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ABSTRACT. We reconstruct and develop the abstract Perron–Frobenius the-
ory studied by Faris. We apply the results to some models in nonrelativis-
tic quantum field theory and show the nondegeneracy of the gound state if
it exists. The Wigner–Weisskopf model, the spin-boson model, the Fröhlich
polaron without ultraviolet cutoffs and the Fröhlich bipolaron without ultra-
violet cutoffs are discussed.
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1. INTRODUCTION

In quantum field theory (QFT), a ground state is anticipated to be nonde-
generate if it exists. The Perron–Frobenius theory has been first applied to show
the uniqueness of the ground state in QFT by Glimm and Jaffe [16]. The Perron–
Frobenius theory tells us that if the heat semi-group e−tK generated by a Hamil-
tonian K in an L2-space improves the positivity for all t > 0, then its lowest
energy state or ground state is nondegenerate (if it exists). Here a sentence “A
improves the positivity” is understood as follows: if f > 0 a.e. and ‖ f ‖ 6= 0, then
A f > 0 a.e. In QFT, the Hamiltonian under consideration is living in the so-called
Fock space which is identified with an L2-space under the Schrödinger represen-
tation or Q-representation. Glimm and Jaffe considered their Hamiltonian H in
the Schrödinger representation and proved that e−tH improves the positivity for
all t > 0. By the Perron–Frobenius theory, they obtained the nondegeneracy
of the ground state as a direct consequence. This positivity techniques in the
Schrödinger representation have been successfully used and developed by some
authors [11], [37], [39], [40].
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In nonrelativistic quantum field theory (NQFT), the Perron–Frobenius the-
ory in the Schrödinger representation has also played important roles. This di-
rection in NQFT has been established by Bach et al. in [5]. They investigated
the Nelson model which describes a system consisting with quamtum mechan-
ical particles coupled to a Bose field. Hence this system has components of not
only the Bose field but also quantum particles governed by the Schrödinger op-
erators. Accrodingly the Perron–Frobenius argument in [5] goes well by com-
bining the Glimm and Jaffe’s theory in QFT and the standard theory for the
Schrödinger operators. There is another important model in NQFT, namely the
Pauli–Fierz model which describes electrons moving in the quantized radiation
fields. Roughly speaking the Hamiltonian of this model is expressed as a Pauli
operator with the quantized vector potentials. Here a quantized vector potential
is given by a field operator, while the standard vector potential is given by a real
valued function. Hiroshima established a functional integral representation of
the Pauli–Fierz model under the Schrödinger representation and proved that the
heat semi-group generated by the (spinless) Hamiltonian improves the positivity
which means the nondegeneracy of the ground state [21], [23]. The existence of
the ground state for this model was established in [10].

On the other hand, the Perron–Frobenius theory is useful not only under
the Schrödinger representation but also in more general situations. Gross has
extended the theory to the second quantized fermion in [11]. In this case un-
derlying Hilbert space is not standard L2-space anymore. Faris constructed an
abstract framework of the Perron–Frobenius theory which includes the theory in
the Schrödinger representation mentioned in the above and Gross’ fermion the-
ory. In his abstract theory, no algebraic structure of the Hilbert space, but only a
cone in the space is needed. The main purpose of this note is to develop further
Faris’ abstract theory and apply various obtained results to some typical mod-
els in NQFT, namely, to the Wigner–Weisskopf model, the spin-boson model, the
Fröhlich polaron model without ultraviolet cutoffs and the Fröhlich bipolaron
model without ultraviolet cutoffs.

In Section 2 we reconstruct and develop Faris’ theory from a viewpoint of
self-dual cones. Theorem 2.12 which was essentially proven by Faris [13] is our
base. This theorem tells us the equivalence between the nondegeneracy of the
ground state and the (generalized) positivity improving property of a Hamilton-
ian under consideration. It is worthy to remark that Theorem 2.16 is applicable
to singular perturbative cases which will be discussed in later sections.

In Section 3, we discuss quantized operators in a Fock space in a light esta-
bilshed in Section 2. We will see that the fundamental results in this section are
crucial for applications to the concrete models in NQFT.

As a warmup, the Wigner–Weisskopf model is discussed in Section 4. This
model describes one-mode fermion coupled to a Bose field. Since the Hamilton-
ian H strongly commutes with the total number operator, H has a direct sum
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decomposition H =
∞⊕

n=0
Hn associated with the total number of particles. (Here

we say that two self-adjoint operators strongly commute with each other if their
spectral projections commute.) We will show that, for all n, e−tHn improves the
positivity in generalized sense. As a consequence, even if H has a degenerate
ground states with α-fold degeneracy, only α Hamiltonians Hn1 , . . . , Hnα have a
nondegenerate ground state with energy which equals that of H. As to the ex-
istence of the ground states and physical arguments for this model, see [3], [19],
[20] and references therein.

Section 5 is devoted to the spin-boson model. This model governs a two-
level system coupled to a Bose field. Positivity improving property of the heat
semi-group associated with the Hamiltonian is proven in the generalized sense.
As an immediate consequence, overlap properties between the unique ground
state and the vacuum which have been established by Hirokawa in [18] are re-
discovered without any smalleness conditions of parameters. We can find the
existence conditions of the ground state in [43]. (In [2], the existence of a ground
state and its uniqueness for a generalized model have been also discussed by
techniques unrelated to the methods here.) It should be noted that recently Hi-
rokawa and Hiroshima have constructed a functional integral representation of
the spin-boson model in [22] by using a Poission process. Applying this formula
they proved the positivity improving property of the heat semi-group generated
by the Hamiltonian. In this note we give a direct proof.

In Section 6, we treat the H. Fröhlich polaron without ultraviolet cutoffs.
This model explains an electron in an ionic lattice. As for physical aspects of this
model, Gerlach and Löwen’s paper [9] is convenient for readers. (See also [42].)
In his famous theses [14], [15], J. Fröhlich also studied similar model. He proved
the (generalized) positivity improving property of the heat semi-group generated
by the Hamiltonian of a fixed total momentum with finite cutoffs and it seems
that the part of removal of cutoffs was explained in his unpublished note. In this
section, we give a complete proof of this issue as an application of our abstract
results. (In [14], [15] more singular models are investigated. Our methods cannot
cover this strongly singular case.) We also remark that, in [29], [30], Møller has
investigated a generalized polaron model with finite cutoffs. A complete proof
of removal of cutoffs has been also done by Sloan [40]. More precisely, he estab-
lished the theory of support maximizing operators [40] (cf. [12]) and applied it
to the relativistic polaron without cutoffs. His method essentially works in the
Schrödinger representation. By this restriction he only investigated the Hamil-
tonian with 0 total momentum. We argue the Hamiltonian of arbitrary total mo-
mentum in this note. An immediate consequence is a rotational symmetry of the
unique ground state. (In [23], [25], similar kind of the rotational symmetry for the
Pauli–Fierz Hamiltonian has been shown by a method different from ours.)
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Finally we observe the Fröhlich bipolaron without ultraviolet cutoffs in Sec-
tion 7. This model describes two electrons in an ionic crystal. It is the most com-
plicated model in this note and diffcult to treat. On the one hand, the interaction
between the electrons and the ionic crystal induces an attraction between the elec-
trons, on the other hand a repulsion from the Coulomb force between the two is
also effective. Therefore the existence of a ground state depends on the compe-
tition between the effective attraction and the Coulomb repulsion and this is a
hard issue. Recently the author and Spohn proved that the bipolaron Hamilton-
ian actually has a groud state under some suitable conditions [28]. In this note,
we show that the heat semi-group generated by the Hamiltonian of 0 total mo-
mentum improves the positivity in generalized sense. Removal of cutoffs is also
studied. To extend the result to nonzero total momentum case, we apply analytic
perturbation theory.

In Appendices A and B, we list preliminary results of removal of ultraviolet
cutoffs needed in Section 6 and Section 7.

2. POSITIVITY PRESERVING AND IMPROVING OPERATORS ON A HILBERT SPACE

2.1. BASIC DEFINITIONS. In general we denote the inner product and the norm
of a Hilbert space h by 〈·, ·〉h and ‖ · ‖h respectively. If there is no danger of
confusion, then we omit the subscript h in 〈·, ·〉h and ‖ · ‖h. For a linear operator
a on a Hilbert space, we denote its domain by dom(a). For a self-adjoint operator
b on a Hilbert space, we denote its spectrum (respectively essential spectrum) by
spec(b) (respectively ess. spec(b)).

Let h be a complex Hilbert space and p be a convex cone in h. The dual cone
p† is defined by

p† = {x ∈ h : 〈x, y〉 > 0 ∀y ∈ p}.

If p = p†, then p is called self-dual. (The author learned the materials in this
subsection from [8].)

PROPOSITION 2.1. A self-dual cone p has the following properties:
(i) p∩ (−p) = {0}.

(ii) There exists a unique involution J in h such that Jx = x for all x ∈ p.
(iii) Each element x ∈ h with Jx = x has a unique decomposition x = x+ − x− where

x+, x− ∈ p and 〈x+, x−〉 = 0.
(iv) h is linearly spanned by p.

For the proof see e.g. [8], [17].
Let hJ = {x ∈ h : Jx = x}. Then hJ is a real closed subspace of h. By

Proposition 2.1(iv), for each x ∈ h, there is a unique decomposition x = <x + i=x
such that <x,=x ∈ hJ . Moreover <x = (1/2)(1l + J)x,=x = (1/2i)(1l− J)x and
‖x‖2 = ‖<x‖2 + ‖=x‖2.
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For each x ∈ hJ , the absolute value of x with respect to p is defined as
|x|p = x+ + x−, where x = x+ − x− is the decomposition of x in Proposition
2.1(iii). Clearly ‖x‖ = ‖|x|p‖.

We will write x > y (or y 6 x) with respect to p if x − y ∈ p. The relation
> induces a structure of ordered Hilbert space on hJ . For x, y ∈ hJ , let us define
x ∧ y = y − (x − y)− and x ∨ y = y + (x − y)+. We summarize some basic
properties below:

LEMMA 2.2. Let x, y ∈ hJ . The following properties hold:
(i) x ∧ y = y ∧ x and x ∨ y = y ∨ x.

(ii) −x− = x ∧ 0 and x+ = x ∨ 0.
(iii) x ∧ y 6 x, y with respect to p and x ∨ y > x, y with respect to p.
(iv) x∨ y + x∧ y = x + y and x∨ y− x∧ y = |x− y|p. In particular x∧ y 6 x∨ y

with respect to p.
(v) ‖x ∧ y‖2 + ‖x ∨ y‖2 = ‖x‖2 + ‖y‖2.

(iv) Suppose that x, y ∈ p. Then 〈x, y〉 = 0 if and only if x ∧ y = 0.

Proof. (i) By the definition, x ∧ y− y ∧ x = y− x − (x − y)− + (y− x)− =
y− x− (y− x)+ + (y− x)− = 0. Similary we can check that x ∨ y = y ∨ x.

(ii) is trivial.
(iii) From the definition it follows that x∧ y 6 y with respect to p. Moreover,

by (i), we have x ∧ y = y ∧ x = x− (y− x)− 6 x with respect to p.
(iv) is easy to see and (v) is an immediate consequence of (iv).
(vi) By (iv) and (v), one has 〈x, y〉 = 〈x ∧ y, x ∨ y〉. Thus, if 〈x, y〉 = 0, then

0 = 〈x ∧ y, x ∨ y〉 > ‖x ∧ y‖2 which implies x ∧ y = 0. Conversely if x ∧ y = 0,
then 〈x, y〉 = 0 holds.

Let A be a linear operator on h. We say that A is J-real if A satisfies JA ⊆ AJ.
(For linear operators a and b, we write a ⊆ b if dom(a) ⊆ dom(b) and ax = bx for
all x ∈ dom(a).) For a self-adjoint operator A on h, one can check that A is J-real
if and only if J commutes with the spectral measure for A: EA(S)J = JEA(S) for
all S ∈ B1, the Borel field of R.

PROPOSITION 2.3. Let A be a J-real operator on h. Assume that A is positive and
self-adjoint. Set AJ = A � dom(A) ∩ hJ . Then the following properties hold:

(i) AJ is a positive self-adjoint operator on hJ .
(ii) EAJ (S) = EA(S) � hJ for all S ∈ B1. Moreover, for any real Borel measurable

function on R, f (AJ) = f (A) � hJ .
(iii) If µ is an eigenvalue of A, then µ is also an eigenvalue of AJ . Moreover, dim ker(A
−µ) = dim ker(AJ − µ).

