION 1.1. We denote by S1(X) and B1(X) the unit sphere and the
closed unit ball of X. For any a ∈ M and f ∈ M∗, we denote by |a| and | f |
the absolute value of a and that of f respectively. Moreover, sr(a) and sr( f ) (re-
spectively, s(|a|) and s(| f |)) are the right support projections (respectively, the
support projections) of a and f (respectively, |a| and | f |). The normal functionals
a · f and f · a in M∗ are defined by

(a · f )(x) = f (xa) and ( f · a)(x) = f (ax) (x ∈ M).

Furthermore, if E is a convex subset of a normed space X, then we denote by
ext(E) the set of all extreme points of E.

2. THE ESSENTIAL SUPPORTS

Inspired by the statement of the main theorem of [9], we define and study
the notion of the essential support of an element in a C∗-algebra. It turns out that
the essential support plays an important role in the algebraic description of the
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geometric pre-ordering on a C∗-algebra. The first question that one needs to ask
is whether such projections exist. Our first theorem answers this question affir-
matively.

Before we present this result, let us first recall the definition of closed pro-
jection from 3.11.10 of [8]. A projection p in the bidual A∗∗ of A is said to be closed
if {φ ∈ A∗+ : φ(p) = ‖φ‖ 6 1} is σ(A∗, A)-closed.

Moreover, we recall the following well-known lemma (for part (i), see e.g.,
the argument in Theorem III.4.2(i) of [11] while part (ii) follows from Corollary 3.5
of [4] or Proposition 4.4 of [2], and part (iii) is a direct application of Lemma III.3.2
of [11]).

LEMMA 2.1. (i) Let a ∈ S1(M) and f ∈ M∗ with f (a) = ‖ f ‖. If a∗ = v|a∗|
is the polar decomposition of a∗ and p = s(| f |), then | f | = v∗ · f , p 6 v∗v and
f = vp · | f | is the polar decomposition of f .

(ii) Let q ∈ A∗∗ be a closed projection and u ∈ qA+q. There exists ψ ∈ S1(A∗) ∩
A∗+ such that ψ(u) = ‖u‖.

(iii) For any u ∈ A∗∗+ \ {0}, we have QA(u) = QAh(u) = QA(u) ∩ A∗+.

For any u ∈ A∗∗+ \ {0}, let E : σ(u) → A∗∗ be the spectral measure induced
by u. Denote pu := E({‖u‖}).

THEOREM 2.2. Suppose that A is a C∗-algebra and x ∈ A \ {0}. Let E(x) be the
set of all closed projections p in A∗∗ satisfying the following three conditions:

(i) px∗x = x∗xp;
(ii) ‖xp‖ = ‖x‖;

(iii) ‖xq‖ < ‖x‖ for any closed projection q 6 1− p.
(a) There exists a smallest element es(x) in E(x) which is the unique closed

projection with
QA(x∗x) = QA(es(x)).

Moreover, es(x) = px∗x 6 sr(x).
(b) If x ∈ A+ \ {0}, then es(x) = es(xt) for any t in R+ \ {0}, and x es(x) =

‖x‖es(x).
(c) es(x) = es(x∗x) = es(|x|).

Proof. Without loss of generality, we can assume ‖x‖ = 1.
(a) We note first of all that sr(x) ∈ E(x) and es(x) 6 sr(x) if es(x) exists. As

QA(x∗x) is a weak* closed face of the quasi-state space QA(1) of A, there exists,
by Theorem 2.10 of [1], a non-zero closed projection es(x) such that QA(x∗x) =
QA(es(x)). Moreover, observe that

‖x es(x)‖2 =‖es(x)x∗x es(x)‖= sup
φ∈QA(1)

φ(es(x)x∗x es(x))= sup
ϕ∈QA(x∗x)

ϕ(x∗x)=1

(because of Lemma 2.1(ii)). On the other hand, suppose there is a closed pro-
jection q 6 1 − es(x) with ‖xq‖ = 1. Then ψ(qx∗xq) = 1 for some state ψ
(by Lemma 2.1(ii)). This implies that ϕ(·) := ψ(q· q) ∈ QA(es(x)) ∩ QA(q) =
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{0} which contradicts ϕ(x∗x) = 1. Therefore, es(x) satisfies Conditions (ii)
and (iii). In order to show that es(x) satisfies Condition (i), we first show that
es(x) = px∗x. Indeed, for any ϕ in A∗+, there is a Radon measure µϕ on σ(x∗x)

such that ϕ
( ∫

f dE
)

=
∫

f dµϕ for any bounded Borel measurable function f . If

ϕ ∈ QA(x∗x), then∫
λdµϕ(λ) = ϕ(x∗x) = ‖ϕ‖ = µϕ(σ(x∗x)).

