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MULTIPLIERS AND TOEPLITZ OPERATORS ON
BANACH SPACES OF SEQUENCES
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ABSTRACT. In this paper we prove that every multiplier M (every bounded
operator commuting with the shift operator S) on a large class of Banach
spaces of sequences on Z is associated to a function essentially bounded by

|IM|| on spec(S). This function is holomorphic on spoec(S) if spoec(S) # Q.
Moreover, we give a simple description of spec(S). We also obtain similar
results for Toeplitz operators on a large class of Banach spaces of sequences
onZt.
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INTRODUCTION

Let E C CZ be a Banach space of sequences. Denote by S : CZ — CZ, the
shift operator defined by Sx = (x(n —1)),cz, for x = (x(n)),ez € C%, so that
S7lx = (x(n+1)),ez. Let F(Z) be the set of sequences on Z which have a finite
number of non-zero coefficients and assume that F(Z) C E. The elements of
F(Z) will be called finite sequences. We will call a multiplier on E every bounded
operator M on E such that MSa = SMa, for every a € F(Z). Denote by u(E) the
space of multiplierson E. Forz € T = {z € C: |z] =1}, set .(x) = (x(n)2" ) ez
for x = (x(n)),ecz. Notice that if we assume ¢, (E) C E for all z € T and if for all
n € Z, themap py, : E 3 x — x(n) € Cis continuous, then from the closed graph
theorem it follows that i, is bounded on E. In this paper we deal with Banach
spaces of sequences on Z satisfying only the following very natural hypotheses:

(H1) The set F(Z) is dense in E.

(H2) For every n € Z, py, is continuous from E into C.

(H3) We have ¢, (E) C E, ¥z € T and sup ||¢;|| < +oo.
T

zc
It is easy to see that if S(E) C E, then by the closed graph theorem the
restriction S|g of S to E is bounded from E into E. From now we will say that
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S (respectively S~1) is bounded when S(E) C E (respectively S™1(E) C E). If
S(E) C E, we will call spec(S) the spectrum of the operator S with domain E. If
S is not bounded, denote by spec(S) the spectrum of S, where S is the smallest
extension of S|rz) as a closed operator. Recall that the domain of Sis

D(S) = {x € E: 3(xy)nen C F(Z) such that x, — xand Sx, — y € E}

and Sx = y. We will denote by spec(S) the interior of spec(S). Our aim is to
prove that every multiplier on E is associated to a L*-function on spec(S), which
is holomorphic on spec(S), if spec(S) # @. In this paper we study a general
problem which is the continuation of the results of Shields, Gellar, Esterle, etc.
Let e, be the sequence such that ey (n) = 0if n # k and ex(k) = 1. For M € u(E),
set M = M(ep) and for z € C, denote by M(z) the formal Laurent series

(0.1) M(z) = Y M(n)z".
nez
For M € u(E), we call M the symbol of M. Givena € E,setd(z) = ¥, a(n)z", for

nez
z € C. Ttis easy to see that for a € F(Z), we have Ma = M * a, where M = M(ep).
Indeed, for a € F(Z), we have for some N > 0,

N N N
Ma = M( y a(k)ek> - M( y a(k)(Skeo)) — Y a(k)SK(Mep).

k=—N k=—N k=—N

It follows that
N

(Ma)(n) = k_ZNﬂ(k)(M(m))(n —k), Vnel

and we have
Ma = ax M(eg).

It is easy to see that on the space of formal Laurent series
Ma(z) = M(z)a(z), VzeC,Vae F(Z),

but it is more difficult to determine when M(z) converges. In [10], Shields con-
siders multipliers on weighted spaces 12,(Z). We recall his main result in this
direction. Let w be a positive sequence in CZ such that

w(n+k)
. _— oo, VkeZ.
(0.2) 0<i1£ w(n) <+ €
Set
2(2) = {(x(m)nez € €71 Y x(m)Pew(n)? < +oo}
nez
and

Iz = ( X xmPa(m?)

nez
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The condition (0.2) is satisfied if and only if S and S~! are both bounded on I2,(Z).

