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1. INTRODUCTION

The concept of nuclearity is fundamental in the study of C∗-algebras. It is
often defined in terms of tensor products, as also are the slightly less well known,
but also fundamental, properties known as (Lance’s) weak expectation property
(WEP), and (Kirchberg’s) exactness and local lifting property (LLP). These are in-
timately related properties which a C∗-algebra may or may not possess, and the
relations between them and ensuing theory are rich and profound. The goal of
the present paper is to find appropriate generalizations of these notions to possi-
bly nonselfadjoint operator algebras; and to illuminate some of the good, the bad,
and the ugly that ensues. More precisely, some of the elegant basic implications
and arguments in the C∗-algebraic theory are still valid in the nonselfadjoint case,
while others only seem to be true for very special classes of algebras. That is, for
extremely general classes of algebras some of these properties may be a little re-
strictive; and in this sense the present investigation is not as successful as some of
our previous generalizations of C∗-algebraic notions to nonselfadjoint algebras.
Nonetheless, the properties we introduce are natural, and almost all do not seem
to have been considered before. Moreover, en route we present several new and
very basic results of independent interest. There also seems to be some hope, as
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the reader may see at points in our paper, that they could lead in the future to
a new approach to Kirchberg’s famous conjectures (and also give variants of his
conjectures for nonselfadjoint algebras which may be easier to solve). Another of
our motivations was to find properties that imply that Ext of the C∗-envelope of
a nonselfadjoint algebra is a group, and this angle is discussed in a paper [6] in
preparation. We recall from [17] that the LLP is more than intimately connected
with Ext of a separable C∗-algebra B being a group (the first implies the second,
and the converse is an open question).

The new concepts introduced here are called C∗-nuclearity, the algebra weak
expectation property (AWEP), the homomorphism local lifting property (HLLP), B-
nuclearity, and subexactness. Motivated primarily by Kirchberg’s astonishing pa-
per [17], and its operator space sequel due to Pisier, Effros, Ruan, and others, we
try to build connections between our new variants that are similar to the classi-
cal C∗-algebraic theory. Throughout, we use generated C∗-algebras to relate these
notions to their classical counterpart. For instance, if A is Dirichlet (that is, a unital
algebra with A + A∗ norm dense in its C∗-envelope), then A has each of the five
properties above if and only if the C∗-envelope of A has the matching C∗-algebra
property (with one exception in one direction: we are not sure if A having HLLP
implies that the C∗-envelope has LLP).

It is important for us to say that of course a significant part of modern op-
erator space theory is devoted to linear analogues of some of the properties men-
tioned above; very strikingly some of the above-mentioned properties and their
beautiful theory generalizes to operator spaces (see e.g. [15], [29]). However, with
one exception the operator space versions of these properties turn out not to be
appropriate for nonselfadjoint operator algebras, at least for the approach taken
here.

Turning to notation, by an operator algebra, we mean a closed, not necessar-
ily selfadjoint, algebra of operators on a Hilbert space. We will sometimes silently
be using very basic principles from the theory of operator algebras, all of which
are explained in [10]. An operator algebra is unital if it has an identity of norm 1,
and is approximately unital if it has a contractive two-sided approximate identity
(cai). For simplicity we will usually assume that our operator algebras are unital
or approximately unital, but in many of the results this restriction is not necessary,
by the usual trick of considering the unitization. We write A1 for the unitization
of a nonunital operator algebra (see Section 2.1 of [10]). A unital-subalgebra is a
subalgebra containing the identity of the bigger algebra. All ideals are assumed
to be two-sided and closed. Our morphisms will be linear completely contractive
homomorphisms θ : A → B between operator algebras. If θ(1) = 1 we say that
θ is unital. As usual, UCP means unital and completely positive. A C∗-cover of
A is a C∗-algebra containing a copy of A completely isometrically as a subalge-
bra, which is generated by this copy. There are two “universal” C∗-covers of A,
a “smallest” and a “largest”: the C∗-envelope C∗e (A), and the maximal C∗-dilation
C∗max(A). We refer the reader to [10] for a discussion of these two notions; they
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have the extremal universal properties which the reader would expect. A new
term: we will say that A is C∗-split if there exists a linear complete contraction
u : C∗e (A) → C∗max(A) extending the identity map on A. An example of this is
any Dirichlet operator algebra (this may be seen by Arveson’s Proposition 1.2.8
of [3]). By the well-known “rigidity” property of C∗e (A), it follows that u is a right
inverse for the epimorphism C∗max(A) → C∗e (A). We write B and K for respec-
tively the bounded and compact linear operators on `2. We refer the reader to
Chapter 6 of [10] or [27] for the tensor products of operator algebras used here.
In places we also use notation and results from the paper [11] on extensions of
nonselfadjoint algebras. By an extension in the sense of [11], we will mean a short
exact sequence

