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ABSTRACT. We introduce characteristic functions for certain contractive lift-
ings of row contractions. These are multi-analytic operators which classify the
liftings up to unitary equivalence and provide a kind of functional model. The
most important cases are subisometric and coisometric liftings. We also iden-
tify the most general setting which we call reduced liftings. We derive proper-
ties of these new characteristic functions and discuss the relation to Popescu’s
definition of the characteristic function for completely non-coisometric row
contractions. Finally we apply our theory to completely positive maps and
prove a one-to-one correspondence between the fixed point sets of completely
positive maps related to each other by a subisometric lifting.
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INTRODUCTION

Let C be a contraction on a Hilbert space HC. Then a contraction E on a
Hilbert space HE ⊃ HC is called a contractive lifting of C if PE = CP, where P is
the orthogonal projection fromHE ontoHC. In other words, we have an operator
matrix

E =

(
C 0
B A

)
.(0.1)

See Chapter 5 of [17]. In this book C. Foias and A.E. Frazho amply demonstrate
the importance of understanding the structure of contractive liftings, in particular
in connection with the commutant lifting theorem and its applications.

The minimal isometric dilation (mid for short) of C is the most prominent
example of a contractive lifting. In [15] R.G. Douglas and C. Foias introduced
subisometric dilations (see also Chapter 8.3 of [5] for a discussion closer to our
point of view). These are contractive liftings with the property that the mid of E
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is also minimal as an isometric dilation of C. In this context Douglas and Foias
were especially interested in problems of uniqueness and of commutant lifting.
We arrived at the subisometric property in a completely different way and ask
different questions about it. Let us briefly describe the most relevant aspects of
this development.

Many results of the Sz.-Nagy–Foias-theory for contractions [30] can be gen-
eralized to row contractions C = (C1, . . . , Cd), i.e. tuples of operators such that

d
∑

i=1
CiC∗i 6 1. This has been done very systematically by G. Popescu [23], [24],[25],

[26], [27], [28], [29] and many people contributed to this development, an incom-
plete list of work related to our interests is [18], [10], [3], [6], [9], [13], [7]. In
particular in [24] G. Popescu described a class of multi-analytic operators which
classify completely non-coisometric (c.n.c.) row contractions up to unitary equiv-
alence and called them characteristic functions, in analogy to a similar concept in
the Sz.-Nagy–Foias-theory. In [14] S. Dey and R. Gohm started from some seem-
ingly unrelated questions in noncommutative probability theory arising in [19],
[20] and established a class of multi-analytic operators which are associated to

certain rather special coisometric row contractions (i.e.,
d
∑

i=1
CiC∗i = 1). Investi-

gating their properties we came to the conclusion that there are good reasons to
think of them as of characteristic functions for these tuples. This is not covered
by Popescu’s theory.

In this paper we will show that it is the property of being a subisometric
lifting which makes this analysis possible. This is a vast generalization of the
setting of [14] and it clarifies the mechanism behind it. It is straightforward to
define liftings for row contractions. Let E = (E1, . . . , Ed) be a row contraction on
a Hilbert space HE ⊃ HC. If for all i = 1, . . . , d (with d countable) we have an
operator matrix

Ei =

(
Ci 0
Bi Ai

)
(0.2)

with respect to HC ⊕H⊥C then we say that E is a lifting of C = (C1, . . . , Cd) by
A = (A1, . . . , Ad) (or that E is an extension of A by C). The subisometric property
in the form given here also makes sense for row contractions, using Popescu’s
theory of mid for row contractions [23]. This is worked out in Section 1 below.
It then turns out that there is a Beurling type classification of subisometric lift-
ings, involving a correspondence to certain multi-analytic inner operators (Theo-
rem 1.6). They classify subisometric liftings up to unitary equivalence, so we call
them characteristic functions of (subisometric) liftings.

In Section 2 we focus on coisometric liftings, i.e.
d
∑

i=1
EiE∗i = 1, emphasiz-

ing another type of classification which uses an isometry γ mapping the defect
space D∗,A of A into the defect space DC of C (Theorem 2.1). The connection to
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Section 1 lies in the fact that coisometric liftings by ∗-stable A are subisometric
(Proposition 2.3). But this is only a special case and we have to generalize further.

This is done in Section 3. We get a hint from a result about contractive
liftings for single contractions. Lemma 2.1 in Chapter IV of [17] states that E =(

C 0
B A
)

is a contraction if and only if C and A are contractions and there exists a
contraction γ : D∗,A → DC such that

B = D∗,Aγ∗DC,(0.3)

where D∗,A and DC are the defect operators of A∗ and C. We establish an analo-
gous result for row contractions (Proposition 3.1). This shows that the isometry γ
occurring for coisometric liftings in Section 2 has to be replaced in a more general
setting by a contraction.

The most general situation where we can establish a satisfactory theory of
characteristic functions for liftings is identified in Section 3 and we call such lift-
ings reduced. The technical tool here is to use the Wold decomposition for the
mid’s (cf. [23]). For γ we isolate the special property needed and call it resolv-
ing. Reduced liftings include subisometric liftings as well as coisometric liftings
by c.n.c. row contractions. We define characteristic functions for reduced liftings
(Definition 3.6) and we argue that this is the most general setting which is natural
for that. These characteristic functions are multi-analytic operators (not inner in
general) and they characterize reduced liftings up to unitary equivalence. They
also provide a kind of functional model for the lifting which is useful for a closer
investigation of the structure of the lifting in the same sense as the characteristic
functions of Sz.-Nagy–Foias and of Popescu are useful in their context.

In Section 4 we study some further properties of these characteristic func-
tions. In particular we clarify the connection to Popescu’s characteristic functions
and we investigate iterated liftings, showing a factorization result for our char-
acteristic functions (Theorem 4.1). This is another indication that our definition
leads to a promising theory.

We believe that in particular the theory of subisometric liftings may be even
more interesting for row contractions than it is for single contractions. There is a
straightforward way to transfer results from a row contraction C = (C1, . . . , Cd)

to the completely positive map ΦC : X 7→
d
∑

i=1
CiXC∗i . This topic is taken up in Sec-

tion 5. We define characteristic functions for liftings of completely positive maps
and show in which way they are characteristic in this case (Corollary 5.2). We
investigate what subisometric lifting means in this context and prove a one-to-
one correspondence between the fixed point sets (Theorem 5.4). In particular we
consider the situation where a normal invariant state is restricted to its support
(Corollary 5.6). From our point of view these applications give a strong motiva-
tion for further developing the theory of liftings for row contractions.
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In an Appendix we reprove a commutant lifting theorem by O. Bratteli,
P. Jorgensen, A. Kishimoto and R.F. Werner ([11]), used in Section 5, in a way
that helps to understand its role in our theory.

1. SUBISOMETRIC LIFTINGS

In this section we define subisometric liftings in the setting of row contrac-
tions and show that there is a nice Beurling type classification for them.

We recall the notion of a minimal isometric dilation for a row contraction,
cf. [23]. Let T = (T1, . . . , Td) be a row contraction on a Hilbert space H. Treating

T as an operator from
d⊕

i=1
H to H, define D∗ := (1 − TT∗)1/2 : H → H and

D := (1− T∗T)1/2 :
d⊕

i=1
H →

d⊕
i=1
H. This implies that

D∗ =
(

1−
d

∑
i=1

TiT∗i
)1/2

, D = (δij1− T∗i Tj)
1/2
d×d.(1.1)

Let D∗ := range D∗ and D := range D.
We use the following multi-index notation. Let Λ denote the set {1, 2, . . . , d}

and Λ̃ :=
∞⋃

n=0
Λn, where Λ0 := {0}. If α ∈ Λn ⊂ Λ̃ the integer n = |α| is called its

length. Now Tα with α = (α1, . . . , αn) ∈ Λn means Tα1 Tα2 · · · Tαn .
The full Fock space over Cd (d > 2) denoted by Γ(Cd) is

Γ(Cd) := C⊕Cd ⊕ (Cd)⊗
2 ⊕ · · · ⊕ (Cd)⊗

m ⊕ · · · .(1.2)

To simplify notation we shall often only write Γ instead of Γ(Cd). The vector
e0 := 1⊕ 0⊕ · · · is called the vacuum vector. Let e1, . . . , ed be the standard or-
thonormal basis of Cd. We include d = ∞ in which case Cd stands for a complex
separable Hilbert space of infinite dimension. For α ∈ Λn, eα will denote the vec-
tor eα1 ⊗ eα2 ⊗ · · · ⊗ eαn in the full Fock space Γ. Then eα over all α ∈ Λ̃ forms an
orthonormal basis of the full Fock space. The (left) creation operators Li on Γ(Cd)
are defined by Lix = ei ⊗ x for 1 6 i 6 d and x ∈ Γ(Cd). Then L = (L1, . . . , Ld) is
a row isometry, i.e., the Li are isometries with orthogonal ranges.

