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ABSTRACT. We investigate the behaviour of the spectrum of selfadjoint op-
erators in Krein spaces under perturbations with uniformly dissipative oper-
ators. Moreover we consider the closely related problem of the perturbation
of unitary operators with uniformly bi-expansive. The obtained perturbation
results give a new characterization of spectral points of positive type and of
type 7t of selfadjoint (respectively unitary) operators in Krein spaces.
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INTRODUCTION

A real point A of the spectrum of a closed operator in a Krein space (H, [-,])
is called a spectral point of positive (negative) type, if for every normed approx-
imative eigensequence (x,) corresponding to A all accumulation points of the
sequence ([xn, xn]) are positive (respectively negative), see Definition 1.1 below.
These spectral points were introduced by P. Lancaster, A. Markus and V. Matsaev
in [24] for a bounded operator A which is selfadjoint in the Krein space (H, [-,]),
i.e. the selfadjointness is understood with respect to [-,-]. In [26] the existence of
a local spectral function was proved for intervals containing only spectral points
of positive (negative) type or points of the resolvent set p(A). Moreover it was
shown that, if A is perturbed by a compact selfadjoint operator, a spectral point of
positive type of A becomes either an inner point of the spectrum of the perturbed
operator or it becomes an eigenvalue of type 77. A point from the approximative
point spectrum of A is of type 774 if the abovementioned property of approxima-
tive eigensequences (x,) holds only for sequences (x,) belonging to some linear
manifold of finite codimension (see Definition 1.2 below). Every spectral point
of a selfadjoint operator in a Pontryagin space with finite rank of negativity is of
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type 4. For a detailed study of the properties of the spectrum of type  we
refer to [3] and [7].

It is the main aim of this paper to consider perturbations of selfadjoint op-
erators (unitary operators) in some Krein spaces with uniformly dissipative op-
erators (respectively uniformly bi-expansive operators). Let A be a selfadjoint
operator in the Krein space H. Let Ag be no accumulation point of the non-real
spectrum of A and let (a,b) \ {Ag} consists of spectral points of positive type or
of points from the resolvent set of A only. In Section 2 below we show that Ag
belongs to the spectrum of positive type of A if and only if there exists a fixed
open neighbourhood U of Ag such that for all sufficiently small uniformly dissi-
pative operators B the operator A + B has no spectrum inside the intersection of
U and the open lower half-plane. Moreover, the point A belongs to the spectrum
of type 7ty if and only if for all sufficiently small uniformly dissipative opera-
tors B the operator A + B has at most finitely many normal eigenvalues inside
the intersection of ¢/ and the open lower half-plane. In particular, we are able to
show that the sum of all spectral multiplicities within ¢/ intersected with the open
lower half-plane equals the rank of negativity of k_ (E((a’,b"))H), where E(-) de-
notes the local spectral function of A. On the other hand, if for every sufficiently
small uniformly dissipative operator B the range of the Riesz-Dunford projector
corresponding to A + B and the intersection of ¢/ and the open lower half-plane
is of infinite dimension, then A does not belong to o, (A) U p(A).

In Section 3 we show that the above arguments hold true in a similar way
for uniformly bi-expansive perturbations of unitary operators.

We view these perturbation results also as a new characterization of the
spectral points of positive (respectively negative) type and of type 7 (respec-
tively 71_) of selfadjoint/unitary operators in Krein spaces. We mention that in
the early work of L.S. Pontryagin such arguments were used in a similar manner,
cf. [31].

Sign type spectrum is used in the theory of indefinite Sturm-Liouville op-
erators, e.g. [6], [8], [12], [23]. Moreover, it is used in the theory of mathematical
system theory, see e.g. [18], [19], [25] and in the study of PT-symmetric problems
[13], [14], [27].

We conclude this paper with an application of our results to a second order
equation, cf. Section 4.

