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RIESZ SUMMABILITY OF ORTHOGONAL SERIES IN
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ABSTRACT. A Riesz summability method is defined by means of a sequence
0 = λ0 < λ1 < · · · < λn → ∞ of real numbers. The following theorem is
known in commutative L2-spaces: If a sequence {ξn : n = 0, 1, . . .} of pairwise
orthogonal functions in some L2 = L2(X,F , µ) over a positive measure space
is such that

∑
n:λn>4

(log log λn)
2‖ξn‖2 < ∞,

then the series ∑ ξn is Riesz summable almost everywhere to its sum in the
norm of L2.

In this paper, we extend this theorem to noncommutative L2(A, φ) spaces,
where A is a von Neumann algebra, φ is a faithful, normal state acting on
A, and bundle convergence plays the role of almost everywhere convergence.
An interesting corollary of our Theorem 2.1 reads as follows: For any sequence
{An : n = 0, 1, . . .} of pairwise orthogonal operators in a von Neumann alge-
bra A with a faithful, normal state φ acting on A for which ∑ φ(|An|2) < ∞,
there exists a Riesz method of summability such that the series ∑ π(An)ω is
summable in the sense of bundle convergence, where π is a one-to-one ∗-
homomorphism of A into the algebra of all bounded linear operators on L2
and ω is a cyclic, separating vector in L2 according to the Gelfand–Naimark–
Segal representation theorem.
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L2(A, φ), Gelfand–Naimark–Segal representation theorem, bundle convergence, or-
thogonal series, Riesz summability.

MSC (2000): Primary 46L53; Secondary 46L10, 42C15.

INTRODUCTION

Given a sequence of real numbers:

(0.1) 0 = λ0 < λ1 < λ2 < · · · < λn → ∞ as n→ ∞,
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a series
∞
∑

k=0
uk of complex numbers is said to be Riesz summable, or summable

(R, λn, 1), to a sum s if

lim
n→∞

n

∑
k=0

(
1− λk

λn+1

)
uk = s.

Clearly, s is uniquely determined if exists. Since

1
λn+1

n

∑
k=0

(λn+1 − λk)uk =
1

λn+1

n

∑
k=0

(λk+1 − λk)sk,

where sk := u0 + u1 + · · ·+ uk is the kth partial sum of the series ∑ uk in question,
the infinite matrix of the Riesz method of summability is regular in the sense of
Toeplitz (see, e.g., pp. 74–75 of [6]). Consequently, the ordinary convergence of
the series ∑ uk implies its Riesz summability to the same sum.

We note that the special case λn := n gives rise to summability by the first
arithmetic means, or shortly: summability (C, 1).

Let (X,F , µ) be an arbitrary positive measure space, {ξn : n = 0, 1, . . .} a
sequence of pairwise orthogonal functions in L2 := L2(X,F , µ), and set

sn :=
n

∑
k=0

ξk, σn :=
n

∑
k=0

(
1− λk

λn+1

)
ξk, n = 0, 1, . . . .

The following theorem is due to Zygmund [5] (see also p. 141 of [1]).

THEOREM 0.1. If a sequence {ξn := 0, 1, . . .} of pairwise orthogonal functions in
L2 = L2(X,F , µ) over a positive measure space is such that

(0.2) ∑
n:λn>4

(log log λn)
2‖ξn‖2 < ∞,

then
lim

n→∞
σn(x) = s(x) a.e.,

where s is the sum of the series
∞
∑

n=0
ξn in the norm of L2.

In this paper, logarithms are to the base 2.

REMARK 0.2. We note that if the sequence {λn} grows too fast in the sense
that

lim inf
n→∞

λn+1

λn
> 1,

then it follows from the celebrated Rademacher–Menshov theorem (see, e.g., p. 80
of [1]) that the orthogonal series ∑ ξn converges a.e., a fortiori it is Riesz summa-
ble a.e.