0 −→ A α−→ B
β−→ C −→ 0

of nontrivial operator algebras, with A approximately unital; and α, β are com-
pletely contractive homomorphisms, with α completely isometric, and β a com-
plete quotient map. Applications of our work to the theory of extensions are
presented in a paper [6] in preparation, which is a sequel to [11]. For example, if
A is subexact and C∗-nuclear then Ext is a group.

2. C∗- AND B-NUCLEARITY

DEFINITION 2.1. An operator algebra A is C∗-nuclear (respectively
B-nuclear) if

A⊗max B = A⊗min B

for every C∗-algebra B (respectively for B = B = B(`2)).

It is important to note that if A is not selfadjoint then allowing B in the defi-
nition of C∗-nuclear to be nonselfadjoint yields a vacuous class, by Corollary 7.1.8
of [10].

In 6.2.5 of [10] it is remarked that any Dirichlet uniform algebra, such as
the disk algebra A(D), is C∗-nuclear in our terminology. Of course if A is a C∗-
algebra then A is C∗-nuclear if and only if A is nuclear, and A is B-nuclear if and
only if A has the local lifting property (LLP), see [17], [29]. As in the C∗-algebra
case, we will see that C∗-nuclearity implies the other new properties mentioned
in the introduction, with the possible exception of subexactness (C∗-nuclearity
does imply exactness).

Since we will use it many times we restate Lemma 2.8 of [11]:

LEMMA 2.2. For an approximately unital operator algebra A, and a C∗-algebra B,
we have A⊗max B ⊂ C∗max(A⊗max B) = C∗max(A)⊗max B completely isometrically.

It is not important that the Hilbert space appearing in the definition of B-
nuclearity be separable:
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LEMMA 2.3. An approximately unital operator algebra A is B-nuclear if and only
if A⊗max B(H) = A⊗min B(H) for every infinite dimensional Hilbert space H.

Proof. Note that since B can be embedded as a complemented corner of
B(H) we see from Lemma 2.2 and e.g. 6.1.10 of [10] that we have canonical com-
plete isometries

A⊗max B ⊂ C∗max(A)⊗max B ⊂ C∗max(A)⊗max B(H) = C∗max(A⊗max B(H)).

Thus A⊗max B ⊂ A⊗max B(H). Clearly A⊗min B ⊂ A⊗min B(H) and thus the
reverse implication holds.

For the forward direction suppose A is B-nuclear, and let u =
n
∑

k=1
ak ⊗ Tk

for ak ∈ A, Tk ∈ B(H). Let D be the C∗-algebra generated by 1 and the Tk. This
is separable and so there is a unital ∗-isomorphism π from D onto a C∗-algebra
in B, carrying Tk to Sk say. The inverse of this ∗-isomorphism extends to a UCP
map θ : B→ B(H). Then

‖u‖A⊗max B(H) =
∥∥∥ n

∑
k=1

ak ⊗ θ(Sk)
∥∥∥

A⊗max B(H)
6
∥∥∥ n

∑
k=1

ak ⊗ Sk

∥∥∥
A⊗max B

.

Since A is B-nuclear, the last norm equals∥∥∥ n

∑
k=1

ak ⊗ π(Tk)
∥∥∥

A⊗min B
=
∥∥∥ n

∑
k=1

ak ⊗ Tk

∥∥∥
A⊗min D

=
∥∥∥ n

∑
k=1

ak ⊗ Tk

∥∥∥
A⊗min B(H)

,

by injectivity of ⊗min. The result is now clear.