(iv) If A is bounded, so is AJ with ‖A‖ = ‖AJ‖.
Proof. (i) A is self-adjoint if and only if ran(A + 1) = h. From this it follows

that ran(AJ + 1) = hJ which is equivalent to the self-adjointness of AJ .



212 TADAHIRO MIYAO

(ii) For all x, y ∈ hJ , 〈x, AJy〉 =
∫

λd〈x, EA(λ)y〉 =
∫

λd〈x, EA(λ) � hJy〉.
Thus EA � hJ is the spectral measure of AJ , i.e., EA � hJ = EAJ . The remaining
assertion is a direct consequence of this fact.

(iii) Let x be a corresponding eigenvector: Ax = µx. Then we can write x
as x = <x + i=x. Since A is J-real, we can check that A<x = µ<x and A=x =
µ=x. Thus <x and =x are both eigenvectors of AJ , with the eigenvalue µ, which
implies that dim ker(AJ − µ) > dim ker(A− µ). The converse inequlity is trivial.

(iv) Notice that, since A is J-real, we have ‖Ax‖2 = ‖A<x‖2 + ‖A=x‖2 6
‖AJ‖2‖x‖2. Hence ‖A‖ 6 ‖AJ‖. The converse inequality is trivial.

2.2. POSITIVITY PRESERVING OPERATORS. Let A and B be linear operators on h.
If A and B satisfy (A− B)[p ∩ dom(A) ∩ dom(B)] ⊆ p, then we write A � B (or
B � A) with respect to p. If A satisfies 0 � A with respect to p, then A is said to be
positivity preserving with respect to p. Remark that a set of all positivity preserving
operators B(h)+

p = {A ∈ B(h) : 0 � A with respect to p} is a cone and closed
under the weak operator topology, where B(h) is the set of all bounded operators
on h.

This operator inequality was first introduced by Y. Miura [27]. Some inter-
esting properties are investigated in [26], [27].

PROPOSITION 2.4. Suppose that 0 � A1 � B1 and 0 � A2 � B2 with respect to p.
The following are satisfied:

(i) 0 � A1 A2 with respect to p. Moreover if A1, B1 ∈ B(h), then 0 � A1 A2 � B1B2
with respect to p.

(ii) 0�aA1+bA2�aB1+bB2 with respect to p, for all a, b∈R+ ={x∈R : x > 0}.
(iii) Let A be positivity preserving: 0 � A with respect to p. Suppose that p∩dom(A)

is dense in p. Then 0 � A∗ with respect to p.

PROPOSITION 2.5. (i) If A ∈ B(h)+
p , then A is J-real.

(ii) Let A be a positive self-adjoint operator. If 0 � e−tA with respect to p for all t > 0,
then A is J-real.

Proof. (i) Since 0 � A with respect to p, we can show that AhJ ⊆ hJ . Thus for
each x ∈ h, we have AJx = A(<x− i=x) = JAx.

(ii) By (i), e−tA J = Je−tA for all t > 0. Thus t−1(1l− e−tA)Jx = Jt−1(1l−
e−tA)x for all x ∈ dom(A). Taking t ↓ 0, we conclude that JA ⊆ AJ.

PROPOSITION 2.6. Let A be a positive self-adjoint operator. Then 0 � e−tA for all
t > 0 if and only if 0 � (A + s)−1 for all s > 0.

Proof. We just note the following two elementary facts: (A + s)−1 =
∞∫
0

dλ

·e−λ(A+s) and e−tA = s- lim
n→∞

(1l + tA/n)−n.

The following theorem is an abstract version of Beurling–Deny criterion [7].
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THEOREM 2.7. Let A be a positive self-adjoint operator on h. Assume A is J-real.
Then the following are equivalent:

(i) 0 � e−tA for all t > 0.
(ii) If x ∈ dom(A)∩ hJ , then |x|p ∈ dom(A1/2)∩ hJ and 〈|x|p, A|x|p〉 6 〈x, Ax〉.

(iii) If x ∈ dom(A) ∩ hJ , then x+ ∈ dom(A1/2) ∩ hJ and 〈x+, Ax+〉 6 〈x, Ax〉.
(iv) If x ∈ dom(A) ∩ hJ , then x± ∈ dom(A1/2) ∩ hJ and

〈x+, Ax+〉+ 〈x−, Ax−〉 6 〈x, Ax〉.
Proof is a slight modification of Theorem XIII.50 in [35].

PROPOSITION 2.8. Let E be an orthogonal projection on h. Assume that 0 � E
and 0 � E⊥ with respect to p, where E⊥ = 1l− E. Then Ep is a self-dual cone in Eh.
Moreover let A be a linear operator on h which is reduced by Eh, that is, EA ⊆ AE. If
0 � A with respect to p, then 0 � AE with respect to Ep, where AE = A � Eh.

Proof. For each x ∈ hJ , we will show that

(Ex)+ = Ex+, (Ex)− = Ex−.(2.1)

Since 0 = 〈x+, x−〉 = 〈Ex+, Ex−〉+ 〈E⊥x+, E⊥x−〉 and 0 � E, E⊥ with respect to
p, we conclude that 〈Ex+, Ex−〉 = 0 = 〈E⊥x+, E⊥x−〉. Thus Ex = Ex+ − Ex−
with Ex± ∈ p and 〈Ex+, Ex−〉 = 0. By the uniqueness of the decomposition
(Proposition 2.1 (iii)), We conclude (2.1).

To show that Ep ⊆ (Ep)† is easy. So we concentrate our attention to the
converse inclusion. For each x ∈ (Ep)† = {x ∈ Eh : 〈x, Ey〉 > 0 ∀y ∈ p}, there
exists ϕ ∈ h such that x = Eϕ. Note that, since 0 � E, we see that E=ϕ = 0.
Thus without loss of generality, we may assume that ϕ ∈ hJ and we can write
ϕ = ϕ+ − ϕ− with ϕ± ∈ p and 〈ϕ+, ϕ−〉 = 0. Since 〈Eϕ, Ey〉 > 0 for all y ∈ p,
we have 〈(Eϕ)+ − (Eϕ)−, y〉 > 0. Thus (Eϕ)− must equal to 0. Hence, applying
(2.1), we have x = Eϕ = (Eϕ)+ = Eϕ+ which means (Ep)† ⊆ Ep.

Let A be a linear operator satisfying the assumptions in the above proposi-
tion. Then, for all x ∈ dom(AE) ∩ Ep = dom(A) ∩ Ep and y = Ev ∈ Ep (v ∈ p),
〈AEx, y〉 = 〈E(Ax), v〉. Since 0 � A, E with respect to p, we get 0 6 E(Ax) with
respect to p. Hence 〈AEx, y〉 > 0 which means 0 � AE with respect to Ep.

THEOREM 2.9. Let A and B be positive self-adjoint operators. We assume the
following:

(a) dom(A) = dom(B).
(b) (A + s)−1 � 0 and (B + s)−1 � 0 with respect to p for all s > 0.

Then the following are equivalent to each other:
(i) B � A with respect to p.

(ii) (A + s)−1 � (B + s)−1 with respect to p for all s > 0.
(iii) e−tA � e−tB with respect to p for all t > 0.
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Proof. (i)⇒ (ii) By the assumptions (a) and (b), we see that

(A + s)−1 − (B + s)−1 = (A + s)−1(B− A)(B + s)−1 � 0.

(ii) ⇒ (iii) One observes that e−tA = s- lim
n→∞

(1l + tA/n)−n � s- lim
n→∞

(1l +

tB/n)−n = e−tB.

(iii)⇒ (ii) (A + s)−1 =
∞∫
0

dλ e−λ(A+s) �
∞∫
0

dλ e−λ(B+s) = (B + s)−1.

(iii)⇒ (i) A = s- limt↓0(1l− e−tA)/t � s- limt↓0(1l− e−tB)/t = B.

THEOREM 2.10. Let A be a positive self-adjoint operator and let B be a symmetric
operator. Assume the following:

(i) B is A-bounded with relative bound a < 1, i.e., dom(A) ⊆ dom(B) and ‖Bx‖ 6
a‖Ax‖+ b‖x‖ for all x ∈ dom(A).

(ii) 0 � e−tA with respect to p for all t > 0.
(iii) 0 �−B with respect to p.

Then 0 � e−t(A+B) with respect to p for all t > 0.

Proof. Let C = A + B. Then by the assumptions we see that dom(A) =
dom(C) and A− C = −B � 0. Thus applying Theorem 2.9, one obtains e−tC �

e−tA � 0.

Second proof. By (i) and the Kato–Rellich theorem [34], A + B is self-adjoint
and bounded from below. Applying the Duhamel formula, we have

e−t(A+B)(2.2)

=e−tA+
∞

∑
n=1

t∫
0

ds1

t−s1∫
0

ds2 · · ·

t−∑n−1
j=1 sj∫

0

dsne−s1 A(−B)e−s2 A(−B) · · · e−sn A(−B)e−(t−∑n
j=1 sj)A.

Each term in the above expansion is positivity preserving with respect to p by (ii)
and (iii) which means 0 � e−t(A+B) with respect to p.

2.3. POSITIVITY IMPROVING OPERATORS. x ∈ p is strictly positive if 〈y, x〉 > 0
for all y ∈ p\{0} and we write this as x > 0 (or 0 < x) with respect to p. Let
p0 = {x ∈ p : x > 0 with respect to p}. Let A and B be bounded operators on h.
If these operators satisfy (A− B)p\{0} ⊆ p0, then we will write A � B (or B � A)
with respect to p. We say that A improves the positivity with respect to p if 0 � A
with respect to p.

PROPOSITION 2.11. Let A, B ∈ B(h) with 0 � A and 0 � B with respect to p.
Then we have the following properties:

(i) 0 � A∗ with respect to p.
(ii) Suppose that ker B# = {0} with a# = a or a∗. Then 0 � AB and 0 � BA with

respect to p.
(iii) 0 � aA + bB with respect to p for a > 0 and b > 0.
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THEOREM 2.12 (Faris). Let A be a positive self-adjoint operator on h. Suppose
that 0 � e−tA with respect to p for all t > 0 and inf spec(A) is an eigenvalue. Then the
following are equivalent:

(i) inf spec(A) is a simple eigenvalue with a strictly positive eigenvector with respect
to p.

(ii) 0 � (A + s)−1 for some s > 0.
(iii) For all x, y ∈ p\{0}, there exists a t > 0 such that 0 < 〈x, e−tAy〉.
(iv) 0 � (A + s) for all s > 0.
(v) 0 � e−tA for all t > 0.

Proof. Since A is J-real by Proposition 2.5(ii), we only consider the self-
adjoint operator AJ = A � hJ by Proposition 2.3. For this AJ we can apply the
Faris’s results [13] and obtain the equivalence between (i), (ii) and (iii). The proof
of (iv) ⇒ (ii) and (v) ⇒ (iii) are trivial. To show (iii) ⇒ (iv), we just note that

(A + s)−1 =
∞∫
0

e−λ(A+s) dλ.

(iii) ⇒ (v) This part is a modification of [35]. For x, y ∈ p\{0}, set Dx,y =
{t > 0 : 〈x, e−tAy〉 > 0}. Then by the assumption Dx,y is not empty. Choose t ∈
Dx,y arbitrarily. Then by Lemma 2.2(vi), one has x ∧ (e−tAy) 6= 0. Hence, for any
s > 0, we have 〈x, e−(s+t)Ay〉 > 〈x ∧ (e−tAy), e−sAx ∧ (e−tAy)〉 = ‖e−sA/2{x ∧
(e−tAy)}‖2 > 0. This means s + t ∈ Dx,y. Since s is arbitrary, we can conclude that
Dx,y = (a, ∞) with a = inf Dx,y. Next we will show a = 0. Let f (t) = 〈x, e−tAy〉.
Then the function f is analytic in a neighborhood of the interval (a, ∞). Thus the
point a must equal 0 otherwise f is zero on the connected set containing a which
contradicts the obtained result Dx,y = (a, ∞).

PROPOSITION 2.13. Let A be positive and self-adjoint. Assume that (1) 0 � e−tA

for all t > 0, (2) Ax = inf spec(A)x. Let U be a positivity preserving, unitary operator
commuting with A. Then Ux = x.

