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ABSTRACT. We consider cones in a Hilbert space associated to two von Neu-
mann algebras and determine when one algebra is included in the other. If
a cone is associated to a von Neumann algebra, the Jordan structure is natu-
rally recovered from it and we can characterize projections of the given von
Neumann algebra with the structure in some special situations.
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1. INTRODUCTION

The natural positive cone P \ = ∆1/4M+ξ0 plays a significant role in the
theory of von Neumann algebras (see, for example, [1], [5]) where M is a von
Neumann algebra, ξ0 is a cyclic separating vector for M and ∆ is the Tomita–
Takesaki modular operator associated to ξ0. Among them, the result of Connes [6]
is of particular interest which characterized the natural positive cones with their
geometric properties called selfpolarity, facial homogeneity and orientability, and
showed that if two von Neumann algebras M and N share a same cone, then
there is a central projection q of M such that N = qM⊕ q⊥M′. Connes used
the Lie algebra with an involution of the linear transformation group of P \ in his
paper.

In the present paper, instead of P \, we study P ] = M+ξ0, which holds
more informations of M, for example, the subalgebra structure.

In the second section, we study what occurs when N+ξ0 ⊂ P ] where N is
another von Neumann algebra. We consider first the case when ξ0 is not cyclic for
N and then assume the cyclicity. It turns out that in the latter case N is included
in M except the part where ξ0 is tracial.
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In the third section, we characterize central projections ofM in terms of P ].
A projection p is in M∩M′ if and only if p and its orthogonal complement p⊥

preserve P ].
In the fourth and fifth sections, the Jordan structure on P ] is studied. We

can recover the lattice structure of projections and the operator norm from the
order structure of P ]. Then we can define the square operation on P ].

In the final section, using the Jordan structure, a characterization of projec-
tions in M is obtained when the modular automorphism with respect to ξ0 acts
ergodically.

The result of the second section has an easy application to the theory of
half-sided modular inclusions [12], [2]. Let {U(t)} be a one-parameter group of
unitary operators with a generator H which kills ξ0. Assume that M is a factor
of type III1 (or more generally a properly infinite algebra). It is easy to see that
U(t)MU(t)∗ ⊂ M for t > 0 if and only if U(t) preserves P ] for t > 0. A
similar result for P \ and {e−tH} has been obtained by Borchers with additional
conditions on H [4].

Davidson has obtained conditions for {U(t)} to generate a one-parameter
semigroup of endomorphisms [7]. The relations with the modular group have
been shown to be important in his study.

2. INCLUSIONS OF POSITIVE CONES

Let M be a von Neumann algebra acting on a Hilbert space H and ξ0 be a
cyclic separating vector forM. We denote the modular group by ∆it, the modular
conjugation by J, modular automorphism by σt and the canonical involution by
S = J∆1/2. The positive cone associated to ξ0 is denoted by P ] = M+ξ0.

Suppose there is another von Neumann algebra N such that N+ξ0 ⊂ P ].
We can define a positive contractive map α from N into M as follows.

LEMMA 2.1. For a ∈ N+ there is the unique positive element α(a) ∈ M satisfy-
ing aξ0 = α(a)ξ0. In addition, α is contractive on M+.

Proof. By the assumption, we have aξ0 ∈ P ]. Recall that for a vector aξ0 in
P ] there is a positive linear operator α(a) affiliated to M such that aξ0 = α(a)ξ0
[11].

Since ‖a‖I− a is positive, we have(‖a‖I− a)ξ0 ∈ P ]. This implies, for every
y ∈ M′,

〈α(a)yξ0, yξ0〉 = 〈α(a)ξ0, y∗yξ0〉 = 〈aξ0, y∗yξ0〉 6 ‖a‖〈ξ0, y∗yξ0〉 = ‖a‖‖yξ0‖2.

Hence α(a) is bounded and in M.

We can easily see that α extends to N by linearity. Since α is contractive on
N+, α is bounded on Nsa.
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LEMMA 2.2. The map α maps every projection to a projection.

Proof. Take a projection e ∈ N . Note that, since α maps N+ into M+ and is
contractive, we have α(e) > α(e)2.

Recall that, by the definition of α, we have α(e)ξ0 = eξ0. We calculate as
follows:

〈α(e)2ξ0, ξ0〉 = 〈α(e)ξ0, α(e)ξ0〉 = 〈eξ0, eξ0〉 = 〈eξ0, ξ0〉 = 〈α(e)ξ0, ξ0〉.

This implies that 〈(α(e) − α(e)2)ξ0, ξ0〉 = 0. As we noted above, α(e) −
α(e)2 must be positive, hence the vector (α(e)− α(e)2)1/2ξ0 must vanish. By the
separating property of ξ0, we see α(e) = α(e)2.

Recall that a linear mapping φ which preserves every anticommutator is
called a Jordan homomorphism:

φ(xy + yx) = φ(x)φ(y) + φ(y)φ(x).

Now we show the following lemma. The proof of it is essentially taken from [9].

LEMMA 2.3. The map α is a Jordan homomorphism.

Proof. Let e and f be mutually orthogonal projections inN . Then e + f , α(e),
α( f ) and α(e) + α( f ) are projections. We see the range of α(e) and the range of
α( f ) are mutually orthogonal because if not, then the sum α(e) + α( f ) could not
be a projection. This implies that

α(e)α( f ) = α( f )α(e) = 0.

In particular, α maps the positive (respectively negative) part of a self-adjoint
element x to the positive (respectively negative) part of α(x). From this we see
that α is contractive on Nsa.