One theme of our paper is that an operator space or C∗-algebraic property
such as nuclearity or the LLP for a C∗-cover of an algebra A, often says something
about C∗-nuclearity or B-nuclearity for A; or vice versa. The following is a fairly
superficial result of this kind. In the Examples section we shall show that there
are commonly met operator algebras for which C∗max(A) has the LLP.

PROPOSITION 2.4. If C∗max(A) is nuclear (respectively has the LLP) then A is
C∗-nuclear (respectively is B-nuclear).

Proof. For a C∗-algebra B (respectively B = B) we have canonical complete
isometries

A⊗min B→ C∗max(A)⊗min B = C∗max(A)⊗max B = C∗max(A⊗max B)

which compose to a map whose range is in A⊗max B.

We now look at stability of C∗-nuclearity and B-nuclearity under the usual
operator algebra constructions.

PROPOSITION 2.5. If A is an approximately unital ideal in an approximately
unital operator algebra B, and if D is any approximately unital operator algebra, then
A⊗max D ⊂ B⊗max D completely isometrically.
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Proof. Take two nondegenerate commuting completely contractive repre-
sentations π : A→ B(H) and θ : D → B(H). By 2.6.13 of [10] we can extend π to
a completely contractive representation π̃ : B→ B(H) with

θ(d)π̃(b)π(a)ζ = θ(d)π(ba)ζ = π(ba)θ(d)ζ = π̃(b)θ(d)π(a)ζ,

for all a ∈ A, b ∈ B, d ∈ D, and ζ ∈ H. It follows that π̃ commutes with θ
and hence the closure of A ⊗ D in B⊗max D will have the desired property for
A⊗max D (see 6.1.1 and 6.1.11 in [10].)

COROLLARY 2.6. If A is an approximately unital ideal in a C∗-nuclear (respec-
tively B-nuclear) approximately unital algebra B, then A is C∗-nuclear (respectively B-
nuclear).

REMARK 2.7. If A is a subalgebra of an operator algebra B, and if D is a
nonselfadjoint operator algebra, then it need not be the case that A⊗max D is con-
tained in B⊗max D completely isometrically. Note that it follows from Lemma 2.2
that A⊗max D ⊂ C∗max(A)⊗max D for any C∗-algebra D, but this relation can be
false if D is nonselfadjoint. To see this let A be an operator algebra for which
A⊗min A(D) is not A⊗max A(D) (see Corollary 7.1.8 of [10]). Now A(D) is C∗-
nuclear as we remarked earlier, and hence we must have C∗max(A)⊗min A(D)
equal to C∗max(A)⊗max A(D). This contains A⊗min A(D), and so it cannot con-
tain A⊗max A(D).

To deal with quotients we will need the following. We do not know if the
result is true for nonselfadjoint D.

LEMMA 2.8. If D is a C∗-algebra and if A is an approximately unital ideal in
an operator algebra B, then (B⊗max D)/(A⊗max D) ∼= (B/A)⊗max D completely
isometrically. The same relation holds if D is an approximately unital operator algebra
and B is a C∗-algebra with ideal A.

Proof. The assertions have similar proofs so we prove only the first. We
know from Lemma 2.7 of [11] that C∗max(A) is an approximately unital ideal in
C∗max(B), and that C∗max(B)/C∗max(A) ∼= C∗max(B/A). Setting C = B/A, and using
the usual C∗-algebra result, we have the extension

0 −→ C∗max(A)⊗max D −→ C∗max(B)⊗max D −→ C∗max(C)⊗max D −→ 0.

We will show that

0 −→ A⊗max D −→ B⊗max D −→ C⊗max D −→ 0

is a subextension of the first extension, in the sense of Section 3.6 of [11]. To see
this first note that, by Lemma 2.2, each term in the last sequence is a subalge-
bra of the matching term in the C∗-algebra extension. Moreover the intersection
(C∗max(A)⊗max D) ∩ (B⊗max D) in C∗max(B)⊗max D is the closure of A ⊗ D, as
may be seen by the following argument. If u is in this intersection, and if (et)
(respectively ( fs)) is a cai for A (respectively D), then (et ⊗ fs)u is in the closure
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of A⊗ D. Taking the limit, and using the fact that ( fs) is a cai for C∗max(D), we
see that u is in the closure of A ⊗ D in C∗max(B)⊗max D. But this closure is in
the image of A⊗max D since by the previous result, A⊗max D ⊂ B⊗max D ⊂
C∗max(B)⊗max D. By Proposition 3.6 of [11] we have a subextension, proving the
result.