In the sequel, we assume that the sequence {λn} of real numbers is such
that both conditions (0.1) and (0.3) are satisfied, where
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(0.3) lim sup
n→∞

λn+1

λn
=: C < ∞.

1. BACKGROUND

Let H be a separable complex Hilbert space, A a von Neumann algebra over
H, and φ a faithful, normal state acting on A . Then

〈A|B〉 := φ(B∗A), A, B ∈ A,

defines an inner product on A, and (A, 〈·|·〉) is a complex prehilbert space. We
denote by L2 = L2(A, φ) its completion, by (·|·) and ‖ · ‖ the inner product and
norm in L2, respectively.

According to the Gelfand–Naimark–Segal representation theorem, there ex-
ist a one-to-one ∗-homomorphism π of A into the algebra of all bounded linear
operators on L2 and a cyclic, separating vector ω in L2 such that

φ(A) = (π(A)ω|ω).

In particular, it follows that

(1.1) ‖π(A)ω‖2 = φ(A∗A), A ∈ A.

In 1996 Hensz, Jajte and Paszkiewicz [2] introduced the notion of bundle
convergence for sequences of operators in A as well as for sequences of vectors
in L2. To present their definition, we consider a sequence {Dk : k = 0, 1, 2, . . .} of
operators in A+, the cone of all positive operators in A, for which

(1.2)
∞

∑
k=0

φ(Dk) < ∞,

and associate with it a so-called bundle P = P(Dk) defined as follows:

(1.3) P :=
{

P ∈ ProjA : sup
{∥∥∥P

( n

∑
k=0

Dk

)
P
∥∥∥

∞
: n > 0

}
< ∞

and ‖PDnP‖∞ → 0 as n→ ∞
}

,

where ProjA is the class of all selfadjoint projections P in A and ‖ · ‖∞ is the usual
operator norm (of the bounded operators over H).

Now, a sequence {An : n = 0, 1, 2, . . .} of operators in A is said to be bundle
convergent to some A in A, in symbol:

(1.4) An
b,A→ A as n→ ∞,

if there exists a bundle P such that for each P in P we have

‖(An − A)P‖∞ → 0 as n→ ∞.
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Furthermore, a sequence {ξn : n = 0, 1, 2, . . .} of vectors in L2 is said to be bundle
convergent to some ξ in L2, in symbol:

ξn
b→ ξ as n→ ∞,

if there exists a sequence {An : n = 0, 1, 2, . . .} of operators in A for which

(1.5) An
b,A→ O as n→ ∞ and

∞

∑
n=0
‖ξn − ξ − π(An)ω‖2 < ∞,

where O is the zero operator in A .
It is clear that if for some sequence {An} in A the limit relation (1.4) holds

with A = O, then

π(An)ω
b→ o,

where o is the zero vector in L2.
Bundle convergence is an appropriate substitute for almost everywhere (in

measure theory) or almost sure (in probability theory) convergence in a noncom-
mutative setting (see p. 29 of [2]).

2. RIESZ SUMMABILITY IN VON NEUMANN ALGEBRAS

We will extend Theorem 0.1 for orthogonal sequences {An : n = 0, 1, . . .} of
operators in a von Neumann algebra A.

THEOREM 2.1. Let A be a von Neumann algebra, φ a faithful and normal state
acting on A, and {λn : n = 0, 1, . . .} a sequence of real numbers satisfying conditions
(0.1) and (0.3). If {An : n = 0, 1, . . .} is a sequence of pairwise orthogonal operators in
A such that

(2.1) ∑
n:λn>4

(log log λn)
2φ(|An|2) < ∞,

then

(2.2)
n

∑
k=0

(
1− λk

λn+1

)
π(Ak)ω

b→ σ as n→ ∞,

where σ is the sum of the series
∞
∑

n=0
π(An)ω in the norm of L2 = L2(A, φ).

We recall that the symbol | · | is defined by

(2.3) |A| := (A∗A)1/2, A ∈ A.