Using the definition of lifting in the introduction, a minimal isometric di-
lation (mid for short) can be described as an isometric lifting V of T such that
the spaces VαH with α ∈ Λ̃ together span the Hilbert space on which the Vi are
defined. It is an important fact, which we shall use repeatedly, that such mini-
mal isometric dilations are unique up to unitary equivalence (cf. [23]). A useful
model for the mid is given by a version of the Schäffer construction, given in [23].
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Namely, we can realize a mid V of T on the Hilbert space Ĥ := H⊕ (Γ⊗D),

Vi

(
h⊕ ∑

α∈Λ̃

eα ⊗ dα

)
= Tih⊕

[
e0 ⊗ Dih + ei ⊗ ∑

α∈Λ̃

eα ⊗ dα

]
(1.3)

for h ∈ H and dα ∈ D. Here Dih := D(0, . . . , 0, h, 0, . . . , 0) and h is embedded at
the ith component.

If we have more than one row contraction at the same time then we shall
use the above notations with superscripts or subscripts, as convenient. We are
now ready for the basic definition in this section.

DEFINITION 1.1. Let C = (C1, . . . , Cd) be a row contraction on a Hilbert
spaceHC. A lifting E of C onHE ⊃ HC is called subisometric if the corresponding
mids VE (on the Hilbert space ĤE) and VC (on the Hilbert space ĤC) are unitar-
ily equivalent, in the sense that there exists a unitary W : ĤE → ĤC such that
W|HC = 1|HC and WVE

i = VC
i W.

For d = 1 this is consistent with the definition of subisometric dilation in
[15], see the discussion in the introduction. Note that the mid VC is an example
of a subisometric lifting in this sense. Another (trivial) example is C itself (consid-
ered as a lifting of C). Further note that, given the mids VE and VC, the unitary
W is uniquely determined by its properties (use the minimality of VC).

We want to make the structure of subisometric liftings more explicit. Let
E = (E1, . . . , Ed) be a subisometric lifting of C = (C1, . . . , Cd) on HE = HC ⊕HA
as in Definition 1.1, so that for all i = 1, . . . , d we have block matrices

Ei =

(
Ci 0
Bi Ai

)
.(1.4)

Let VC be the mid of C, realized as in (1.3) on the space ĤC = HC ⊕ (Γ ⊗DC).
Because HE = HC ⊕ HA ⊂ ĤE we can use the unitary W from the subiso-
metric lifting property to obtain a subspace HA∗ := WHA ⊂ Γ ⊗ DC. Further
HE∗ := HC ⊕HA∗ ⊂ ĤC, and VC is also a mid of the row contraction E∗ which
is transferred by W from the unitarily equivalent original E. We can write

Ei∗ =

(
Ci 0
Bi∗ Ai∗

)
(1.5)

so E∗ is also a lifting of C.
Because VC is a mid of E∗ it follows thatHE∗ is coinvariant for VC (by which

we mean that it is invariant for all (VC
i )∗, i = 1, . . . , d). Note that

VC
i |Γ⊗DC = Li ⊗ 1.(1.6)

Hence L⊗ 1 is an isometric lifting of A∗, in particular HA∗ is coinvariant for
L⊗ 1. An isometric lifting always contains the mid. In particular the mid of
A∗ lives on the space span{(Lα ⊗ 1)HA∗, α ∈ Λ̃}. This subspace is reducing for
the Li ⊗ 1 for all i = 1, . . . , d and hence has the form Γ⊗E for a subspace E ofDC,
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see for example Corollary 1.7 of [28], where it is done in a more general setting.
In this reference the space E is described as the closure of the image ofHA∗ under
the orthogonal projection onto e0 ⊗DC.

We can obtain a more concrete formula for E by comparing this result with
another way of writing the mid. First note that, as a compression of L⊗ 1, the
row contraction A∗ (and hence also A) is ∗-stable, i.e., for all h ∈ HA

lim
n→∞ ∑

|α|=n
‖A∗αh‖2 = 0,(1.7)

cf. Proposition 2.3 of [23], (where it is called pure). In this case, with D∗,A =

(1− AA∗)1/2 : HA → HA and D∗,A its closed range, the map

HA → Γ⊗D∗,A,(1.8)

h 7→ ∑
α∈Λ̃

eα ⊗ D∗,A A∗αh,

is isometric (Popescu’s Poisson kernel, cf. [26]). With this embedding ofHA it can
be checked that now L⊗ 1 on Γ⊗D∗,A is a mid of A.

Because mids are unique up to unitary equivalence we have a unitary u :
Γ ⊗ D∗,A → Γ ⊗ E such that uHA = HA∗ and u(Li ⊗ 1) = (Li ⊗ 1)u for all
i = 1, . . . , d. The commutation relation implies that u is of the form 1⊗ u′, where
u′ is a unitary from D∗,A onto E (you may use the fact that e0 ⊗D∗,A respectively
e0 ⊗ E are the uniquely determined wandering subspaces). Thinking of u′ as an
isometry from D∗,A into DC we call it γ. So γ : D∗,A → DC has E as its range and
it is canonically associated to a subisometric lifting in the way shown above.

Using γ we see that the embedding of HA into Γ ⊗DC is automatically of
Poisson kernel type (1.8), namely

HA 3 h 7→ ∑
α∈Λ̃

eα ⊗ γD∗,A A∗αh ∈ Γ⊗DC(1.9)

which is an explicit formula for the embedding W|HA : HA → HA∗ ⊂ Γ⊗DC.
Note also that the isometry γ is closely related to the B-part of the lifting

E. In fact, because E∗i∗ = (VC
i )∗|HE∗ we obtain B∗i∗ = pC(VC

i )∗pA∗, where pC, pA∗
are the orthogonal projections ontoHC,HA∗. Combining this with (1.3) and (1.9)
yields B∗i = D∗i,CγD∗,A : HA → HC, i = 1, . . . , d. Or in a more compact form

B∗ = D∗CγD∗,A.(1.10)

PROPOSITION 1.2. A lifting E of a row contraction C with

Ei =

(
Ci 0
Bi Ai

)
, i = 1, . . . , d,

is subisometric if and only if A is ∗-stable and B = D∗,Aγ∗DC with an isometry γ :
D∗,A → DC.
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Proof. We have already seen above that if E is subisometric then the condi-
tions are satisfied. Conversely, if A is ∗-stable then use the isometry γ to embed A
(as A∗) and its mid into Γ⊗DC as in (1.9). Then the formula for B (or (1.10)) com-
bined with (1.3) for C shows that VC is a mid for E∗ which is unitarily equivalent
to E. (Clearly VC is minimal for E∗ because it is already minimal for C.) Hence E
is subisometric.

REMARK 1.3. This is consistent with the results for d = 1 in [15] which
we mentioned in the introduction. γ unitary corresponds to what Douglas and
Foias call a minimal subisometric dilation. We have no reason for imposing this
condition and continue to consider general subisometric liftings. Compare also
Chapter 8.3 of [5].

Classifying subisometric liftings becomes especially transparent by focus-
ing on the invariant subspace associated to it.

DEFINITION 1.4. Let E on HE = HC ⊕HA be a subisometric lifting of C on
HC, notation as in Definition 1.1. Then we call

N := (Γ⊗DC)	WHA(1.11)

the invariant subspace associated to the subisometric lifting. ClearlyN is invariant
for Li ⊗ 1, i = 1, . . . , d.

We can go the way back. Let C on HC be a row contraction. If N ⊂ Γ⊗DC
is a subspace which is invariant for all Li ⊗ 1, i = 1, . . . , d then we can define

HA∗ := (Γ⊗DC)	N ,(1.12)

HE∗ := HC ⊕HA∗ .(1.13)

OnHC ⊕ (Γ⊗DC) we have the mid VC of C, as in (1.3), so we can further define

E∗ = (E1∗, . . . , Ed∗), Ei∗ := PHE∗V
C
i |HE∗ : HE∗ → HE∗ .(1.14)

Then E∗ is a row contraction and

Ei∗ =

(
Ci 0
Bi∗ Ai∗

)
(1.15)

with respect to the decompositionHE∗ := HC⊕HA∗, i.e., E∗ is a lifting of C. Then
VC is a mid of E∗ (minimal because it is already minimal for C). Hence we have
constructed a subisometric lifting. We are back in the setting of Proposition 1.2.

These considerations suggest a classification of subisometric liftings along a
Beurling type theorem for the associated invariant subspaces. It is instructive to
introduce the generalized inner functions occurring here directly from the defini-
tion of subisometric lifting.