Thus, µϕ is supported on {1} and ϕ(px∗x) = µϕ({1}) = ‖ϕ‖. Conversely, if
ϕ ∈ QA(px∗x), then µϕ({1}) = ‖ϕ‖ = µϕ(σ(x∗x)) and we have ϕ(x∗x) = ‖ϕ‖.
Thus, QA(x∗x) = QA(px∗x) and es(x) = px∗x (by Theorem 2.5 of [1]). Finally,
we show that es(x) is the smallest element in E(x). Assume on the contrary that
there is an r in E(x) such that es(x) is not a subprojection of r. Then QA(r) does
not contain all the extreme points of QA(x∗x). As QA(x∗x) is a weak* closed face
of QA(1), there exists a pure state ϕ in QA(x∗x) with ϕ(r) < 1. By Condition (i),
we have

1 = ϕ(x∗x) = ϕ(rx∗xr) + ϕ((1− r)x∗x(1− r))

6 ‖x∗x‖ϕ(r) + ‖x∗x‖ϕ(1− r) = ϕ(1) = 1.

Consequently, ϕ((1− r)x∗x(1− r)) = ϕ(1− r) > 0. Define ψ(a) := ϕ((1−r)a(1−r))
ϕ(1−r)

for all a in A. Let (πϕ, H, ξ) be the GNS representation arising from the pure state
ϕ. As

‖πϕ(1− r)ξ‖2 = ϕ(1− r) > 0,

one can define ξ ′ = πϕ(1−r)ξ

‖πϕ(1−r)ξ‖ . Since πϕ is irreducible, ψ(a) = 〈πϕ(a)ξ ′, ξ ′〉 is

again a pure state of A. If q is the closed projection such that SA(q) = {ψ} ⊆
SA(1− r), then it follows from q 6 1− r and Condition (iii) that ‖xq‖ < 1. Since
q supports ψ, we have ψ(x∗x) = ψ(qx∗xq) 6 ‖qx∗xq‖ = ‖xq‖2 < 1, which is a
contradiction.

(b) Let v = x2. Note that Ω 7→ Ω1/t := {ω1/t : ω ∈ Ω} gives a bijection be-
tween the Borel subsets of σ(vt) and those of σ(v). Let E be the spectral measure
for v as in the paragraph preceding this theorem. Then

Et : Ω 7→ E(Ω1/t)

is a spectral measure on σ(vt). For any f in C(σ(vt)), define Φt( f ) in C(σ(v)) by
Φt( f )(λ) = f (λt). If Ψ : C(σ(v)) → A∗∗ is given by the functional calculus for
v, then Ψ ◦ Φt is given by the functional calculus for vt. Consequently, Et is the
spectral measure for vt. By part (a), we have es(x) = E({1}) = Et({1}) = es(xt),
and xes(x) = es(x) as elements in the image of C0(σ(x2))∗∗.

(c) For any projection p in A∗∗, we have

‖xp‖2 = ‖px∗xp‖ 6 ‖x∗xp‖ 6 ‖xp‖ 6 1.
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Therefore, ‖xp‖ = 1 if and only if ‖x∗xp‖ = 1. On the other hand, a projection
commutes with x∗x if and only if it commutes with (x∗x)2. Therefore, es(x) =
es(x∗x). By (c), we also have es(x) = es(|x|).

DEFINITION 2.3. Let x ∈ A \ {0}. The projection es(x) in Theorem 2.2 is
called the essential (right) support of x.

EXAMPLE 2.4. (i) Let A = C[0, 1] and x in A be defined by

x(t) =

{
1 t ∈ [0, 1

2 ];
2(1− t) t ∈ ( 1

2 , 1].

In this case, one should expect the essential support of x to be the characteristic
function of [0, 1

2 ]. Note however that ‖x(1− es(x))‖ = ‖x‖ = 1. This explains
why we cannot use ‖x(1− p)‖ < ‖x‖ in Condition (iii).

(ii) Let A = M3(C) and x =

 1 0 0
0 1 0
0 0 0

. In this case, one should expect

the essential support of x to be x itself (as it is a projection). However, if r is the

projection

 1 0 0
0 1√

2
−1√

2
0 −1√

2
1√
2

, then it is easy to see that r satisfies Conditions (ii)

and (iii) but x � r. This explains why we need Condition (i).

REMARK 2.5. One might think that there could be a von Neumann algebra
version for Theorem 2.2(a). However, if M is a von Neumann algebra, there may
not be a projection in M satisfying similar conditions as in Theorem 2.2. For
example, suppose that M = l∞ and x =

(
0, 1

2 , 2
3 , 3

4 , . . .
)
∈ M. Then E0({1}) = 0

(where E0 : σ(x) → M is the normal spectral measure induced by x) and { f ∈
l1 : f (x) = ‖ f ‖} = {0}.