Next suppose we have commuting projections e, f ∈ N . Remark that, since
e f 6 e, positivity of α assures α(e f ) 6 α(e). Recalling that in this case e f and e
are projections, we see the range of α(e f ) is included in the range of α(e). Thus
we have α(e f )α(e) = α(e f ).

Now noting e− e f and f are mutually orthogonal projections, we have

0 = α(e− e f )α(e) = α(e)α( f )− α(e f ).

Hence α preserves products of commuting projections.
Since every self-adjoint element in a von Neumann algebra is a uniform

limit of linear combinations of mutually orthogonal projections, and since α is
continuous in norm on Nsa, α preserves products of commuting self-adjoint ele-
ments. In particular, α preserves the square of self-adjoint elements.

This implies that, firstly, α preserves Jordan products of self-adjoint ele-
ments ab + ba = (a + b)2 − a2 − b2. This shows

α(ab + ba) = α((a + b)2)− α(a2)− α(b2)

= α(a + b)2 − α(a)2 − α(b)2 = α(a)α(b) + α(b)α(a).
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Secondly, α preserves squares of arbitrary elements (a + ib)2 = a2 + i(ab +
ba)− b2:

α((a + ib)2) = α(a2 + i(ab + ba)− b2) = α(a2) + iα(ab + ba)− α(b2)

= α(a)2 + i(α(a)α(b) + α(b)α(a))− α(b)2 = (α(a) + iα(b))2.

Finally, α preserves Jordan products of arbitrary elements xy + yx = (x +
y)2 − x2 − y2:

α(xy + yx) = α((x + y)2)− α(x2)− α(y2) = α(x + y)2 − α(x)2 − α(y)2

= α(x)α(y) + α(y)α(x).

This completes the proof.

Here we need the following result on Jordan homomorphisms of Jacobson
and Rickart [8].

PROPOSITION 2.4. Suppose φ is a unital Jordan homomorphism from an algebra
A into B. Suppose further that A has a system of matrix units. Then there is a central
idempotent g of the algebra generated by φ(A) such that φ(·)g is homomorphic and
φ(·)(I − g) is antihomomorphic.

Note that every von Neumann algebraN decomposes into the commutative
part, the In parts, the II1 part, and the properly infinite part. On the first one α
causes no problem and on the remaining parts we can apply Proposition 2.4 to
the case in which φ = α, A = N , B = M. Examining the proof, we see if φ is
self-adjoint, then g is a central projection of α(N )′′ (the argument here is due to
Kadison [9]).

Next, we show the normality of α.

LEMMA 2.5. The map α is a normal linear mapping from N into M.

Proof. We only have to show that for any normal functional ϕ on M the
functional ϕ ◦ α on N is normal. Note that, since M has a separating vector ξ0,
we may assume ϕ(·) = 〈 · η1, η2〉 for some η1, η2 ∈ H.

Recall that a linear functional on a von Neumann algebra is normal if and
only if it is continuous on every bounded set in the weak operator topology.

Now suppose that we have a convergent bounded net in the weak opera-
tor topology xi → x in N . Obviously {xiξ0} converges to xξ0 weakly. By the
definition of α, we see {α(xi)ξ0} converges to α(x)ξ0 weakly. We have, for any
y1, y2 ∈ M′,

〈α(xi)y1ξ0, y2ξ0〉 = 〈y1α(xi)ξ0, y2ξ0〉 = 〈α(xi)ξ0, y∗1y2ξ0〉 → 〈α(x)ξ0, y∗1y2ξ0〉
= 〈α(x)y1ξ0, y2ξ0〉.

First we assume {xi} is a net of self-adjoint elements. Then for arbitrary
η1, η2 ∈ H the convergence 〈α(xi)η1, η2〉 → 〈α(x)η1, η2〉 holds since {xi} is a
bounded net, α is contractive on Nsa, and ξ0 is cyclic for M′.
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Then we can obtain the convergence for arbitrary bounded convergent net
in WOT {xi} since we have the decomposition

xi =
xi + x∗i

2
+ i

xi − x∗i
2i

and each part of the net is self-adjoint or antiself-adjoint, bounded and WOT-
converging.

We combine this lemma and the proposition of Jacobson and Rickart to get
the following.

LEMMA 2.6. There is a normal homomorphism β and normal antihomomorphism
γ ofN intoM such that α(x) = β(x) + γ(x) and the the range of β and γ are mutually
orthogonal.

In addition, there are central projections e, f ∈ N and a central projection g ∈
α(N )′′ such that α(e ·)g = β(·) is an isomorphism of N e and α( f ·)g⊥ = γ(·) is an
anti-isomorphism of N f .

Proof. We know from Proposition 2.4 that there is a central projection g ∈
α(N )′′ such that β(·) = α(·)g is a homomorphism of N and γ(·) = α(·)g⊥ is
an antihomomorphism of N f . Then just take e as the support of β and f as the
support of γ. Since α is normal, so are β and γ and the definitions of e and f are
legitimate.

LEMMA 2.7. The von Neumann algebra N f is finite.

Proof. Let N h be the properly infinite part of N f . We have g⊥α(xy) =
g⊥α(y)α(x) = α(y)g⊥α(x) for x, y ∈ N h.