So let E be a subisometric lifting of C. Then the mids VE of E and VC of C
are connected by the unitary

W : ĤE = HE ⊕ (Γ⊗DE)→ ĤC = HC ⊕ (Γ⊗DC)(1.16)
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such that W|HC = 1|HC and WVE
i = VC

i W for i = 1, . . . , d. If we define the
isometry

MC,E := W|Γ⊗DE(1.17)

then from (1.3) and (1.16) we obtain

MC,E(Li ⊗ 1E) = (Li ⊗ 1C)MC,E(1.18)

which means that MC,E : Γ ⊗ DE → Γ ⊗ DC is a multi-analytic inner operator
determined by its symbol

ΘC,E : DE → Γ⊗DC, ΘC,E = W|e0⊗DE ,(1.19)

according to the terminology introduced in [24]. Obviously this is nothing but
the multi-analytic inner operator corresponding to the invariant subspace N , in
fact it is easy to check that

N = MC,E(Γ⊗DE),(1.20)

compare the Beurling type Theorem 2.2 in [24]. Our new insight is that it is con-
nected to the subisometric lifting E of C.

DEFINITION 1.5. We call MC,E (or ΘC,E) the characteristic function of the subi-
sometric lifting E of C.

It is not difficult to check that two multi-analytic inner operators M : Γ ⊗
D → Γ ⊗ E and M′ : Γ ⊗ D′ → Γ ⊗ E with symbols Θ, Θ′ describe the same
invariant subspace if and only if there exists a unitary v : D → D′ such that
Θ = Θ′v. Let us call multi-analytic functions equivalent if they are related in this
way. We are ready for our classification result.

THEOREM 1.6. Let C = (C1, . . . , Cd) be a row contraction on a Hilbert spaceHC.
Then there is a one-to-one correspondence between:

(i) unitary equivalence classes of subisometric liftings E of C;
(ii) multi-analytic inner operators M with symbols Θ :D→Γ⊗DC up to equivalence.

The correspondence is described above. In particular if E is the lifting then D =
DE, M = MC,E with symbol Θ = ΘC,E.

We remark that due to the Beurling type Theorem 2.2 of [24] the (equiva-
lence classes of) inner operators M in condition (ii) of Theorem 1.6 are also in
one-to-one correspondence with the L⊗ 1-invariant subspacesN of Γ⊗DC. The-
orem 1.6 shows that the characteristic function of a subisometric lifting character-
izes the lifting up to unitary equivalence, justifying to call it characteristic.

Proof. We now show that the correspondence (i)⇒ (ii) is well defined. Let
E on HE ⊃ HC and E′ on HE′ ⊃ HC be two subisometric liftings of C which are
unitarily equivalent, i.e., there exists a unitary u : HE → HE′ such that u|HC =
1|HC and E′iu = uEi for i = 1, . . . , d. Clearly unitarily equivalent row contractions
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have unitarily equivalent mids and we can extend u (in a trivial way) to a unitary
û between the spaces ĤE and ĤE′ of the mids VE and VE′ , so we have

û : ĤE → ĤE′ unitary, û|HE = u, VE′
i û = ûVE

i (i = 1, . . . , d).

Because E, E′ are subisometric we also have unitaries W, W ′ such that

W : ĤE → ĤC, VC
i W = WVE

i , W|HC = 1|HC ;

W ′ : ĤE′ → ĤC, VC
i W ′ = W ′VE′

i , W ′|HC = 1|HC .

If we now define

uC := W ′ûW∗ : ĤC → ĤC

then it follows that uC commutes with the VC
i for i = 1, . . . , d. To see that, “chase"

the following commuting diagram

ĤC
uC //

VC
i

��

ĤC

��
VC

i

��

ĤE

W
??���������

û //

VE
i

����

ĤE′

W ′
??���������

VE′
i

����

ĤC uC
// ĤC

ĤE û
//

W

??���������
ĤE′

W ′

??���������

(1.21)

Further, because W, W ′ and û all fix HC pointwise the same is true for uC, so we
have also uC|HC = 1|HC . But by minimality of VC we know that ĤC is the closed
linear span of vectors of the form VC

α h with α ∈ Λ̃, h ∈ HC and from

uCVC
α h = VC

α uCh = VC
α h

we infer that uC = 1. Hence W = (uC)
∗W ′û = W ′û. Clearly û maps e0 ⊗DE ⊂

ĤE onto e0 ⊗DE′ ⊂ ĤE′ , so if we define the unitary v := û|DE : DE → DE′ and
use that Θ = W|DE and Θ′ = W ′|DE′

we see that Θ = Θ′v, i.e., the characteristic
functions are equivalent.

Conversely suppose that we are given a multi-analytic inner operator with
symbol Θ : D → Γ⊗DC, as in (ii). From the Beurling type Theorem 2.2 of [24] we
have an invariant subspaceN which is associated to a subisometric lifting E of C
and D = DE, see the discussion preceding Theorem 1.6. It remains to show that
if Θ = Θ′v with a unitary v : DE → DE′ for two subisometric liftings E and E′
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then E and E′ are unitarily equivalent. Let W, W ′ be the corresponding unitaries
from the subisometric lifting property. Then

W ′HE′ = HC ⊕ (Γ⊗DC)	W ′(Γ⊗DE′) = HC ⊕ (Γ⊗DC)	MC,E′(Γ⊗ vDE)

= HC ⊕ (Γ⊗DC)	MC,E(Γ⊗DE) = WHE,

and we can define

U := (W ′)∗W|HE : HE → HE′ .

Because for h ∈ HC, Wh = h = W ′h we have Uh = h. In general for h ∈ HE
and i = 1, . . . , d (with pE, pE′ orthogonal projections ontoHE,HE′ )

UEih = (W ′)∗WEih = (W ′)∗W pEVE
i h = pE′(W

′)∗WVE
i h

= pE′(W
′)∗VC

i Wh = pE′V
E′
i (W ′)∗Wh = E′iUh,

i.e., E and E′ are unitarily equivalent.

There is an interesting variant of the classification if we not only give C but
also A, i.e., if we consider liftings of C by A.

THEOREM 1.7. Let A and C be row contractions, A ∗-stable. There is a one-to-one
correspondence between:

(i) unitary equivalence classes of subisometric liftings of C by A;
(ii) equivalence classes of isometries γ : D∗,A → DC, two isometries considered

equivalent if they have the same range.

Proof. The details of this correspondence have already been discussed in
connection with Proposition 1.2. It is shown there how to construct an isometry
γ : D∗,A → DC if a subisometric lifting of C by A is given, and conversely, how
to use such an isometry to find a subisometric lifting. The equivalence in (ii) is
chosen in such a way that two isometries are equivalent if and only if the associ-
ated invariant subspaces are the same, compare (1.9) and (1.11). Hence the result
follows from Theorem 1.6.

COROLLARY 1.8. Let A and C be row contractions, A ∗-stable. A subisometric
lifting of C by A exists if and only if

dimD∗,A 6 dimDC,

where dim stands for the cardinality of an orthonormal basis. In the case dimD∗,A =
dimDC (minimal subisometric dilation in the terminology of [15]) the lifting is unique
up to unitary equivalence.
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2. COISOMETRIC LIFTINGS

The theory of subisometric liftings turns out to be especially relevant in the
case of coisometric row contractions and coisometric liftings. We start with defi-
nitions and elementary properties.

A row contraction C onHC is called coisometric if CC∗ = 1, i.e.,
d
∑

i=1
CiC∗i = 1.

It is easy to check that a lifting E onH = HC ⊕HA with block matrices

Ei =

(
Ci 0
Bi Ai

)
(for all i = 1, . . . , d) is coisometric if and only if C is coisometric and

BC∗ = 0, i.e.,
d

∑
i=1

BiC∗i = 0,(2.1)

AA∗ + BB∗ = 1, i.e.,
d

∑
i=1

Ai A∗i +
d

∑
i=1

BiB∗i = 1.(2.2)

THEOREM 2.1. Let A and C be row contractions, C coisometric. Then there is a
one-to-one correspondence between:

(i) coisometric liftings E of C by A;
(ii) isometries γ : D∗,A → DC.

Explicitly, if Ei =
(

Ci 0
Bi Ai

)
for i = 1, . . . , d provides a coisometric lifting E of C by

A then γ : D∗,Ah 7→ B∗h ⊂ DC (for h ∈ HA) is isometric.
Conversely, if γ : D∗,A → DC is isometric then with B∗ := γD∗,A we obtain a

coisometric lifting E by Ei =
(

Ci 0
Bi Ai

)
for i = 1, . . . , d.

Proof. Because C is coisometric, DC = 1− C∗C is the orthogonal projection
onto the kernel of C.