The square root makes sense, since A∗A ∈ A+. Unfortunately, the traditional tri-
angle inequality does not hold in the noncommutative case. However, the follow-
ing weaker substitute for the triangle inequality is available in any von Neumann
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algebra A (see, e.g., p. 4 of [3]): For any ck∈C and Ak∈A, 06k6n, we have

(2.4)
∣∣∣ n

∑
k=0

ck Ak

∣∣∣2 6
n

∑
k=0
|ck|2

n

∑
k=0
|Ak|2.

This can be considered as a version of the Cauchy inequality in noncommutative
setting.

REMARK 2.2. The following corollary of Theorem 2.1 is interesting in itself:
Let A be a von Neumann algebra and φ a faithful, normal state acting on A. If a sequence
{An : n = 0, 1, . . .} of pairwise orthogonal operators in A is such that ∑ φ(|An|2) <
∞, then there exists a Riesz method of summability by which the series ∑ π(An)ω is
summable in the sense of bundle convergence.

Indeed, first we construct a strictly increasing sequence {κn : n = 1, 2, . . .}
of positive real numbers tending to ∞ such that

∞

∑
n=1

κ2
nφ(|An|2) < ∞ and lim sup

n→∞
(2κn+1 − 2κn) < ∞,

then set
λ0 := 0, λn := 22κn , n = 1, 2, . . . .

Clearly, this sequence {λn : n = 0, 1, . . .} satisfies conditions (0.1) and (0.3). Ap-
plying Theorem 2.1 furnishes the corollary stated above.

Proof of Theorem 2.1. Part (i). Given a sequence {λn} of real numbers with
(0.1) and (0.3), we define two sequences of integers:

0 < ν0 < ν1 < · · · and 2 6 p0 < p1 < · · ·

such that the following two conditions are satisfied:

2pn 6 λνn < 2pn+1;(2.5)

λν0−1 < 4 and λνn+1−1 < 2pn+1, n = 0, 1, . . . .(2.6)

It is clear that pn > n. Taking into account the left-hand inequality in (2.5),
we have

2pn 6 λk for k > νn, n > 2.

Combining this inequality with (2.1) and the fact that pn > n gives

(2.7)
∞

∑
n=2

(log n)2
νn+1

∑
k=νn+1

φ(|Ak|2) 6
∞

∑
k=ν2+1

(log log λk)
2φ(|Ak|2) < ∞.

If we take into account the right-hand inequality in (2.5), we find that

(2.8) λ2
k ∑

n:νn>k

1
λ2

νn

6 λ2
νn0

∞

∑
n=n0

1
λ2

νn

6 22(pn0+1)
∞

∑
n=n0

1
22pn

=
16
3

,

where νn0−1 < k 6 νn0 .
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Part (ii). We will use the following notations:

Sn :=
n

∑
k=0

Ak, Tn :=
n

∑
k=0

(
1− λk

λn+1

)
Ak, and cn :=(φ(|An|)2)1/2, n=0, 1, . . . .(2.9)

Since

Sνn − Tνn =
νn

∑
k=0

λk
λνn+1

Ak,

by orthogonality, we obtain

φ(|Sνn − Tνn |2) =
νn

∑
k=0

λ2
k

λ2
νn+1

c2
k .

By (2.1) and (2.8), we conclude that

∞

∑
n=0

φ(|Sνn − Tνn |2) =
∞

∑
n=0

1
λ2

νn+1

νn

∑
k=0

λ2
kc2

k =
∞

∑
k=0

λ2
kc2

k ∑
n:νn>k

1
λ2

νn+1
6

16
3

∞

∑
k=0

c2
k < ∞.

It follows from Property 3.1, p. 30 of [2] that

(2.10) Sνn − Tνn
b,A→ O as n→ ∞.

By virtue of Theorem 4 in [4], it follows from (2.7) that

(2.11) π(Sνn)ω
b→ σ as n→ ∞.