Shields proves that M is holomorphic on spec(S) if spec(S) # @. He does not
examine the case when S or S~ is not bounded and the very usual case when

spec(S) is a circle. The problem for the multipliers on [2,(Z) when spoec(S) =
@ was solved only in 2003 by Esterle in [2]. He proves that in this case M €
L*™(spec(S)). The multipliers on a more general spaces that the weighted 2,(Z)
spaces were considered by Gellar [4]. He deals with multipliers on Banach spaces
of sequences with Schauder basis. We will see later that our hypothesis imply that

for x € E, we have

p

k
lim Hx_pzokj—l( Y x(n)en)

k—+o0 n=—p

o

4
but not necessary lir}rq Hx — Y x(n)ey|| as it has been assumed in [4]. The
p—) o0

n=—p
Example 0.6 below shows that this situation appears and this motivates the gen-

erality of our considerations.

For a closed operator A with dense domain, denote by p(A) the spectral
radius of A defined by p(A) = sup{|A| : A € spec(A)}. We suppose that at least
one of the operators S and S~ is bounded. Define for r > 0,

C={zeC:|z|] =r}.

For a multiplier M on a general Banach space E, M denotes the formal Laurent
series defined in (0.1). Our main result is the following.

THEOREM 0.1. (i) If S is not bounded, but S~ is bounded, p(S) = +oco and if S
is bounded, but S~ is not bounded, p(S™1) = +o0.
(ii) We have spec(S) = {z eC: p(sli,l) <zl < p(S)}.
(iii) Let M € u(E). For r > 0 such that C, C spec(S), we have M € L*(C,) and

|M(z)| < [[M]|,

a.e. on C,.
(iv) Ifp(S) > ﬁ, M is holomorphic on spec(S).
If p(S7!) = 400, here ﬁ denotes 0.
The class of Banach spaces of sequences on Z that we consider in this paper
is very general. We will give some classical examples of Banach spaces satisfying
the conditions (H1), (H2) and (H3).

EXAMPLE 0.2. Let w be a positive sequence on Z. Set

5(2) = {(x(M)nez € €2 Y Jx(m)Pw(n) < +oo}, 1< p < +oo,
nez
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and

»= (X o).

nez

It is easy to see that the Banach space I/, (Z) satisfies our hypothesis.

EXAMPLE 0.3. For every two weights wj and wy and 1 < p < +00, 1 <
g < +oo, the spacel (Z)n lZ,z (Z) with the norm ||x|| = max{||x\|w1,p, ||x||w2,q}
satisfies also our conditions.

EXAMPLE 0.4. Let K be a convex, non-decreasing, continuous function on
R such that £(0) = 0 and K(x) > 0, for x > 0. For example, K may be x?, for
1< p < +ooor xPHsin(log(=10g())) for p > 14 /2. Let w be a weight on Z. Set

Ik w(Z) = {(x(n))nez e CE: X:ZIC(M:)')w(n) < 400, forsome t > 0}

and
x| = inf{t >0, Zzic(x(f)')wn) < 1}.

The space Ix ,(Z), called a weighted Orlicz space (see [3], [6]), is a Banach space
satisfying our hypothesis. We can apply Theorem 0.1 to the multipliers on I, (Z)
as well as to the spectrum of the shift on I ,,(Z). It seems that in the literature
there are no complete results concerning the spectrum of the shift on I ., (Z).

EXAMPLE 0.5. Let (q(n)),cz be a real sequence such that g(n) > 1, for all
n e Z.Fora = (a(n)),ez € C%, set

. a(n) 9(n)
lall ;g = mf{t >0, ;Z ‘T < 1}.

Consider the space 17} = {a € C% llall{4y < +oo}, which is a Banach space (see
[1]) satisfying our hypothesis. Notice that if 11111 lg(n+1) —gq(n)| # 0 and if
n—-—+0o

supg(n) < +oo, then either S or S~ is not bounded (see [7]).
nez

EXAMPLE 0.6. Denote by Cjg,, the space of continuous, complex-valued,
27t-periodic functions on R. For f € Cjg,), we denote by f the sequence of
Fourier coefficients of f. SetC = {f : f € Clgon} and [|f|| = ||flle for f € Clg 7.
It is easy to check that tAhe hypotheses (H1) and (H2) are satisfied by C. Fora € R
and f € Cjgon), Pein(f) is the sequence of Fourier coefficients of the function
t — f(t+a). So it is clear that (H3) is satisfied by C. Notice that in C, f is not

the limit of ¥, f(n)e, ask — +oo and the space C is not included in the class of
|n|<k
Banach spaces treated in [4].

REMARK 0.7. If both S and S~! are unbounded then Theorem 0.1 is not
valid in general. For example, if E = I2,(Z), where w(2n) = 1 and w(2n +1) =
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|n| +1, forn € Z, S and S~ are not bounded. It is easy to see that spec(S) = C
and S? € u(E), but S2(z) = 22 is obviously not bounded on C.