Let E be a coisometric lifting of C by A. Then from (2.1) we have CB∗ =
(BC∗)∗ = 0 and hence range(B∗) ⊂ DC.

Further for h ∈ HA, using (2.2)

‖D∗,Ah‖2 = 〈(1− AA∗)h, h〉 = 〈BB∗h, h〉 = ‖B∗h‖2.

So there exists an isometry γ : D∗,A → range(B∗) ⊂ DC with γD∗,Ah = B∗h for
all h ∈ HA.

Conversely, let γ : D∗,A → DC be an isometry and define B∗ := γD∗,A.
From C|DC = 0 we obtain CB∗ = 0 or BC∗ = 0, which is (2.1). Further

BB∗ = D∗,Aγ∗γD∗,A = D2
∗,A = 1− AA∗,

hence AA∗ + BB∗ = 1, which is (2.2). Hence with Ei =
(

Ci 0
Bi Ai

)
, for i = 1, . . . , d,

we obtain a coisometric lifting E of C by A.
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Finally if γ, γ′ : D∗,A → DC are two isometries and γ 6= γ′ then B∗ 6=
(B′)∗ for B∗, (B′)∗ defined by γ, γ′ as above. Hence the correspondence is one-to-
one.

COROLLARY 2.2. Let A and C be row contractions, C coisometric. A coisometric
lifting E of C by A exists if and only if

dimD∗,A 6 dimDC,

where dim stands for the cardinality of an orthonormal basis.

Theorem 2.1 gives a kind of free parametrization of the coisometric liftings.
Let us consider an elementary example.

c = (c1, . . . , cd) ∈ Cd, ‖c‖2 =
d

∑
i=1
|ci|2 = 1 (unit sphere);(2.3)

a = (a1, . . . , ad) ∈ Cd, ‖a‖2 =
d

∑
i=1
|ai|2 6 1 (unit ball).

Then we get a left lower corner b = (b1, . . . , bd) for a coisometric lifting if 〈b, c〉 =
0 and ‖a‖2 + ‖b‖2 = 1, according to (2.1) and (2.2). Obviously the set of solutions
for b is the (complex) sphere with radius r =

√
1− ‖a‖2 in the subspace orthogo-

nal to c. If ‖a‖ = 1 the solution is unique. We can check that the parametrization
using isometries γ : D∗,A → DC as in Theorem 2.1 yields the same result.

Theorem 2.1 and Corollary 2.2 are even true if A is not ∗-stable. If A is
∗-stable then we should compare these results with those in Section 1. Note in
particular that the formula B∗ = γD∗,A in Theorem 2.1 and the formula B∗ =
D∗CγD∗,A (1.10) are compatible because, as noted above, for C coisometric the op-

erator D∗C is nothing but the embedding of DC into
d⊕

i=1
HC which is implicit in

the formulation chosen in Theorem 2.1. Further comparison yields the following
result which shows that subisometric liftings occur very naturally in the coiso-
metric setting.

PROPOSITION 2.3. Let C be a coisometric row contraction. A lifting of C is a
coisometric lifting by a ∗-stable A if and only if it is subisometric.

Proof. Using Theorem 2.1 we can replace the condition “coisometric" for the
lifting by the existence of an isometry γ : D∗,A → DC such that B∗ = γD∗,A =
D∗CγD∗,A. Now Proposition 2.3 is a direct consequence of Proposition 1.2.

In particular, for coisometric liftings by a ∗-stable A there exists an associ-
ated invariant subspace and a characteristic function. In the special case dimHC
= 1 this characteristic function was introduced in [14] under the name “extended
characteristic function". For general HC, in view of Theorem 1.6, it is better to
call it the characteristic function of the lifting (with C given), as we have done in
Definition 1.5.
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3. CHARACTERISTIC FUNCTIONS OF REDUCED LIFTINGS

In this section we generalize the theory of characteristic functions for sub-
isometric liftings from Section 1 and establish a setting that also includes the set-
ting of Section 2.

Let C be a row contraction on HC and E on HE = HC ⊕HA be a (contrac-
tive) lifting so that for all i = 1, . . . , d

Ei =

(
Ci 0
Bi Ai

)
.

Then as in (1.3) we have a mid VE on HE ⊕ (Γ⊗DE). Clearly VE is an isometric
lifting of C, so the space of the mid VC can be embedded as a subspace reducing
the VE

i . Let us encode this by introducing the restriction Y on the orthogonal
complement K and a unitary W by

W : HE ⊕ (Γ⊗DE)→ HC ⊕ (Γ⊗DC)⊕K;(3.1)

ṼE
i W = WVE

i , W|HC = 1|HC with Ṽ
E
= VC ⊕Y.

By omittingHC we also have a unitary (also denoted by W)

W : HA ⊕ (Γ⊗DE)→ (Γ⊗DC)⊕K(3.2)

and an isometric embeddingHA∗ := WHA ⊂ (Γ⊗DC)⊕K. Further we obtain

B∗ = pHC (V
E)∗|HA = pHC [(V

C)∗ ⊕Y∗]W|HA = D∗C pe0⊗DC W|HA(3.3)

where we used formula (1.3) for VC.
To proceed we need a few facts about the mid VA on H̃A of A. We write its

Wold decomposition as

H̃A = (Γ⊗D∗,A)⊕RA,(3.4)

VA
i = (Li ⊗ 1)⊕ RA

i , i = 1, . . . , d,

where RA and RA stand for the residual part (cf. [23]). The embedding of HA
into H̃A can be written as

HA 3 h 7→
(

∑
α∈Λ̃

eα ⊗ D∗,A A∗αh
)
⊕ hR .(3.5)

Here hR belongs to the residual part RA. Compare [7] for a derivation of this
decomposition via Stinespring’s theorem. In fact, it is not difficult to check that
a formula like (3.5) always reproduces the Wold decomposition above, compare
also [17] for similar arguments for d = 1. Note that the residual part vanishes if
and only if A is ∗-stable, so in this case we are back in the setting of Section 1.
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Further we need the decomposition HA = H1
A ⊕H0

A with H1
A the largest

subspace invariant for the A∗i and such that the restriction of A∗ is isometric, i.e.,

H1
A :=

{
h ∈ HA : ∑

|α|=n
‖A∗αh‖2 = ‖h‖2 for all n ∈ N

}
.(3.6)

Then it is easy to check that H1
A = HA ∩RA (cf. Proposition 2.9 of [23]), but the

position of H0
A may be complicated with respect to the decomposition (3.5) be-

cause A restricted toH0
A may not be ∗-stable and in this caseH0

A is not contained
in Γ⊗D∗,A. In fact, if 0 6= h ∈ H0

A we only have

∑
|α|=n

‖A∗αh‖2 < ‖h‖2 for some n ∈ N(3.7)

which (by definition) means that A|H0
A

is completely non-coisometric (c.n.c.), cf. [23].

Now we look at A and its mid VA embedded into the larger structure ob-
tained from the lifting E. Clearly VE restricted to HA ⊕ (Γ⊗DE) is an isometric
dilation of A, so HA ⊕ (Γ ⊗ DE) contains H̃A as a VE

i -reducing subspace (i =

1, . . . , d) which we still denote by H̃A. Using (3.2) we see that (Γ⊗DC)⊕K con-
tains the (Li ⊗ 1)⊕Yi-reducing subspace WH̃A and the restriction of (L⊗ 1)⊕Y
is a mid of A (transferred to WHA). Denoting the restriction of W to H̃A also by
W we have (for i = 1, . . . , d)

W[(Li ⊗ 1)⊕ RA
i ] = WVA

i = [(Li ⊗ 1)⊕Yi]W.(3.8)

Where isHA∗ = WHA? Clearly

WH1
A = W(HA ∩RA) ⊂WRA ⊂ K,(3.9)

where the last inclusion follows from (3.8) and the fact that L⊗ 1 is ∗-stable. The
position of WH0

A may be more complicated.
To organize the relevant data we use (3.4) together with the embedding of

H̃A intoHA ⊕ (Γ⊗DE) and (3.2) to define

M : Γ⊗D∗,A → Γ⊗DC,(3.10)

M = PΓ⊗DC W|Γ⊗D∗,A ,

which is a multi-analytic operator. Then for h ∈ HA

Pe0⊗DC Wh = Pe0⊗DC MPΓ⊗D∗,A h = Pe0⊗DC MPe0⊗D∗,A h,

where for the first equality we used (3.9) and the second then follows from the
fact that M is multi-analytic. But Pe0⊗D∗,A h = e0⊗D∗,Ah by (3.5) and we conclude
that Pe0⊗DC W|HA : HA → DC factors through D∗,A in the sense that there exists a
contraction γ := Pe0⊗DC M|e0⊗D∗,A : D∗,A → DC such that

Pe0⊗DC W|HA = γD∗,A .(3.11)
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In fact, γ is nothing but the the 0-th Fourier coefficient of M in the sense of [27].
Combined with (3.3) we obtain

B∗ = D∗CγD∗,A : HA →
d⊕

i=1

HC .(3.12)

This is one half of the following analogue for row contractions of Lemma 2.1 in
Chapter IV of [17], which already has been discussed in the introduction, see in
particular (0.3).