Next, we will find an estimate for |Tm − Tνn |2, where the integers m and
n are such that νn < m < νn+1. To this effect, we apply inequality (2.4) with
appropriate scalars for the following representation of the difference:

Tm − Tνn =
m−1

∑
j=νn

(Tj+1 − Tj), νn < m < νn+1.

As a result, we obtain

|Tm − Tνn |2 6
νn+1−2

∑
j=νn

λj+2 − λj+1

λj+1

νn+1−2

∑
j=νn

λj+1

λj+2 − λj+1
|Tj+1 − Tj|2.

By (0.3), (2.5) and (2.6), we find that

νn+1−2

∑
j=νn

λj+2−λj+1

λj+1
6

λνn+1

λνn+1−1
+

λνn+1−1−λνn+1

λνn+1
<C+

λνn+1−1

λνn+1
<C+2,(2.12)

where the constant C occurs in (0.3). Thus, it follows that

(2.13) |Tm − Tνn |2 6 (C + 2)
νn+1−2

∑
j=νn

λj+1

λj+2 − λj+1
|Tj+1 − Tj|2.
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Now, we define the positive operators Dn as follows:

(2.14) Dn :=
νn+1−2

∑
j=νn

λj+1

λj+2 − λj+1
|Tj+1 − Tj|2, n = 0, 1, . . . ;

in case νn+1 = νn + 1, the empty sum equals the zero operator O, by definition.
Taking into account that

Tj+1 − Tj =
λj+2 − λj+1

λj+1λj+2

j+1

∑
k=1

λk Ak

and that the operators Ak are pairwise orthogonal, we obtain

(2.15) φ(|Tj+1 − Tj|2) =
(λj+2 − λj+1

λj+1λj+2

)2 j+1

∑
k=1

λ2
kc2

k .

Putting together (2.14) and (2.15) gives

∞

∑
n=0

φ(Dn) 6
∞

∑
n=0

λj+2 − λj+1

λj+1λ2
j+2

νn+1−2

∑
j=νn

j+1

∑
k=1

λ2
kc2

k(2.16)

6
∞

∑
j=ν0

λj+2 − λj+1

λj+1λ2
j+2

j+1

∑
k=1

λ2
kc2

k 6
∞

∑
k=1

λ2
kc2

k

∞

∑
j=k−1

λj+2 − λj+1

λj+1λ2
j+2

.

Since

λj+2−λj+1

λj+1λ2
j+2

=
λ2

j+2 − λ2
j+1

λj+1λ2
j+2(λj+2+λj+1)

<
λ2

j+2−λ2
j+1

2λ2
j+1λ2

j+2
=

1
2

( 1
λ2

j+1
− 1

λ2
j+2

)
,(2.17)

we conclude from (2.16) and (2.1) that
∞

∑
n=0

φ(Dn) 6
1
2

∞

∑
k=1

λ2
kc2

k

∞

∑
j=k−1

( 1
λ2

j+1
− 1

λ2
j+2

)
=

1
2

∞

∑
k=1

c2
k :=

1
2

∞

∑
k=1

φ(|Ak|2) < ∞.

This last inequality means that the sequence {Dn : n = 0, 1, . . .} determines a
bundle, which we denote by P .

For each integer m > ν0, let n(m) be the unique integer for which

(2.18) νn(m) 6 m < νn(m)+1.

By (2.13) and (2.14), we have

(2.19) |Tm − Tνn(m)
|2 6 (C + 2)Dν(m), m = 0, 1, . . . ,

whence it follows that for any projection P in the bundle P ,

‖P|Tm − Tνn(m)
|2P‖∞ 6 2‖PDn(m)P‖∞ → 0 as m→ ∞.

By definition, this means that

(2.20) Tm − Tνn(m)

b,A→ O as m→ ∞.
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Finally, we consider the representation

(2.21) π(Tm)ω = π(Tm − Tνn(m)
)ω + π(Tνn(m)

− Sνn(m)
)ω + π(Sνn(m)

)ω.