Note that the concept of essential supports is closely related to the notion
of peak projections as defined in [6]. However, it does not seem to us that one can
use the results in [3] nor those in [6] to obtain Theorem 2.2. As a matter of fact,
Theorem 2.2 states that any contraction a in A is a peak associated with a peak
projection p in A∗∗ for the inclusion A ⊆ A. Moreover, the following result gives
a relationship between these two concepts.

PROPOSITION 2.6. Suppose that A is a unital C∗-algebra and q ∈ A∗∗ is a non-
zero closed projection. Then q is a peak projection for A (considered as a subalgebra of
itself) if and only if there exists a ∈ A such that q = es(a).

Proof. Suppose that q = es(a) for some a ∈ A \ {0}. Set u := |a|/‖a‖ ∈
S1(A) ∩ A+. Then q = es(u) (by parts (b) and (c) of Theorem 2.2). Now using
parts (a) and (b) of Theorem 2.2, we know that q is a peak projection for A (see
Definition 5.2 of [6]). Conversely, suppose that a ∈ A is a peak associated with a
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peak projection q and u = a∗a. Then as noted in [6], a commutes with q and thus
uq = q = qu. Moreover, we have

‖u‖ 6 1 = ‖q‖ = ‖uq‖ 6 ‖u‖.
From Theorem 5.1(6) of [6], ‖up‖ 6 ‖ap‖ < 1 for any closed projection p 6 1− q.
Consequently, q ∈ E(u) and so q > es(u). For any f in QA(q), we have s( f ) 6 q
(by Lemma 2.1(i)) and so f (u) = f (uq) = f (q) = ‖ f ‖. This shows that QA(q) ⊆
QA(u) = QA(es(u)) and q 6 es(u).

3. GEOMETRIC PRE-ORDERING ON NORMED SPACES

DEFINITION 3.1. Suppose that X is a (real or complex) normed space and
x, y ∈ X∗∗ \ {0}. We define

x .X y if QX(x) ⊆ QX(y), and x ∼X y if QX(x) = QX(y).

We call .X the canonical geometric pre-ordering on X∗∗ \ {0}.

REMARK 3.2. (i) A complex normed space X can be regarded as a real
normed space, denoted by XR. In this case, Γ : f 7→ Re( f ) is an isometric iso-
morphism from X∗ onto (XR)∗ such that Γ(QX(x)) = QXR(x) for any x in X∗∗.
Therefore, .X and .XR are the same.

(ii) Note that QX(x)∩S1(X∗) is either an empty set or a closed face of the dual
closed unit ball B1(X∗), and it is a weak* closed face if x ∈ X.

(iii) Note that x .X y if and only if x
‖x‖ .X

y
‖y‖ . Therefore, we consider mainly

the pre-ordering on the unit sphere S1(X∗∗).

The following lemma is easy to check.

LEMMA 3.3. Let X and Y be normed spaces, J : X → Y be an isometry and
u, v ∈ S1(X∗∗). Then u .X v if and only if J∗∗(u) .Y J∗∗(v).

In this article, we will mainly consider the cases when X = A as well as that
of X = Ah. Note that by Remark 3.2(i), the two pre-ordering .AR and .A are
the same. Moreover, since the canonical injection from Ah to AR is an isometry,
Lemma 3.3 implies the following result.

PROPOSITION 3.4. Suppose that x, y ∈ S1(Ah). Then

x .A y if and only if x .Ah y.

In the following, we will give algebraic descriptions of the geometric pre-
orderings .Ah and .A.

3.1. ALGEBRAIC DESCRIPTION OF THE GEOMETRIC PRE-ORDERING ON Ah \ {0}.
We begin this subsection with the following result which tells us that if u ∈
S1(A) ∩ A+, the unique closed projection that associated with QAh(u) (as given
by Theorem 2.10 of [1]) is precisely es(u).
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PROPOSITION 3.5. Let u, v ∈ A+ \ {0}, and let es(u) and es(v) be the essential
supports of u and v, respectively. Then

QAh(u) ⊆ QAh(v) if and only if es(u) 6 es(v).

Proof. The argument of Theorem 2.2 tells us that es(u1/2) = es(u) is the
unique projection with QAh(es(u)) = QAh(u). Thus, the result follows from The-
orem 2.10 of [1].

For any Q1, Q2 ⊆ B1(A∗) ∩ A∗+, we denote

Q1×̂Q2 :={( f , g)∈Q1×Q2 : ‖ f ‖+‖g‖61}, Q1−̂Q2 :={ f − g : ( f , g)∈Q1×̂Q2}.

We recall from Lemma 2.1(iii) that QAh(u) = QA(u) ∩ A∗+ if u ∈ A∗∗+ \ {0}.