PROPOSITION 3.1. E = (E1, . . . , Ed) onHE = HC ⊕HA with block matrices

Ei =

(
Ci 0
Bi Ai

)
(for i = 1, . . . , d) is a row contraction if and only if C and A are row contractions and
there exists a contraction γ : D∗,A → DC such that (3.12) holds.

Proof. Clearly if E is a row contraction then C and A are row contractions.
Above we have already given a (dilation) proof that if E is contractive then B
satisfies (3.12) for a suitable contraction γ. To prove the converse, let γ : D∗,A →
DC be a contraction and B∗ given as in (3.12). Then for x ∈ HC, y ∈ HA

|〈x, CB∗y〉|2 = |〈x, CD∗CγD∗,Ay〉|2 = |〈DCC∗x, γD∗,Ay〉|2

6 ‖DCC∗x‖2‖γD∗,Ay‖2 6 〈x, (1− CC∗)x〉 〈y, (1− AA∗)y〉
which implies (see for example Exercise 3.2 in [22]) that

0 6
(

1− CC∗ −CB∗

−BC∗ 1− AA∗

)
= 1− EE∗

hence E is a row contraction.

Let us go back to the lifting E of C by A. The following definition is useful
to analyze further the position of WHA.

DEFINITION 3.2. γ : D∗,A → DC is called resolving if for all h ∈ HA we have

(γD∗,A A∗αh = 0 for all α ∈ Λ̃)⇒ (D∗,A A∗αh = 0 for all α ∈ Λ̃).

Clearly if γ : D∗,A → DC is injective then it is resolving. Note that D∗,A A∗αh
= 0 for all α ∈ Λ̃ if and only if h ∈ H1

A, and so the intuitive meaning of “resolv-
ing” is that “looking atHA through γ” still allows to detect whether h ∈ HA is in
H1

A or not. More precisely, γ is resolving if and only if for all h ∈ H0
A = HA	H1

A
there exists α ∈ Λ̃ such that γD∗,A A∗αh 6= 0. In particular if A is c.n.c., i.e.
H1

A = {0}, then γ is resolving if and only if for all 0 6= h ∈ HA there exists
α ∈ Λ̃ such that γD∗,A A∗αh 6= 0.

LEMMA 3.3. The following assertions are equivalent:
(i) γ is resolving;

(ii) WHA ∩K ⊂WH1
A;
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(iii) WHA ∩K = WH1
A;

(iv) (Γ⊗DC) ∨W(Γ⊗DE) = (Γ⊗DC)⊕ (K	WH1
A).

Proof. (ii) says that for h ∈ HA \ H1
A the embedded Wh is not in K, so not

orthogonal to Γ⊗DC, equivalently, there exists α ∈ Λ̃ such that

0 6= Pe0⊗DC [(L∗α ⊗ 1)⊕Y∗α ]Wh = Pe0⊗DC W(VA
α )∗h = γD∗,A A∗αh

(where we used the embedding of the mid of A and in particular (3.11)). By
comparison with the comments following Definition 3.2 we conclude that (i) and
(ii) are equivalent. We noted in (3.9) that always WH1

A ⊂ K, so (ii) and (iii) are
equivalent.

To get the equivalence of (iii) and (iv) note that x ∈ (Γ ⊗ DC) ⊕ K is or-
thogonal to (Γ ⊗ DC) and to W(Γ ⊗ DE) if and only if x ∈ K and x ∈ WHA
(compare (3.2)). Hence the orthogonal complement of (Γ⊗DC) ∨W(Γ⊗DE) in
(Γ⊗DC)⊕K is in fact WHA ∩K.

DEFINITION 3.4. A lifting E of C by A is called reduced if A is c.n.c. (i.e.,
H1

A = {0}, see (3.7)) and γ is resolving.

We have already seen two important classes of reduced liftings:
(1) Subisometric liftings. Here A is ∗-stable and γ is isometric, see Proposi-

tion 1.2.
(2) Coisometric liftings by A c.n.c. Here γ is isometric by Theorem 2.1.

Note that by Proposition 2.3 the coisometric liftings by ∗-stable A are exactly
the intersection of cases (1) and (2).

LEMMA 3.5. The following assertions are equivalent:
(i) E is reduced;

(ii) {h ∈ HA : γD∗,A A∗αh = 0 for all α ∈ Λ̃} = {0};
(iii) WHA ∩K = {0}.

Proof. If γ is resolving then (by definition) the space given in (ii) is contained
in H1

A. Hence (i) implies (ii). Also, from (ii) we first conclude that H1
A = {h ∈

HA : D∗,A A∗αh = 0 for all α ∈ Λ̃} = {0} and then that γ is resolving, so
(ii) implies (i). If we have (iii) then by Lemma 3.3(ii) γ is resolving and then by
Lemma 3.3(iii) A is c.n.c., so we have (i). Given (i), Lemma 3.3(iii) implies (iii).

If γD∗,A A∗αh = 0 for all α ∈ Λ̃ then by (3.12) we conclude that A∗αh ∈
kerB∗ = (rangeB)⊥. Hence vectors in the space {h∈HA : γD∗,A A∗αh=0 for all α

∈ Λ̃} do not contribute in any way to the interaction between HA and HC via
B∗, and it is no great loss to concentrate on liftings where this space has been
removed. By Lemma 3.5(ii), in doing this we obtain exactly the reduced liftings.
This also explains our terminology.

For reduced liftings we can successfully develop a theory of characteristic
functions.
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DEFINITION 3.6. Let E be a reduced lifting of C by A. We call the multi-
analytic operator

MC,E : Γ⊗DE → Γ⊗DC ,(3.13)

MC,E = PΓ⊗DC W|Γ⊗DE ,

(or its symbol ΘC,E : DE → Γ⊗DC) the characteristic function of the lifting E.

Using the characteristic function we can develop a theory of functional mod-
els for reduced liftings. The idea is similar as in the case of characteristic functions
for c.n.c. row contractions, see [24].

Let E be a reduced lifting of C by A. From A c.n.c. we obtainH1
A = {0} and

then Lemma 3.3 gives

(Γ⊗DC) ∨W(Γ⊗DE) = (Γ⊗DC)⊕K.(3.14)

With the definition

∆C,E := (1−M∗C,E MC,E)
1/2 : Γ⊗DE → Γ⊗DE(3.15)

we obtain for x ∈ Γ⊗DE

‖PKWx‖2 = ‖(1− PΓ⊗DC )Wx‖2 = ‖x‖2 − ‖PΓ⊗DC Wx‖2(3.16)

= ‖x‖2 − ‖MC,Ex‖2 = ‖∆C,Ex‖2.

This means that we can isometrically identifyKwith ∆C,E(Γ⊗DE) and with this
identification we have

WHA = [(Γ⊗DC)⊕K]	W(Γ⊗DE)(3.17)

= [(Γ⊗DC)⊕∆C,E(Γ⊗DE)]	 {MC,Ex⊕∆Ex : x ∈ Γ⊗DC}

which is a kind of functional model.

THEOREM 3.7. Let C be a row contraction. Reduced liftings E and E′ of C are uni-
tarily equivalent if and only if their characteristic functions MC,E and MC,E′ are equiva-
lent.

Recall that MC,E and MC,E′ are equivalent if there exists a unitary v : DE →
DE′ such that their symbols satisfy ΘC,E = ΘC,E′v. Compared with the analo-
gous result for subisometric liftings contained in Theorem 1.6 the modifications
necessary to prove Theorem 3.7 are technical and straightforward, so we omit
the proof. The important thing to recognize is that, if a lifting E is reduced, we
have the functional model (3.17) for it which is built only from C and from the
characteristic function MC,E.

Conversely, if C onHC is a row contraction and

M̃ : Γ⊗D → Γ⊗DC
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is an arbitrary contractive multi-analytic function (where D is any Hilbert space),
then we can define

∆ := (1− M̃∗M̃)1/2 : Γ⊗D → Γ⊗D,

H̃ := HC ⊕ (Γ⊗DC)⊕∆(Γ⊗D),

W̃ : Γ⊗D → (Γ⊗DC)⊕∆(Γ⊗D), x 7→ M̃x⊕∆x.