Again take x, y ∈ N h. By the definition of α, we have

g⊥xyξ0 = g⊥α(xy)ξ0 = α(y)g⊥α(x)ξ0,

〈g⊥xyξ0, ξ0〉 = 〈α(y)g⊥α(x)ξ0, ξ0〉 = 〈g⊥α(x)ξ0, α(y∗)ξ0〉

= 〈g⊥xξ0, y∗ξ0〉 = 〈yg⊥xξ0, ξ0〉.
Since N h is properly infinite, there is a sequence of isometries {vn} ⊂ N h

such that vnv∗n → 0 in SOT-topology (that they are isometries means v∗nvn = h).
Now

〈γ(h)ξ0, ξ0〉= 〈g⊥hξ0, ξ0〉= 〈g⊥v∗nvnξ0, ξ0〉= 〈vng⊥v∗nξ0, ξ0〉6 〈vnv∗nξ0, ξ0〉 → 0.

But since γ(h) is a projection in α(N )′′ ⊂ M and since ξ0 is separating for M,
γ(h) must be zero. Recalling that h is a subprojection of f and that f is the support
of γ, we see that h = 0.

THEOREM 2.8. Let M and N be von Neumann algebras and ξ0 is a cyclic sepa-
rating vector for M. Suppose N+ξ0 ⊂ P ].

Then we have two disjoint possibilities:
(i) The von Neumann algebra M has a subalgebra M1 such that M1+ξ0 = N+ξ0.



440 YOH TANIMOTO

(ii) For any subalgebra M2 of M, its “sharpened cone” M2+ξ0 cannot coincide
with N+ξ0 and N has a finite ideal N1 such that there is a subalgebra of M which is
isomorphic to the direct sum of N1 and N opp

1 .

Proof. Suppose that e and f defined above are mutually orthogonal. Then
let us define M1 = α(N ). Since we have e f = 0, it decomposes as follows:

α(N )=α(N [e + e⊥][ f + f⊥])=α(N [e f⊥+ f e⊥ + e⊥ f⊥])= β(N e f⊥)+γ(N f e⊥),

by noting that N e⊥ f⊥ is the kernel of α.
Since the range of β and γ are mutually orthogonal, and since e and f are

central projections, α(N ) is a direct sum of β(N e f⊥) and γ(N f e⊥).
Let a be a positive element of N . Then we have

aξ0 = α(a)ξ0 = β(ae)ξ0 + γ(a f )ξ0 = β(ae f⊥)ξ0 + γ(a f e⊥)ξ0.

Conversely it is easy to see that for b ∈ α(N )+ there is a ∈ N+ such that α(a) =
b, hence we have aξ0 = bξ0. This completes the proof of the claimed equality
M1+ξ0 = N + ξ0.

Next, we assume that e f 6= 0. Note that N e f is noncommutative since by
the definition of β and γ the commutative part of N is left to β. In particular g is
a nontrivial central projection in α(N e f )′′. By Lemma 2.7, N e f is finite. One can
easily see that α(N e f )′′ is a subalgebra of M which decomposes into the direct
sum of β(N e f ) and γ(N e f ) where the latter is isomorphic to (N e f )opp.

What remains to prove is that for any subalgebra M2 of M we cannot have
the equality (N e f )+ξ0 = M2+ξ0. To see this impossibility, recall that

M+ξ0 = {Aξ0 : A is a closed positive operator affiliated to M},

since ξ0 is a separating vector for M [11]. Similarly we have

M2+ξ0 = {Aξ0 : A is a closed positive operator affiliated to M2}.

Now suppose aξ0 ∈ M2+ξ0 for a positive element a of N e f . By the above
remark, we have a positive operator A affiliated to M2 such that aξ0 = α(a)ξ0 =
Aξ0. Then for y ∈ M′ we have

α(a)yξ0 = yα(a)ξ0 = yAξ0 = Ayξ0,

hence A is bounded and α(a) = A. This implies α(a) ∈ M2 and α(N e f ) ⊂ M2.
But by Proposition 2.4 α(N e f ) generates β(N e f )⊕ γ(N e f ). We have β(N e f )⊕
γ(N e f ) ⊂M2.

We will show that this leads to a contradiction. By the observation above we
see that M2+ξ0 contains vectors of the form gaξ0, g⊥bξ0 where a, b ∈ (N e f )+.

Suppose the contrary that gaξ0 ∈ (N e f )+ξ0. By the argument similar to
the above one, there is a self-adjoint positive operator A affiliated to N e f such
that Aξ0 = gaξ0. Then g⊥Aξ0 = 0. Noting that f is the support of γ and that ξ0
is separating for M, we see g⊥eAξ0 = γ(eA)ξ0 cannot vanish for any nontrivial
projection eA of N e f .
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There are a spectral projection eA of A, a positive scalar ε and y ∈ M′ such
that A > εeA and 〈γ(eA)yξ0, yξ0〉 > 0. Remark that

g⊥(A− εeA)ξ0 ∈ g⊥(N e f )+ξ0 ⊂ g⊥(N e f )+ξ0 = γ(N e f )+ξ0.

Then we have

0 = 〈yg⊥Aξ0, yξ0〉= 〈g⊥Aξ0, y∗yξ0〉= 〈g⊥(A−εeA)ξ0, y∗yξ0〉+〈g⊥εeAξ0, y∗yξ0〉

> 〈g⊥εeAξ0, y∗yξ0〉 = 〈yγ(εeA)ξ0, yξ0〉 = ε〈γ(eA)yξ0, yξ0〉 > 0.

This contradiction completes the proof of that (N e f )+ξ0 6= M2+ξ0.

If we further assume the cyclicity of ξ0 forN , we have a stronger result. For
the proof of it, we need the following lemma. This can be found, for example in
[3], but here we present another simple proof.