LEMMA 2.9. Every C∗-nuclear approximately unital operator algebra is exact,
hence is locally reflexive.

Proof. If D is a C∗-nuclear approximately unital operator algebra, and if

0 −→ A −→ B −→ C −→ 0

is a C∗-extension, then by Lemma 2.8 we have an exact sequence

0 −→ C∗max(D)⊗max A −→ C∗max(D)⊗max B −→ C∗max(D)⊗max C −→ 0.

As in the proof of Lemma 2.8 we have that

0 −→ D⊗max A −→ D⊗max B −→ D⊗max C −→ 0

is a subextension in the sense of Section 3.6 of [11], hence it is a “1-exact” sequence
in the sense of [15]. Thus by Theorem 14.4.1 of [15] we see that D is exact.

We are now ready for some results concerning quotients. It is not clear
whether in the following proposition a weaker condition on B/A than the com-
pletely contractive approximation property will suffice.

PROPOSITION 2.10. Let A be an approximately unital ideal in a C∗-nuclear ap-
proximately unital operator algebra B. If B/A is separable and has the completely con-
tractive approximation property, then B/A is C∗-nuclear.

Proof. By Proposition 2.6 we know that A is C∗-nuclear too. By Lemma 2.8
we have (B/A)⊗max D ∼= (B⊗max D)/(A⊗max D) for any C∗-algebra D. Since
C∗-nuclearity implies local reflexivity by Lemma 2.9, the extension of B/A by A
satisfies the condition of the lifting theorem in [14]. Hence by that result there is a
completely contractive linear splitting map B/A→ B. From this it follows easily
that (B/A)⊗min D ∼= (B⊗min D)/(A⊗min D) ∼= (B/A)⊗max D.

THEOREM 2.11. If C is a C∗-nuclear approximately unital operator algebra, and if

0 −→ A −→ B −→ C −→ 0

is an extension, then for every C∗-algebra D, the associated sequence

0 −→ A⊗min D −→ B⊗min D −→ C⊗min D −→ 0

is an extension (these are extensions in the sense of [11]). So (B⊗min D)/(A⊗min D) ∼=
(B/A)⊗min D completely isometrically.
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Proof. The canonical morphism from B⊗max D to (B⊗min D)/(A⊗min D)
annihilates the closure of A⊗ D, which by Proposition 2.5 is equal to A⊗max D.
Thus by Lemma 2.8 we have canonical completely contractive morphisms

C⊗max D ∼= (B⊗max D)/(A⊗max D)→ (B⊗min D)/(A⊗min D)→ C⊗min D

which compose to the identity map since C⊗min D ∼= C⊗max D. Since the range
of the first “arrow” is dense, we see that C⊗min D ∼= (B⊗min D)/(A⊗min D) via
the canonical map. This completes the proof.

REMARK 2.12. There are several conditions equivalent to an extension hav-
ing the “tensorizing with every C∗-algebra” property in the last theorem. These
are studied in [6].

COROLLARY 2.13. Let

0 // A // B // C // 0

be an extension of operator algebras in the sense of [11]. If both A and C are C∗-nuclear
(respectively B-nuclear) then B is C∗-nuclear (respectively B-nuclear).

Proof. Let D be a C∗-algebra. By Lemma 2.8 we have an extension

0 // A⊗max D // B⊗max D // C⊗max D // 0 .

By Theorem 2.11 (or a variant of it in the B-nuclear case) we have an extension

0 // A⊗min D // B⊗min D // C⊗min D // 0 .

Now apply the “five lemma” from Lemma 3.2 of [11].

COROLLARY 2.14. Let A be an approximately unital operator algebra. Then A
is C∗-nuclear (respectively B-nuclear) if and only if A1 is C∗-nuclear (respectively B-
nuclear)

Proof. We have the short exact sequence

0 −→ A −→ A1 −→ C −→ 0

with A an approximately unital ideal in A1. The forward direction now follows
from the previous result, and the reverse follows from Corollary 2.6.