By using (2.10), (2.11), (2.20) as well as Property 3.6, p. 31 of [2] and the additivity
property of bundle convergence, we conclude from (2.21) that

π(Tm)ω
b→ σ as m→ ∞,

which is (2.2) to be proved (see the notation for Tn in (2.9)).

REMARK 2.3. We point out that Theorem 2.1 remains valid if (0.3) is omitted
from the conditions. A brief sketch of this claim is the following. It is easy to see
that both (2.10) and (2.11) also hold true with νn − 1 in place of νn. These facts

make it possible that in the definition (2.14) of Dn we may put
νn+1−3

∑
j=νn

in place

of
νn+1−2

∑
j=νn

(with the agreement that the empty sum equals O). In doing so, the

upper limit νn+1 − 2 of the summation in (2.12) may be replaced by νn+1 − 3. As
a result, conditions (2.5) and (2.6) are enough to ensure the boundedness of the
sums in (2.12). The reader may trace out with ease these changes in the formulas
involved.

3. RIESZ SUMMABILITY IN L2-SPACES

Things become more complicated in the case of L2-spaces. This is the rea-
son that we have to impose an additional condition on the sequence {λn} to be
increasing in such a way that

(3.1)
∞

∑
n=1

1
λ2

n
< ∞.

THEOREM 3.1. Let A be a von Neumann algebra, φ a faithful and normal state
acting on A, and {λn} a sequence of real numbers with properties (0.1), (0.3) and (3.1).
If {ξn : n = 0, 1, . . .} is a sequence of pairwise orthogonal vectors in L2 := L2(A, φ)
such that

(3.2) ∑
n:λn>4

(log log λn)
2‖ξn‖2 < ∞,

then

(3.3) τn :=
n

∑
k=0

(
1− λk

λn+1

)
ξk

b→ σ as n→ ∞,

where σ is the sum of the series
∞
∑

n=0
ξn in the norm of L2.
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REMARK 3.2. Our “noncommutative” Theorem 3.1 is not so general as the
“commutative” Theorem 0.1, owing to the fact that the additional condition (3.1)
is imposed on the sequence {λn} which determines the Riesz summability
method in question. However, such a condition is not too restrictive. For exam-
ple, ([3], Theorem 5.2.8. on p. 71) relating to λn := n, n = 0, 1, . . ., is a particular
case of our Theorem 3.1.

Proof of Theorem 3.1. Part (i). Given a sequence {λn} of real numbers with
(0.1) and (0.3), we consider the sequences {νn} and {pn} of integers satisfying
conditions (2.5)–(2.8) (see Part (i) in the proof of Theorem 2.1). In addition to the
notation in (3.3), we also use the following ones:

σn :=
n

∑
k=0

ξk and cn := ‖ξn‖, n = 0, 1, . . . .

In the same way as in the proof of Theorem 2.1, we conclude

σνn − τνn
b→ o and σνn

b→ σ as n→ ∞.

By the additive property of bundle convergence, it follows that

(3.4) τνn
b→ σ as n→ ∞.

Part (ii). Now, we introduce an appropriate sequence {An : n = 0, 1, . . .}
of operators in A for the approximation to the vectors of the given sequence
{ξn}, while taking care of the fulfillment of the second condition in (1.5). We
set (cf. (2.9))

Sn :=
n

∑
k=0

Ak, Tn :=
n

∑
k=0

(
1− λk

λn+1

)
Ak, and ηn := ξn−π(An)ω, n=0, 1, . . . .

For each integer m > ν0, we denote by n(m) the unique integer n(m) for which
condition (2.18) is satisfied.