LEMMA 3.6. Let x ∈ S1(A∗∗h ).
(i) The map ( f , g) 7→ f − g defines a bijection from (QAh(x) ∩ A∗+)×̂(QAh(−x) ∩

A∗+) onto QAh(x). In particular,

QAh(x) = (QAh(x) ∩ A∗+)−̂(QAh(−x) ∩ A∗+).

(ii) If x = x+ − x− is the Jordan decomposition of x, then

QAh(x) ∩ A∗+ =

{
QAh(x+) if‖x+‖ = 1,
{0} if‖x+‖ < 1.

Proof. (i) If ( f , g) ∈ (QAh(x) ∩ A∗+)×̂(QAh(−x) ∩ A∗+) and h = f − g, then

‖h‖ 6 ‖ f ‖+ ‖g‖ = f (x)− g(x) = h(x) 6 ‖h‖

and h ∈ QAh(x). Conversely, if h ∈ QAh(x) and h = f − g is the Jordan decom-
position of h, then

‖h‖ = h(x) = f (x)− g(x) 6 ‖ f ‖+ ‖g‖ = ‖h‖ 6 1.

Thus, g(−x) = ‖g‖ and f (x) = ‖ f ‖ as required. To show the injectivity, suppose
that h = f ′ − g′ where f ′ ∈ QAh(x) ∩ A∗+ and g′ ∈ QAh(−x) ∩ A∗+. Then

‖ f ′‖+ ‖g′‖ = f ′(x)− g′(x) = h(x) 6 ‖h‖ 6 ‖ f ′‖+ ‖g′‖

which implies ‖h‖ = ‖ f ′‖+ ‖g′‖. Thus, f = f ′ and g = g′ by the uniqueness of
the Jordan decomposition.

(ii) If f ∈ QAh(x) ∩ A∗+, we have ‖ f ‖ = f (x) = f (x+) − f (x−) 6 ‖ f ‖ −
f (x−) and so f (x−) = 0 and f (x+) = ‖ f ‖. Thus, if ‖x+‖ < 1, then f = 0.
Conversely, suppose that f ∈ QAh(x+) and ‖x+‖ = 1. Since x+ + x− has norm
one, the positivity of f and the inequalities

‖ f ‖ > f (x+ + x−) = ‖ f ‖+ f (x−)

implies f (x−) = 0. Consequently, f ∈ QAh(x) ∩ A∗+.
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The above lemma tells us that if x ∈ S1(A∗∗h ) with ‖x+‖ < 1 (respectively,
‖x−‖ < 1), then QAh(x) = −QAh(x−) (respectively, QAh(x) = QAh(x+)).

For any u in A+ ∩B1(A), we set

(3.1) qu :=

{
es(u) if‖u‖ = 1,
0 if‖u‖ < 1.

Compare with Theorem 3.11 of [1], the following theorem means that for any x in
S1(Ah), the two compact orthogonal projections that associated with the weak*
closed face QAh(x) are precisely qx+ and qx− . We call qx+−qx− the hermitian exposure
of x.

THEOREM 3.7. Let x, y ∈ S1(Ah). Then

QAh(x) = QAh(qx+ − qx−),

and x .Ah y if and only if qx+ 6 qy+ and qx− 6 qy− .

Proof. Note that by Lemma 3.6(ii) and the argument of Proposition 3.5, we
have QAh(qx±) = QAh(±x) ∩ A∗+. Therefore, if qx+ 6 qy+ and qx− 6 qy− , then
Lemma 3.6(i) tells us that

QAh(x) = QAh(qx+)−̂QAh(qx−) ⊆ QAh(y).

Conversely, suppose that QAh(x) ⊆ QAh(y). Then QAh(x) ∩ A∗+ ⊆ QAh(y). Since
the decomposition in Lemma 3.6(i) is given by the Jordan decomposition, we
have QAh(x) ∩ A∗+ ⊆ QAh(y) ∩ A∗+ and so qx+ 6 qy+ . Similarly, we have qx− 6
qy− .

3.2. ALGEBRAIC DESCRIPTION OF THE GEOMETRIC PRE-ORDERING ON A \ {0}.
Let us start this subsection with the following easy lemma. Again, we recall from
Lemma 2.1(iii) that QA(u) ⊆ A∗+ if u ∈ A∗∗+ \ {0}.

LEMMA 3.8. Let A be a C∗-algebra, a ∈ S1(A∗∗) and h ∈ A∗.
(i) f 7→ f ∗ (where f ∗(b) := f (b∗)) defines an isometric affine bijection from QA(a)

onto QA(a∗).
(ii) Λ : ϕ 7→ |ϕ| is an isometric affine bijection from QA(a) onto QA(|a∗|).

Proof. (i) This part is clear.
(ii) Let a∗ = u · |a∗| be the polar decomposition of a∗ and ϕ ∈ QA(a).