It is characteristic of the present paper that one gets much better results by
restricting the class of operator algebras:

PROPOSITION 2.15. If A is a Dirichlet operator algebra then A is C∗-nuclear
(respectively B-nuclear) if and only if C∗e (A) is nuclear (respectively has the LLP). The
(⇐) implications are also true if A is merely C∗-split.

Proof. If B is a C∗-algebra, then A⊗max B ⊂ C∗max(A)⊗max B by Lemma 2.2.
If A is C∗-split then there is a right inverse to the canonical map C∗max(A)⊗max B
→ C∗e (A)⊗max B. If the latter equals C∗e (A)⊗min B, then it follows that A⊗max B
= A⊗min B. Conversely if the latter holds, then A⊗max B ⊂ C∗e (A)⊗max B, since
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the inclusion of A⊗ B induces a tensor norm which must then agree with ⊗max.
If A is Dirichlet, then Arveson’s Proposition 1.2.8 of [3] gives a complete isometry
from the closure of A⊗min B + A∗⊗min B which is C∗e (A)⊗min B, into the closure
of A⊗max B + A∗⊗max B in C∗e (A)⊗max B, which is C∗e (A)⊗max B.

In Corollary 5.9 we will improve the last assertion of the last proposition.

3. THE HOMOMORPHISM LOCAL LIFTING PROPERTY AND B-NUCLEARITY

In analogy with the C∗-algebraic theory of the LLP, one would expect a rela-
tionship between B-nuclearity and lifting properties. At present we only see one
direction of the relationship, which will be presented in the next theorem.

DEFINITION 3.1. An operator algebra C has the homomorphism local lifting
property (HLLP) if for every operator algebra B, and any approximately unital
ideal A in B, and any completely contractive homomorphism u : C → B/A and
finite dimensional subspace E ⊂ C, there is a complete contraction from E to B
which is a lift of u|E.

Our original motivation in studying the HLLP, is that it has some connec-
tions with the topic of when Ext is a group, and this is studied in [6]. For example,
we show in [6] that every extension in the sense of [11] of a separable operator
algebra with the HLLP, by K (or by any C∗-algebra with a property described
there) is “semisplit” in the sense of [6].

THEOREM 3.2. Let C be an approximately unital operator algebra. If C is B-
nuclear then C has the HLLP.

We defer the proof momentarily to prove a lemma which is of independent
interest (solving an open question about tensor products of M-ideals in a special
case: see the discussion before Proposition 1.7 in [1]).

LEMMA 3.3. Suppose that A is an approximately unital ideal in an operator alge-
bra B, and that E is an operator space. Then A⊗min E is a complete M-ideal in B⊗min E,
and in particular is proximinal.

Proof. We know that A⊥⊥ = eB∗∗ for a central projection e ∈ B∗∗. No-
tice that B⊗min E is a left operator B-module (see e.g. the second paragraph of
the Notes for Section 3.4 in [10]). Thus (B⊗min E)∗∗ is a left dual operator B∗∗-
module, by 3.8.9 in [10]. Hence e ∈ B∗∗ may be regarded as a left M-projection on
(B⊗min E)∗∗, and we claim that if we do so then (A⊗min E)⊥⊥ = e(B⊗min E)∗∗.
It is routine to see that (A⊗min E)⊥⊥ ⊂ e(B⊗min E)∗∗. On the other hand, if
at → e weak* in B∗∗, with at ∈ A, then since at(b⊗ x) ∈ A⊗ E ⊂ (A⊗min E)⊥⊥

for b ∈ B and x ∈ E, it follows by separate weak* continuity and density that
e(B⊗min E)∗∗ ⊂ (A⊗min E)⊥⊥. This proves the claim, and shows that A⊗min E
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is a complete right M-ideal in B⊗min E. Similarly, it is a complete left M-ideal in
B⊗min E, and so it is a complete M-ideal [7].