LEMMA 2.9. IfA ⊂ B is a proper inclusion of von Neumann algebras on a Hilbert
space K and if ζ is a common cyclic separating vector, then B cannot be finite.

Proof. Suppose the contrary, that B is finite. Then A must be finite, too.
Hence there is a faithful trace τ on B. Since ζ is separating for B, there is a vector
η such that τ(x) = 〈xη, η〉 by the Radon–Nikodym type theorem. Since τ is
faithful, η must be separating for B.

We can see that η is cyclic for B as follows. Denote the orthogonal projection
onto Bη by p. By separation verified above, we have B′η = K. On the other
hand, by assumption, Bζ = B′ζ = K. By the general theory of equivalence of
projections, p ∼ I in B. But recalling that B is finite, we see that p = I, i.e., η is
cyclic.

By the same reasoning, η is cyclic separating tracial forA. Then the modular
conjugations JA and JB with respect to η must coincide and we have the required
equation.

A′ ⊃ B′ = JBB JB = JAB JA ⊃ JAAJA = A′.

This contradicts the assumption that the inclusion A ⊂ B is proper.

THEOREM 2.10. LetM andN be von Neumann algebras and ξ0 be a vector cyclic
separating for M and cyclic for N . Suppose N+ξ0 ⊂ P ].

Then we have the following:
(i) The vector ξ0 is also separating for N .

(ii) There is a central projection e in N such that N e ⊂M.
(iii) The vector e⊥ξ0 is tracial for N e⊥.
(iv) Je⊥N e⊥ Je⊥ ⊂M.

In particular, N and N e ⊕ Je⊥N e⊥ Je⊥ share the same positive cone P ]
N where

N e⊕ Je⊥N e⊥ Je⊥ ⊂M.
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Proof. First we show that the induction by g realizes β(·) = gα(·). For arbi-
trary x, y ∈ N we have

gxyξ0 = gα(xy)ξ0 = gα(x)α(y)ξ0 = gα(x)yξ0 = α(x)gyξ0.

Taking it into consideration that ξ0 is cyclic for N , we see that gx = gα(x) =
α(x)g. But, since this holds for arbitrary x ∈ N , in particular for self-adjoint
elements. If x = x∗, then we have

gx = α(x)g = (gα(x))∗ = (gx)∗ = xg.

Since this equation is linear for x, we see that g ∈ N ′ and gx = gα(x).
Now recall that we have decomposed α into a normal homomorphism β

and a normal antihomomorphism γ. We again denote the support of β by e and
the support of γ by f .

LetN h be the properly infinite part. By Lemma 2.7 the intersection of h and
f is trivial. Thus we have

ghxξ0 = hgα(hx)ξ0 = hα(hx)ξ0 = hxξ0,

for x ∈ N . Cyclicity of ξ0 tells us that gh = h. Then for hx ∈ N h we get that

α(hx) = ghx = hx.

In other words, α maps identically on N h. In particular, α is decomposed by h,
that is, we have

hα(h⊥) = α(h)α(h⊥) = 0,
since α maps orthogonal projections to orthogonal projections.

Note that hξ0 is cyclic for N h since ξ0 is cyclic for N . The vector hξ0 is also
separating for N h since

N h = α(N h) ⊂M
and ξ0 is separating for M.

For the proof of remaining part of the theorem, we may assume N is finite.
Recall that g⊥ commutes with N . Take x, y ∈ N and let us calculate

〈xyg⊥ξ0, g⊥ξ0〉=〈g⊥yξ0, g⊥x∗ξ0〉=〈g⊥α(y)ξ0, g⊥α(x∗)ξ0〉=〈g⊥α(x)α(y)ξ0, g⊥ξ0〉

=〈g⊥α(yx)ξ0, g⊥ξ0〉 = 〈g⊥yxξ0, g⊥ξ0〉 = 〈yxg⊥ξ0, g⊥ξ0〉.

This shows that g⊥ξ0 is a tracial vector for N g⊥. By assumption, ξ0 is cyclic for
N , hence g⊥ξ0 is cyclic for N g⊥. In addition, it is also separating as follows. If
xg⊥ξ0 = 0 for some x ∈ N g⊥, then for any y ∈ N g⊥ we have

‖xyg⊥ξ0‖
2

= 〈y∗x∗xyg⊥ξ0, g⊥ξ0〉 = 〈xyy∗x∗g⊥ξ0, g⊥ξ0〉 6 ‖y‖2〈xx∗g⊥ξ0, g⊥ξ0〉

= ‖y‖2〈x∗xg⊥ξ0, g⊥ξ0〉 = 0,

then the cyclicity implies the separation by g⊥ξ0.
Now N g⊥ has the canonical conjugation Jg⊥ defined as (the closure of)

Jg⊥ : g⊥H 3 xξ0 7−→ x∗ξ0 ∈ g⊥H.
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On N g⊥ we have the canonical antihomomorphism

N g⊥ 3 x 7−→ Jg⊥x∗ Jg⊥ ∈ N g⊥.

In our situation the composition of the induction by g⊥ and this antihomo-
morphism coincide with the composition of α and the induction by g⊥. In fact,
for any elements x, y, z ∈ N g⊥ we have

〈Jg⊥(xg⊥)∗g⊥ Jg⊥yg⊥ξ,zg⊥ξ0〉 = 〈z∗g⊥ξ0, x∗y∗g⊥ξ0〉 = 〈yxz∗g⊥ξ0, g⊥ξ0〉

= 〈z∗yxg⊥ξ0, g⊥ξ0〉 = 〈g⊥yxξ0, zg⊥ξ0〉

= 〈g⊥α(yx)ξ0, zg⊥ξ0〉 = 〈g⊥α(x)α(y)ξ0, zg⊥ξ0〉

= 〈g⊥α(x)yξ0, zg⊥ξ0〉 = 〈g⊥α(x)yξ0, zg⊥ξ0〉.