1. PRELIMINARIES

Let (H, [-,+]) be a Krein space. Let A be a closed operator in H. By £, (A) we
denote the root subspace of A corresponding to A, i.e. £,(A) = | ker (A —A)™
n=1

A point Ag € C is said to belong to the approximative point spectrum oap(A) of A
if there exists a sequence (x,) C D(A) with ||x,]| =1, n=1,2,...,and ||(A —
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Ao)xy|| — 0as n — oo. The boundary points of the spectrum of a closed operator
belong to the approximative point spectrum. For a selfadjoint operator A in the
Krein space (H, [,-]) all real points of the spectrum of A belong to oap(A) (see
e.g. Corollary VI.6.2 of [10]). The operator A is called Fredholm if the dimension
of the kernel of A and the codimension of the range of A are finite. The set

Oess(A) := {A € C: A — Al is not Fredholm}

is called the essential spectrum of A.
The following definition is from [1]. In [24], [26] it was given for the case of
a bounded selfadjoint operator.

DEFINITION 1.1. For a closed operator A in H a point Ay € 0(A) is called a
spectral point of positive (negative) type of A if Ag € 7ap(A) and for every sequence
(xn) C D(A) with ||x,|| = 1and |[(A — Ag)xn|| — 0asn — oo, we have

lign inf [x,, x,] >0 (respectively limsup [xy, x,] < 0).
—00 n—00
We denote the set of all points of positive (negative) type of A by o4 (A) (respec-
tively o—_(A)).

If the operator A is selfadjoint then the sets 0, (A) and o__(A) are con-
tained in R (cf. [26])

In a similar way as in Definition 1.1 we introduce now some subsets of 0(A)
containing 011 (A) and o__ (A), respectively, which will play an important role
in the following (cf. [1] and for special case of a selfadjoint operator see [3]).

DEFINITION 1.2. For a closed operator A in H a point Ay € ¢(A) is called
a spectral point of type 7y (type m_) of A if Ay € 0ap(A) and if there exists a
subspace Hy C H with codimHy < oo such that for every sequence (x,) C
HoND(A) with ||x,|| =1and || (A — Ag)xn| — 0asn — oo, we have

lirrln inf [x,, x,] >0 (respectively limsup [x,, x,| < 0).
—00 n—00
We denote the set of all points of type 74 (type 71—) of A by 0, (A) (respectively
o (A)). We call Hy of minimal codimension if for each subspace H; C H with
codim H; < codim H) there exists a sequence (x,) C Hy ND(A) with |x,]| =1
and ||[(A — Ag)x,|| — 0 as n — oo, such that
lign inf [x,, x,] <0 (respectively limsup [x,, x,] > 0).
—00 11—00
Observe, that for a point Ag € o, (A) we have that Ay € 04 (A) if and
only if the subspace H from Definition 1.2 can be chosen as Hy = H.
Recall that an operator C in a Krein space (H, |-, -|) is called uniformly dissipa-
tive if there exists some a > 0 such that for x € D(C) we have Im [Cx, x] > «||x||%.
The second part of the following lemma is well-known, nevertheless we
give a proof for the sake of completeness.
We set C* := {z € C: £Imz > 0}.
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LEMMA 1.3. Let C be a closed uniformly dissipative operator in a Krein space
(H,[,-]) Then
0ap(C)NC™ C o (C).
If A € 0,(C)NC™ then for each x € L)(C), x # 0, it follows
[x,x] <O0.

Proof. Let Ag € 0ap(C) N C™. Then the first statement of Lemma 1.3 follows
from the fact that for every sequence (x,) C D(C) with ||x,|| = 1 and ||(C —
Ao)xn|| — 0, n — oo, we have

IIm [Coxy, x4 — Im Ag[xy, x4]] < ||(C = Ag)xu|| = 0, n — oo

Let A € 0,(C) N C~. It follows from Chapter 2, Corollary 2.17 of [2] that for each
y € L£,(C) we have [y,y] < 0. Assume that there existsan x € £, (C), x # 0, with
[x,x] = 0. Then we have [x,y] = 0forally € £,(C). Hence

0=Im[(C—A)x,x],

which is a contradiction to the assumption that C is uniformly dissipative. &

2. UNIFORMLY DISSIPATIVE PERTURBATION OF SELFADJOINT OPERATORS IN KREIN SPACES

Let A be a selfadjoint operator in the Krein space (H, [-,-]), thatis, A = AT,
Here we denote by A" the adjoint of a densely defined operator A in a Krein
space (H, [, -]) with respect to [-,]. Let B be a bounded uniformly dissipative
operator in the Krein space (H, [-,-]). Then the operator A + B, which is defined
on D(A), is uniformly dissipative.