W̃ is isometric and by introducing a copy HA of the orthogonal complement of
W̃(Γ⊗D) we can extend W̃ to a unitary

W̃ : HA ⊕ (Γ⊗D)→ (Γ⊗DC)⊕∆(Γ⊗D).

Let Ṽ = (Ṽ1, . . . , Ṽd) be defined on H̃ by Ṽi := VC
i ⊕ Yi (for i = 1, . . . , d), where

VC is the mid of C onHC ⊕ (Γ⊗DC) (1.3) and Yi is given by

Yi∆x := ∆(Li ⊗ 1)x (where x ∈ Γ⊗D).

It is not difficult to check that Y (and hence also Ṽ) is a row contraction consisting
of isometries with orthogonal ranges (i.e., a row isometry). Further

W̃(Γ⊗D) = {M̃x⊕∆x : x ∈ Γ⊗D}

is invariant for the Ṽi. With E∗i := Ṽ∗i |HC⊕W̃HA
, A∗i := Ṽ∗i |W̃HA

for i = 1, . . . , d
we obtain a contractive lifting E of C by A which we may call the lifting associated
to the multi-analytic function M̃. The following result gives another justification for
considering reduced liftings.

PROPOSITION 3.8. The contractive lifting E associated to a row contraction C and
a contractive multi-analytic function M̃ : Γ ⊗D → Γ ⊗DC (where D is any Hilbert
space) is reduced.

Proof. By Lemma 3.5 it is enough to show that any vector y ∈ W̃HA which is
orthogonal to Γ⊗DC is the zero vector. But y ∈ W̃HA means that y is orthogonal
to M̃x ⊕ ∆x for all x ∈ Γ ⊗ D and y orthogonal to Γ ⊗ DC means that y ∈ 0⊕
∆(Γ⊗D). Hence indeed y = 0.

Proposition 3.8 shows that the assertion of Theorem 3.7 is no longer true for
liftings which are not reduced. Note that M̃ is not necessarily the characteristic
function of the associated lifting E and we used ˜ to indicate this. It is an interest-
ing question which intrinsic properties of M̃ guarantee that it is the characteristic
function. We leave this as an open problem.

4. PROPERTIES OF THE CHARACTERISTIC FUNCTION

First we shall compute an explicit expression for the characteristic function
of a reduced lifting. We continue to use the notation of the previous section and
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consider a reduced lifting E on HE = HC ⊕ HA of C on HC by A on HA. As
in (3.8) the row isometry (L⊗ 1) ⊕ Y on (Γ ⊗ DC) ⊕ K restricts to a mid of A
(transferred to WHA). So we have for all α ∈ Λ̃ and h ∈ HA

[(L∗α ⊗ 1)⊕Y∗α ]Wh = WA∗αh.(4.1)

Using (3.11) we infer that

γD∗,A A∗αh = Pe0⊗DC WA∗αh = Pe0⊗DC [(L∗α ⊗ 1)⊕Y∗α ]Wh = Peα⊗DC Wh(4.2)

which yields a Poisson kernel type formula, compare (1.8):

PΓ⊗DC Wh = ∑
α∈Λ̃

eα ⊗ γD∗,A A∗αh.(4.3)

To compute the symbol ΘC,E of the characteristic function we define di
h := (VE

i −
Ei)h = e0 ⊗ (DE)ih and use the identification of DE with the closed linear span
of all di

h with i = 1, . . . , d and h ∈ HE, see (1.3). Then, using (3.1) and the Defini-
tion 3.6 of ΘC,E, we obtain

ΘC,Edi
h = PΓ⊗DC W(VE

i − Ei)h = PΓ⊗DC VC
i PHC⊕(Γ⊗DC)

Wh− PΓ⊗DC WEih.(4.4)

We distinguish two cases.
Case I. h ∈ HC:

PΓ⊗DC VC
i PHC⊕(Γ⊗DC)

Wh = PΓ⊗DC VC
i h = [e0 ⊗ (DC)ih] by (1.3),

PΓ⊗DC WEih = PΓ⊗DC W(Cih⊕ Bih) = ∑
α

eα ⊗ γD∗,A A∗αBih by (4.3),

and thus

ΘC,Edi
h = e0 ⊗ [(DC)ih− γD∗,ABih]− ∑

|α|>1
eα ⊗ γD∗,A A∗αBih.(4.5)

Case II. h ∈ HA:

PΓ⊗DC VC
i PHC⊕(Γ⊗DC)

Wh = VC
i PΓ⊗DC Wh = (Li ⊗ 1)PΓ⊗DC Wh

= ∑
α

ei ⊗ eα ⊗ γD∗,A A∗αh;

PΓ⊗DC WEih = PΓ⊗DC WAih = ∑
β

eβ ⊗ γD∗,A A∗β Aih.

Note that for h ∈ HA we have (DA)ih = (DE)ih (which we identify with di
h)

because E is an extension of A. With Pj the orthogonal projection onto the jth
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component we obtain

ΘC,Edi
h = −e0 ⊗ γD∗,A Aih +

d

∑
j=1

ej ⊗∑
α

eα ⊗ γD∗,A A∗α(δji1− A∗j Ai)h

= −e0 ⊗ γA(DA)ih +
d

∑
j=1

ej ⊗∑
α

eα ⊗ γD∗,A A∗αPjDA(DA)ih(4.6)

= −e0 ⊗ γ
d

∑
j=1

AjPjdi
h +

d

∑
j=1

ej ⊗∑
α

eα ⊗ γD∗,A A∗αPjDAdi
h.

We note that if γ is omitted from (4.6) then we obtain exactly Popescu’s defini-
tion of the characteristic function of the (c.n.c.) row contraction A as given in
[24]. Hence Case II is essentially the characteristic function of A , contractively
embedded by γ. In a special case this has been observed in [14] and, because this
special case was subisometric and hence γ isometric, Θ was called an extended
characteristic function. (4.6) generalizes this idea.

Let us now illustrate how the characteristic function factorizes for iterated
liftings. Assume that Ẽ on HẼ is a two step lifting of the row contraction C on

HC, i.e., E on HE with Ei =
(

Ci 0
Bi Ai

)
(for i = 1, . . . , d) is a contractive lifting of C

on HC by A on HA (as before) and Ẽ on HẼ with Ẽi =
(

Ei 0
∗ Ãi

)
(for i = 1, . . . , d)

is a contractive lifting of E on HE by Ã on HÃ. Then HẼ = HE ⊕HÃ = HC ⊕
HA ⊕HÃ and with respect to this decomposition

Ẽi =

 Ci 0 0
∗ Ai 0
∗ ∗ Ãi

(4.7)

“∗” stands for entries which we do not need to name explicitly.

THEOREM 4.1. If the liftings E of C and Ẽ of E are reduced then also the lifting Ẽ
of C is reduced, and the characteristic functions factorize:

MC,Ẽ = MC,E ME,Ẽ.(4.8)

Proof. As in (3.1) we obtain the following unitaries from the given liftings

W :HE⊕(Γ⊗DE)→HC⊕(Γ⊗DC)⊕K, W̃ :HẼ⊕(Γ⊗DẼ)→HE⊕(Γ⊗DE)⊕K̃,

satisfying WVE
i = (VC

i ⊕ Yi)W, W̃V Ẽ
i = (VE

i ⊕ Ỹi)W̃. We can define another
unitary

Z := (W ⊗ 1K̃)W̃ : HẼ ⊕ (Γ⊗DẼ)→ HC ⊕ (Γ⊗DC)⊕K⊕ K̃(4.9)

satisfying

ZV Ẽ
i = (VC

i ⊕Yi ⊕ Ỹi)Z.(4.10)
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Note further that W, W̃ and hence also Z act identically on HC. By assumption
the liftings E of C and Ẽ of E are reduced and we have characteristic functions

MC,E = PΓ⊗DC W|Γ⊗DE , ME,Ẽ = PΓ⊗DEW̃|Γ⊗DẼ
.

They can be composed to yield a multi-analytic operator

M := MC,E ME,Ẽ : Γ⊗DẼ → Γ⊗DC .

Using (4.9) it is easily checked that

M = PΓ⊗DC Z|Γ⊗DẼ
.

We conclude by (4.10) that the lifting Ẽ of C is associated to M and hence, by
Proposition 3.8, this lifting is reduced. In fact, comparing with Definition 3.6, we
see that M is the characteristic function, i.e., M = MC,Ẽ.

5. APPLICATIONS TO COMPLETELY POSITIVE MAPS

If T = (T1, . . . , Td) is a row contraction on a Hilbert space K then we denote
by ΦT the corresponding (normal) completely positive map on B(K) given by

ΦT(·) =
d

∑
i=1

Ti · T∗i .(5.1)

If d = ∞ this should be understood as a SOT-limit. See for example [22] for the
general theory of completely positive maps, we shall only work with the concrete
representation (5.1). The fact that T is a row contraction implies that ΦT(1) 6 1,
i.e., ΦT is contractive. It is unital (ΦT(1) = 1) if and only if T is coisometric.