The cyclicity of g⊥ξ0 shows that g⊥α(x) = Jg⊥(xg⊥)∗ Jg⊥ .
Summing up, we get the following formula for α:

α(x) = gα(x) + g⊥α(x) = gx + Jg⊥g⊥x∗ Jg⊥ .

Note that gξ0 is cyclic separating for N g. In fact, the cyclicity comes from
the assumption of ξ0’s cyclicity and the separating property can be seen by ob-
serving

N g = gα(N ) ⊂M
and by the separating property of ξ0 for M.

On the other hand, we have seen that g⊥ξ0 is cyclic separating for N g⊥ in
the way proving that g⊥ξ0 is a faithful tracial vector.

The direct sum of N g and N g⊥ has a cyclic separating vector ξ0. These
summands are finite because we are assuming that N is finite and they are in-
duced parts of it. Hence N g⊕N g⊥ is also finite.

Clearly N is a subalgebra of N g⊕N g⊥. So ξ0 is separating for N . This is
the first statement of the theorem.

Now we have an inclusion of finite von Neumann algebras

N ⊂ N g⊕N g⊥

and ξ0 is a common cyclic separating vector. Then they must coincide by Lem-
ma 2.9. This happens only if g is a projection of N from the beginning, i.e, g is a
central projection of N .

Recall that induction by g coincides with the homomorphic part of α. Now
we know that g is central. Then the support e of the homomorphic part β must
be exactly g.

On the other hand, the intersection e⊥ f⊥ of kernels of the homomorphic
part β and the antihomomorphic part γ must be trivial. To see this, take x ∈ N .
We have

e⊥ f⊥xξ0 = xe⊥ f⊥ξ0 = xα(e⊥ f⊥)ξ0 = 0.

Since ξ0 is cyclic for N , we get that e⊥ f⊥ = 0.
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Since the induction by e realizes the homomorphic part β of α, for the anti-
homomorphic part γ it holds

γ(e) = e⊥α(e) = α(e)− eα(e) = 0.

This implies e must be orthogonal to f , which is the support of γ. As their inter-
section vanishes, we get f = I − e.

Recalling g = e, we saw that e⊥ξ0 is a cyclic separating tracial vector for
N e⊥ and the canonical anti-isomorphism with respect to e⊥ξ0 coincides with e⊥α.
Then the proof of all the statements in the theorem is done.

3. RECOVERY OF CENTRAL PROJECTIONS

In the following sections we turn to the study of single von Neumann alge-
bras. Again letM be a von Neumann algebra and ξ0 be a cyclic separating vector
for M. By Connes’ result, P \ determines M up to center.

Here we show that the center is easily recovered from P ]. Let p be a projec-
tion of B(H) such that pP ] ⊂ P and p⊥P ] ⊂ P ].

In this situation, we can define a mapping from M into M using p.

LEMMA 3.1. For every a ∈ M+ there is α(a) ∈ M+ such that paξ0 = α(a)ξ0.

Proof. As in the proof of Lemma 2.1, we have a positive operator α(a) affili-
ated to M such that paξ0 = α(a)ξ0 since paξ0 is a vector of the positive cone P ].
This is again bounded for a different reason. In fact, for y ∈ M′ we have

〈α(a)yξ0, yξ0〉 = 〈α(a)ξ0, y∗yξ0〉= 〈paξ0, y∗yξ0〉6 〈paξ0, y∗yξ0〉+〈p⊥aξ0, y∗yξ0〉

= 〈aξ0, y∗yξ0〉 = 〈ayξ0, yξ0〉 6 ‖a‖‖yξ0‖2,

where we have used the assumption that p⊥ preserves P ].

From this we see that α(a) 6 a as self-adjoint operators. The map α extends
to a linear mapping of M.

LEMMA 3.2. The map α maps every projection to a projection.

Proof. Let e be a projection ofM. By the observation above, we have α(e) 6
e. Then using the fact eα(e) = α(e) we can calculate

〈α(e)2ξ0ξ0〉= 〈α(e)ξ0, α(e)ξ0〉= 〈peξ0, peξ0〉= 〈peξ0, eξ0〉= 〈α(e), eξ0〉= 〈α(e), ξ0〉.

We can see that α(e)2 = α(e) as in the proof of Lemma 2.2.

Then the mapping α is a normal Jordan homomorphism and there is a cen-
tral projection g of α(M)′′ ⊂ M such that α(·)g is homomorphic and α(·)g⊥ is
antihomomorphic. The proof is similar to the one for the case of subcones.

Now we have the following.
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THEOREM 3.3. LetM be a von Neumann algebra acting on a Hilbert spaceH, ξ0
be a cyclic separating vector for M and P ] = M+ξ0. Then a projection p ∈ B(H) is a
central projection of M if and only if p and p⊥ preserve P ].

Proof. The “only if” part is trivial.
Let p be a projection which and whose orthogonal complement preserve P ].