Now, we consider the representation

τm =[τm−τνn(m)
−π(Tm)ω+π(Tνn(m)

)ω]+[π(Tm)ω−π(Tνn(m)
)ω]+τνn(m)

.(3.5)

By (3.4), the last term on the right-hand side of (3.5) is bundle convergent to σ
as m → ∞ (and, consequently, as n(m) → ∞). So, it remains to show that the
expressions in the first two brackets on the right-hand side of (3.5) are bundle
convergent to o as m→ ∞.
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Part (iii). We start with the following representation of the expression in the
first brackets:

τm − τνn(m)
− π(Tm)ω + π(Tνn(m)

)ω =
m

∑
k=0

(
1− λk

λm+1

)
ηk −

νn(m)

∑
k=0

(
1− λk

λνn(m)+1

)
ηk

=
m

∑
k=νn(m)+1

ηk−
1

λm+1

m

∑
k=0

λkηk+
1

λνn(m)+1

νn(m)

∑
k=0

λkηk(3.6)

=: αm + βm + γm, m = 0, 1, . . . .

For the sake of brevity in writing, we introduce the notation

Jn := {νn, νn + 1, . . . , νn+1 − 1}, n = 0, 1, . . . .

It is easy to see that
∞

∑
m=ν0

‖αm‖2 =
∞

∑
n=0

∑
m∈Jn

‖αm‖2 6
∞

∑
n=0

∑
m∈Jn

(m− νn)
m

∑
k=νn+1

‖ηk‖2.

We will assume that

(3.7) ‖ηk‖2 6
1

(n + 1)2(νn+1 − νn)3 for k ∈ Jn; n = 0, 1, . . . ,

then
m

∑
k=νn+1

‖ηk‖2 6
1

(n + 1)2(νn+1 − νn)2 for m ∈ Jn,

and, consequently, we have
∞

∑
m=ν0

‖αm‖2 6
∞

∑
n=0

1
(n + 1)2 < ∞.

To sum up, under condition (3.7), it follows that

(3.8) αm
b→ o as m→ ∞.

By the triangle inequality, we estimate as follows:

‖βm‖2 =
1

λ2
m+1

∥∥∥ m

∑
k=0

λkηk

∥∥∥2
6

1
λ2

m+1

( m

∑
k=0

λk‖ηk‖
)2

.

We will also assume that

(3.9) ‖ηk‖ 6
1

(k + 1)2λk
, k = 0, 1, . . . ,

then it follows from (3.1) that
∞

∑
m=ν0

‖βm‖2 6
∞

∑
m=ν0

1
λ2

m+1

( ∞

∑
k=0

1
(k + 1)2

)2
< ∞,

and, consequently, we have

(3.10) βm
b→ o as m→ ∞.
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It remains to observe that γm = βνn(m)
, that is {γm} is a subsequence of

{βm}. Thus, by (3.6), (3.8) and (3.10), we conclude

(3.11) τm − τνn(m)
− π(Tm)ω + π(Tνn(m)

)ω
b→ o as m→ ∞,

provided that conditions (3.7) and (3.9) are satisfied.
Part (iv). Next, we deal with the expression in the second brackets on the

right-hand side of (3.5). We start with the representation

(3.12) π(Tj+1)ω− π(Tj)ω = [π(Tj+1)ω− τj+1 − π(Tj)ω + τj]

+ [τj+1 − τj] =: χj + (τj+1 − τj), j = 0, 1, . . . .

By the triangle inequality, we clearly have

(3.13) ‖π(Tj+1)ω− π(Tj)ω‖2 6 2(‖χj‖2 + ‖τj+1 − τj‖2).

Since

χj =−
j+1

∑
k=0

(
1− λk

λj+2

)
ηk+

j

∑
k=0

(
1− λk

λj+1

)
ηk =−

(
1−

λj+1

λj+2

)
ηj+1+

( 1
λj+2

− 1
λj+1

) j

∑
k=0

λkηk,

we may estimate again as above:

(3.14) ‖χj‖2 6 2
[
‖ηj+1‖2 +

( 1
λj+2

− 1
λj+1

)2∥∥∥ j

∑
k=0

λkηk

∥∥∥2]
.

If (3.9) is satisfied, then we have

(3.15)
∥∥∥ j

∑
k=0

λkηk

∥∥∥2
6
( j

∑
k=0
|λk|‖ηk‖

)2
6
(π2

6

)2
=: K, j = 0, 1, . . . .