In Section 2, we investigate Toeplitz operators on a general Banach space
of sequences on Z* = NU {0}, which will be defined precisely in Definition 0.9
below. Let Z~ = —N U {0}. There are many similarities between multipliers and
Toeplitz operators. We are motivated by the recent results in [2] about Toeplitz
operators on /2 (Z*), where w is a weight on Z* and the results of the author (see
[9]) concerning Wiener-Hopf operators on weighted spaces L3(R ™). Let E C cz*
be a Banach space. Let F(Z™) (respectively F(Z™)) be the space of the sequences
on Z* (respectively Z~) which have a finite number of non-zero coefficients. By
convention, we will say that x € F(Z) is a sequence of F(Z™) (respectively F(Z ™))
if x(n) =0, for n < 0 (respectively n > 0). We will assume that E is satisfying the
following hypothesis:

(H1) The set F(Z™) is dense in E.
(H2) For every n € Z™*, the application p,, : x — x(n) is continuous from E
into C.
(H3) For x = (x(n)),ez+ € E, we have v;(x) = (z"x(n)),cz+ € E, for
every z € T and sup ||yz|| < +oo.
zeT

Notice again that if v, (x) € E, for every x € E, then y; : E — E is bounded.

DEFINITION 0.8. We define on CZ" the operators S1 and S_; as follows. For
ueC%, (S1(u))(n) =0,ifn =0and (S1(u))(n) = u(n—1),ifn > 1

(S_1(u))(n) =u(n+1), forn=0.

For simplicity, we note S instead of S;. Remark that we have S_1S = |,
however we do not have SS_1 = I and this is the main technical difficulty in the
analysis of the case of Toeplitz operators. It is easy to see that if S(E) C E, then
by the closed graph theorem the restriction S|g of S to E is bounded from E into
E. We will say that S (respectively S_1) is bounded when S(E) C E (respectively
S_1(E) C E). Next, if S|g (respectively S_;|g) is bounded, spec(S) (respectively
spec(S_1)) denotes the spectrum of S|g (respectively S_1|g). If S (respectively
S_1) is not bounded, spec(S) (respectively spec(S_1)) denotes the spectrum of
the smallest closed extension of S|z +) (respectively S_1|pz+))-

DEFINITION 0.9. A bounded operator on E is called a Toeplitz operator, if we
have:

(S_1TS)u = Tu, Yu € F(Z").
For u € I?(Z~) @ E introduce

(Pt (u))(n) =u(n), Vn=>=0and (P"(u))(n) =0, Vn <0.
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Given a Toeplitz operator T, set T(n) = (Tep)(n) and T(—n) = (Te,)(0), for
n > 0. Define T = (T(n)),ez. It is easy to check that

Tu=P*H(Txu), YuecFZ").
Set

=) T(n)z"
nez
for z € C. Notice that the series T(z) could diverge.

Taking into account the similarities between multipliers and Toeplitz opera-
tors, it is natural to obtain analogous results for Toeplitz operators and to conjec-
ture that T(z) converges for z € spec(S) N (spec(S_1)) ' It is clear that if M is
a multiplier on E~ @ E, where E™ and E are Banach spaces of sequences respec-
tively on Z~ and Z*, then P* M is a Toeplitz operator on E. However, despite the
extensive literature related to Toeplitz operators, it seems that it is not known if
every Toeplitz operator is induced by a multiplier on some suitable Banach space
of sequences on Z. Thus we cannot use our results for the multipliers on spaces
of sequences on Z to prove similar ones for Toeplitz operators. In this way, we
apply the methods of Section 1 and we obtain the following theorem, when at
least one of the operators S and S_; is bounded.

THEOREM 0.10. Let T be a Toeplitz operator on E.
@) FoNrr € {ﬁ,p(Sﬂ, if p(S) < +ooorforr e [p(S ,+oo[ ifp(S) =
we have T € L®(C,) and |T(z)| < ||T||, a.e. on C,.
(ii) If S and S_q are bounded and if ﬁ < p(S), then we have T € H®(Q),

where Q) := {z eC: Fﬁ < z] < p(S)}.

[}

(iii) If S is not bounded, but S_1 is bounded, Te H*®(U), where

U::{ZGC: ! <|z|}.

(iv) If S is bounded, but S_ is not bounded, T € H°°(\O/), where
Vi={zeC:|z| <p(S)}.