Note that α(x) ∈ M and that α(α(x)) = α(x) holds. In fact, we have

α(α(x))ξ0 = pα(x)ξ0 = ppxξ0 = pxξ0 = α(x)ξ0,

since p is a projection.
As in the situation of subcones, α is a sum of a normal homomorphism and a

normal antihomomorphism whose ranges are mutually orthogonal. The kernels
of the homomorphism and the antihomomorphism are central projections of M.
Thus the support of α is the orthogonal complement of the intersection of these
kernels. In particular it is a central projection e ∈ M.

Recall that α(e) 6 e. Take an arbitrary positive element a from M. If we
apply α to ea− α(ea), since the composition of α and α equals α itself, we have

α(ea− α(ea)) = α(ea)− α(ea) = 0.

The argument of the left hand side is less than the support of α, hence it must
vanish. Thus we see that ea is fixed by α. By linearity, this holds for arbitrary
element x ∈ M instead of positive element a.

Again since e is the support of α, we have α(x) = α(xe) = xe. Comparing
this with the definition of α we can determine p:

pxξ0 = α(x)ξ0 = exξ0.

With the cyclicity of ξ0 we see that p equals e. In particular, p must be a central
projection of M.

4. PROPERTIES OF (P ], ξ0)

In this section, we study the properties ofP ] coupled with a specified vector
ξ0. We begin with the following lemma.

Let us write ζ 6 η if η − ζ ∈ P ].

LEMMA 4.1. Let ζ be a vector in P ]. Then the following hold:
(i) If ζ 6 ξ0, then there is a positive contractive operator a ∈ M such that ζ = aξ0.

In this case we say that ζ is contractive.
(ii) If ζ is contractive and if ζ ⊥ (ξ0 − ζ), then there is a projection e ∈ M such that

ζ = eξ0. When these conditions hold, we call ζ a projective vector.
(iii) If η and ζ are projective and ζ 6 ξ0 − η, then e and f are mutually orthogonal

projections where η = eξ0 and ζ = f ξ0. We say η and ζ are mutually operationally
orthogonal.
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Proof. The proofs of the first and the second statements are same as in the
proofs of Lemma 2.1 and 2.2 respectively. We do not repeat them here.

Suppose η = eξ0, ζ = f ξ0 and η 6 ξ0 − ζ. Then according to this order,
e 6 I − f . When e and f are projections, this shows the mutual orthogonality.

We denote the set of contractive vectors by P ]
1 . By the lemma above, to each

vector in P ]
1 there corresponds a positive contractive operator of M.

Similarly to every vector ζ in R+P ]
1 there corresponds a bounded positive

operator a of M. Put P ]
b = R+P ]

1 and K = RP ]
1 .

LEMMA 4.2. For an arbitrary vector ζ in P ]
1 there is a least projective vector such

that η > ζ. Let us call η the support of ζ.

Proof. As noted above, there is a positive operator a such that ζ = aξ0. As
we have seen, the order structure of P ]

1 is consistent with this correspondence.
Let e be the support projection of a. Then we have η = eξ0 > aξ0 = ζ. Hence η is
the least projective vector in P ]

1 .

LEMMA 4.3. Every vector ζ in K is uniquely decomposed as ζ = ζ+ − ζ− where
ζ+ and ζ− are vectors of P ]

b and supports of ζ+ and ζ− are mutually operationally
orthogonal.

Proof. Since every vector in P ]
1 corresponds to a positive contractive opera-

tor inM, vectors of P ]
b (respectively K) correspond to positive operators (respec-

tively self-adjoint operators).
Now the lemma follows from the theory of self-adjoint operators. The self-

adjoint operator z corresponding to ζ has the Jordan decomposition z = z+ −
z− where z+ and z− are positive operators of M whose supports are mutually
orthogonal. By Lemma 4.1, ζ has the corresponding decomposition.

LEMMA 4.4. The cone P ]
b is dense in P ].

Proof. For each vector ζ in P ] there is a positive self-adjoint linear operator
A affiliated to M such that ζ = Aξ0 [11]. Let EA be the spectral measure associ-
ated to A. Then AEA([0, n]) is bounded positive operator in M. It is well known
that {AEA([0, n])ξ0} converges to Aξ0.

In addition, we can recover the operator norm in terms of P ]
b . For ζ ∈ P ]

b
we define the new “sharp” norm ‖ζ‖] as follows:

‖ζ‖] = sup
{

c > 0 :
1
c

ζ 6 ξ0

}
.

LEMMA 4.5. If a ∈ M+ and ζ = aξ0, then ‖ζ‖] = ‖a‖.

Proof. We only have to note that caξ0 6 ξ0 if and only if ca 6 I. Then the
spectral decomposition of a completes the proof.
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The set K is a real linear subspace of H. To K we can extend the new norm
‖ · ‖] as follows. For ζ ∈ K define

‖ζ‖] = inf{max{‖ζ1‖], ‖ζ2‖]} : ζ1, ζ2 ∈ P ]
b , ζ1 − ζ2 = ζ}.

It is easily seen that if z ∈ Msa corresponds to ζ ∈ K, we have

max{‖z+‖, ‖z−‖} = ‖z‖ = ‖ζ‖] = max{‖ζ+‖], ‖ζ−‖]}.

5. JORDAN STRUCTURE ON K+ iK

First we define the square operation for vectors in K.

DEFINITION 5.1. If ζ is a real linear combination of mutually operationally
orthogonal projective vectors, i.e. ζ = ∑

k
ckζk where ck ∈ R and {ζk} are mutually

operationally orthogonal, then we define the square of ζ as follows:

ζ2 = ∑
k

c2
kζk.