Proof of Theorem 3.2. We will adapt a proof due to Pisier of Kirchberg’s result
that B-nuclearity implies the LLP for C∗-algebras. The reader should follow along
with the proof of (iii) implies (i) in Theorem 16.2 of [29]. We begin with s ∈
(A/I)⊗ E∗, as in that proof. Suppose s =

n
∑

k=1
[ak]⊗ ψk, for ak ∈ A, ψk ∈ E∗ ⊂

B(H). The first change that needs to be made is that instead of appealing to (11.1)
one uses the functoriality of the ⊗max tensor product of operator algebras. (Note:
this is the only place where u being a homomorphism is used.) The appeal to

Exercise 11.2 is replaced by Lemma 2.8 above. One obtains
∥∥∥ n

∑
k=1

[ak]⊗ ψk

∥∥∥ 6 1

in (A/I)⊗max B(H). Then
∥∥∥ n

∑
k=1

ak ⊗ ψk

∥∥∥ 6 1 in (A⊗max B(H))/(I⊗max B(H)),

and it follows easily that
∥∥∥ n

∑
k=1

ak ⊗ ψk + (I⊗min B(H))
∥∥∥ 6 1 in (A⊗min B(H))/

(I⊗min B(H)). The proof of Lemma 2.4.8 in [29] may be easily adapted to our
case, if one uses the known fact (see e.g. [12], [1] or Proposition 6.3 of [8]) that any
ideal with cai has an approximate identity of the form (1− xt) with ‖xt‖ → 1.

This implies that
∥∥∥ n

∑
k=1

ak ⊗ ψk + (I⊗min E∗)
∥∥∥ 6 1 in (A⊗min E∗)/(I⊗min E∗).

The proof is completed as in [29] by an appeal to Lemma 3.3.

We now turn to operator algebras A with the unique extension property (UEP)
considered in [13]: that is, A is a unital-subalgebra A of a C∗-algebra B, such that
for every Hilbert space H and every unital ∗-homomorphism π : B → B(H),
there is a unique UCP map Ψ : B→ B(H) extending π|A. Clearly, we can replace
B(H) in this definition, by “every unital C∗-algebra”. It follows from the proof of
Theorem 2.7 of [9] that B = C∗e (A). Examples of algebras with the UEP include
logmodular and Dirichlet algebra (see p. 159–161 in [10]), and some nest algebras
and crossed products [13]. As Elias Katsoulis has pointed out, it is an easy conse-
quence of Choi’s “multiplicative domain” trick (see e.g. Lemma 14.2 of [29]), that
any unital operator algebra generated by unitaries will have UEP.

LEMMA 3.4. If A and B are operator algebras with the UEP, then A⊗min B has
the UEP.

Proof. Since A and B are unital there are completely isometric inclusions
A ⊂ A⊗min B and B ⊂ A⊗min B. Now let π : C∗e (A⊗min B) → B(H) be a uni-
tal ∗-homomorphism, and let σ : C∗e (A⊗min B) → B(H) be a unital completely
positive map satisfying π|A⊗min B = τ|A⊗min B. We know by Theorem 2.10 of
[11] that C∗e (A⊗min B) = C∗e (A)⊗min C∗e (B). By the unique extension property
σ|C∗e (A) = π|C∗e (A). A similar result holds for C∗e (B), and hence C∗e (A) and C∗e (B)
are contained in the multiplicative domain (see e.g. [26] or Lemma 14.2 of [29])
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for σ. Since C∗e (A) and C∗e (B) generate C∗e (A⊗min B), we have that C∗e (A⊗min B)
is contained in the multiplicative domain for σ. Thus σ is a ∗-homomorphism,
and so π = σ.

LEMMA 3.5. If A is an operator algebra with the UEP, and N is a nonunital
nuclear C∗-algebra, then (A⊗min N)1 has the UEP.

Proof. Recall from [11] that

C∗e ((N⊗min A)1) = C∗e (N⊗min A)1 = (N⊗min C∗e (A))1.

Let θ : (N⊗min C∗e (A))1 → B(H) be a unital ∗-homomorphism, and let Φ :
(N⊗min C∗e (A))1 → B(H) be a UCP map extending θ|(N⊗min C∗e (A))1 . We need
to show that Φ = θ.