1. MULTIPLIERS

In this section, we prove Theorem 0.1. We denote by E* the dual space of E,
by || - || thenorm of E and by || - ||« the norm of E*. Fory € E* and x € E, define
(x,y) == y(x).We set |||x||| = sup ||1p-(x)||. Notice that

zeT

/11 < (‘sup llg:] ) I/ = K]lIl
zeT
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where K = sup ||i|| < 400, according to the condition (H3). This implies that
z€T
the norm ||| - ||| is equivalent to the norm || - ||. We have

sup{|[|=(x)[l, x € E, [[[x[[| =1} =1,

so without loss of generality we can assume that 1, is an isometry from E into E,
for every z € T. We start with the following lemma.

LEMMA 1.1. For x € E, we have
4

m | 2 (2 swa) < =0

Proof. Fix x € E. First, we show that the function

k—»-}-oo

¥Y:T>z—.(x) €E
is continuous. Suppose that x € F(Z). Then for some N > 0 we have x =

N
Y. x(n)e, and for z and 57 € T, we have
-N

2 () |—H2 n)="en—2x(n)1"en)

N
’< sup (|x(m)llleall) }_ 12" 7"
ne| -N

~N,N]
and it is clear that the function z — ¥, (x) is continuous on T. Now, let x € E. Let
xg € F(Z). We have, forz, 1 € T,

[ip=(x) = 9y ()| < Ml9p=(x) = = (x0) [ + [19=(x0) =y (x0) | + 9y (x0) — 9y (x) |

< 2sup [[s]l[|x = xol + [[¢2(x0) — ¥y (x0) -
6eT
Since, the function z — ¥, (xg) is continuous for xg € F(Z) and F(Z) is dense in
E, itis clear that z — 1, (x) is continuous on T for every x € E. Consider the Fejer
kernels (gx)reny C L'(T) defined by the formula

k .
. 1 : 1 /sin(
(e1t) = Z Z elmt —
p:0k+1\m\<p k—|—1(

sin 5

(k+

[uny

)t

)>2, fort € R.

Nl | N

We have |[gkl[;1m) = 1, for k € Nand lim [ gr(eff)dt = 0 for 6 > 0.

k~>+005<‘t‘<7r
Moreover, for |n| < k,
17 ||
> it ,—int n
8k(n) = 5~ /gk(e Je " d K1
—7T
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Below we write dz instead of dm(z), where m is the Haar measure on T such that
m(T) = 1. Define
Skx¥Y:T—E

by the formula

(3+¥)() = [ g2 ¥(rz")dz = [ g2y (x)dz, Wy e T,
T T

Notice that f Qx(z 1/17]Z 1(x)dz is a well-defined Bochner integral with values in

E. Indeed, 1t is clear that

[ 8@z ()12 < [ g2 sup g x]1dz < +oo.
oeT
T T
We have
Jm [|(giex#) () —¥ ()l =0, vy eT

and in particular
Jm [l (g ¥) (1) — ¥ (1)l =0.

Notice that ¥ (1) = x. For n € Z, we have

(g *¥)(1 /gk 2). /gk 2 "x(n)dz = Ge(n)x(n).
So we obtain
¥ n IS
s = ¥ (- grp)xea = g (X <)

and since ¥ (1) = x, the proof is complete. 1
LEMMA 1.2. For x € E and M € u(E), the function My : T — E defined by
Mx(2) = (20 Mo p,1)(x)

is continuous.

Proof. Fix x in F(Z) and M € u(E). It is easy to see that

(1.1) Mx(2) = (pzo Mo, 1) (x) = (M) xx, VzeT.
Indeed, for some k € N, we have
(oMo, 1)(x))(n) =z2" ZMn— )z Px(p), VnelZ.
Ipl<k

Thus, for every x € F(Z), the function z — (¢, o Mo p,-1)(x) is continuous from
T into E. Since F(Z) is dense in E and || o Moy, 1| < ||M]| for z € T, we
deduce that M is continuous from T into E, for every x € E. 1
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Denote by My the operator of convolution with ¢ € F(Z), when ¢ x E C E.