As we have seen in Lemma 4.1, mutually operationally orthogonal projec-
tive vectors {ζk} correspond to mutually orthogonal projections {ek}. Thus the
square of a real linear combination ∑

k
ckek equals ∑

k
c2

kek and for these vectors the

definition of square is consistent.
The set of vectors which are real linear combinations of mutually opera-

tionally orthogonal projective vectors is dense in K in the sharp norm defined in
Section 4. In fact, these vectors correspond to real linear combinations of mutu-
ally orthogonal projections in M, i.e. self-adjoint operators with finite spectra.

Since the sharp norm on K is consistent with the operator norm on M, we
can extend the definition of square to K by continuity. We have the following:

if ζ = zξ0 for z ∈ Msa, then ζ2 = z2ξ0.

Once we have defined the square operation on K, we can define Jordan
polynomials as follows. For η and ζ in K let us define

ηζ + ζη = (η + ζ)2 − η2 − ζ2.

Using this, for ζ = ζ1 + iζ2 ∈ K+ iK we put

ζ2 = ζ2
1 + i(ζ1ζ2 + ζ2ζ2)− ζ2

2.

As for vectors in K, we define the “Jordan product” on K+ iK by

ηζ + ζη = (η + ζ)2 − η2 − ζ2.

Using this, finally we define

ζηζ =
1
2
[(ζη + ηζ)ζ + ζ(ζη + ηζ)]− 1

2
(ζ2η + ηζ2).
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If η = yξ0 and ζ = zξ0 for y, z ∈ M, then it follows that ζηζ = zyzξ0. This
follows because we have defined square and Jordan polynomials on K consis-
tently.

If we fix ζ, we give names to the following mappings:

cζ : K+ iK 3 η 7−→ ζηζ ∈ K+ iK,

odζ : K+ iK 3 η 7−→ η − cζ(η)− cζ⊥(η) ∈ K+ iK.

Let η = yξ0 and ζ = eξ0 where e is a projection. Then we see that

cζ(η) = eyeξ0, and

odζ(η) = yξ0 − eyeξ0 − e⊥ye⊥ξ0 = [eye⊥ + e⊥ye]ξ0

correspond to the corner of y and the off-diagonal part of y, respectively.

6. RECOVERY OF PROJECTIONS IN M IN THE CASE WHEN Mσ = CI

Let p be a projection of B(H). We seek a necessary and sufficient condition
for p to be a projection of M.

We need a criterion for a projection in M to be fixed by the modular auto-
morphism.

LEMMA 6.1. Let e be a projection in M. If pxξ0 = xeξ0 holds for all x ∈ M,
then we have e ∈ Mσ and p = JeJ.

Proof. Note that we get pξ0 = eξ0 if we use the assumption with x = I.
Again by the assumption it follows that

〈xeξ0, ξ0〉 = 〈pxξ0, ξ0〉 = 〈xξ0, pξ0〉 = 〈xξ0, eξ0〉 = 〈exξ0, ξ0〉.
This implies that e ∈ Mσ [11]. In particular, we have

eξ0 = Seξ0 = J∆1/2eξ0 = Jeξ0.

Now the equality JeJxξ0 = xJeJξ0 = xeξ0 = pxξ0 and the cyclicity of ξ0
complete the proof.

Recall that S = J∆1/2 can be defined in terms of K [10].

THEOREM 6.2. Let p be a projection in B(H). There is a projection e ∈ M and a
central projection q ∈ M such that q⊥e ∈ Mσ and p = qe + Jq⊥eJ if and only if the
following hold:

(i) pξ0 6 ξ0.
(ii) If ζ 6 pξ0, then pζ = ζ.

(iii) If ζ 6 p⊥ξ0, then p⊥ζ = ζ.
(iv) For every vector ξ ∈ K+ iK we have pξ ∈ K+ iK and

(a) cpξ0(p odpξ0(ξ)) = 0,
(b) cp⊥ξ0

(p odpξ0(ξ)) = 0,
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(c) (p odpξ0(ξ))2 = 0,
(d) (p⊥ odpξ0(ξ))2 = 0,
(e) Sp odpξ0(ξ) = p⊥S odpξ0(ξ).

Proof. First let us show the “only if” part. In this case, we have

pξ0 = qeξ0 + Jq⊥eJξ0 = qeξ0 + q⊥eξ0 = eξ0 6 ξ0,

hence the first part of the conditions is satisfied. For the second condition, if
ζ = zξ0 6 pξ0 = eξ0, then the support of z is less than or equal to e and we have

pζ = qezξ0 + zJeq⊥ Jξ0 = qezξ0 + zeq⊥ξ0 = zξ0 = ζ.

A similar proof works for the third. To see the conditions of the fourth, let ξ =
xξ0 ∈ K+ iK. We note that:

cpξ0(ξ) = ceξ0(xξ0) = exeξ0, odpξ0(ξ) = odeξ0(xξ0) = [exe⊥ + e⊥xe]ξ0,

p odpξ0(ξ) = [qexe⊥ + q⊥e⊥xe]ξ0, p⊥ odpξ0(ξ) = [qe⊥xe + q⊥exe⊥]ξ0,

Sp odpξ0(ξ) = [qe⊥x∗e + q⊥ex∗e⊥]ξ0,

p⊥S odpξ0(ξ) = (qe⊥ + Jq⊥e⊥ J)[e⊥x∗e + ex∗e⊥]ξ0 = [qe⊥x∗e + q⊥ex∗e⊥]ξ0.