LEMMA 2.1. Let A be a selfadjoint operator and let B be a bounded uniformly
dissipative operator in H. Then

R C p(A+ B).

Proof. SetC := A+ B. We choose & > 0such that Im [Bx, x] > «||x||?, x € H.
We have D(C) = D(A) = D(C™) and, therefore, for A € Rand x € D(C), x # 0,
it follows

I [[11(C = A)x]l = [(C = A)x, x]| = [Im [Bx, x]| > ax|
and
CT = M)x]| > allx].

As C is a closed operator the point A belongs to p(C). 1

LEMMA 2.2. Let u € 04 (A). Then there exists a 6 > 0 and an ¢ > 0 such that

for all bounded uniformly dissipative operators in H with ||B|| < ¢ it follows that the
intersection of C™ and the disc around y with radius 6 belongs to p(A + B).
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Proof. Assume that the assertion of Lemma 2.2 is not true. Then there exist a
sequence of bounded uniformly dissipative operators (B,) in H with ||B,| — 0,
n — oo, and a sequence (A,) in 0(A + B,) N C~ which converges to u, u €
04+ (A). We assume Ay € 0ap(A + By), n € N. In view of Lemma 2.1 this is
no restriction. By Lemma 1.3 there exists a sequence (x,), x, € D(A+ B,) =
D(A) with ||x]| = 1, [xn,x4] < 0and [[(A+ By — An)xu| < L, n € N. Then
liminf[x,, x,| < 0and

n—oo
(A - .”)xn = (A + By — /\n)xn + (/\n - y)xn —Byx;, — 0, n— oo,
which contradicts y € 044 (A). &

PROPOSITION 2.3. Let A be a selfadjoint operator. Assume that Ao, Ag € (a,b),
is not an accumulation point of the non-real spectrum of A and that

(2.1) (a,0) \ {Ao} C o4 (A)Up(A)
holds. Let a < a’ < Ay < b’ < b. Then there exists a &' > 0 such that the strip
{AeC :d <ReALV,-8 <ImA <0}

belongs to the resolvent set of A. Moreover, if vy denotes the closed oriented curve in the
complex plane which consists of the line segments connecting the points b',b’" —1i6',a’ —
i6',a" and b’ then there exists an g > 0 such that for all bounded uniformly dissipative

operators B in H with ||B|| < &y we have
(2.2) vs C p(A+ B).

Proof. The first statement of Proposition 2.3 follows from [26] (or [3]). In or-
der to show (2.2) we choose ¢y > 0 so small that, cf. Lemma 2.2, for all bounded
uniformly dissipative operators B in H with || B|| < ¢ the line segments connect-
ing the points b’ and b’ — i’ and the points a’ and 4’ — 6’ belong to p(A + B).
Moreover, we choose ¢y so small that

1

e <
m A—A 1

holds, where I' is the line segment connecting the points b’ — ié’ and a’ — i’. As
A+B—A= (I4+B(A—-A)"1)(A—A), T is asubset of p(A + B). Moreover, by
Lemma 2.1, R C p(A + B), hence Proposition 2.3 is proved. 1

The following theorem can be considered as the main result of this paper.
Recall that for a selfadjoint operator satisfying (2.1) there exists a local spectral
function E defined on subintervals of (a,b) with endpoints not equal to a,b or
Ao, cf. [3], [21]. In particular there exists the spectral projection E((a’,b")) corre-
sponding to the interval (a/,b") witha < a’ < Ay <V <b.

THEOREM 2.4. Let A be a selfadjoint operator in the Krein space H. Assume that
Ao, Ao € (a, b), is not an accumulation point of the non-real spectrum of A and that

(2.3) (a,0) \ {Ao} C o (A) Up(A).
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Leta', V', &', €9 and vy be as in Proposition 2.3. Then the following assertions are valid.