If E is a contractive lifting of C by A, i.e., Ei =
(

Ci 0
Bi Ai

)
(for i = 1, . . . , d) then

an elementary computation shows that

ΦE

(
X11 X12
X21 X22

)
=

d

∑
i=1


CiX11C∗i CiX11B∗i + CiX12 A∗i

BiX11C∗i BiX11B∗i + BiX12 A∗i
+AiX21C∗i +AiX21B∗i + AiX22 A∗i

(5.2)

with X11 ∈ B(HC), X12 ∈ B(HA,HC), X21 ∈ B(HC,HA), X22 ∈ B(HA). We
denote by pC =

(
1 0
0 0
)

and pA =
(

0 0
0 1
)

the orthogonal projections onto HC and
HA. The following facts are immediate from (5.2):

pC(ΦE)
n
(

X 0
0 0

)
|HC = (ΦC)

n(X)(5.3)

(for n ∈ N0 and X ∈ B(HC))

ΦE

(
0 0
0 Y

)
=

(
0 0
0 ΦA(Y)

)
(5.4)
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(for Y ∈ B(HA)). So ΦE is a kind of (power) dilation of ΦC (5.3) and an extension
of ΦA (5.4).

DEFINITION 5.1. IfHE = HC ⊕HA, ΦE : B(HE)→ B(HE), ΦC : B(HC)→
B(HC), ΦA : B(HA)→ B(HA) are contractive normal completely positive maps
such that (5.3) and (5.4) are valid then we say that ΦE is a contractive lifting of ΦC
by ΦA.

We have seen that a contractive lifting of row contractions gives rise to a
contractive lifting of completely positive maps. The converse is also true: Let us

assume (5.4). If ΦE(·)=
d
∑

i=1
Ei · E∗i and we write Ei =

(
Ci Di
Bi Ai

)
for the moment, then

ΦE

(
0 0
0 1

)
=


d
∑

i=1
DiD∗i ∗

∗ ∗


and (5.4) implies that all the Di are zero, i.e., we have a lifting of row contractions.
So actually (5.4) implies (5.3) with some ΦC.

Note that if E = VC, the mid of C, then ΦE is a ∗-homomorphism and (5.3)
shows that the powers of ΦE are a homomorphic dilation of the completely posi-
tive semigroup formed by powers of ΦC. See [8], [4], [19] for further information
about this kind of dilation theory.

The discussion above shows that we can use our theory of liftings for row
contractions to study liftings of completely positive maps. If E is a reduced lifting
of C by A then we have a characteristic function MC,E. It is well known (see for ex-

ample [22], [19]) that in the decomposition ΦE· =
d
∑

i=1
Ei · E∗i the tuple (E1, . . . , Ed)

is not uniquely determined. Let us choose d minimal. Then
d
∑

i=1
E′i · (E′i)

∗ describes

the same map if and only if E′ is obtained from E by multiplication with a uni-
tary d× d-matrix (with complex entries). This does not change the characteristic
function because the latter is defined as an intertwiner between objects which are
transformed in the same way. Hence it is possible to think of MC,E also as the
characteristic function of a reduced lifting ΦE of ΦC by ΦA. (Of course we call
this lifting reduced if the corresponding lifting of row contractions is reduced.)
Theorem 3.7 translates immediately into

COROLLARY 5.2. Given ΦC, two reduced liftings ΦE respectively ΦE′ of ΦC by
ΦA respectively ΦA′ are conjugate, i.e.

ΦE = U∗ΦE′(UXU∗)U

with a unitary U : HE → HE′ such that U|HC = 1|HC , if and only if the corresponding
characteristic functions are equivalent.

Corollary 5.2 generalizes Corollary 6.3 in [14] where dimHC = 1.
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In the following we confine ourselves mainly to liftings which are coisomet-
ric and subisometric and give some concrete and useful results about the corre-
sponding completely positive maps.

LEMMA 5.3. Let E be a contractive lifting of a row contraction C by a ∗-stable row
contraction A. Then for all X12, X21, X22

Φn
E

(
0 X12

X21 X22

)
→ 0

as n→ ∞ (SOT).

Proof. Φn
E(pA) decreases to zero in the strong operator topology because of

(5.4) and the assumption that A is ∗-stable. Then also Φn
E

(
0 0
0 X22

)
→ 0, first for

0 6 X22 6 ‖X22‖pA, then for general X22 by writing it as a linear combination of
positive elements. Using the Kadison–Schwarz inequality for completely positive
maps (cf. [12] or Chapter 3 of [22]) we obtain

Φn
E

(
0 0

X∗12 0

)
Φn

E

(
0 X12
0 0

)
6 Φn

E

(
0 0
0 X∗12X12

)
→ 0

and hence Φn
E

(
0 X12
0 0

)
→ 0. Similarly Φn

E

(
0 0

X21 0

)
→ 0.

THEOREM 5.4. Suppose the row coisometry E is a lifting of C by A. Then the
following assertions are equivalent:

(i) The lifting is subisometric.
(ii) A is ∗-stable.

(iii) (ΦE)
n(pC)→ 1 (n→ ∞, SOT).

(iv) There is an order isomorphism between the fixed point sets of ΦE and of ΦC
given by

κ : X 7→ pCXpC .(5.5)

In this case, κ is isometric on selfadjoint elements. If x is a fixed point of ΦC then
we can reconstruct the preimage κ−1(x) as the SOT-limit

lim
n→∞

(ΦE)
n
(

x 0
0 0

)
.(5.6)

Recall further that by the results of Section 2 the liftings in Theorem 5.4 are
parametrized by ∗-stable row contractions A with dimD∗,A 6 dimDC together
with isometries γ : D∗,A → DC and that they can be explicitly constructed from
these data. Theorem 5.4(iv) tells us that (exactly) for such liftings the maps ΦE
and ΦC have closely related properties in terms of their fixed points. We can
identify this useful situation by checking the convenient conditions (ii) or (iii).
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Proof. By Proposition 2.3 a coisometric lifting E of C by A is subisometric if
and only if A is ∗-stable. Using (5.4) the latter means that

(ΦE)
n(pA)→ 0 (n→ ∞, SOT),

which is equivalent to (iii) because ΦE is unital. Hence (i)⇔ (ii)⇔ (iii).
If X = ( x ∗

∗ ∗ ) is a fixed point of ΦE then it is immediate from (5.2) that x is
a fixed point of ΦC. Hence κ : X 7→ pCXpC indeed maps fixed points of ΦE to
fixed points of ΦC. (This is true for all contractive liftings.) Now assume (i), i.e.,
the lifting is subisometric. Then

X = ΦE(X) = lim
n→∞

(ΦE)
n(X) = lim

n→∞
(ΦE)

n
(

x 0
0 0

)
,

where the last equality follows from Lemma 5.3. Hence κ is injective.
Let V = (V1, . . . , Vd) simultaneously serve as mid for C and E. Then The-

orem 5.1 in [11] or Lemma 6.4 in the Appendix of this paper shows that for ev-
ery fixed point x of ΦC there exists A′ in the commutant of V1, . . . , Vd such that
pC A′pC = x. Define X := pE A′pE, where pE is the orthogonal projection onto HE.
Then, using the lifting property Ei pE = pEVi for i = 1, . . . , d for the mid and the

fact that
d
∑

i=1
ViV∗i =1 (because E is coisometric also V is coisometric), we find that

ΦE(X) =
d

∑
i=1

EiXE∗i =
d

∑
i=1

Ei pE A′pEE∗i =
d

∑
i=1

pEVi A′V∗i pE

= pE A′
d

∑
i=1

ViV∗i pE = pE A′pE = X.

So X is a fixed point of ΦE and clearly κ(X) = x. We conclude that κ is also sur-
jective. The fact that κ is isometric on selfadjoint elements is also a consequence
of Lemma 6.4.

On the other hand, if the lifting E of C is not subisometric then the mid
VC of C is embedded on a proper reducing subspace ĤC into the space ĤE of
the mid VE of E. Then 1ĤE

and pĤC
are two different fixed points of ΦVE . By

Lemma 6.4 the map X̂ 7→ pEX̂pE maps them into different fixed points of ΦE:
pE1ĤE

pE = pE 6= pE pĤC
pE. If κ : X 7→ pCXpC from the fixed point set of ΦE into

the fixed point set of ΦC were injective then also pC pE pC 6= pC pE pĤC
pE pC. But

both sides are equal to pC. Hence in this case κ is not injective. We have proved
(i)⇔ (ii).