By Lemma 2.1(i), we have Λ(ϕ) = u∗ · ϕ and Λ is an affine isometry. Now,
|ϕ|(|a∗|) = ϕ(|a∗|u∗) = ϕ(a) = ‖ϕ‖. This shows that |ϕ| ∈ QA(|a∗|). More-
over, Lemma 2.1(i) tells us that if ψ ∈ QA(a) satisfies u∗ · ψ = u∗ · ϕ, then
ψ = uu∗ · ψ = uu∗ · ϕ = ϕ and Λ is injective. Finally, for any ω ∈ QA(|a∗|),
if we set ϕ := u · ω, then ‖ϕ‖ 6 ‖ω‖ = ω(|a∗|) = ω(au) = ϕ(a) which shows
that ‖ω‖ = ‖ϕ‖ and ϕ ∈ QA(a). As ‖ω‖ = ‖ϕ‖ 6 1 and |ϕ(b)|2 6 ω(bb∗) for all
b in A, we know from Proposition III.4.6 of [11] that ω = |ϕ| as required.

This, together with Theorem 4.11 of [1], gives the following corollary.
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COROLLARY 3.9. Let F be a proper closed (respectively, weak* closed) face of
B1(A∗). Then

|F| := {| f | : f ∈ F}
is a closed (respectively, weak* closed) face of the quasi-state space QA(1) of A and the
map f 7→ | f | is an isometric affine bijection from F onto |F|.

The following is more or less the same as Proposition 5.10(a) of [1] but since
there seems to be a slight confusion in that statement, we decide to state it clearly
here.

LEMMA 3.10. Let u, v ∈ A∗∗ \ {0} be partial isometries. Then QA(u) ⊆ QA(v)
if and only if u = uu∗v. Consequently, QA(u) = QA(v) if and only if u = v.

For any x ∈ A, we denote the polar decomposition of x by

x = u(x)|x|.
The following tells us that the unique partial isometry that associated with the
face QA(x)∩S1(A∗) in Theorem 4.6 of [1] is precisely u(x)es(x). We call u(x)es(x)
the exposure of x in A \ {0}.

THEOREM 3.11. Suppose that x, y ∈ S1(A).
(i) u(x)es(x)=es(x∗)u(x∗)∗ and is a partial isometry with QA(x)=QA(u(x)es(x)).

(ii) x .A y if and only if u(x)es(x) = u(y)es(x).

Proof. (i) Let v = u(x∗). Note that es(x∗) = es(|x∗|) 6 s(|x∗|) = v∗v,
and es(x∗)v∗ is a partial isometry. By the argument of Lemma 3.8(ii), we see
that f ∈ QA(x) if and only if v∗ · f = | f | ∈ QAh(|x

∗|) = QAh(es(x∗)) which
is equivalent to f ∈ QA(es(x∗)v∗). On the other hand, f ∈ QA(x) if and only
if f ∗ ∈ QA(x∗) = QA(es(x)u(x)∗) (by Lemma 3.8(i) and the above) which is
equivalent to f ∈ QA(u(x)es(x)) (Lemma 3.8(i)). Now, the uniqueness of the
partial isometry associated with a face tells us that es(x∗)u(x∗)∗ = u(x)es(x).

(ii) This part follows from part (i) and Lemma 3.10.

Note that although by Proposition 3.4, the two preorderings .A and .Ah co-
incide on Ah, the algebraic description given by Theorem 3.11 and the one given
by Theorem 3.7 is not in general the same. It is because in general, QA(x) 6=
QAh(x) (x ∈ Ah). Let us first give a relation between them.

PROPOSITION 3.12. Let x ∈ S1(A∗∗h ) and x = u|x| be the polar decomposition.
We have

QAh(x)={h∈QA(x) : u · h = h · u}, {|h| : h∈QAh(x)}={ f ∈QA(|x|) : u · f = f · u}.

Proof. Let p± = s(x±). Then u = p+ − p−. If g ∈ QAh(x) and g = g+ − g−
is the Jordan decomposition, then g± ∈ QAh(x±) = QAh(es(x±)) (by Lemma 3.6)
and so s(g±) 6 p± (by Lemma 2.1(i)). Therefore, u · g = |g| = g · u. Conversely,
suppose that h ∈ QA(x) such that u · h = h · u. Then by Lemma 2.1(i), we have
|h| = u · h = h · u and h = u · |h| = |h| · u which implies that h ∈ A∗h. The above
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also shows that u · |h| = |h| · u for any h in QAh(x). Finally, if f ∈ QAh(|x|) with
u · f = f · u, we put g = u · f ∈ QA(x). Then g ∈ A∗h (as g = u · f = f · u and f is
positive) and f = u · g (by Lemma 2.1(i)).