(i) The point Ao belongs to oy (A) U p(A) if and only if there exists an e1 > 0 such
that for every uniformly dissipative operator B acting in H with ||B|| < &1 the operator
A + B has no spectrum inside the curve 7.

(ii) The point Ag belongs to oy, (A) if and only if there exists an e > 0 such that for
every uniformly dissipative operator B acting in H with ||B|| < €1 the spectrum of A+ B
inside the curve g consists of at most finitely many normal eigenvalues A1, Ay, ..., Ak
such that

M_ = span{ﬁ/\j(A +B):1<j<k}
is of finite dimension. Moreover, in this case, the dimension of M_ is equal to the rank
of negativity k_ (E((a’,b"))H) of the Pontryagin space E((a’,b"))H, that is
dim M_ = «x_(E((d’,V'))H).
(iii) The point Ag does not belong to o, (A) U p(A) if and only if there exists an
€1 > 0 such that for every uniformly dissipative operator B acting in H with ||B|| < €1

the range of the Riesz—Dunford projector corresponding to A + B and g is of infinite
dimension.

Proof. Let a’, V', ¢, ¢y and 7y be as in Proposition 2.3. Set K := (I —
E((a’,b")))H. Then the space H decomposes

(2.4) H =E((d,V))H[+] K,

where [+] denote the direct sum of spaces which are orthogonal with respect to

[-,]. Moreover,
_ [ A O _| Bo Bm
A= [ 0 A ] and B = [ By B

with respect to the decomposition (2.4). The operators By and B; are uniformly

dissipative operators in E((a’,b’))H and K, respectively. As E is the spectral
function of A, we have

c(Ag) C [a,b'] and o(A;) C R\ (d, V).

By assumption, 4’ and b’ belong to 0 (A) U p(A). Lemma 2.2 implies the exis-
tence of 6 > 0 and & > 0 such that for all bounded uniformly dissipative operators
in H with ||B|| < ¢ it follows that the intersection of C~ and the discs around a’
and b’ with radius J belong to the resolvent set of the operator

Ay O By O
T Al s
Denote by Iy the open set in C which has as its boundary the curve v, that is
Iy ={AeC:a <ReA <V,—¢ <ImA < 0}. It follows from IV. Section 3.1 of

[22] that there is an €1 > 0, &7 < min{g, &9}, such that for all uniformly dissipative
operators B acting in H with ||B|| < &1 we have

(2.5) o(Ag+ Byg) C {A € C:dist(A,[d,b']) <min{6,¢'}}
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and
(2.6) Iy C p(A1+ By).

Then Lemma 2.1, Proposition 2.3 and (2.5) imply that for all uniformly dissipative
operators B with ||B|| < &;

(2.7) O'(Ao + BO) NC~ C Iy.

Now we assume that Ag belongs to o, (A). Then (E((a’, V")), [-,-]) is a Pon-
tryagin space with a finite rank of negativity and, if A\g € 044 (A), itis even a
Hilbert space (cf. Theorems 23 and 24 of [3]). An application of Theorem 11.6 in
[16] implies that o(Ap + Byp) N C~ consists of at most finitely many eigenvalues
and that

M_ = span{EA(Ao + Bo) A E O'(AQ + Bo) N (C_}
is a maximal uniformly negative subspace of E((a’,b’))H invariant under Ag +
By. Therefore
dim M_ =«_(E((d’,V'))H)
and relations (2.7) and (2.6) imply that the operator A 4 B has the properties
stated in assertions (i) and (ii) if Byy = Bjg = 0. If By; # 0 or By # 0 we

consider the operators
Ay O n By tBpg
0 A] l’B]O B1 !

where t runs through [0, 1]. Then by IV. Section 3.4 of [22], Lemma 1.3 and Propo-
sition 2.3 the operator A + B has the properties stated in assertions (i) and (ii).