Proof. We can assume that x > 0 with respect to p by Proposition 2.12. Since
U commutes with A, we have AUx = inf spec(A)Ux. By the uniqueness (Propo-
sition 2.12(i)), Ux = Cx with C ∈ C and |C| = 1. Since 0 � U, we can conclude
C = 1.

THEOREM 2.14. Let H and H0 be self-adjoint operators, bounded from below. As-
sume the following conditions:

(i) There exists a sequence of bounded operators Vn such that H0 + Vn converges to H
in the strong resolvent sense and H −Vn converges to H0 in the strong resolvent sense.

(ii) For all n ∈ N and t > 0, 0 � e−tVn with respect to p holds.
(iii) For all u, v ∈ p such that 〈u, v〉 = 0, 〈e−tVn u, v〉 = 0 holds for all n ∈ N and

t > 0.
(iv) 0 � e−tH0 with respect to p for all t > 0.

Then we obtain 0 � e−tH with respect to p, for all t > 0.
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The proof of this theorem is a slight modification of that of Theorem 3 in[13].

THEOREM 2.15. Let A be a positive self-adjoint operator and let B be a symmetric
operator. Set

A(n)
ϕ,ψ(s1, . . . , sn; t) = 〈ϕ, e−s1 A(−B)e−s2 A(−B) · · · e−sn A(−B)e−(t−∑n

j=1 sj)A
ψ〉

with A(0)
ϕ,ψ(t) = 〈ϕ, e−tAψ〉. Assume the conditions (i)–(iii) in Theorem 2.10. In addi-

tion we assume the following:
(iv) For each x, y ∈ p\{0} and t > 0, there exist an n ∈ N0 and s1, . . . , sn ∈ R+

with 0 6 s1 + · · ·+ sn 6 t such that A(n)
ϕ,ψ(s1, . . . , sn; t) > 0. (These n and s1, . . . , sn

could depend on ϕ and ψ.)
Then 0 � e−t(A+B) with respect to p for all t > 0.

Proof. Note first that A(n)
ϕ,ψ(s1, . . . , sn; t) is continuous in s1, . . . , sn. Thus, by

the Duhamel formula (2.2), we have

〈ϕ, e−t(A+B)ψ〉 >
t∫

0

ds1

t−s1∫
0

ds2 · · ·

t−∑n−1
j=1 sj∫

0

dsnA(n)
ϕ,ψ(s1, . . . , sn; t) > 0

or 〈ϕ, e−t(A+B)ψ〉 > A(0)
ϕ,ψ(t) > 0, for all t > 0.

THEOREM 2.16. Let {An}n∈N be a family of positive self-adjoint operators. Sup-
pose that An converges to A in the strong resolvent sense as n → ∞, where A is self-
adjoint and positive. Moreover {An} satisfies the following:

(i) For each n ∈ N, 0 � (An + 1l)−1 with respect to p.
(ii) For each m, n ∈ N, dom(Am) = dom(An).

(iii) For each m, n ∈ N with n > m, Am − An � 0 with respect to p.
Then we have 0 � e−tA with respect to p for all t > 0.

Proof. Choose m, n ∈ N as n > m and write B = Am for simplicity. Applying
Theorem 2.9 and assumptions, one has (An + 1l)−1 � (B + 1l)−1 for all n > m.
Taking the limit n→ ∞, one sees

(A + 1l)−1 � (B + 1l)−1.

Since 0 � (B + 1l)−1, we conclude that 0 � (A + 1l)−1.

2.4. DIRECT SUMS OF SELF-DUAL CONES. Let h =
⊕

n∈L
hn and let pn (n ∈ L) be a

self-dual cone in hn. Then, we can directly check that

P =
{

x =
⊕
n∈L

xn ∈ h : xn ∈ pn ∀n ∈ L
}

is also self-dual [8]. We write this dual cone as P =
⊕

n∈L
pn. We summarize the

basic properties of
⊕

n∈L
pn below.
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PROPOSITION 2.17. Let P =
⊕

n∈L
pn. Then we have the following properties:

(i) Let Jn be the involution with respect to pn. Then J =
⊕

n∈L
Jn is the involution with

respect to P.
(ii) Let x =

⊕
n∈L

xn ∈ hJ and let x+ and x− be the positive and negative parts of x with

respect to P : x = x+ − x− with x+, x− ∈ P and 〈x+, x−〉 = 0. Then x+ =
⊕

n∈L
xn,+

and x− =
⊕

n∈L
xn,−, where xn,+ and xn,− are positive and negative parts of xn with

respect to pn. Moreover |x|P =
⊕

n∈L
|xn|pn .

(iii) Let x =
⊕

n∈L
xn ∈ h and let<x and=x be its real and imaginary parts with respect

to P respectively. Then <x =
⊕

n∈L
<xn and =x =

⊕
n∈L
=xn, where <xn and =xn are real

and imaginary parts of xn with respect to pn. Moreover, ‖x‖2 = ‖<x‖2 + ‖=x‖2 =
∑

n∈L
(‖<xn‖2 + ‖=xn‖2).

PROPOSITION 2.18. Let P =
⊕

n∈L
pn. Let An be a linear operator on hn. Then

A =
⊕

n∈L
An � 0 with respect to P if and only if An � 0 with respect to pn for all n ∈ L.

2.5. DIRECT INTEGRALS OF SELF-DUAL CONES. Let (Z , µ,B) be a Borel space

and let k be a fixed Hilbert space. Let h = L2(Z , k) =
⊕∫
Z

k dµ. For a self-dual cone

p in k, we set

P = {x ∈ h : x(z) ∈ p µ-a.e.}.

Then P is also self-dual and denoted by P =
⊕∫
Z

p dµ. We restrict our attention to

direct integrals of constant fields of a Hilbert space in this note, however we can
also treat more general situation by using the terminologies developed in [8]. We

summarize the fundamental properties of P =
⊕∫
Z

p dµ.

PROPOSITION 2.19. (i) Let J be the involution associated with p. Then J⊕ =
⊕∫
Z

J dµ is the involution associated with P =
⊕∫
Z

p dµ.

(ii) Let x =
⊕∫
Z

x(z) dµ ∈ hJ⊕ and let x+ and x− be the positive and negative parts of

x with respect to P: x = x+ − x−. Then x± =
⊕∫
Z

x(z)± dµ, where x(z)± are positive

and negative parts of x(z).
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(iii) Let x =
⊕∫
Z

x(z) dµ ∈ h and let <x and =x be its real and imaginary parts with

respect to P =
⊕∫
Z

p dµ respectively. Then <x =
⊕∫
Z
<x(z) and =x =

⊕∫
Z
=x(z) dµ.

Moreover ‖x‖2 = ‖<x‖2 + ‖=x‖2 =
∫
Z

(‖<x(z)‖2 + ‖=x(z)‖2) dµ.

A bounded operator A on h =
⊕∫
Z

k dµ is said to be diagonalizable if there exists

a function f ∈ L∞(Z) such that (Aϕ)(z) = f (z)ϕ(z) µ-a.e., for each ϕ ∈ h.
Let A be the abelian von Neumann algebra of diagonalizable operators. Let

A be a closed operator on h =
⊕∫
Z

k dµ. We say that A is decomposable if BA ⊆ AB for

all B ∈ A. If A is decomposable, then there exists a closed operator valued map
A(z) such that (Aϕ)(z) = A(z)ϕ(z) µ-a.e., for all ϕ ∈ dom(A). We often write

this as A =
⊕∫
Z

A(z) dµ. Moreover A∗ is also decomposable and A∗ =
⊕∫
Z

A(z)∗ dµ.

Readers can find more precise discussions of the decomposable operators in [36].

PROPOSITION 2.20. Let A =
⊕∫
Z

A(z) dµ be a decomposable operator on h =

⊕∫
Z

k dµ. If 0 � A(z) with respect to p for µ-a.e., then 0 � A with respect to P =
⊕∫
Z

p dµ.

EXAMPLE 2.21. Let us consider a special case: h =
⊕∫

Rd
k dx. Let x → A(x) be

a closed operator valued map with the following properties:
(i) There exists a dense subspaceD of k such thatD is a common core of A(x)#

for all x ∈ Rd.
(ii) For all ϕ ∈ D, A(x)# ϕ is strongly continuous in x.

Under these conditions, we define a linear operator A0 by (A0 ϕ)(x) =
A(x)ϕ(x) for ϕ ∈ dom(A0) = C∞

0 (Rd) ⊗ D, where we use the identification
h = L2(Rd)⊗ k. Clearly A0 is closable. Now we define a closed operator A by

A = A∗∗0 . Then A and A∗ are both decomposable and A# =
⊕∫

Rd
A(x)# dx.

3. QUANTIZED OPERATORS

3.1. DEFINITIONS. Let h be a complex Hilbert space. The Boson Fock space over
h is given by

F(h) =
∞⊕

n=0
⊗n

s h,
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where ⊗n
s h denotes the n-fold symmetric tensor product of h and ⊗0

sh = C. The
vector Ω = 1⊕ 0⊕ 0⊕ · · · ∈ F(h) is called the Fock vacuum. We identify each

vector ϕ ∈ ⊗n
s h with the corresponding vector

∞⊕
j=0

δj,n ϕ in F(h). Under this iden-

tification, ⊗n
s h is a closed subspace of F(h). We denote by a( f ) ( f ∈ h) the an-

nihilation operator with index vector f on F(h). Its adjoint, called the creation
operator, is given by

(a( f )∗ϕ)(n) =
√

nSn( f ⊗ ϕ(n−1)),(3.1)

for ϕ =
∞⊕

n=0
ϕ(n) ∈ dom(a( f )∗), where Sn is the symmetrizer on ⊗nh and ϕ(−1) =

0. The creation and annihilation operators satisfy the canonical commutation re-
lations (CCRs):

[a( f ), a(g)∗] = 〈 f , g〉, [a( f ), a(g)] = 0 = [a( f )∗, a(g)∗],

on a suitable dense domain. In the case of h = L2(Rd), we often use the symbolic
notation for the annihilation and creation operators by the kernel:

a( f ) =
∫
Rd

dk f (k)∗a(k), a( f )∗ =
∫
Rd

dk f (k)a(k)∗.

Let s be a subspace of h. We define

Ffin(s) = Lin{a( f1)∗ · · · a( fn)∗Ω, Ω : f1, . . . , fn ∈ s, n ∈ N},

where Lin{· · · } means the linear span of the set {· · · }. If s is dense in h, Ffin(s)
is also dense in F(h).

Let C be a contraction operator from h1 to h2, i.e., ‖C‖ 6 1. The linear
operator Γ(C) : F(h1) → F(h2) is defined by the following, with the convention
⊗0C = 1l:

Γ(C) � ⊗n
s h1 = ⊗nC.

For a densely defined closable operator A on h, dΓ(A) : F(h) → F(h) is
defined by

dΓ(A) � ⊗n
s dom(A) =

n

∑
j=1

1l⊗ · · · ⊗ A
j th
⊗ · · · ⊗ 1l

and dΓ(A)Ω = 0. Clearly dΓ(A) is closable and we denote its closure by the
same symbol. Also remark that if A is self-adjoint, then dΓ(A) is essentially self-
adjoint. As a typical example, the number operator Nf is given by Nf = dΓ(1l).
Also we note the following relation, for A which is positive and self-adjoint:

Γ(e−tA) = e−tdΓ(A), t > 0.(3.2)
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3.2. SELF-DUAL CONES IN A FOCK SPACE. Let p be a self-dual cone in h. Let

Pn = {ϕ ∈ ⊗n
s h : 〈ϕ, x1 ⊗ · · · ⊗ xn〉 > 0 ∀x1, . . . , xn ∈ p}.

It is not hard to see that P†
n ⊆ Pn. Throughout remainder of this section, we

assume that Pn is a self-dual cone and denote it by ⊗n
s p.

EXAMPLE 3.1. Let h = L2(Rd) and let p = L2(Rd)+ := { f ∈ L2(Rd) : f (x)>
0 a.e.}. Then ⊗n

s p is self-dual and under the natural identification ⊗n
s L2(Rd)

= L2
sym(Rnd), the symmetric L2-space, we have ⊗n

s p = L2
sym(Rnd)+ := { f ∈

L2
sym(Rnd) : f (X) > 0 a.e.}.