Then it is clear that 1\7I¢ = ¢. We recall that the property Mx = M« x for x € F(Z)
means that

N N
(Mx)(n) =Y, M(k)x(n—k)= ) M(k)(Skx)(n), Vnez,
k=—N k=—N
for some N > 0. In order to approximate a multiplier M by a linear combination

of operators S¥, it is natural to consider the sequence of multipliers My given by
the formula

k 1 14 - "
M, = Zﬁ< L M)s ), VkeN.
p=0 n==p
We need the following.
LEMMA 1.3. Let M € u(E), x € E.
(i) We have
lim ||[Mgx — Mx| =0,
k— 00
where for k € N,
k p k
1 v n |n| A
= _— — 1 R e B i’l.
M, p;okH (n_z_pM(n) s") ;k( ) M)s

(ii) We have ||M|| < ||M]], Yk € N.
(iii) If S~ is not bounded, but S is bounded, M(n) = 0, for n < 0, while if S~ is
bounded, but S is not bounded, M(n) = 0, for n > 0.

Proof. 1t is immediate to see that ( - %)]\71 (n) converges to M(n), for
n € Z and we obtain
(1.2) klim |IMgx — Mx|| =0, Vx € F(Z).
—00

However the control of the norm of My is less obvious. The proof follows with
some modifications the arguments of [10] in our more general case. Consider
the Fejer kernels (gi)reny C L(T) defined in the proof of Lemma 1.1. We recall
that for every multiplier M, we denote by M the sequence M(ey) and we have
Ma = M xa, Ya € F(Z). Fix M € u(E). For x € E, we will use the function M,
defined in Lemma 1.2. Introduce the convolution

(8¢ M) : T — E
by the formula
(96 M) (1) = [ gelz) Mz ez,
T
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where the integral [ gi(z) M (yz~!)dz is well-defined as a Bochner integral with
T

values in E. To justify this, notice that

/ 86(2) M () Jdz < / e2)|(sup g2 Mz < +oo.
ée

Since M, is continuous from T into E, for every x € E and M,(1) = Mx, we
have

Jim [[(gyx M) (1) ~ Mx| =0, vxeE.

Fix x € F(Z). For k € N, we obtain

(8k * Mx) /gk

= / 8r(2)9= 1 (M (x)dz = [ () (91 (WD) ),
T

T

taking into account (1.1). Then we have

(6 + Mz) /gk 2)g.1 (M)dz) + x.
We observe that, for |n| < k, we have
JUPP nl\ -
([sxeneraz)n=[ace W)z = () M n) = (1~ ) B,

while for |n| > k, we get

(/gk(z)lﬁz—l(ﬁ)dz) (n) = 0.
T

Since

it follows that

Now it is clear that

||Mka|\—||Mk*a||—H/gk (9.1 (M *adzH—H/gk (-1 0Moy:) (a) e

< / 8k @) Y[l M[[[z]] [lalldz < [[M][[lall, Va € F(Z)
T
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and, since F(Z) is dense in E, we obtain |[My|| < ||[M]|, Vk € N. Now taking into
account the control of the norm ||My||, for all k, the density of F(Z) in E and (1.2)
it is clear that

khT |[Myx — Mx|| =0, Vx¢€E.

Suppose that S~ is not bounded, but S is bounded. Fix k € N. Since
k

‘Tll A n
— 1—
M= ¥ (1- 55 Mms
is bounded, the operator Sk’le is bounded. We have the equality
k N k [n| \ ~
k—1 _ (1 _ AT . n+k—1
s Mk—<1 7]{“)1\4( ns '+ Y (1 k+1)M(n)S

n=—k+1

k .
and using the fact that the operator  }_ ( - %)M (n)S8" %=1 is bounded
n=—k+1

combined with the non-boundedness of S, it is clear that M(—k) = 0. In the
same way, composing My and S?, for p =k —2, k —3,...,1, we obtain M(—n) =
0, for n > 0. We can use the same argument if S~! is bounded but S is not
bounded. Thus the proof is complete. 1

LEMMA 14. Let ¢ € F(Z) be such that ¢ « E C E.
(i) If S and S~ are bounded, then

ey <IHl<p(s) ).

(ii) If S is not bounded, but S~ is bounded and ¢ € F(Z™), then

6(z)] < [Myl, VzeQ:= {z eC:

~ 1
$E@)| < IMgll, Vze0:={zeC: 2> m}

(iii) If S is bounded, but S~ is not bounded and ¢ € F(Z"), we have
p(2)] < [[Myll, VzeW:={zeC:|z| <p(5)}.

Proof. Suppose that S and S~! are bounded. For z € spec(S), we have three
cases:

Case 1. The operator S — zI is not injective. Then there exists x € E\{0}
such that Sx = zx.