It remains to consider the case Ay ¢ 0, (A). Assume that the range of the
Riesz-Dunford projector P_ corresponding to Ag + By and <4 is of finite dimen-
sion. Then, by Lemma 1.3, it is a uniformly negative subspace of E((a’,b’))H.
Moreover the range of the Riesz-Dunford projector P corresponding to Ay + By
and 0(Ag + By) N C" is a nonnegative subspace (cf. [2]) and we have

E((a',b'))H = PLE((a',b"))H[+]P_E((d’,b'))H.

We claim that P_E((a’,b’))H is a maximal uniformly negative subspace of the
Krein space E((a’,b"))H. Indeed, assume that there exists a maximal uniformly
negative subspace M_ with P_E((a/,b'))H C M_ and there exists some x,
x € M_\P_E((¢,b'))H. Then [x — P_x,x — P_x] < 0 holds. But this is a
contradiction to x — P_x = P,x € PLE((a’,V'))H.

Therefore the Krein space E((a’, b"))H has a finite dimensional maximal uni-
formly negative subspace, hence E((a’,b’))H is a Pontryagin space. But this is
impossible as Ag € o, (A) (cf. Theorem 24 of [3]) and the operator A + B has the
properties stated in assertions (iii) if By; = Byg = 0. If Bg; # 0 or Bjg # O then
a similar reasoning as above shows that assertion (iii) holds and Theorem 2.4 is
proved. &
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COROLLARY 2.5. Let Ao, Ag € (a,b), belongs to oy, (A) \ 044 (A) and choose
Ho as in Definition 1.2 such that Hy is of minimal codimension. Assume that A is not
an accumulation point of the non-real spectrum of A and that (2.1) holds. Let a’, V', &,
and M _ be as in Theorem 2.4. Then we have for every uniformly dissipative operator B
acting in H with ||B|| < &

(2.8) codim Hy < dim M_ = x_(E((d’,V"))H).
Moreover, let
ker (A — Ag) = No[+HINL[+HINZ and L) (A) = Lo[+]L4[+] L

be fundamental decompositions of ker (A — Ag) and L), (A), respectively, that is, Ny =
ker (A — Ag) N (ker (A — ), Lo = L, (A) N (L2, (A)H, N, L are positive
subspaces of E((a’,b"))H and N_, L_ are negative subspace of E((a’,b"))H. We have
equality in (2.8), that is,

codimHy = dim M_ = x_(E((d’,b"))H)

if and only if
dim Ny + dim N_ = dim £y +dim £ _.

In this case we have
dim NVy+dim N =dim £y+dim £_ =codim Hy=dim M_ =x_(E((a’,b'))H).

Proof. We choose a fundamental decomposition for the Pontryagin space
E((a',b"))H, E((a',b'))H = ITy [+]IT-. Then IT [+] (I — E((a’,V')))H is of fi-
nite codimension in H and an easy calculation shows that (2.8) holds. The re-
maining statements of Corollary 2.5 follows from Theorem 3.6 of [7].

We refer to [7] for an example such that the inequality in (2.8) is strict.

3. UNIFORMLY BI-EXPANSIVE PERTURBATION OF UNITARY OPERATORS IN KREIN SPACES

A bounded operator U in a Krein space (H, [-,-]) is called unitary if U is
surjective and [Ux, Ux| = [x, x] for all x € H.

A bounded operator V is said to be bi-expansive if both V and V' are non-
contractive with respect to [, -], that is,

[Vx,Vx] > [x,x] and [VTx,VTx]>[x,x] forallx e H.

The operator V is called uniformly bi-expansive if the operator V is bi-
expansive and there is an ay > 0 such that [Vx, Vx] > [x,x] +ay||x|? If V
is uniformly bi-expansive then also V™ is uniformly bi-expansive and ay+ = ay.

For every uniformly bi-expansive operator V we have

(3.1) T Cp(V),
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where T denote the unit circle T = {A : [A| = 1} (see, e.g., Theorem 2.4.31 of [2]).
The operator

(3.2) A:=i(V+1)(V-1)""

is called the Cayley-Neumann transformation of V. If V is a uniformly bi-ex-
pansive operator then we have for x € H withy := (V —1)x,

Im [Ay,y] =Re ([(V+1I)x,(V —I)x]) =Re([Vx, Vx| + [x, Vx| — [Vx, x] — [x,x])
= [Vx,Vx] — [x,x]

and A is uniformly dissipative.