EXAMPLE 3.2. Let h = L2(Rd). Let M1 and M2 be subsets of Rd such
that M1 ∪ M2 = Rd and M1 ∩ M2 = ∅. Set p = { f ∈ L2(Rd) : f (x) >
0 on M1 and f (x) 6 0 on M2}. Then p is a self-dual cone. Moreover ⊗n

s p is also
self-dual.

Let

F(p) =
∞⊕

n=0
⊗n

s p

with ⊗0
sp = R+. Then F(p) is self-dual by Proposition 2.17. Let Jn be the invo-

lution associated with ⊗sp. Then the involution associated with F(p) is given by

Γ(J) := j⊕
[ ∞⊕

n=1
Jn

]
where j is the natural involution on C: jz = z∗ for z ∈ C.

THEOREM 3.3. (i) Let A be a contraction on h. If 0 � A with respect to p, then
0 � Γ(A) with respect to F(p).

(ii) Let A be a positive self-adjoint operator on h. If 0 � e−tA with respect to p for all
t > 0, then 0 � e−tdΓ(A) with respect to F(p) for all t > 0.

(iii) If 0 6 f with respect to p, then 0 � a( f ) and 0 � a( f )∗ with respect to F(p).
(iv) Let A ∈ B(h). If 0 � A with respect to p, then dΓ(A)n � ⊗n

s h �⊗n A � 0 with
respect to ⊗n

s p.
(v) For f ∈ p, (a( f )a( f )∗)n � ⊗n

s h � (a( f )∗a( f ))n � ⊗n
s h �⊗n| f 〉〈 f | � 0 with

respect to ⊗n
s p, where | f 〉〈 f |x := 〈 f , x〉 f for x ∈ h.

Proof. (i) For all ϕ ∈ ⊗n
s p and x1, . . . , xn ∈ p, we have 〈Γ(A)ϕ, x1 ⊗ · · · ⊗

xn〉 = 〈ϕ, (Ax1)⊗ · · ·⊗ (Axn)〉 > 0, since 0� A with respect to p. Thus 0� Γ(A) �
⊗n

s h with respect to ⊗n
s p for all n ∈ N0. Now applying Proposition 2.18, we have

the desired result. The assertion (ii) is a direct consequence of (i) by (3.2).
(iii) Let Pn (n ∈ N0 = {0} ∪ N) be the orthogonal projection onto the sub-

space
n⊕

j=0
⊗j

sh. For each ψ∈F(p) and ϕ ∈ dom(a( f ))∩F(p), we have 〈a( f )ϕ, Pnψ〉

= 〈ϕ, a( f )∗Pnψ〉 =
n
∑

j=1

√
j〈ϕ(j), f ⊗ ψ(j−1)〉 > 0 for all n ∈ N0, by using (3.1).
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Thus, noting s- lim
n→∞

Pn = 1l, we have 〈a( f )ϕ, ψ〉 > 0. Similarly we can see that

0 � a( f )∗ with respect to F(p).
Proof of (iv) is easy. For the proof of (v), we note that

dΓ(| f 〉〈 f |) = a( f )∗a( f )

for f ∈ p. Thus, applying (iv), we have (a( f )∗a( f ))n � ⊗n
s h � ⊗n| f 〉〈 f | � 0.

Moreover, by the CCRs, we have a( f )a( f )∗ = a( f )∗a( f ) + ‖ f ‖2 � a( f )∗a( f ).

4. WIGNER–WEISSKOPF MODEL

4.1. MAIN RESULTS IN SECTION 4. Let σ+, σ− and σ3 be 2 × 2 matrices on C2

given by

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

The Hamiltonian H of the Wigner–Weisskopf model is defined by

H =
µ

2
(1l + σ3)⊗ 1l + 1l⊗ dΓ(ω)− g{σ+ ⊗ a($) + σ− ⊗ a($)∗}

acting in C2 ⊗ F(L2(R3
k)), with µ > 0, g ∈ R\{0}, ω(k) = |k| and $, $/ω1/2 ∈

L2(R3
k). By the well-known bound ‖a( f )#(dΓ(ω) + 1l)−1/2‖ 6 ‖ω−1/2 f ‖ and

the Kato–Rellich theorem, H is self-adjoint on dom(1l⊗ dΓ(ω)), bounded from
below for all µ and g. Without loss of generality, we can assume that g > 0
(because 1l⊗ Γ(eiπ)Hg1l⊗ Γ(e−iπ) = H−g).

Let Ntot be the total number operator defined by

Ntot = σ+σ− ⊗ 1l + 1l⊗ Nf.

For each n ∈ N0 := {0} ∪N, letHn = ker(Ntot − n). Then we have the decompo-
sition

C2 ⊗ F(L2(R3
k)) =

∞⊕
n=0
Hn.(4.1)

We can directly check that H srongly commutes with Ntot, that is, exp(isNtot)
exp(itH) = exp(itH) exp(isNtot) for all s, t ∈ R. Thus H is represented as a direct
sum associated with (4.1):

H =
∞⊕

n=0
Hn with Hn = H � Hn.

Let p = L2(R3
k)+ and let η↑ = (1

0) and η↓ = (0
1). We introduce a subset Pn of

Hn by

Pn = {ϕ ∈ Hn : ϕ = η↑ ⊗ ϕn−1 + η↓ ⊗ ϕn with ϕn−1 ∈ ⊗n−1
s p and ϕn ∈ ⊗n

s p}

with P0 = {aη↓ ⊗Ω : a ∈ R+}. Then Pn is a self-dual cone in Hn for all n ∈ N0.
(For the proof note that, any element F ∈ Hn has a unique expression F = η↑ ⊗



222 TADAHIRO MIYAO

F↑+ η↓⊗ F↓ with F↑ ∈ ⊗n−1
s L2(R3

k) and F↓ ∈ ⊗n
s L2(R3

k). Using this representation
and self-duality of ⊗n

s p, F is in P†
n if and only if F↑ ∈ ⊗n−1

s p and F↓ ∈ ⊗n
s p.)

THEOREM 4.1. Suppose that $, $/ω1/2 ∈ L2(R3
k) and µ, g > 0. Assume that

$(k) > 0 a.e. k. Then, for all n ∈ N0, 0 � e−tHn with respect to Pn for all t > 0.

COROLLARY 4.2. Under the conditions in Theorem 4.1, assume that H has de-
generate ground states with α-fold degeneracy. Then there exist n1, . . . , nα ∈ N0 with
n1 < n2 < · · · < nα such that each Hnj (j = 1, . . . , α) has a unique ground state which
is strictly positive with respect to Pnj , and inf spec(H) = inf spec(Hn1) = · · · =
inf spec(Hnα).

COROLLARY 4.3. Under the conditions in Theorem 4.1, assume that H has a
ground state ϕ. Moreover assume that ϕ ∈ Hn for some n ∈ N0. Then it is a unique
ground state for Hn and can be chosen to be strictly positive with respect to Pn.

Combining this result with [19], we obtain the following.

COROLLARY 4.4. Under the conditions in Theorem 4.1, assume that

g2
∫
R3

dk
$(k)2

|k| � 1.

Then there exists an n > 2 such that Hn has a unique ground state ϕ ∈ Hn. Moreover
we can choose ϕ to be strictly positive with respect to Pn.

REMARK 4.5. The assumption $(k) > 0 a.e. is just for the simplicity of
our proof. We can treat more general functions. Namely let $ be a real val-
ued function with $, $/ω1/2 ∈ L2(R3

k). Set S = supp$ and write L2(R3
k) =

L2(S) ⊕ L2(Sc), where Sc is the complement of S. Then we have the natural
identification F(L2(R3

k)) = F(L2(S))⊗ F(L2(Sc)), thus C2 ⊗ F(L2(R3
k)) = C2 ⊗

F(L2(S))⊗ F(L2(Sc)). Under this identification, we can represent H as

H = HS ⊗ 1l + 1l⊗ dΓ(ω � Sc)

with

HS =
µ

2
(1l + σ3)⊗ 1l + 1l⊗ dΓ(ω � S)− g{σ+ ⊗ aS($) + σ− ⊗ aS($)∗},

where aS(·) and a∗S(·) are the annihilation and creation operators on F(L2(S))
respectively. Note that, to show the uniqueness of a ground state of Hn, it suffices
to show that of HS � Hn(S) withHn(S) = ker(σ+σ− ⊗ 1l + 1l⊗ NS − n) where NS
is the number operator on F(L2(S)). To this end, let S− = {k ∈ S : $(k) < 0} and
let χS− be the characteristic function of the set S−. Observe that

1l⊗eiπdΓ(χS− )HS1l⊗ e−iπdΓ(χS− )

=
µ

2
(1l + σ3)⊗ 1l + 1l⊗ dΓ(ω � S)− g{σ+ ⊗ aS(|$|) + σ− ⊗ aS(|$|)∗}.
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One can apply all arguments in this section to 1l⊗ eiπdΓ(χS− )HS1l⊗ e−iπdΓ(χS− )

because |$(k)| > 0 a.e. k on S and obtain the corresponding uniqueness theorems.

4.2. PROOF OF THEOREM 4.1. Let pC2 = R2
+ be a natural self-dual cone in C2.

Take a self-dual cone F(p) in F(L2(R3
k)) with p = L2(R3

k)+. Now we choose a
self-dual cone in C2 ⊗ F(L2(R3

k)) as

pC2⊗F(p) :={ϕ ∈ C2 ⊗ F(L2(R3
k)) : ϕ = η↑ ⊗ ϕ↑ + η↓ ⊗ ϕ↓ with ϕ↑, ϕ↓ ∈ F(p)}.

(Indeed the reader can directly check the self-duality of pC2 ⊗ F(p) using the fact
that, for each ϕ ∈ C2 ⊗ F(L2(R3

k)), there exist ϕ↑, ϕ↓ ∈ F(L2(R3)) such that ϕ =
η↑ ⊗ ϕ↑ + η↓ ⊗ ϕ↓.) Moreover we have the decomposition

pC2 ⊗ F(p) =
∞⊕

n=0
Pn.

LEMMA 4.6. Let En (n ∈ N0) be the orthogonal projection onto Hn. Then we
obtain the following:

(i) 0 � En, E⊥n with respect to F(p) for all n ∈ N0.
(ii) Pn = EnpC2 ⊗ F(p) for all n ∈ N0.

Proof. (i) For each ϕ ∈ C2 ⊗ F(L2(R3
k)), we have the representation ϕ =

η↑ ⊗ ϕ↑ + η↓ ⊗ ϕ↓ with ϕ↑, ϕ↓ ∈ F(L2(R3
k)). Then we have

En ϕ = η↑ ⊗
( ∞⊕

j=0

δj,n−1 ϕ
(j)
↑

)
+ η↓ ⊗

( ∞⊕
j=0

δj,n ϕ
(j)
↓

)
(4.2)

with E0 ϕ = η↓ ⊗
( ∞⊕

j=0
δj,0 ϕ(j)

)
. On the other hand, ϕ ∈ pC2 ⊗ F(p) if and only

if ϕ↑, ϕ↓ ∈ F(p). Thus, by the formula (4.2), if ϕ ∈ pC2 ⊗ F(p), then En ϕ ∈
pC2 ⊗F(p) which means 0 � En with respect to pC2 ⊗F(p). Similarly we can prove
that 0 � E⊥n with respect to pC2 ⊗ F(p). (ii) also follows from (4.2).

LEMMA 4.7. Let K = µ(1l + σ3)/2⊗ 1l + 1l⊗ dΓ(ω) and let L = σ+ ⊗ a($) +
σ− ⊗ a($)∗. For each n ∈ N0, we have the following:

(i) 0 � e−tK � Hn with respect to Pn for all t > 0.
(ii) 0 � L � Hn with respect to Pn.

(iii) 0 � e−tHn with respect to Pn for all t > 0.

Proof. Since K, L and H are reduced by ran(En), it suffices to show the corre-
sponding properties with respect to pC2 ⊗F(p) by Proposition 2.8 and Lemma 4.6.

(i) It is not hard to show that 〈|ϕ|pC2⊗F(p), K|ϕ|pC2⊗F(p)〉 = 〈ϕ, Kϕ〉 for all

ϕ ∈ dom(K)∩ (C2⊗ F(L2(R3
k)))

J where J is the involution associated with pC2 ⊗
F(p). Thus applying Theorem 2.7, 0 � e−tK with respect to pC2 ⊗F(p) for all t > 0.