Recall that a unital completely positive map ΦE is called ergodic if there are
no other fixed points than the multiples of the identity. By abuse of language we
also call E ergodic in this case (as in [14]).

PROPOSITION 5.5. Let E be a coisometric lifting of C by A. Then E is ergodic if
and only if C is ergodic and A is ∗-stable.
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Proof. If A is ∗-stable then use the equivalence (ii) ⇔ (iv) in Theorem 5.4
and infer from C ergodic that also E is ergodic. Further note that, because E is
coisometric, we always have

ΦE

(
1 0
0 0

)
=

(
1 0
0 BB∗

)
>
(

1 0
0 0

)
.

We say that pC =
(

1 0
0 0
)

is an increasing projection for ΦE. Hence (ΦE)
n(pC)

increases to a SOT-limit which clearly is a fixed point of ΦE.
Now let E be ergodic. Then all fixed points are multiples of

(
1 0
0 1
)

and be-
cause the left upper corner of (ΦE)

n(pC) is always 1 we have (ΦE)
n(pC)→

(
1 0
0 1
)
.

We have verified Theorem 5.4(iii) and now Theorem 5.4(iv) and (ii) show that C
is ergodic and that A is ∗-stable.

This generalizes Proposition 2.3 in [14] where HC is one dimensional and
hence C ergodic is automatically fulfilled.

The following provides an interesting example for the liftings considered
above. Let ΦE : B(HE)→ B(HE) be any (normal) unital completely positive map
and let ψ be a normal invariant state, i.e., ψ ◦ΦE = ψ. DefineHC to be the support
of ψ (cf. [31]) and let HA be the orthogonal complement, so HE = HC ⊕ HA.
Then E = (E1, . . . , Ed) is a coisometric lifting of C = (C1, . . . , Cd) if we define
C∗i := E∗i |HC for i = 1, . . . , d. In fact pCE∗i pC = E∗i pC for all i by Lemma 6.1 of [11].
Note that the compression ΦC has a faithful normal invariant state, the restriction
ψC of ψ to B(HC). Conversely we can start with ΦC and a faithful invariant
state ψC and construct liftings ΦE . They have normal invariant states given by
ψ(X) := ψC(pCXpC). From Proposition 2.3 and Theorem 5.4 we conclude

COROLLARY 5.6. Let ΦC : B(HC) → B(HC) be a (normal) unital completely
positive map with a faithful normal invariant state ψC. Then we have a one-to-one corre-
spondence between:

(i) (normal) unital completely positive maps ΦE : B(HE) → B(HE) with normal
invariant state ψ such that the support of ψ is HC and ψ|B(HC)

= ψC, the compression
of ΦE is ΦC and (ΦE)

n(pC)→ 1 (n→ ∞, SOT);
(ii) ∗-stable A with dimD∗,A 6 dimDC together with isometries γ : D∗,A → DC.

There exist order isomorphisms κE : X 7→ pCXpC between the fixed point sets of
these maps ΦE and the fixed point set of ΦC.

In the special case when ψ is an invariant vector state 〈ξ, ·ξ〉 of ΦE we have
the result that ΦE is ergodic if and only if (ΦE)

n(pξ) → 1 (n → ∞, SOT), where
pξ is the orthogonal projection onto Cξ, cf. A.5.2 of [19]. Hence we obtain a classi-
fication of such maps. HereDC is (d− 1)-dimensional. This case has been further
investigated in [14].

Corollary 5.6 is useful because many techniques only apply to completely
positive maps with faithful invariant states, cf. [21]. It enables us to transfer in-
formation from the faithful to the non-faithful setting. For example, it is known
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that in the case of a faithful normal invariant state the fixed point set is an alge-
bra (cf. [12], [16], [11]). Now κ is an order isomorphism but it is not in general
multiplicative. In fact, there are examples of completely positive maps with a
normal invariant non-faithful state where the fixed point set is not an algebra (cf.
[1], [2], [11]. If Corollary 5.6 applies we can think of it as an (order isomorphic)
deformation of an algebra.

6. APPENDIX

In Section 5 we needed a commutant lifting theorem (Theorem 5.1 of [11])
which says that the fixed point set of a normal unital completely positive map is
in one-to-one correspondence with the commutant of the Cuntz algebra represen-
tation generated by the mid. Below we give a variant of the proof which is based
on a Radon–Nikodym result for completely positive maps by W. Arveson. This
is a good way to think about it and it supports the understanding of the other
arguments in the main text.

LEMMA 6.1 ([1], Theorem 1.4.2). If Ψ is a completely positive map from a C∗-
algebra B to B(H), withH a Hilbert space, then there exists an affine order isomorphism
of the partially ordered set of operators {A′ ∈ π(B)′ : 0 6 A′ 6 1} onto [0, Ψ]. Here
π is the minimal Stinespring representation of B associated to Ψ and [0, Ψ] is the order
interval containing all completely positive maps Φ : B → B(H) with 0 6 Φ 6 Ψ. The
order relation for completely positive maps used here is Φ 6 Ψ if Ψ − Φ is completely
positive.

Explicitly, if Ψ(x) = W∗π(x)W is the minimal Stinespring representation of Ψ
then A′ ∈ π(B)′ corresponds to Φ = W∗A′π(x)W.

LEMMA 6.2 ([11], Corollary 2.4; [27], Theorem 2.1). If 0 6 D 6 1 is a fixed

point of the (normal unital completely positive) map ΦR(·) =
d
∑
1

Ri · R∗i on B(H) then

there exists a completely positive map ΨD : Od → B(H), VαV∗β 7→ RαDR∗β. Here

α, β ∈ Λ̃ and Od is the Cuntz algebra generated by the Vi, where V = (V1, . . . , Vd) is a
mid of R = (R1, . . . , Rd).

Using notation from the previous lemmas we get

LEMMA 6.3. There exists an affine order isomorphism D 7→ ΨD between

{
0 6 D 6 1 : D is a fixed point of ΦR(·) =

d

∑
1

Ri · R∗i on B(H)
}

and [0, Ψ1], where Ψ1 is the completely positive map described in Lemma 6.2 with D = 1,
i.e., Ψ1 : Od → B(H), VαV∗β 7→ RαR∗β.
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Proof. From Ψ1 = ΨD + Ψ1−D we see that ΨD ∈ [0, Ψ1] for all fixed points
0 6 D 6 1 of ΦR. On the other hand, if Φ ∈ [0, Ψ1] then by Lemma 6.1 with
B = Od there exists A′ ∈ π(B)′ with 0 6 A′ 6 1 such that Φ(x) = W∗A′π(x)W,
where Ψ1(x) = W∗π(x)W is a minimal Stinespring representation. Using that
(V1, . . . , Vd) is a mid of R = (R1, . . . , Rd) it is easily checked that Ψ1(x) = pπ(x)p
is such a minimal Stinespring representation if π is the Cuntz algebra represen-
tation generated by (V1, . . . , Vd) and p is the projection onto the space H. (In
pπ(x)p the p on the right hand side should be interpreted as the embedding of
H into the dilation space.)

Hence if x = VαV∗β then we obtain

Φ(VαV∗β ) = pA′VαV∗β p = pVα A′V∗β p = pVα pA′pV∗β p = Rα pA′pR∗β .

We conclude that Φ = ΨD with D := pA′p. Clearly 0 6 D 6 1 and D is a

fixed point of ΦR (because V is a coisometric lifting of R, i.e.,
d
∑

i=1
ViV∗i = 1 and

Ri p = pVi for all i). The correspondence is bijective (ΨD(1) = D) and it clearly
respects the order.

LEMMA 6.4 ([11], Theorem 5.1). There is an affine order isomorphism between{
0 6 D 6 1 : D is a fixed pointof ΦR(·) =

d
∑
1

Ri · R∗i on B(H)
}

and {A′ ∈ π(Od)
′ :

0 6 A′ 6 1}, where π is the Cuntz algebra representation generated by the mid V =
(V1, . . . , Vd) of R = (R1, . . . , Rd). It is given by A′ 7→ pA′p, where p is the projection
onto the spaceH. The isomorphism is isometric on the selfadjoint parts.

Proof. For the first part we only have to add to the arguments in the proof of
Lemma 6.3 the reminder that by Lemma 6.1 the correspondence between {A′ ∈
π(Od)

′ : 0 6 A′ 6 1} and [0, Ψ1] is a bijection. As pointed out in Section 4 of
[11], it is isometric on the selfadjoint parts because 1 is mapped to 1 (identities on
different Hilbert spaces) and for selfadjoint elements y we have ‖y‖ = inf{α >
0 : −α1 6 y 6 α1}.
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