Case 2. The operator S* — z[ is injective. Then the range of S — zI is dense
in E and it is not closed. Consequently, there exists a sequence (fp)pen C E such
that

p—+oo

imy [ =125 =

Case 3. The operator S* — zI is not injective. Then there exists y € E*\{0}
such that S*y = zy.
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Fix z € spec(S). First, assume that there exists (/) ,en C E such that

lim_||Shy —zhpl =0 and |y =1, VpeN.
p—+o00

It follows immediately that

; k k
- - Z.
phrﬂoo |S*hy — 2"hy|| =0, Vk €

Then for ¢ € F(Z), we have for some N > 0,

N

I« hp = §pll < Y ( sup Ip(k)]) 1Sy — 21y

k=—N " |k|I<N
and we obtain
tim_[1g + by = §(2)hy | =0,
Since
6(2)] = @) hpll = 1¢(2) 1y — ¢ yl| + | Mphp ],
it follows that |¢(z)| < || My]|.

Now assume that there exists y € E*\{0} such that $*y = zy. We obtain in
the same way

§(2)] < Mgl = My
and we conclude that for ¢ € F(Z), we have
|#(2)] < [|Myll, Vz € spec(S).

If S is bounded and S~ ! is not bounded, the proof is similar. If S is not bounded
and S~! is bounded, we use the spectrum of S~! and the same arguments. Thus
in the case when p(slifl) = p(S) the proof is complete.

Suppose again that S and S~! are bounded and ﬁ < p(S). Fix ¢ €
F(Z). Let Ry > 0, Ry > 0 be such that Ry < Ry and such that the circles Cg,
and Cg, with radius respectively R; and R, are included in spec(S). Since ¢ is
holomorphic on C\{0} and |¢(z)| < || Myl|, for z € Cg, U Cg,, by the maximum

modulus theorem we obtain

19(2)| < [[Mpll, Vz€ Qpyr,={z€C:Ry <|z|] <R}

The inclusions C,(5) C spec(S) and CP(SE : C spec(S) imply

|p(z)| < |[Myl|, forz e Q.

We complete the proof of (ii) and (iii) with similar arguments taking into account
that if ¢ € F(Z™), the function z — ¢(z~!) is holomorphic on C, while if ¢ €
F(Z%), ¢ is holomorphicon C. &
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Proof of Theorem 0.1. Suppose that S and S~! are bounded and let M € u(E).
Let (My)en be the sequence constructed in Lemma 1.3 so that

(1.3) klim IMyx — Mx|| =0, Vxe€E
— 400

and | M| < | M]|, Vk € N. Set ¢ = My, for k € N, so that My = Myg,. Forr > 0

and a = (a(n)),ez € E, denote (a),(n) = a(n)r" and fix r € [p(sl,l),p(S)] We

have

[(¢6)r(2)] < [|Mp [l < [M]], Vz €T, vk €N,

—~

We can extract from ((¢)r)ren a subsequence which converges with respect to
the weak topology o(L®(T), L}(T)) to a function v, € L®(T). For simplicity, this

subsequence will be denoted also by ((¢)r)xen. We obtain
Jim (9 (2)s(2) — wz)g(=)dz =0, Vg € LI(T)
T

and ||vy]|e < ||M]|- It is clear that

Jim [((0:(2) @) (2)8(2) (@) (@) ()8 (2))dz=0, Vg € LX(T), Va € F(Z),
T

We conclude that, for a € F(Z), the sequence (@({1/77) keN converges with re-
__ s .
spect to the weak topology of L(T) to vy (a),. Set 7,(n) = 5 [ v,(eit)e~#"dt, for
—7T
n € Z and let 1, = (;(n)),ez be the sequence of the Fourier coefficients of v;.
The Fourier transform from 1?(Z) to L?(T) defined by

F:1%(Z) > (a(n))pez — alr € L*(T)

is unitary, so the sequence ((Mg,a);)ren = ((¢k)r * (a)r)ken converges to U * (a),

with respect to the weak topology of 1?(Z). Taking into account (1.3), we obtain
fora € F(Z)and b € F(Z),

lim ’ Y (My,a)(n) — (Ma)(n))r"b(n)| < kETwC\|M¢ka — Mal| =0,
ez

k— 00 n
where C € R. Thus we deduce that
(Ma),(n) = (V;  (a),)(n), Vn€Z, VaeF(Z).
This implies ~
(M) % (a), = Oy % (a),, Va € F(Z)
and

Consequently, we have

M(rz) = Y M(n)r"z" = ¥ :(n)z" = v,(z), VzeT.
nez nez
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Since ||ty ]| < || M|, it follows that the function M is essentially bounded by || M|

on every circle included in Q. If p(S) = p(s}fl), it is clear that

spec(S) = Cyp(s) = (2.