(ii) Since 0 � a($)# with respect to F(p) and 0 � σ± with respect to pC2 , we
can check that 0 � L with respect to pC2 ⊗ F(p).
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(iii) By Theorem 2.10 with A = K and B = −gL, we have 0 � e−tH with
respect to pC2 ⊗ F(p).

LEMMA 4.8. For each ϕ, ψ∈Pn\{0}, there exists an N∈N0 such that 〈ϕ, LNψ〉>0.

Proof. It suffices to show the following:
(i) There exists N1 ∈ N0 such that 〈η↑ ⊗ Fn−1, LN1 η↑ ⊗ Gn−1〉 > 0 for all

Fn−1, Gn−1 ∈ (⊗n−1
s p)\{0}.

(ii) There exists N2 ∈ N0 such that 〈η↑ ⊗ Fn−1, LN2 η↓ ⊗ Gn〉 > 0 for all Fn−1 ∈
(⊗n−1

s p)\{0} and Gn ∈ (⊗n
s p)\{0}.

(iii) There exists N3 ∈ N0 such that 〈η↓ ⊗ Fn, LN1 η↓ ⊗ Gn〉 > 0 for all Fn, Gn ∈
(⊗n

s p)\{0}.
Proof of (i) and (iii). Note that

L2m = (σ+σ−)m ⊗ (a($)a($)∗)m + (σ−σ+)m ⊗ (a($)∗a($))m.

Thus, applying Proposition 3.3(v),

L2n−2η↑ ⊗ Fn−1 > (σ+σ−)n−1η↑ ⊗ (a($)a($)∗)n−1Fn−1

> 〈Fn−1,⊗n−1
s $〉η↑ ⊗ (⊗n−1

s $) with respect to Pn.

By the assumption $(k) > 0 a.e. k, we have 〈Fn−1,⊗n−1
s $〉 > 0. Thus

〈η↑ ⊗ Fn−1, L4n−4η↑ ⊗ Gn−1〉 > 〈Fn−1,⊗n−1
s $〉〈Gn−1,⊗n−1

s $〉‖$‖2n−2 > 0

which completes the proof of (i). Similarly we can prove (iii).
Proof of (ii). By a similar argument to that above, we have

L2n−2η↑ ⊗ Fn−1 > 〈Fn−1,⊗n−1
s $〉η↑ ⊗ (⊗n−1

s $) with respect to Pn.

Since L � Hn � σ− ⊗ a($)∗ � Hn � 0 with respect to Pn, we have

L2n−1η↑ ⊗ Fn−1 > 〈Fn−1,⊗n−1
s $〉(σ− ⊗ a($)∗)η↑ ⊗ (⊗n−1

s $)

=
√

n〈Fn−1,⊗n−1
s $〉η↓ ⊗ (⊗n

s $) with respect to Pn.

On the other hand, by the similar way to the proof of (i), we obtain

L2nη↓ ⊗ Gn > 〈Gn,⊗n
s $〉η↓ ⊗ (⊗n

s $) with respect to Pn.

Combining these estimates, we have

〈η↑ ⊗ Fn−1, L4n−1η↓ ⊗ Gn〉 >
√

n〈Fn−1,⊗n−1
s $〉〈Gn,⊗n

s $〉‖$‖2n > 0.

This completes the proof.

For the proof of Theorem 4.1 note Lemmas 4.7 and 4.8, and we can apply
Theorem 2.15.
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5. SPIN-BOSON MODEL

5.1. MAIN RESULTS IN SECTION 5. The spin-boson Hamiltonian is given by

HSB =
µ

2
σ3 ⊗ 1l + 1l⊗ dΓ(ω) + ασ1 ⊗ (a($) + a($)∗)

acting in C2 ⊗ F(L2(R3
k)), with µ > 0, α ∈ R\{0}, ω(k) = |k| and σ1 =

(
0 1
1 0

)
.

We assume that $, $/ω1/2 ∈ L2(R3
k) and that $(−k)∗ = $(k). Then HSB is self-

adjoint on dom(1l⊗ dΓ(ω)) and bounded from below.
Let us consider the Schrödinger representation of the Fock space F(L2(R3

k))
= L2(Q, dµ), where µ is a Gaussian probability measure. The points of this rep-
resentation are the following facts [38]:

(a) φ($) = 2−1/2(a($) + a($)∗)∗∗ is a real multiplication operator,
(b) 0 � Γ(e−tω) with respect to L2(Q, dµ)+ = {F ∈ L2(Q, dµ) : F > 0 µ-a.e. }

for all t > 0,
(c) the Fock vacuum Ω is the constant function identically one.

Let x1 = (1/
√

2)(1
1) and x2 = (1/

√
2)(−1

1 ). We choose the following self-
dual cone in C2 ⊗ F(L2(R3

k)) = C2 ⊗ L2(Q, dµ):

PSB = {ϕ ∈ C2 ⊗ L2(Q, dµ) : ϕ = x1 ⊗ ϕ1 + x2 ⊗ ϕ2 with ϕ1, ϕ2 ∈ L2(Q, dµ)+}.

THEOREM 5.1. Assume that $, $/ω1/2 ∈ L2(R3
k) and $(−k)∗ = $(k). Then,

under the Schrödinger representation, we have 0 � e−tHSB with respect to PSB for all
t > 0.

COROLLARY 5.2. Under the conditions in Theorem 5.1, assume that HSB has a
ground state ϕGS. Then it is nondegenerate and strictly positive with respect to PSB.
Thus, for any Ψ ∈ PSB\{0}, we have 〈ϕGS, Ψ〉 > 0. In particular 〈ϕGS, x1 ⊗Ω〉 > 0
and 〈ϕGS, x2 ⊗Ω〉 > 0.

5.2. PROOF OF THEOREM 5.1. Let U be a unitary operator on C2 given by U =
1√
2

(
1 1
1 −1

)
. We introduce a new Hamiltonian by

ĤSB = U ⊗ 1lHSBU ⊗ 1l.

Using the formulas Uσ3U = σ1 and Uσ1U = σ3, we have

ĤSB =
µ

2
σ1 ⊗ 1l + 1l⊗ dΓ(ω) +

√
2ασ3 ⊗ φ($).

We also remark that

P̂SB=U⊗1lPSB={ϕ∈C2⊗L2(Q, dµ) : ϕ=η↑⊗ϕ↑−η↓⊗ϕ↓with ϕ↑, ϕ↓∈L2(Q, dµ)+},

where η↑ = (1
0) and η↓ = (0

1).
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LEMMA 5.3. Let Ĥ0 = (µ/2)σ1 ⊗ 1l + 1l⊗ dΓ(ω). Then 0 � e−tĤ0 with respect
to P̂SB for all t > 0.

Proof. Since e−tµσ1/2 = cosh(µt/2)− sinh(µt/2)σ1, we have, for ϕ = η↑ ⊗
ϕ↑ − η↓ ⊗ ϕ↓ ∈ P̂SB,

e−tĤ0 ϕ = cosh(µt/2)η↑ ⊗ Γ(e−tω)ϕ↑ + sinh(µt/2)η↑ ⊗ Γ(e−tω)ϕ↓

− (sinh(µt/2)η↓ ⊗ Γ(e−tω)ϕ↑ + cosh(µt/2)η↓ ⊗ Γ(e−tω)ϕ↓).

Note that 0 � Γ(e−tω) with respect to L2(Q, dµ)+. (For the proof note that dΓ(ω)
has a unique ground state Ω and it is identically one in the Schrödinger repre-
sentation, hence we can apply Theorem 2.12 to conclude that 0 � Γ(e−tω) with
respect to L2(Q, dµ)+.) Thus if ϕ 6= 0, then 0 < e−tĤ0 ϕ with respect to P̂SB.

LEMMA 5.4. Let V̂n =
√

2ασ3 ⊗ φ($)χ{|φ($)|6n}, where χ{ f <a} is the character-
istic function of the set { f < a}. Then we have the following properties:

(i) For all n ∈ N and t > 0, 0 � e−tV̂n with respect to P̂SB.
(ii) For u, v ∈ P̂SB with 〈u, v〉 = 0, we have 〈e−tV̂n u, v〉 = 0 for all n ∈ N.

(iii) Ĥ0 + V̂n converges to ĤSB in the strong resolvent sense, ĤSB − V̂n converges to
Ĥ0 in the strong resolvent sense as n→ ∞.

Proof. (i) For ϕ ∈ (C2 ⊗ L2(Q, dµ))J , we have the representation ϕ = η↑ ⊗
ϕ↑ + η↓ ⊗ ϕ↓ with ϕ↑, ϕ↓ ∈ L2

real(Q, dµ), the space of real valued L2-functions.
Under this representation, we have |ϕ|P̂SB

= η↑ ⊗ |ϕ↑| − η↓ ⊗ |ϕ↓|, where | · |
means | · |L2(Q,dµ)+ , that is, the standard absolute value. Let φn = φ($)χ{|φ($)|6n}.
Since φn is a real multiplication operator, we obtain

〈|ϕ|P̂SB
, σ3 ⊗ φn|ϕ|P̂SB

〉 = 〈|ϕ↑|, φn|ϕ↑|〉 − 〈|ϕ↓|, φn|ϕ↓|〉
= 〈ϕ↑, φn ϕ↑〉 − 〈ϕ↓, φn ϕ↓〉 = 〈ϕ, σ3 ⊗ φn ϕ〉.

Thus applying Theorem 2.7, we obtain the desired assertion.
(ii) Note first that u, v ∈ P̂SB have representations u = η↑ ⊗ u↑ − η↓ ⊗ u↓

and v = η↑ ⊗ v↑ − η↓ ⊗ v↓ with u↑, u↓, v↑, v↓ ∈ L2(Q, dµ)+. Thus 〈u, v〉 = 0 if and
only if 〈u↑, v↑〉 = 0 = 〈u↓, v↓〉 which means u↑v↑ = 0 = u↓v↓ µ-a.e. Hence, for
N = 2m, we have

〈u, (σ3 ⊗ φn)Nv〉 = 〈u↑, φ2m
n v↑〉+ 〈u↓, φ2m

n v↓〉 = 0.

Similarly, for N = 2m + 1, we have

〈u, (σ3 ⊗ φn)Nv〉 = 〈u↑, φ2m+1
n v↑〉 − 〈u↓, φ2m+1

n v↓〉 = 0.

Thus we conclude the desired result.
(iii) For all n ∈ N, ĤSB and Ĥ0 + V̂n are self-adjoint on a common domain

dom(1l⊗ dΓ(ω)), and for all ϕ ∈ dom(1l⊗ dΓ(ω)), we see that (Ĥ0 + V̂n)ϕ →
ĤSB ϕ strongly as n → ∞. Applying Theorem VIII. 25(a) of [33], we obtain that
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Ĥ0 + V̂n converges to ĤSB in the strong resolvent sense. Similarly we can show
the remainder assertion.

For the proof of Theorem 5.1 note Lemmas 5.3 and 5.4. We can apply Theo-
rem 2.14 and conclude that 0 � e−tĤSB with respect to P̂SB.

6. FRÖHLICH POLARON WITHOUT ULTRAVIOLET CUTOFFS

6.1. MAIN RESULTS IN SECTION 6. For each P ∈ R3, the Fröhlich polaron Hamil-
tonian of a fixed total momentum P with an ultraviolet cutoff κ is defined by

Hκ(P) =
1
2
(P− Pf)2 +

√
αλ0

∫
|k|6κ

dk
(2π)3/2|k|

[a(k) + a(k)∗] + Nf

which is acting in F(L2(R3
k)), where λ0 = (2

√
2π)1/2 and Pf is the field momen-

tum operator defined by Pf = (Pf,1, Pf,2, Pf,3) = (dΓ(k1), dΓ(k2), dΓ(k3)). Ap-
plying the bound ‖a( f )#(Nf + 1l)−1/2‖ 6 ‖ f ‖ and the Kato–Rellich theorem,
Hκ(P) is self-adjoint on dom(P2

f ) ∩ dom(Nf) and bounded from below for all
κ < ∞, P ∈ R3 and α < ∞.

PROPOSITION 6.1. For all P ∈ R3, there exists a self-adjoint operator H(P) such
that Hκ(P) converges to H(P) in the strong resolvent sense as κ → ∞.

REMARK 6.2. Applying the arguments in [1], we can show the norm resol-
vent convergence. In this note, the strong convergence is enough for our purpose.
This remark also goes to Propositions 6.5, 7.1 and 7.4.