As a consequence of Proposition 3.12, if A is commutative, then QAh(x) =
QA(x) and thus, |QAh(x)| = |QA(x)|. In the non-commutative case, although we
always have QAh(x) = QA(x) ∩ A∗h, it is possible that |QAh(x)| ( |QA(x)| which
implies QAh(x) ( QA(x) (by the injectivity of Λ in Lemma 3.8(ii)).

EXAMPLE 3.13. Let u =
(

0 1
1 0

)
, ξ =

(
1
0
)

and η =
(

0
1
)
. Define f (x) = 〈xξ, ξ〉.

Then u is a symmetry and f ∈ QA(1). However, we have u · f (x) = 〈xη, ξ〉 and
f · u(x) = 〈xξ, η〉 which shows that u · f 6= f · u. This means f ∈ |QA(u)| \
|QAh(u)|.

4. MAXIMAL AND MINIMAL ELEMENTS

For any x ∈ S1(X) we set

SX(x) := QX(x) ∩S1(X∗).

4.1. MINIMAL ELEMENTS AND SMOOTHNESS. Recall that x ∈ S1(X) is said to
be smooth in X if SX(x) is a singleton set. We call an element x in S1(A∗∗) quasi-
minimal if for any y in S1(A∗∗), y .A x implies that y ∼A x.

By Theorem 2.5 of [1], there is a canonical one to one correspondence be-
tween non-zero projections of A∗∗ and (norm) closed faces of QA(1) not contain-
ing zero. Therefore, a projection p in A∗∗ is (quasi-)minimal if and only if SA(p)
is a singleton. In the case when p is a closed projection in A∗∗, this is the same as
the minimality of p among all closed projections in A∗∗.

We can apply the above to give the following slightly different form of The-
orem 3.1 of [10]. Note that our Condition (B) in part (i) is different from The-
orem 3.1(c) of [10] (and their equivalence is not obvious). Moreover, by the ar-
gument of Theorem 4.1, we also know that the (unique) minimal projection in
Theorem 3.1(c) of [10] is a closed projection. On the other hand, Theorem 4.1(ii)
seems to be new.

THEOREM 4.1. Let A be a C∗-algebra.
(i) If x ∈ S1(A), the following statements are equivalent:

(A) x is a quasi-minimal element in S1(A∗∗) with respect to .A.
(B) es(x) is a minimal projection in A∗∗.
(C) x is a smooth point of A.

The above are also equivalent to the corresponding statements with x replaced by
x∗, |x| or |x∗|.

(ii) Suppose that x ∈ S1(Ah) and x = x+ − x− is the Jordan decomposition. Then
statements (A)–(C) are equivalent to the following two statements:

(D) x is a smooth point in Ah.
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(E) Either ‖x+‖<1 and x− is smooth in A, or ‖x−‖<1 and x+ is smooth in A.

Proof. (i) (A) ⇒ (B). Take any f in ext(SA(x)). There exists a partial isom-
etry v in A∗∗ such that SA(v) = { f } (by Theorem 4.6 of [1]). Thus, the quasi-
minimality of x implies that SA(x) = { f }. Therefore, Lemma 3.8(i) tells us that
SA(es(|x|)) is a singleton and so, es(x) = es(|x|) (Theorem 2.2(iii)) is a minimal
projection.

(B)⇒ (C). As es(x) is a minimal projection, SA(|x|) = SA(es(x)) is a single-
ton and so is SA(x) (because of Lemma 3.8).

(C)⇒ (A). This is clear.
The last statement follows from Lemma 3.8.
(ii) (C)⇒ (D). This is clear.
(D) ⇒ (E). If ‖x+‖ = 1 = ‖x−‖, then {0} 6= QA(x) ∩ A∗+ ( QAh(x)

(by Lemma 3.6) which contradicts SAh(x) being a singleton set. Without loss
of generality, suppose that ‖x+‖ < 1. By Lemmas 3.6 and 3.8, we see that
QAh(x) = −QA(x−). This shows that x− is smooth in A and hence in Ah.

(E)⇒ (C). Suppose that ‖x−‖ < 1. Then by the argument of Theorem 2.2,
we have es(|x|) = es(x+). Now the minimality of es(x+) (by part (i)) implies that
of es(|x|). Therefore, |x| is smooth in A and so is x (by part (i)).

REMARK 4.2. Note that the above are also equivalent to the corresponding
Statement (E′) when one replaces in Statement (E), the smoothness in A with
the smoothness in Ah. Furthermore, by parts (i) and (ii), Statement (C) is also
equivalent to the following statement:

(F) |x| is a smooth point in Ah.

On the other hand, we have the following interesting application of Theo-
rem 4.1(ii) (note that (a1 − a2)+ = a1, (a1 − a2)− = a2 and |a1 − a2| = a1 + a2).