It is well-known that the classes of selfadjoint and unitary operators (as
well as the classes of bounded uniformly dissipative operators and uniformly
bi-expansive operators) are closely connected via Cayley-Neumann transforma-
tion. It is a natural idea to prove similar results as in the previous sections us-
ing Cayley—Neumann transformation for bi-expansive perturbations of unitary
operators. But this does not work in general since the image of an unbounded
uniformly dissipative operator A + B need not to be a uniformly bi-expansive
operator. Because of this in this section we follow the same ideas as in the pre-
vious sections replacing dissipative perturbations of selfadjoint operators by bi-
expansive perturbations of unitary operators.

The following lemma is an analog of Lemma 1.3. Let D) denotes the open
unit disc,

D:={AeC:|A| <1}
LEMMA 3.1. Let V be a uniformly bi-expansive operator in a Krein space (H, [,-]).
Then
ap(V)ND C o (V);
If A € 0p(V) N then for each x € L,(V), x # 0, it follows [x, x] < 0.

Proof. Let Ag € cap(V) ND. Let (x,,) be a sequence with ||x,[| =1, n € N,
and (V — Ap)x, — 0asn — oo. Since

[V.Xn, Vxn] - |)\O|2[x”, Xn] = [(V - )\O)xn, VXn] + )\O [Xn, (V - )\O)Xn],
we have
0 = lim inf[Vaxy, Vaa] - |A0|21i£ni£f[xn,xn] > (1—|Ao)?) liminflx, ] + ay.

Hence

liminf[x,, x,| < o < 0.

oo 1A
Now we show that £, (V) is a negative subspace, ie. [x,x] < 0 for all non-
zero x € L)(V). By (38.1), 1 € p(V) and we consider the Cayley-Neumann
transformation A of V, cf. (3.2). The operator A is uniformly dissipative. Since

LA(V) = L,(A) for p = i3], the statement follows from Lemma 1.3. 1
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LEMMA 3.2. Let U be a unitary operator and let i € o4 (U). Then |u| = 1 and
there exist a 6 > 0 and an € > 0 such that for all uniformly bi-expansive operators V
with ||I — V|| < e it follows that the intersection of D and the disc around y with radius
d belongs to p(UV).

Proof. First we show that |i| = 1. Assume the contrary: [u| # 1. Let ||z, || =
1,neN,and (U — u)z, — 0asn — oo. Since

(1- |P‘|2)[Zmzn] = [Uzp, Uzy] — |F|2[anzn] = [(U — p)zn, Uzn] + plzn, (U — pt)2y]

we have nhrrolo [zn, z4] = 0 which contradicts to y € oy (U).

Assume now that the second assertion of the lemma is not true. Then there
exists a sequence of uniformly bi-expansive operators V, in ‘H with V;, — I as
n — oo and a sequence (A,) C o(UV,) ND which converges to u € oy (U).
In view of (3.1) it is no restriction if we assume that A, € ap(UV;), n € N. By
Lemma 3.1 there exists a sequence (x,) with ||x,|| =1, [x,, x,] < 0and ||[(UV; —
An)xn|| < 1. Then li%ninf[xn,xn] < 0 and as n — oo we have

(U—p)xn = (UVy —An)xn + (An — p)xn —U(Vy — I)xy — 0
which contradicts p € o4+ (U). 1
Assume
p,pel0,2n), o<y and 6€(0,1).

Denote by wy y the open arc of the unit circle given by

wey ={A=e":p <y <y}
by 2,4, the part of the sector generated by wy,y,
Qpps={A=re":9<n<y, 1-6<r <1},
and by 7y, ¢ s the boundary of (2, 4 5.