For the proof see Appendix A.
Let p=L2(R3

k)+. In this case we can define a self-dual cone F(p) in F(L2(R3
k)).

THEOREM 6.3. For all P ∈ R3 and t > 0,we have 0 � eiπNfe−tH(P)e−iπNf with
respect to F(p).

Let lk be the angular momentum operators in L2(R3
k) given by lk = k ×

(−i∇k) and let Lf be its second quantization: Lf = dΓ(lk).

THEOREM 6.4. For |P|<
√

2, H(P) has a unique ground state ϕP such that eiπNf ϕP
is strictly positive with respect to F(p). Moreover ϕP has the following properties:

(i) For all θ ∈ R and ω ∈ S2 = {ω ∈ R3 : |ω| = 1}, we have eiθω·Lf ϕ0 = ϕ0.
(ii) Let P 6= 0 with |P| <

√
2. Then, for all θ ∈ R, we have eiθωP ·Lf ϕP = ϕP with

ωP = P/|P|.

6.2. PROOF OF THEOREM 6.3. Let $m(k) = e−|k|/m for m > 0 and define a new
Hamiltonian

H$m(P) =
1
2
(P− Pf)2 +

√
αλ0

∫
R3

dk
$m(k)

(2π)3/2|k|
[a(k) + a(k)∗] + Nf.
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H$m(P) is self-adjoint on dom(P2
f ) ∩ dom(Nf), bounded from below. In Appen-

dix A, we show the following.

PROPOSITION 6.5. For all P ∈ R3 and α < ∞, H$m(P) converges to H(P) in
the strong resolvent sense as m→ ∞.

Let us define Ĥ$m(P) = eiπNf H$m(P) e−iπNf and Ĥ(P) = eiπNf H(P) e−iπNf .
We can easily check that, for m > 0,

Ĥ$m(P) =
1
2
(P− Pf)2 −

√
αλ0

∫
R3

dk
$m(k)

(2π)3/2|k|
[a(k) + a(k)∗] + Nf.(6.1)

LEMMA 6.6. Let

L(P) =
1
2
(P− Pf)2 + Nf and Bm =

√
αλ0

∫
R3

dk
$m(k)

(2π)3/2|k|
a(k).

(i) For all P ∈ R3 and t > 0, we have 0 � e−tL(P) with respect to F(p).
(ii) For all m > 0, we have 0 � Bm, B∗m with respect to F(p).

(iii) For each m > 0, P ∈ R3 and t > 0, we have 0 � e−tĤ$m (P) with respect to F(p).

Proof. (i) Note that, for all ϕ ∈ ⊗n
s L2(R3

k)∩dom(P2
f ), 〈|ϕ|⊗n

s p, L(P)|ϕ|⊗n
s p〉 =

〈ϕ, L(P)ϕ〉. Thus, by Theorem 2.7, we have 0 � e−tL(P) � ⊗n
s L2(R3

k) with respect
to ⊗n

s p for all n ∈ N0. By Proposition 2.18, we conclude that 0 � e−tL(P) with
respect to F(p).

(ii) This is a direct consequence of Theorem 3.3(iii).
(iii) Note that, B#

m is infinitesimally small with respect to L(P). Therefore,
noting (i) and (ii), we can apply Theorem 2.10 with A = L(P) and B = −Bm −
B∗m.

LEMMA 6.7. For all ϕ ∈ (⊗p
s p)\{0} and ψ ∈ (⊗q

sp)\{0}, there exists an N ∈
N0 such that 〈ϕ, (Bm + B∗m)Nψ〉 > 0.

Proof. By Theorem 3.3(v), for each n ∈ N, we have

(Bm+B∗m)2n �⊗n
s L2(R3

k)�(B∗mBm)n �⊗n
s L2(R3

k)�⊗
n|ξm〉〈ξm| with respect to ⊗n

s p

where ξm(k) =
√

αλ0$m(k)/(2π)3/2|k|. Also note that Bn
m ⊗n

s ξm =
√

(n + 1)!
‖ξm‖2nΩ. Thus, for Ψ ∈ ⊗n

s p, we have

(Bm + B∗m)3nΨ > Bn
m(B∗mBm)nΨ > 〈⊗n

s ξm, Ψ〉Bn
m ⊗n

s ξm

=
√

(n + 1)!〈⊗n
s ξm, Ψ〉‖ξm‖2nΩ with respect to F(p).

Since 0 < ξm with respect to p, we have 〈⊗n
s ξm, Ψ〉 > 0 if Ψ 6= 0. Thus 〈ϕ, (Bm +

B∗m)3p+3qψ〉 >
√

(p + 1)!
√

(q + 1)!〈ϕ,⊗p
s ξm〉〈⊗q

s ξm, ψ〉‖ξm‖2p+2q > 0.

PROPOSITION 6.8. For any m > 0, P ∈ R3 and t > 0, we have 0 � e−tĤ$m (P)

with respect to F(p).
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The proof follows by Lemmas 6.6 and 6.7, and we can apply Theorem 2.15.

LEMMA 6.9. One has the following:
(i) For each m, n, one has

dom(Ĥ$m(P)) = dom(Ĥ$n(P)) = dom(P2
f ) ∩ dom(Nf).

(ii) For m, n with n > m, one has Ĥ$m(P)− Ĥ$n(P) � 0 with respect to F(p).

Proof. (i) is trivial. As to (ii), we remark that

Ĥ$m(P)− Ĥ$n(P) = (Bn − Bm) + (B∗n − B∗m).

Since $m 6 $n with respect to p, one sees that Bn − Bm � 0 and B∗n − B∗m � 0 with
respect to F(p).

Proof of Theorem 6.3 follows by Proposition 6.8 and Lemma 6.9, and we can
apply Theorem 2.16.

6.3. PROOF OF THEOREM 6.4. First we note H. Spohn’s result [43] (see also [29]):

inf ess.spec(Hκ(P))− inf spec(Hκ(P)) = inf spec(Hκ(0))− inf spec(Hκ(P)) + 1

for all κ < ∞ and P ∈ R3. Also note the following inequality

inf spec(Hκ(P)) 6 inf spec(Hκ(0))− P2

2

for all κ < ∞ and P ∈ R3, see e.g., [14]. Applying Propositions A.1 and A.4 we
arrive at

inf ess.spec(H(P))− inf spec(H(P)) = inf spec(H(0))− inf spec(H(P)) + 1

and

inf spec(H(P)) 6 inf spec(H(0))− P2

2
.

Now we have a unique ground state ϕP with |P| <
√

2 by Theorem 6.3. On the
other hand, 0 � eiθω·Lf with respect to F(p) because 0 � eiθω·lk with respect to p.
For θ ∈ R and ω ∈ S2, let g(θ, ω) ∈ SO(3) be the rotation around ω with angle θ.
We can confirm that eiθω·Lf Hκ(P)e−iθω·Lf = Hκ(g(θ, ω)−1P) which is equivalent
to eiθω·Lf eisHκ(P)e−iθω·Lf = eisHκ(g(θ,ω)−1P) for all s ∈ R. Taking κ → ∞ and ap-
plying Propositions A.1 and A.4, we have eiθω·Lf eisH(P)e−iθω·Lf = eisH(g(θ,ω)−1P).
Now we obtain the following: (a) eiθω·LfeisH(0)e−iθω·Lf = eisH(0), (b) for P 6= 0,
eiθωP ·Lf eisH(P)e−iθωP ·Lf = eisH(P) where ωP = P/|P|. Accordingly we can apply
Propoistion 2.13 to conclude the result.
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7. FRÖHLICH BIPOLARON WITHOUT ULTRAVIOLET CUTOFFS

7.1. MAIN RESULTS IN SECTION 7. The Hamiltonian of the Fröhlich bipolaron of
a fixed total momentum P with an ultraviolet cutoff κ is defined by

Hbp,κ(P) =
1
4
(P− 1l⊗ Pf)2 +

(
−∆x +

Uα

|x|

)
⊗ 1l + 1l⊗ Nf

+ 2
√

αλ0

∫
|k|6κ

dk
(2π)3/2|k|

cos(k · x/2)⊗ [a(k) + a(k)∗]

which is acting in L2(R3
x) ⊗ F(L2(R3

k)), with P ∈ R3, 0 6 α < ∞, 0 6 U and
λ0 = (2

√
2π)1/2. The field-particle interaction term is understood as follows: For

each x ∈ R3, let us introduce A(x) =
∫
|k|6κ

dk
(2π)3/2|k| cos(k · x/2)a(k). Then under

the identification L2(R3
x)⊗ F(L2(R3

k)) =
⊕∫

R3
x

F(L2(R3
k)) dk, we can define a closed

operator A =
⊕∫

R3
x

A(x) dx via similar arguments in Example 2.21. From this view

point, the interaction term is given by 2
√

αλ0(A + A∗).
By the bounds ‖a( f )#(Nf + 1l)−1/2‖ 6 ‖ f ‖ and ‖|x|−1 ϕ‖ 6 ε‖∆x ϕ‖ +

bε‖ϕ‖, ϕ ∈ dom(∆x) for any ε > 0, we can apply the Kato–Rellich theorem, and
conclude that Hbp,κ(P) is self-adjoint on dom(∆x ⊗ 1l)∩ dom(1l⊗ Nf)∩ dom(1l⊗
P2

f ), bounded from below for all P ∈ R3, 0 6 U < ∞, 0 6 α < ∞ and κ < ∞. In
our previous work [28], we have shown the following.

PROPOSITION 7.1. For all P ∈ R3, 0 6 U < ∞ and 0 6 α < ∞, there exists
a self-adjoint operator Hbp(P), bounded from below, such that Hbp,κ(P) converges to
Hbp(P) in the strong resolvent sense as κ → ∞.

Let F : L2(R3
k) → L2(R3

y) be the Fourier transformation on L2(R3
k), where

L2(R3
y) is the configuration L2-space. Then Γ(F ) is a unitary operator from

F(L2(R3
k)) onto F(L2(R3

y)). Let px := L2(R3
x)+ be a self-dual cone in L2(R3

x) and
let py := L2(R3

y)+ be a self-dual cone in L2(R3
y). Now we choose the following

self-dual cone in L2(R3
x)⊗ F(L2(R3

y)):

px ⊗ F(py) := {ϕ ∈ L2(R3
x)⊗ F(L2(R3

y)) : 〈ϕ, u⊗ v〉 > 0 ∀u ∈ px∀v ∈ F(py)}.

Note that, under the identification L2(R3
x) ⊗ F(L2(R3

y)) =
⊕∫

R3
x

F(L2(R3
y)) dx, we

obtain px ⊗ F(py) =
⊕∫

R3
x

F(py) dx.
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THEOREM 7.2. Let us define ϑ = 1l⊗ eiπNf Γ(F ). For all 0 6 U < ∞, 0 < t and
α < ∞, we have 0 � ϑe−tHbp(0)ϑ∗ with respect to px ⊗ F(py).

Let us define the binding energy by

Ebin(α, U) = 2 inf spec(H(0))− inf spec(Hbp(0)),

where H(0) is the Fröhlich polaron Hamiltonian of 0 total momentum without
ultraviolet cutoffs discussed in Section 6. If Ebin(α, U) > 0 holds, then we say that
the binding condition is satisfied. A set of (α, U) satisfying the binding condition
is denoted by Λbin. Namely

Λbin = {(α, U) ∈ R+ ×R+ : Ebin(α, U) > 0}.

THEOREM 7.3. Assume that (α, U) ∈ Λbin. Then there exists a Pc > 0 such that
Hbp(P) has a nondegenerate ground state ϕP for |P| < Pc. Moreover we can choose ϕ0
such that ϑϕ0 is strictly positive with respect to px ⊗ F(py). Let Ltot = lx ⊗ 1l + 1l⊗ Lf
be the total angular momentum operator. Then we obtain the following:

(i) eiφω·Ltot ϕ0 = ϕ0 for all ω ∈ S2 and φ ∈ R.
(ii) For P 6=0 with |P|< Pc, set ωP = P/|P|. Then eiφωP ·Ltot ϕP= ϕP for all φ∈R.