COROLLARY 4.3. Let a1, a2 ∈ A+ be disjoint elements in the sense that a1a2 = 0.
Then the following are equivalent:

(i) a1 − a2 is a smooth point in A (or equivalently in Ah).
(ii) a1 + a2 is a smooth point in A (or equivalently in Ah).

(iii) ‖a1‖ 6= ‖a2‖; and if ‖ai‖ = max{‖a1‖, ‖a2‖} (i = 1 or 2), then ai is a smooth
point in A.

Moreover a + tb is smooth if |t| < 1 and a is smooth in A, but a± b is not smooth
in any case; while the smoothness of a + tb, in the case when |t| > 1, depends on the
smoothness of b.

The smoothness of an element in a C∗-algebra will not imply that the norm
is Fréchet differentiable at that element. The following example shows that this
implication does not hold even for abelian C∗-algebras of real rank zero.

EXAMPLE 4.4. Let A be the C∗-algebra of all complex convergent sequences.
Then A∗ = `1 ⊕1 C f∞ where f∞((λn)) = lim

n→∞
λn. Consider x =

(
0, 1

2 , 2
3 , 3

4 , . . .
)
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in A. It is clear that SA(x) = { f∞} and so x is a smooth point in A. Note that
g∞ := Re( f∞) in (AR)∗ is the unique norm one supporting real functional of x
(see Remark 3.2(i)). Thus, g∞ is the Gâteaux derivative of ‖ · ‖ at x. However,
1 is clearly not an isolated point of σ(x) =

{
0, 1

2 , 2
3 , . . . , 1

}
and the norm on A

is not Fréchet differentiable at x. In fact, let yn in A be the sequence whose n-
th coordinate is 2

n and all others are zero. Then ‖yn‖ → 0 (as n → ∞) but the
following will not converge to 0:

‖x + yn‖ − 1− g∞(yn)
‖yn‖

=
1
2

.

On the other hand, we can use the above materials to obtain very easily the
following result which is similar to (yet different from) Theorem 4.1 of [10]. In-
deed, (iii)⇒(ii) and (ii)⇔(v) follow directly from the main theorem of [9] while
the implication (v)⇒(iv) follows from the main theorem of [9] as well as the fact
that p|x| = px∗x = es(x) (see Theorem 2.2) is the corresponding element of the
characteristic function χ{1} which is inside the C∗-algebra generated by |x|. More-
over, (iv)⇒(i) is obvious, and by the arguments of Theorems 4.1(i) and Theorem
2.2, one can show that (i)⇒(iii) (notice that in this case, q = 1− es(x) is also a
closed projection).

COROLLARY 4.5. Suppose that x ∈ S1(A). The following are equivalent:
(i) x is a smooth point in A and es(x) ∈ A.

(ii) 1 is an isolated point of σ(|x|) and the corresponding spectral projection p|x| in
A∗∗ is a minimal projection.

(iii) There exists p in A which is a minimal projection in A∗∗ such that

‖xp‖ = 1 and ‖x(1− p)‖ < 1.

(iv) The norm of A is Fréchet differentiable at x and es(x) ∈ A.
(v) x is a smooth point of A∗∗.

The above are also equivalent to the corresponding statements when x is replaced
by |x|, x∗, or |x∗|.

PROPOSITION 4.6. Let A be a C∗-algebra, x be a norm one element in A and Ax
be the smallest hereditary C∗-subalgebra containing x. Then x is smooth in A if and only
if x is smooth in Ax.

Proof. The necessity is obvious. Assume that x (and hence |x|) is smooth
in Ax. Notice that A|x| ⊆ Ax and so |x| is smooth in A|x|. Let φ be the unique
element in SA|x|(|x|). Then φ is a state of A|x| (by Lemma III.3.2 of [11]). As A|x|
is a hereditary subalgebra of A, there is only one state in A extending φ (see e.g.
Theorem 3.3.9 of [7]). Thus |x| is smooth in A and so is x.

4.2. MAXIMAL ELEMENTS, EXTREME POINTS AND UNITARIES. We say that u is a
maximal partial isometry in A∗∗ if for any partial isometry v ∈ A∗∗, the equality
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u = uu∗v implies that v = u. Moreover, an element x in A∗∗ is said to be quasi-
maximal (respectively, maximal) if for any y in A∗∗, we have x .A y implies that
x ∼A y (respectively, x = y).

For any norm one element v in S1(A∗∗), we denote (as in [1]),

SA(v) f = {x ∈ S1(A∗∗) : g(x) = 1; g ∈ SA(v)},
SA(v) f = {x ∈ S1(A) : g(x) = 1; g ∈ SA(v)}.