PROPOSITION 3.3. Let U be a unitary operator. Assume Ao = €0, Ag € wy,y,
is not an accumulation point of o(U) \ T and that

(33) wep \ {Ao} C oy (U) Up(U).
Let

p<g <no<y <y
Then there exists a 6" > 0 such that Qg1 v 5 C p(U).

Moreover, there exists an ey > 0 such that for all uniformly bi-expansive operators
V with |1 — V|| < eg we have gty 5 C p(UV).

Proof. We omit the proof since it repeats similar arguments as we used in
the proof of Proposition2.3. 1
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A unitary operator in a Krein space satisfying (3.3) has a local spectral func-
tion E defined on subarcs of wg,y with endpoints not equal to e'?,e'¥ or A, cf.
[21]. In particular there exists the spectral projection E(wy y/) corresponding to
the subarc w v with ¢ < ¢' <19 <9’ < ¢.

THEOREM 3.4. Let U be a unitary operator in the Krein space H. Assume that
Ag = €', Ao € wy,y, is not an accumulation point of o(U) \ T and that

weyp \ {Ao} C ot (U) Up(U).

Leta’, b, 8, eq and Yg',y,5 be as in Proposition 3.3. Then the following assertions are
valid.

(i) The point Ao belongs to o (U) U p(U) if and only if there exists an e1 > 0 such
that for every uniformly bi-expansive operator V acting in H with | — V|| < &1 the
operator UV has no spectrum inside the curve 1y y y s

(ii) The point Ag belongs to oy, (U) if and only if there exists an €1 > 0 such that for
every uniformly bi-expansive operator V acting in H with ||I — V|| < & the spectrum
of UV inside the curve 7y y 5 consists of at most finitely many normal eigenvalues
/\1, )Lz, ‘e ,/\k. Then

M_ = span{ﬁ;\].(UV) 1< j<k}

is of finite dimension and moreover, in this case, the dimension of M_ is equal to the
rank of negativity x_ (E(wy 4 )H) of the Pontryagin space E(wy 4 ) H, that is

dim M_ = x_(E(wy g )H).

(iii) The point Ag does not belong to o, (U) U p(U) if and only if there exists an e >
0 such that for every uniformly bi-expansive operator V acting in H with ||I — V|| < &1
tﬁe range of the Riesz—Dunford projector corresponding to UV and 7y y 5 is of infinite
dimension.

Proof. Similar to the proof of Theorem 2.4. &

We left it to the reader to formulate and to prove statements like Corol-
lary 2.5 for operators UV, where U is a unitary and V is a bi-expansive operator.

4. AN APPLICATION: SECOND ORDER SYSTEMS

A linear equation describing transverse motions of a thin beam can be writ-
ten in the form
%u 0% [d%u du
o "o lar T e
where u(r, t) is the transverse displacement of the beam at time t and position r
and « is a constant. The existence of solutions depends also on boundary and ini-
tial conditions. Identifying the function (-, t) with an element z(t) € L%(0,1) by

] =0, re(0,1),t>0,
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z(t)(r) = u(r,t) we obtain from the partial differential equation above a second
order equation in L?(0, 1) of the form

4.1) 5() + Agz(t) + Dz(t) = 0,

where Ay = %, D = aAy acting in L2(0, 1) with appropriate domains encoding

the boundary conditions under consideration.

In the following we study second order equations of type (4.1) in an ab-
stract Hilbert space H where the operator Ay is an unbounded, uniformly pos-
itive operator on H and the operator D : Hy;, — H_j,, is a bounded oper-
ator such that Ay v 2DA(; 1/2 s a bounded non-negative operator in H. Here
Hj/; is the domain of the positive square root of Ag equipped with the norm

I Nmy, = |AY/? - ||y and H_y 5 is the completion of H with respect to the

1 2z||p. Thus A restricts to a bounded operator A :

norm [|z[|g_,,, = Ay
Hysp — H_y2.
The second order equation (4.1) is equivalent to the standard first order

equation %(t) = Ax(t) where A : D(A) C Hy/, x H— Hy;, x H is given by

A= [ _310 o } . D(A) = {(3) € Hyp x Hyp : Aoz + Dw € HY.
This operator matrix has been studied in the literature for more than 20 years. In-
terest in this particular model is motivated by various problems such as stabiliza-
tion, see for example [9], [29], [30], [32], solvability of Riccati equations [15] and
minimum-phase property [17]. It is well-known that A generates a Cp-semigroup
of contractions in Hj,, x H and thus the spectrum of A is located in the closed
left half plane. This goes back to [4], [28], see also [5], [11]. Moreover, 0 € p(.A),
see [33].