7.2. PROOF OF THEOREM 7.2. Let us consider a new Hamiltonian

Hbp,$m(P) =
1
4
(P− 1l⊗ Pf)2 +

(
−∆x +

αU
|x|

)
⊗ 1l + 1l⊗ Nf

+ 2
√

αλ0

∫
R3

k

dk
$m(k)

(2π)3/2|k|
cos(k · x/2)⊗ [a(k) + a(k)∗]

with $m(k) = e−|k|/m, m > 0. Let b(y) and b(y)∗ be the annihilation and cre-
ation operators in the configuration Fock space F(L2(R3

y)). Then, the transformed
Hamiltonian Ĥbp,$m(P) = ϑHbp,$m(P)ϑ∗ is given by

Ĥbp,$m(P)=
1
4
(P−1l⊗P̂f)2+

(
−∆x+

αU
|x|

)
⊗1l+1l⊗N̂f−

∫
R3

y

dyGm(x, y)⊗[b(y)+b(y)∗],

where P̂f = dΓ(−i∇y), N̂f is the number operator on F(L2(R3
y)) and

Gm(x, y) =
√

αλ0

8π2

{ 1
(y + x/2)2 + 1/m2 +

1
(y− x/2)2 + 1/m2

}
.

PROPOSITION 7.4. Let Ĥbp(P) = ϑHbp(P)ϑ∗. Then Ĥbp,$m(P) converges to
Ĥbp(P) in the strong resolvent sense as m→ ∞.

This can be proven by modifying arguments in Appendix A of [28].
Note first that, under the natural identification: L2(R3

x) ⊗ F(L2(R3
y)) =

∞⊕
n=0

L2(R3
x) ⊗ L2

sym(R3n
y ), we have that px ⊗ F(py) =

∞⊕
n=0

Pn with Pn = px ⊗
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(⊗n
s py). Let En be the orthogonal projection onto L2(R3

x) ⊗ L2
sym(R3n

y ), then En

and E⊥n are both positivity preserving with respect to px ⊗ F(py).

LEMMA 7.5. Let L̂bp(P) = 1
4 (P− 1l⊗ P̂f)2 +

(
−∆x + αU

|x|

)
⊗ 1l + 1l⊗ N̂f and

let Cm =
⊕∫

R3
x

Cm(x) dx with Cm(x) =
∫
R3

y

dy Gm(x, y)b(y). Then we have the following

properties:

(i) 0 � e−tL̂bp(0) with respect to px ⊗ F(py) for all t > 0.
(ii) 0 � Cm and 0 � C∗m with respect to px ⊗ F(py).

(iii) 0 � e−tĤbp,$m (0) with respect to px ⊗ F(py) for all t > 0 and m > 0.

Proof. (i) Since L̂bp(0) is reduced by L2(R3
x) ⊗ L2

sym(R3n
y ) for all n ∈ N0, it

sufficies to show that 0 � e−tL̂bp(0) � L2(R3
x)⊗ L2

sym(R3n
y ) with respect to Pn for

all n ∈ N0 by Proposition 2.8. Note first that e−tP̂2
f � L2

sym(R3n
y ) = e−t(∑n

j=1(−i∇yj ))
2

and clearly the right hand side is positivity preserving with respect to ⊗n
s py. On

the other hand, with the notation h = −∆x + Uα/|x|, we have e−th � 0 for all t >

0. Thus e−tL̂bp(0) � L2(R3
x)⊗ L2

sym(R3n) = e−th ⊗ e−t{(∑n
j=1(−i∇yj ))

2+n}
� 0 ∀t > 0.

(ii) Note that Gm(x, y) > 0 ∀x, y. Hence, for all x ∈ R3
x, we have 0 � Cm(x)

and 0 � Cm(x)∗ with respect to F(py) by Theorem 3.3(iii). Thus we have the de-
sired result by Proposition 2.20.

(iii) This is a direct consequence of Theorem 2.10.

PROPOSITION 7.6. For all m > 0 and t > 0, we have 0 � e−tĤbp,$m (0) with
respect to px ⊗ F(py).

Proof. Choose ϕ, ψ ∈ (px ⊗ F(py))\{0}. Then there exist p, q ∈ N0 such that
ϕ(p) ∈ Pp\{0} and ψ(q) ∈ Pq\{0}. Let

A(n)
ψ(p),ϕ(q)(s1, . . . , sn; t)=〈ψ(p), e−s1 L̂bp(0)(Cm+C∗m)· · ·(Cm+C∗m)e−(t−∑n

j=1 sj)L̂bp(0)
ϕ(q)〉.

Taking Theorem 2.15 into consideration, it suffices to show

A(p+q)
ψ(p),ϕ(q)(0, . . . , 0, sp, 0, . . . , 0; t) > 0

for any 0 < sp 6 t. To this end, observe that

A(p+q)
ψ(p),ϕ(q)(0, . . . , 0, sp, 0, . . . , 0; t)

> 〈e−sp L̂bp(0)/2Cp
mψ(p), e−sp L̂bp(0)/2Cq

me−(t−sp)L̂bp(0)ϕ(q)〉.(7.1)

For any x ∈ R3
x we have

(Cp
mψ(p))(x) =

√
(p + 1)!〈ψ(p)(x, ·),⊗p

s Gm(x, ·)〉F(L2(R3
y))
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=
√

(p + 1)!
∫

dy1 · · ·dyp ψ(p)(x, y1, . . . , yn)Gm(x, y1) · · ·Gm(x, yp).

Since Gm(x, y) > 0 ∀x, y ∈ R3, we conclude that Cp
mψ(p) ∈ px\{0} as a function

on R3
x. Let h = −∆x + Uα/|x|. Since 0 � e−th with respect to px = P0 for all t > 0,

we obtain e−sp L̂bp(0)/2Cp
mψ(p) = e−sph/2Cp

mψ(p) > 0 with respect to px. Similarly

e−sp L̂bp(0)/2Cq
me−(t−sp)L̂bp(0)ϕ(q) > 0 with respect to px. Thus the right hand side

of (7.1) is strictly positive.

For the proof of Theorem 7.2 choose m, n as n > m. Then one can check
the all conditions in Theorem 2.16. (Remark that Ĥbp,$m(0)− Ĥbp,$n(0) = (Cn −
Cm) + (C∗n − C∗m) � 0 because Gn(x, y) > Gm(x, y).)

7.3. PROOF OF THEOREM 7.3.

PROPOSITION 7.7. There exists a Pc > 0 such that, for |P| < Pc, Hbp(P) has a
unique ground state ϕP. Moreover ϑϕ0 is strictly positive with respect to px ⊗ F(py).

Proof. In [28], it has been established that

inf ess.spec(Hbp(P))− inf spec(Hbp(P)) > min{1, Ebin(α, U)} − P2

4
.

Thus Hbp(P) has a ground state ϕP for |P| < 2 min{
√

Ebin(α, U), 1} under the
binding condition (α, U) ∈ Λbin. By Theorem 7.2, ϕ0 is nondegenerate and ϑϕ is
strictly positive with respect to px ⊗ F(py).

Fix ω ∈ S2 arbitrarily. Then Hbp(βω) is an analytic family of type (B)
with respect to β ∈ C by Lemma B.1. In particular Hbp(βω) is an analytic
family in the sense of Kato [35]. Set E(P) = inf spec(Hbp(P)) and take ε > 0
as ε < dist{E(0), spec(Hbp(0))\{E(0)}}. Then we can choose Pc > 0 so that
E /∈ spec(Hbp(βω)) if |E− E(0)| = ε and |β| < Pc. Then

P(β) = −(2πi)−1
∮

|E−E(0))|=ε

dE (Hbp(βω)− E)−1

exists and is analytic for β with |β| 6 Pc. Hence dim ran(P(|P|)) = 1 for |P| < Pc
because dim ran(P(0)) = 1. Since ω is arbitrary, we have the desired result.

PROPOSITION 7.8. One has the following properties:
(i) eiφω·Ltot ϕ0 = ϕ0 for all ω ∈ S2 and φ ∈ R.

(ii) For P 6= 0 with |P| < Pc, set ωP = P/|P|. Then eiφωP ·Ltot ϕP = ϕP for all
φ ∈ R.

Proof. (i) Observe that 0 � eiφω·Ltot with respect to px ⊗ F(py) for all φ ∈ R
and ω ∈ S2. In addition, we see that eiφω·LtoteisĤbp,ρm (0)e−iφω·Ltot = eisĤbp,ρm (0)

for all φ, s and ω. Thus one concludes that Ĥbp(0) commutes with eiφω·Ltot by
taking m → ∞. Now we can apply Proposition 2.13 and conclude the rotational
symmetry of the ground state ϕ0.
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(ii) The basic idea of our proof is essentially comming from [23]. First note
that spec(ωP · Ltot) = Z. Thus we have the decomposition:

L2(R3
x)⊗ F(L2(R3

k)) =
∞⊕

n=−∞
Hn(P) withHn(P) = ker(ωP · Ltot − n).

We also remark that eiφωP ·Ltot Hbp(P)e−iφωP ·Ltot = Hbp(P). (Indeed we can check
the similar relation for any finite ultraviolet cutoff. Hence we can extend the
result to the above one by Proposition 7.1.) Accordingly the Hamiltonian Hbp(P)
has a corresponding decomposition:

Hbp(P) =
∞⊕

n=−∞
H(n)

bp (P) with H(n)
bp (P) = Hbp(P) � Hn(P).

Step 1. We will show that, for any n ∈ Z\{0}, there exists a unitary operator
Un(P) fromHn(P) toH−n(P) such that

Un(P)H(n)
bp (P)Un(P)∗ = H(−n)

bp (P).

It suffices to consider the case P0 = (0, 0, |P|) because we have the following
relation:

eiφω·Ltot Hbp(P)e−iφωP ·Ltot = Hbp(g−1(φ, ω)P)

for all φ ∈ R and ω ∈ S2, where g(φ, ω) ∈ SO(3) is the rotation around ω
with angle φ. Let uq be a unitary operator on L2(R3

q) given by (uq f )(q1, q2, q3) =
f (−q1, q2, q3) for f ∈ L2(R3

q). Then, with ω0 := ωP0 = (0, 0, 1), we see that
ux ⊗ Γ(uk)(ω0 · Ltot)u∗x ⊗ Γ(uk)∗ = −ω0 · Ltot which means ux ⊗ Γ(uk)Hn(P0) =
H−n(P0) for all n. Moreover it is verified that ux ⊗ Γ(uk)Hbp(P0)u∗x ⊗ Γ(uk)∗ =
Hbp(P0). (For the proof check first the above relation with finite cutoffs, then
extend the result to the case without cutoffs by Proposition 7.1.) Thus by setting
Un(P0) = ux ⊗ Γ(uk), we have the desired result.

Step 2. We will prove the rotation symmetry in (ii). Since ϕP is a unique
ground state, it must belong to Hn(P) for some n ∈ Z. If n 6= 0, Un(P)ϕP is
ground state for Hbp(P) too and in H−n(P) by Step 1. This means Hbp(P) has at
least two ground states ϕP and Un(P)ϕP which contradicts the uniqueness. Thus
n must be 0: ωP · Ltot ϕP = 0. This completes the proof.

Appendix A. REMOVAL OF ULTRAVIOLET CUTOFFS. I

The basic idea in this appendix is essentially due to Nelson [31]. For ρ ∈
E := {ρ ∈ L∞(R3

k) : 0 6 ρ(k) 6 1 a.e. k and ρ(k)/|k| ∈ L2(R3
k)}, we introduce

Hρ(P) =
1
2
(P− Pf)2 +

√
αλ0

∫
R3

k

dk
ρ(k)

(2π)3/2|k|
[a(k) + a(k)∗] + Nf.
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Then, by the Kato–Rellich theorem, Hρ(P) is self-adjoint on dom(Nf) ∩ dom(P2
f )

and bounded from below, for all 0 6 α < ∞, P ∈ R3 and ρ ∈ E . Let

TK,ρ =
∫
R3

k

dk βK,ρ(k)[a(k)−a(k)∗], βK,ρ(k)=−
√

αλ0

(2π)3/2
ρ(k)

|k|(1+k2/2)
(1−χK(k)),

where χK(k) = 1 if |k| < K, χK(k) = 0 otherwise. Then TK,ρ is essentially skew-
adjoint: T∗K,ρ = −T∗∗K,ρ. Henceforth we denote the closure of TK,ρ by the same
symbol (hence TK,ρ is skew-adjoint). Using the formula

eTK,ρ a(k)e−TK,ρ = a(k) + βK,ρ(k),

we obtain

〈ϕ, H̃K,ρ(P)ψ〉 = 〈ϕ, eTK,ρ Hρ(P)e−TK,ρ ψ〉 = 〈ϕ, H0(P)ψ〉+ BK,ρ(ϕ, ψ)

for each ϕ, ψ∈dom(H0(P)1/2)×dom(H0(P)1/2), where H0(P)=(1/2)(P−Pf)2+
Nf and

BK,ρ(ϕ, ψ)

=−〈(P− Pf)ϕ, AK,ρψ〉 − 〈AK,ρ ϕ, (P− Pf)ψ〉

+
1
2
〈AK,ρ ϕ, A∗K,ρψ〉+ 1

2
〈A∗K,ρ ϕ, AK,ρψ〉+〈AK,ρ ϕ, AK,ρψ〉+〈ϕ, HIKψ〉+EK,ρ〈ϕ, ψ〉

with

AK,ρ =
∫
R3

k

dk kβK,ρ(k)a(k), HIK =
√

αλ0

∫
|k|6K

dk
(2π)3/2|k|

[a(k) + a(k)∗],

EK,ρ = −αλ2
0

∫
|k|6K

dk
ρ(k)2

(2π)3|k|2(1 + k2/2)
.