1

We assume below that p(S) > GOk Since (¢ )ken is an uniformly bounded se-

quence of holomorphic functions on (2, we can replace (¢ )ren by a subsequence

o
which converges to a function v € H*(2) uniformly on every compact subset

of Q. Thus, for r € } —L_ 0(S) [, the sequence ((Tpvk),) keN converges uniformly

p(s7h)
on T to the function z — v(rz) and we obtain v(rz) = v,(z). We conclude that

v(rz) = M(rz), for z € T and we get

v(z) = M(z) = Y M(n)z", forze Q.
nez

Consequently, M is holomorphic on Q.
Now we will prove that spec(S) = Q. Let & ¢ spec(S). Then (S —al)~! €
u(E) and for r > 0, if C, C (2, there exists v, € L®(T) such that

F(((S=al)'a),)(z) = vr(z)(a);(z), Vz €T, VaeF(Z).

Replacing a by (S — aI)a, it follows that

(@)(z) = v (2)F(((S — al)a),)(z) = v (2) (rz — a)(a)s(2), Vz €T, Va € F(Z),
and we get (rz — a)v,(z) = 1. Suppose that « € C, i.e. « = rzg, zg € T. Fore > 0,
there exists ze € T such that |rz; — rzg| < € and |v,(z¢)| < ||Vr|lo. This implies
1 < €]|1r]|« and we obtain a contradiction. We deduce that C, C spec(S), 2 C
spec(S) and spec(S) = Q. If we suppose that S or S~! is not bounded, we obtain
the same results by the same argument replacing (2 by O and W, where O and

W are introduced in Lemma 1.4. Notice that when spec(S) = O, we deduce that
p(S) = 400 and when spec(S) = W, we conclude that p(S~!) = +c0. &

2. TOEPLITZ OPERATORS

In this section, we prove Theorem 0.10. In the same way, as in the proof of
Lemma 1.1, for x € E, we obtain
k 1 n
lim H — ) x(p)e —tzO.
i | % 5y
If ¢ € F(Z) is such that P* (¢ + E) C E, we denote by Ty the operator on E

defined by Tyx = P*(¢ * x), for x € E. By the same method, as in Section 1, we
obtain the following lemma.
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LEMMA 2.1. (i) Given a Toeplitz operator T on E, the sequence (¢py),cn, de-
fined by
o1

n+1( i ﬂk)ek)
-p

p:(] =

has the properties
im ||Tp,x —Tx||, Vx€E, and |[Ty,| <|T|, VneN.
n—-+0o

(ii) If S is bounded, but S_1 is not bounded, T (k) = 0, for k < 0.
(iii) If S is not bounded, but S_1 is bounded, T(k) =0,fork > 0.
LEMMA 2.2. (i) If S and S_; are bounded, for ¢ € F(Z), we have
~ 1
2)| < | Tyll, VzeQ:=43z€C: —— < |z] <p(S)¢.
)] < 1Ty {zec gy <l <ns)]
(ii) If S is not bounded, but S_1 is bounded, for ¢ € F(Z~), we have
1
< z| -
p(S-1) | |}
(iii) If S is bounded, but S_ is not bounded, for ¢ € F(Z™), we have
p() < Tyll, VzelU:={zeC:z[ <p(S)}

Proof. We will present only the proof of (i). The proofs of (ii) and (iii) are
very similar. Suppose that S and S_; are bounded. Let

A € spec(S) N (spec(S_1)) L.
Since A € spec(S), there exists a sequence (f,)nen, fn € E such that

6(2)] < || Tyll, VzeV:= {z eC:

1) lim [8f ~Afall =0 and [fill =1, VneN
or there exists

(2.2) a € E'\{0}, S*a=Aa.