Combining (3.12)–(3.15), while taking into account (1.1), yields

(3.16) φ(|Tj+1 − Tj|2) = ‖π(Tj+1)ω− π(Tj)ω‖2

6 4
[
‖ηj+1‖2 +

( 1
λj+2

− 1
λj+1

)2
K
]
+ 2‖τj+1 − τj‖2,

provided that (3.9) is satisfied.
Now, we consider the sequence {Dn : n = 0, 1, . . .} of positive operators in

A defined in (2.14) in the proof of Theorem 2.1. Combining (2.14) and (3.16) gives

(3.17)
∞

∑
n=0

φ(Dn) 6 4
∞

∑
n=0

νn+1−2

∑
j=νn

λj+1

λj+2 − λj+1

[
‖ηj+1‖2 +

( 1
λj+1

− 1
λj+2

)2
K
]

+ 2
∞

∑
n=0

νn+1−2

∑
j=νn

λj+1

λj+2 − λj+1
‖τj+1 − τj‖2 =: E + F, say.
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In an analogous way as in the proof of Theorem 2.1 (cf. (2.15)), we obtain

‖τj+1 − τj‖2 =
(λj+2 − λj+1

λj+1λj+2

)2 j+1

∑
k=1

λ2
kc2

k ,

whence it follows (cf. (2.17)) that

F = 2
∞

∑
n=0

νn+1−2

∑
j=νn

λj+2 − λj+1

λj+1λ2
j+2

j+1

∑
k=1

λ2
kc2

k 6
∞

∑
j=ν0

( 1
λ2

j+1
− 1

λ2
j+2

) j+1

∑
k=1

λ2
kc2

k(3.18)

6
∞

∑
k=1

λ2
kc2

k

∞

∑
j=k−1

( 1
λ2

j+1
− 1

λ2
j+2

)
=

∞

∑
k=1

c2
k :=

∞

∑
k=1
‖ξk‖2 < ∞.

Next, we estimate E. Clearly, we have

(3.19) E 6 4
∞

∑
j=ν0

λj+1

λj+2 − λj+1

[
‖ηj+1‖2 +

( 1
λj+1

− 1
λj+2

)2
K
]
.

Since

λj+1

λj+2 − λj+1

( 1
λj+1

− 1
λj+2

)2
=

λj+1

λλj+2 − λj+1

(λj+2 − λj+1)
2

λ2
j+1λ2

j+2

=
λj+2 − λj+1

λj+1λ2
j+2

<
1

λj+1λj+2
<

1
λ2

j+1
,

it follows from (3.1) and (3.19) that

(3.20) E 6
∞

∑
j=ν0

[ λj+1

λj+2 − λj+1
‖ηj+1‖2 +

K
λ2

j+1

]
< ∞

if we impose upon {ηk} the following third condition:

(3.21)
∞

∑
j=0

λj

λj+1 − λj
‖ηj‖2 < ∞.

From (3.17), (3.18) and (3.20) it follows that

(3.22)
∞

∑
n=0

φ(Dn) < ∞,

provided that conditions (3.9) and (3.21) are satisfied, where the sequence {Dn}
is defined in (2.14). Now, we can derive again the fulfillment of (2.20) exactly in
the same way as in the proof of Theorem 2.1.

We recall that according to the Gelfand–Naimark–Segal representation the-
ory, the closure of the set

π(A)ω := {π(A)ω : A ∈ A}

in the norm ‖ · ‖ coincides with L2 = L2(A, φ) itself. Thus, we can define an
approximating sequence {An} of operators in A to the vectors of the sequence
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{ξn} in such a way that conditions (3.7), (3.9) and (3.21) are satisfied for the vec-
tors of the sequence {ηn := ξn − π(An)ω}. By making use of (3.4), (3.5), (3.11),
(2.20) as well as Property 3.6, p. 31 of [2] and the additivity property of bundle
convergence, we conclude (3.3) with m in place of n.
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