PROPOSITION A.1. Assume that ρ ∈ E . Then, the following operator identity
holds for all P ∈ R3 and 0 6 K < ∞:

eTK,ρ Hρ(P)e−TK,ρ =H0(P)− (P− Pf) · AK,ρ − A∗K,ρ · (P− Pf)

+
1
2

A∗K,ρ · A∗K,ρ +
1
2

AK,ρ · AK,ρ + A∗K,ρ · AK,ρ + HIK + EK,ρ.(A.1)

Proof. Let us denote the right hand side of (A.1) byHK,ρ(P). Then, by the in-
eqaulities ‖a( f )#(Nf + 1l)−1/2‖ 6 ‖ f ‖ and ‖a( f )#1 a(g)#2(Nf + 1l)−1‖ 6 C‖ f ‖‖g‖,
we have ‖HK,ρ(P)ϕ‖ 6 const.(‖H0(P)ϕ‖ + ‖ϕ‖) ∀ϕ ∈ dom(H0(P)) under the
assumption |k|ρ(k)/(1 + k2/2) ∈ L2(R3

k), because, in order to estimate the term
Pf · AK,ρ ϕ, we used the commutation relation between Pf and AK,ρ which induces
an extra term

∫
dk k2βK,ρ(k)a(k)ϕ. Thus we have

‖Hρ(P)eTK,ρ ϕ‖ = ‖eTK,ρ Hρ(P)e−TK,ρ ϕ‖ 6 const.(‖H0(P)ϕ‖+ ‖ϕ‖)(A.2)
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for all ϕ ∈ Ffin(C∞
0 (R3

k)). Since dom(Hρ(P)) = dom(H0(P)), we have

‖H0(P)e−TK,ρ ϕ‖ 6 const.(‖H0(P)ϕ‖+ ‖ϕ‖)

for all ϕ ∈ Ffin(C0(R3
k)) by the closed graph theorem and (A.2). Hence we con-

clude that e−TK,ρ dom(H0(P))⊆dom(H0(P)). Similarly we have eTK,ρ dom(H0(P))
⊆ dom(H0(P)). Summarizing the results, we have dom(eTK,ρ Hρ(P)e−TK,ρ) =
dom(eTK,ρ H0(P)e−TK,ρ) = dom(H0(P)) = dom(Hρ(P)). Since eTK,ρ Hρ(P)e−TK,ρ =
HK,ρ(P) on Ffin(C∞

0 (R3
k)) which is a core for eTK,ρ Hρ(P)e−TK,ρ , we have the oper-

ator equality (A.1).

Let E0 := {ρ ∈ L∞(R3
k) : 0 6 ρ(k) 6 1 a.e. k}. Even if ρ /∈ E but ρ ∈ E0,

the linear operators AK,ρ and TK,ρ are well-defined because βK,ρ and |k|βK,ρ are
in L2(R3

k). Hence the form BK,ρ(·, ·) is also well-defined on dom(H0(P)1/2) ×
dom(H0(P)1/2) in this case: ρ ∈ E0\E .

LEMMA A.2. Let ρ ∈ E0. There exists 0 < Cε,K < ∞, for any ε > 0 and
ϕ ∈ dom(H0(P)1/2) = dom(H0(0)1/2), such that

|Bk,ρ(ϕ, ϕ)| 6 (4C(K)2 + 2C(K) + ε)‖(H0(P) + 1l)1/2 ϕ‖2 + Cε,K‖ϕ‖2

with

C(K)2 =
∫
|k|>K

dk
αλ2

0
(2π)3(1 + k2/2)2 .

Proof. For each ϕ ∈ dom(H0(P)1/2), we have

‖(P− Pf)ϕ‖ 6 ‖(H0(P) + 1l)1/2 ϕ‖, ‖A#
K,ρ ϕ‖ 6 C(K)‖(H0(P) + 1l)1/2 ϕ‖.

Using these formulas, we obtain

|〈(P− Pf)ϕ, AK,ρ ϕ〉| 6 2C(K)‖(H0(P) + 1l)1/2 ϕ‖2,

|〈A#1
K,ρ ϕ, A#2

K,ρ ϕ〉| 6 C(K)2‖(H0(P) + 1l)1/2 ϕ‖2,

|〈ϕ, HIK ϕ〉| 6 ε‖(H0(P) + 1l)1/2 ϕ‖2 +
4
ε

C2(K)‖ϕ‖2.

By these estimates, we obtain the result.

Choose K sufficiently large as 4C(K)2 + 2C(K) < 1. Then, by the above
lemma and the KLMN theorem [34], there exists a unique self-adjoint operator
H̃K,ρ(P) such that, for every ρ ∈ E0,

〈ϕ, H̃K,ρ(P)ϕ〉 = 〈ϕ, H0(P)ϕ〉+ BK,ρ(ϕ, ϕ).

LEMMA A.3. For ρ1, ρ2 ∈ E0, we obtain

|BK,ρ1(ϕ, ϕ)− BK,ρ2(ϕ, ϕ)|

6{4C(ρ1−ρ2; K)2+4C(K)C(ρ1−ρ2; K)+|EK,ρ1−EK,ρ2 |}×‖(H0(P)+1l)1/2 ϕ‖2,
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where

C(ρ1 − ρ2; K)2 = αλ2
0

∫
|k|>K

dk
(ρ1(k)− ρ2(k))2

(2π)3(1 + k2/2)2 .

By the similar arguments in the proof of Lemma A.2, we see the result in the
lemma.

As a corollary of the above lemma, we obtain the following.

PROPOSITION A.4. Let ρn ∈ E0 be a sequence such that ρn(k) → 1 a.e. k as
n → ∞. For K with 4C(K)2 + 2C(K) < 1, H̃K,ρn(P) converges to H̃K,1(P) as n → ∞
in the norm resolvent sense. Moreover

lim
n→∞

inf spec(H̃K,ρn(P)) = inf spec(H̃K,1(P)),

lim
n→∞

inf ess.spec(H̃K,ρn(P)) = inf ess.spec(H̃K,1(P)).

Proof. By Lemma A.3, we can show the following:

lim
n→∞

BK,ρn(ϕ, ϕ) = BK,1(ϕ, ϕ)

uniformly on any set of ϕ in dom(H0(P)1/2) for which ‖(H0(P) + 1l)1/2 ϕ‖ is
bounded. Thus applying Theorem VIII.25 of [34], we see that H̃K,ρn(P) converges
to H̃K,1(P) as n→ ∞ in the norm resolvent sense.

By Lemma A.3, we have H̃K,ρn(P) 6 H̃K,1(P) + Dn(H0(P) + 1l) with lim
n→∞

Dn

= 0. On the other hand, by Lemma A.2, one has H0(P) + 1l 6 C(H̃K,ρn(P) + 1l)
with C independent of n. Summarizing these inequalities, one arrives at H̃K,ρn(P)
6 H̃K,1(P)+CDn(H̃K,ρn(P)+1l). By exchanging the roles of H̃K,ρn(P) and H̃K,1(P),
one also obtains H̃K,1(P) 6 H̃K,ρn(P) + CDn(H̃K,1(P) + 1l). Combining these es-
timates and the min-max principle Theorem XIII.2 of [35], we can conclude the
remainder assertions.

Proof of Propositions 6.1 and 6.5. Choose ρ as ρ = χκ . Set K as 4C(K)2 +
2C(K) < 1. Then, by Proposition A.1, we have

eTK,χκ Hκ(P)e−TK,χκ = H̃K,χκ (P).(A.3)

Let H(P) = e−TK,1 H̃K,1eTK,1 . Since e±TK,χκ strongly converges to e±TK,1 , we can
show Proposition 6.1 by (A.3) and Proposition A.4. Similarly we can prove Propo-
sition 6.5.

Appendix B. REMOVAL OF ULTRAVIOLET CUTOFFS. II

In the case of the bipolaron, ultraviolet cutoffs can be removed as we did in
Appendix A. In this appendix, we will explain how to carry out this briefly. For
more details we refer to [28].



238 TADAHIRO MIYAO

For ρ ∈ E , we introduce

Hbp,ρ(P) =
1
4
(P− 1l⊗ Pf)2 +

(
−∆x +

Uα

|x|

)
⊗ 1l + 1l⊗ Nf

+ 2
√

αλ0

∫
R3

k

dk
(2π)3/2|k|

ρ(k) cos(k · x/2)⊗ [a(k) + a(k)∗].

Let

Wρ,K = exp
{

∑
j=1,2

∫
dk βK,ρ(k)[eik·(−1)j−1x/2 ⊗ a(k)− e−ik·(−1)j−1x/2 ⊗ a(k∗)]

}
.

A direct calculation yields WK,ρ Hbp,ρ(P)W∗K,ρ = H̃bp
K,ρ(P) with

H̃bp
K,ρ(P) =

1
4
(P− 1l⊗ Pf)2 −∆x ⊗ 1l +

αU
|x| ⊗ 1l + 1l⊗ Nf

+ ∑
j=1,2

{
−
[
(−1)j−1(−i∇x)⊗ 1l +

1
2
(

P− 1l⊗ Pf
)]
· AK,ρ

(
(−1)j−1 x

2

)
− AK,ρ

(
(−1)j−1 x

2

)∗
·
[
(−1)j−1(−i∇x)⊗ 1l +

1
2
(

P− 1l⊗ Pf
)]

+
1
2

AK,ρ

(
(−1)j−1 x

2

)2
+

1
2

AK,ρ

(
(−1)j−1 x

2

)∗2
+ AK,ρ

(
(−1)j−1 x

2

)∗
· AK,ρ

(
(−1)j−1 x

2

)}
+ 2
√

αλ0

∫
|k|6K

dk
(2π)3/2|k|

ρ(k) cos(k · x/2)⊗ [a(k) + a(k)∗]

+ VK,ρ(x)⊗ 1l + EK,ρ,(B.1)

where

AK,ρ(x) =
∫
R3

k

dk kβK,ρ(k)eik·x ⊗ a(k),

VK,ρ(x1 − x2) = ∑
i 6=j

∫
R3

k

dk
{

βK,ρ(k)2 +
2
√

αλ0

(2π)3/2|k|
βK,ρ(k)

}
e−ik·(xi−xj),

EK,ρ =− 2αλ2
0

∫
K6|k|

dk
ρ(k)2

(2π)3(1 + k2/2)|k|2 .

Even for ρ ∈ E0, the right hand side of (B.1) can be defined as the self-adjoint
operator associated with the form for sufficiently large K. Moreover by noting
the fact 1 ∈ E0, the Hamiltonian without ultraviolet cutoff Hbp(P) is concretely
given by

Hbp(P) = WK,1H̃bp
K,1(P)W∗K,1
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with K sufficiently large. The arguments about removal of cutoffs are in parallel
to Appendix A.

LEMMA B.1. Fix ω ∈ S2 arbitrarily. We have the following:
(i) For β ∈ C, the form domain of H̃bp

K,1(βω) is given by dom(Hbp,0(0)1/2) with
Hbp,0(0) = (1/4)1l⊗ P2

f + (−∆x)⊗ 1l + 1l⊗ Nf.

(ii) 〈ϕ, H̃bp
K,1(βω)ϕ〉 is an analytic function for each ϕ ∈ dom(Hbp,0(0)1/2).

Proof. The proof of (i) is almost same as that of Lemma A.2. (ii) follows from
(B.1) directly.
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