We will apply our results from Section 2 to the operator matrix .A. For this
we introduce an inner product on Hj /, X H via

X1 b)) X1 X2
7 - 7 - 7 f 7 H H
[(yl) (3/2)] (xtx2)m/2 = (v1,y2) - for <y1> (yz) € Hzx

It is well-known (e.g. [18], [34]) that A is selfadjoint operator in the Krein space
(Hi2 x H,[,+]), and, hence, R C 0ap(A) Up(A).

We denote by E4, the spectral function of the selfadjoint operator A in the
Hilbert space H.

PROPOSITION 4.1. Assume, in addition, that the operator Ay is compact in H.
Then

42) Ges(A) = {1 € C\(0} - % € ous(~45'D) },

where Ay D is considered as an operator acting in Hy /5. Let Ag € o(A) N R and denote
by « the number of eigenvalues of Ao below or equal to A} (counted according to their
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multiplicities), that is
x = dim E4,((0,A§])H.
Moreover, we assume
(4.3) | AY 2x|| # |Aoll|x]| forall (%) € ker(A — Ag) with x # 0.

Then there exists an interval (a,b), Ay € (a,b), such that A satisfies (2.3) and, with
0" and ryg as in Proposition 2.3, there exists an ¢1 > 0 such that for every uniformly
dissipative operator BB acting in Hy ;o x H with || B|| < €1 the spectrum of A + B inside
Ys consists of at most finitely many normal eigenvalues with

2k > dimspan{L, (A + B) : Ainside 7y }.

Proof. Relation (4.2) is proved in Theorem 4.1 of [18]. The space E 4, ((0, A3]) H
is finite dimensional and a subset of D(A). We set

Ho := (Eay((0,AF])H x E, ((0,AG))H)™,

where L denotes the orthogonal complement in H;/», X H with respect to the
usual Hilbert scalar product in Hy/, x H. Then

(4.4) codim ‘Hy = 2x.
For every sequence ( (")) in D(A) N'Hy with

()

=1 and 1}320’|(A—A0) (;Z)

2
‘meH ’H1/2><H =0
we have

lyn — Aoxnllm,,, =0 asn— oo

This gives
liminf [(3), (yr)] = Wminf((xn, X0)H, ,, — (Yn, Yn))

n—oo n—oo

= lirrlngf((AOxn,xn) — /\(z)(xn,xn)) >0,

hence Ay € 0, (A).

By Corollary 5.2 of [18] the non-real spectrum of A does not accumulate to a
real point. Then, together with Theorem 18 of [3] we find real numbers such that
A satisfies (2.3). Moreover, for every vector (5, ) € ker(A — Ag) with x # 0 we
deduce from (4.3)

[(an ) - (s )] = Nl , = Ao lall? # 0,

that is, there exists no Jordan chain of A corresponding to Ay of length greater
than one. Therefore ker(A — Ag) = £,,(A) and, by Theorem 2.4, Corollary 2.5
and (4.3), we obtain

dimspan {£)(A+ B) : Ainside vy} <2x. 1
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REMARK 4.2. Choose Ay, €1 as in Proposition 4.1 and let us assume that the
uniformly dissipative operator B in Proposition 4.1 is of the following form with

respect to Hy /p X H
o-[% 3]

0 B

where Bo, |Bo| < €1, is a complex number with positive imaginary part and —B;
is a bounded, uniformly dissipative operator in the Hilbert H with norm less or
equal to ¢1. Then the first order equation x(t) = (A + B)x(t) is equivalent to the
second order equation

2(t) + (D — Bol — B1)2(t) + (Ao — BoD + PoBi1)z(t) = 0.
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