Thus it is easy to see that each of the conditions is valid.
We turn to the “if” part. Let p satisfy the conditions of the statement.
Take x ∈ M satisfying x = exe⊥. If we use the matrix, x takes the following

form: (Ran(e) Ran(e⊥)
Ran(e) 0 X
Ran(e⊥) 0 0

)
.

Then it holds that odpξ0(xξ0) = xξ0.
By assumption (iv), there exists y ∈ M such that pxξ0 = yξ0. In addition,

by assumptions (iv)(a) and (iv)(b), we have eye = e⊥ye⊥ = 0, i.e. y has trivial
corners. By assumption (iv)(c), it follows y2 = 0. Hence y takes the following
form:

y =


0

y1 0 0
0 0 0
0 0 0

0 0 0
0 y2 0
0 0 0

0

 ,

where we decomposed Ran(e) and Ran(e⊥) as follows:

Ran(e) = Dom(e⊥ye)⊕ Ran(eye⊥)⊕ (Ran(e)ªDom(e⊥ye)ª Ran(eye⊥)),

Ran(e⊥) = Dom(eye⊥)⊕ Ran(e⊥ye)⊕ (Ran(e⊥)ªDom(eye⊥)ª Ran(e⊥ye)).

Subspaces which appear here are mutually orthogonal because the square of y
vanishes.
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According to this, we further decompose x:

x =


0

x1 x2 x3
x4 x5 x6
x7 x8 x9

0 0 0
0 0 0
0 0 0

0

 .

By assumption (iv)(d), the square of p⊥xξ0 = (x− y)ξ0 must vanish:

x− y =


0

x1 − y1 x2 x3
x4 x5 x6
x7 x8 x9

0 0 0
0 −y2 0
0 0 0

0

 ,

(x− y)2 =



0 −x2y2 0
0 −x5y2 0
0 −x8y2 0

0

0
0 0 0

−y2x4 −y2x5 −y2x6
0 0 0

 .

Then it follows that x2 = x4 = x5 = x6 = x8 = 0.
If we use assumption (iv)(e), then we get

px∗ξ0 = pSxξ0 = Sp⊥xξ0 = (x∗ − y∗)ξ0.

Applying assumption (iv)(c) to ξ = (x + x∗)ξ0, the square of p(x + x∗)ξ0 = (y +
x∗ − y∗)ξ0 vanishes:

y + x∗ − y∗ =


0

y1 0 0
0 −y∗2 0
0 0 0

x∗1 − y∗1 0 x∗7
0 y2 0
x∗3 0 x∗9

0

 ,

(y + x∗ − y∗)2 =



y1(x∗1 − y∗1) 0 y1x∗7
0 −y∗2y2 0
0 0 0

0

0
(x∗1 − y∗1)y1 0 0

0 −y2y∗2 0
x∗3y1 0 0

 .

Thus it follows that y2 = x3 = x7 = 0 and x1 = y1.
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Summing up, for every x = exe⊥ ∈ M we have

x=


0

x1 0 0
0 0 0
0 0 x9

0 0 0
0 0 0
0 0 0

0

 , yξ0 = pxξ0 =


0

x1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0

 ξ0.

The point is that Dom(y) and Dom(x− y), Ran(y) and Ran(x− y) are mutually
orthogonal, respectively.

If we take another element z = eze⊥ ∈ M and put wξ0 = pzξ0, then by the
same argument we see that Dom(w) and Dom(z− w), Ran(w) and Ran(z− w)
are mutually orthogonal, respectively. In addition, by noting that w + x − y =
e(w + x− y)e⊥ and p(w + x− y)ξ0 = wξ0, it follows that Dom(x− y) ⊥ Dom(w)
and Ran(x − y) ⊥ Ran(w). Similarly it holds that Dom(z − w) ⊥ Dom(y) and
Ran(z− w) ⊥ Ran(y). Then let us define f1 (respectively f3) to be the projection
onto the supremum of such Ran(x− y)’s (respectively Dom(x− y)’s) where x =
exe⊥ runs all the elements of this form in M and put f2 = e− f1, f4 = e⊥ − f3.
They are mutually orthogonal projections of M.

Using them every x = exe⊥ ∈ M is decomposed as follows:


Ran( f1) Ran( f2) Ran( f3) Ran( f4)

Ran( f1) 0 0 x1 0
Ran( f2) 0 0 0 x2
Ran( f3) 0 0 0 0
Ran( f4) 0 0 0 0

.

According to this decomposition, it is easy to see that every x ∈ M must have
the following form:

x =


x1 0 x3 0
0 x2 0 x4
x5 0 x7 0
0 x6 0 x8

 .

Put q = f1 + f3. This is clearly a central projection.
Since p preserves vectors of the set {ζ : ζ 6 pξ0 = eξ0} by assumption (ii),

it holds that p exeξ0 = exeξ0 for x ∈ M. Similarly, by assumption (iii), we see
p⊥ e⊥xe⊥ξ0 = e⊥xe⊥ξ0, hence p e⊥xe⊥ξ0 = 0.

Now, letting x be an arbitrary element of M, p acts on xξ0 as follows:

pxξ0 = p


x1 0 x3 0
0 x2 0 x4
x5 0 x7 0
0 x6 0 x8

 ξ0 =


x1 0 x3 0
0 x2 0 0
0 0 0 0
0 x6 0 0

 ξ0 = (qex + q⊥xe)ξ0.
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Then using the cyclicity of ξ0 and Lemma 6.1, we arrive at the conclusion that
p = qe + Jq⊥eJ.

COROLLARY 6.3. If Mσ = CI, then the conditions in Theorem 6.2 assure that p
is a projection of M.
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