By Theorem 5.3 of [1], for any v in S1(A∗∗) (respectively S1(A)), the set SA(v) f

(respectively SA(v) f ) is the smallest weak* closed face in B1(A∗∗) (respectively
the smallest closed face in B1(A)) containing v. Therefore, v is an extreme point
of B1(A∗∗) (respectively B1(A)) if and only if SA(v) f = {v} (respectively SA(v) f
= {v}). These, together with the results in Section 3, imply the following.

THEOREM 4.7. Let v be a norm one element in a C∗-algebra A, i.e., v ∈ S1(A).
(a) The following statements are equivalent:

(i) v is a quasi-maximal element in S1(A∗∗) with respect to .A;
(i’) v is a maximal element in S1(A∗∗) with respect to .A;
(ii) v is an extreme point of B1(A∗∗);

(iii) v is a maximal partial isometry in A∗∗.
(b) The following statements are equivalent:

(iv) v is a quasi-maximal element in S1(A) with respect to .A and ext(SA(v)f)6=∅;
(iv’) v is a maximal element in S1(A) with respect to .A and ext(SA(v) f )6= ∅;

(v) v is an extreme point of B1(A).
(c) If v is normal, then statements (1)–(5) are equivalent to the following:

(vi) v is a unitary.

In the case when v is a self-adjoint element in A, we also have the following
corollary of results in Section 3.

THEOREM 4.8. Let v ∈ S1(Ah). Then statements (1)–(6) in Theorem 4.7 are
equivalent to the following:

(ih) v is a quasi-maximal element in S1(A∗∗h ) with respect to .Ah .
(iih) v is an extreme point of B1(A∗∗h ).

(iiih) v is a maximal partial isometry in A∗∗h .
(ivh) v is a quasi-maximal element in S1(Ah) with respect to .Ah and ext(SAh(v) f ∩

Ah) 6= ∅.
(vh) v is an extreme point of B1(Ah).

Again, Statements (ih) and (ivh) are also equivalent to the corresponding
statements (i′h) and (iv′h) with the quasi-maximality being replaced by maximality.

Acknowledgements. This work is jointly supported by the Hong Kong RGC Research
Grant (2160255), the National Natural Science Foundation of China (10771106), NCET-05-
0219, and Taiwan NSC grant 94-2115-M-110-005.



128 CHI-WAI LEUNG, CHI-KEUNG NG AND NGAI-CHING WONG

REFERENCES

[1] C.A. AKEMANN, G.K. PEDERSEN, Facial structure in operator algebra theory, Proc.
London Math. Soc. (3) 64(1992), 418–448.

[2] C.A. AKEMANN, G.K. PEDERSEN, J. TOMIYAMA, Multipliers of C∗-algebras, J. Funct.
Anal. 13(1973), 277–301.

[3] D.P. BLECHER, D.M. HAY, M. NEAL, Hereditary subalgebras of operator algebras, J.
Operator Theory 59(2008), 333–357.

[4] L.G. BROWN, Semicontinuity and multipliers of C∗-algebras, Canad. J. Math. 40(1988),
865–988.

[5] C.M. EDWARDS, G.T. RÜTTIMANN, On the facial structure of the unit balls in a JBW∗-
triple and its predual, J. London Math. Soc. 38(1988), 317–322.

[6] D.M. HAY, Closed projections and peak interpolation for operator algebras, Integral
Equations Operator Theory 57(2007), 491–512.

[7] G.J. MURPHY, C∗-Algebras and Operator Theory, Academin Press, INC, Boston, MA
1990.

[8] G.K. PEDERSEN, C∗-Algebras and their Automorphism Groups, London Math. Soc.
Monographs, vol. 14, Academic Press, London–New York 1979.

[9] K.F. TAYLOR, W. WERNER, Differentiability of the norm in von Neumann algebras,
Proc. Amer. Math. Soc. 119(1993), 475–480.

[10] K.F. TAYLOR, W. WERNER, Differentiability of the norm in C∗-algebras, in Functional
Analysis (Essen 1991), Lecture Notes in Pure and Appl. Math., vol. 150, Dekker, New
York 1994, pp. 329–344.

[11] M. TAKESAKI, Theory of Operator Algebras. I, Springer-Verlag, New York-Heidelberg
1979.

CHI-WAI LEUNG, DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY

OF HONG KONG, HONG KONG

E-mail address: cwleung@math.cuhk.edu.hk

CHI-KEUNG NG, CHERN INSTITUTE OF MATHEMATICS AND LPMC, NANKAI

UNIVERSITY, TIANJIN 300071, CHINA

E-mail address: ckng@nankai.edu.cn

NGAI-CHING WONG, DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL

SUN YAT-SEN UNIVERSITY, AND NATIONAL CENTER FOR THEORETICAL SCIENCES, NA-
TIONAL SCIENCE COUNCIL, KAOHSIUNG, 804, TAIWAN

E-mail address: wong@math.nsysu.edu.tw

Received April 6, 2007; revised January 28, 2008.