If (2.1) holds, we obtain

(23) lim_ IS fu — A full =0 and Jim IS fu =AFfull =0, VkeN.
Since A~! € spec(S*,), there exists a sequence (g, )nen, §n € E* such that
(2.4) Jim (1878, — Algulls =0 and ||gulls=1, VneN

or there exists

(2.5) bec E\{0}, (S*{)*b=S_1b=A"1bh

Next if (2.4) holds, we get

(2.6) nlir}rloo||(5*)kgn—)\kgn||*:0 and (8* rgu—A"Fg,|l.=0, VkeN.

lim ||
n—-+o00
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Suppose that we have (2.2) and (2.5). Leta € E*\{0} be such that $*(a) = Aa. Set
x(—n) = (eq, x) = (S"ep, x) = (€9, S™"x), Vx e E".

Since F(Z™) is dense in E, the map

E* 3 x — (x(=n))nx0
is injective. We have

a(—n) = A"a(0), n=0.

Let b € E\{0} be such that S_1b = A~!b. We obtain

b(n)A" =b(0), n=0.

Since a4 # 0 and b # 0, we have a(0) # 0, b(0) # 0. For k € N, define u;, €
F(Z*) by

k n k n
" = ;O 5 Y b(p)e :ng%)(l— k+1)b(n)en.
We haveklim ||ux — b|| = 0 and so klim (ug,a) = (b,a). On the other hand,
——+00 — 400
k

- _ N A a(0) = Tim (K _
kETw<”k'”>_kEToo,§)(1 kH)A b(0)A a(O)—kETw(2+1)a(0)b(O)_+oo.

We obtain an obvious contradiction and we conclude that we cannot have in the
same time (2.2) and (2.5), hence we have (2.3) or (2.6). Using the same arguments
as in the proof of Lemma 1.4 and (2.3) or (2.6), we deduce

()| < Tyl V¢ € F(Z), YA € spec(S) N (spec(S_1)) .
By the maximum modulus theorem we obtain
2.7) ()| < | Typll, V¢ € F(Z), VA € Q.

If S is bounded and S_; is not bounded, then for A € spec(S) there exists a
sequence (hy,),en, hn € E such that lirf |Shy — Ahy|| = 0and ||k, || = 1 or there
n—+oo

exists ¢ € E*\ {0} such that S*c = Ac. Using the same arguments as in the proof
of Lemma 1.4, we obtain

[P < ITyll, Vo € F(ZT), YA € spec(S).

If S_; is bounded, we use the spectrum of S_1. In both situations, we obtain the
result by using the maximum modulus theorem. 1

Now we will prove the main result in this section.

Proof of Theorem 0.10. The proof of Theorem 0.10 goes by using the same ar-
guments as the proof of Theorem 0.1 with minor modifications. For the conve-
nience of the reader we will give the main steps.
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First, assume that S and S_; are bounded. Let T be a Toeplitz operator on
E and let (¢ )ken € F(Z) be such that

lim || Tpa—Ta|| =0, Va€E
Jim (1T — Tal| ac

and

1Tyl < IT||, VK €N.

Forr > 0and a € E, denote (a),(n) = a(n)r". Fixr € {p 1 - ,p(S)}. We have

—_—

[(¢6)r (2)| < [Tl < [T, vz €T, vk e N.
We can extract from (@) keN a subsequence which converges with respect to
the weak topology o(L®(T), L'(T)) to a function v, € L®(T). For simplicity, this

subsequence will be denoted also by ((¢x)r)ken-

—_

We conclude that, fora € F(Z), ((¢x)r(a)r)ren converges with respect to the
weak topology of L2(T) to v,(a),. Denote by # = (7, (n)),cz the sequence of the
Fourier coefficients of v,. Since the Fourier transform from [2(Z) to L?(T) is an
isometry, the sequence (¢ ), * (a), converges to 7, * (a), with respect to the weak
topology of I?(Z). On the other hand, (Ty,a)ren converges to Ta with respect to

the topology of E. Consequently, we have fora € F(Z")and b € F(Z™")

lim ’ Y ((Tg,a)(n) — (Ta)(n))r"b(n)| < lim C|Tya— Ta| =0,
k—+o0 neN k— 400

where C € R. We conclude that
(Ta), = P* (0 % (a),), VaeF(Z").

Since
(Ta), = P*((T*a)r), Va € F(Z*),

it follows that T(n)r" = #;(n), Vn € Z. From the estimation ||v;]|eo < ||T||, we
deduce that the function T is essentially bounded by || T|| on every circle included
in Q.

If we assume that p(S) > , as in the proof of Theorem 0.1, we conclude

_1
g p(S-1)
that T is holomorphic on Q.

Replacing ) by U and V and using the same arguments, we obtain the
results when one of the operators S and S_; is not bounded. 1
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