The restriction of θ to N⊗min C∗e (A) is of the form π � ρ for commuting
∗-representations π : N → B(H) and ρ : C∗e (A) → B(H). If (et) is an in-
creasing cai for N, then π(et) → q strongly for a projection q commuting with
ρ(1). Let p = qρ(1), and identify pB(H)p = B(K), where K = pH. Since
π( f )ρ(a) = qπ( f )ρ(a)ρ(1), we may replace π and ρ by pπ(·) and pρ(·). Then
we may regard π and ρ as being B(K)-valued with commuting ranges, and now
both of them are nondegenerate (for example π(et) → p = IK strongly). Let π1 :
N1 → B(K) be the “unitization” of π, then π1 � ρ is a unital ∗-homomorphism
N1⊗min C∗e (A)→ B(K). Let Ψ be the restriction of Φ to N⊗min C∗e (A). Of course
Φ( f ⊗ 1A) = θ( f ⊗ 1A) for f ∈ N, so that it follows from a well known principle
concerning completely positive maps, that Φ( f g ⊗ a) = θ( f ⊗ 1A)Φ(g ⊗ a) =
π( f )pΦ(g ⊗ a) if f , g ∈ N, a ∈ C∗e (A). Thus Ψ may also be viewed as a B(K)-
valued map.

It is well known that we can extend Ψ to a unital completely positive map
from the subspace N⊗min C∗e (A) + C 1N1 ⊗ 1A of N1⊗min C∗e (A) to B(K). We
may then extend further to a unital completely positive map Ψ̃ : N1⊗min C∗e (A)

→ B(K). We claim that for f ∈ N1 we have Ψ̃( f ⊗ 1A) = π1( f ). Indeed for
f ∈ N we have Ψ̃( f ⊗ 1A) = Ψ( f ⊗ 1A) = π( f ) = π1( f ). The claim is also true
for f = 1N1 , and hence it is true in full generality. By the “well known principle”
used a few lines earlier, we have Ψ̃( f ⊗ a) = π1( f )T(a) if f ∈ N1, a ∈ C∗e (A),
where T(a) = Ψ̃(1⊗ a). Note that T is UCP. Also if a ∈ A then

π(et)T(a) = Ψ̃(et ⊗ a) = Φ(et ⊗ a) = π(et)ρ(a),

and taking a limit shows that T(a) = ρ(a). Since A has the UEP, T = ρ, and so

Φ( f ⊗ a) = Ψ( f ⊗ a) = Ψ̃( f ⊗ a) = π1( f )ρ(a) = θ( f ⊗ a),

for f ∈ N, a ∈ C∗e (A). It follows that Φ = θ as desired.

PROPOSITION 3.6. If C is a separable unital B-nuclear operator algebra with the
UEP, then C∗e (C) has the LLP.
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Proof. It is shown in [6], using the HLLP and in particular the fact men-
tioned above Theorem 3.2, that these hypotheses imply that Extu(C∗e (A)) is a
group. If S(C) is the “unitized suspension” as in [17], then S(C) is a separable,
unital algebra. It is easy to see that it is B-nuclear using Corollary 2.14. By the pre-
vious lemma we also have that S(C) has the UEP, so that by the above we deduce
that Extu(C∗e (S(C))) is a group. Since C∗e (S(C)) = S(C∗e (C)) (see Corollary 2.11
of [11]), it now follows from a result of Kirchberg [17] that C∗e (C) has the LLP.

It follows that if A is C∗-split, or is separable and has UEP, then C∗e (A) hav-
ing LLP implies that A has HLLP (see Theorem 3.2 and Proposition 2.15).

4. WEAK EXPECTATION

We turn to themes connected with the weak expectation property. For sim-
plicity, unless stated otherwise we assume that all algebras are unital, and that all
subalgebras are “unital-subalgebras”. We leave the nonunital case to the reader
using the usual unitization results (e.g. as in Section 2.1, 6.1.6, and 6.1.11 of [10],
and the remark after the next definition). This definition reduces to the WEP
property of Lance if A is selfadjoint.

DEFINITION 4.1. We say that an operator algebra A has the algebra weak
expectation property (AWEP) if A⊗max D ⊂ B⊗max D completely isometrically for
every (possibly nonunital) C∗-algebras B, D and completely isometric embedding
of A as a subalgebra of B.

PROPOSITION 4.2. If an operator algebra is C∗-nuclear then it has the AWEP.

Proof. If A is C∗-nuclear then for all C∗-algebras D the embedding A⊗D →
B⊗max D induces a tensor norm on A ⊗ D which must be the maximal tensor
norm.

REMARK 4.3. We may assume in the last definition that B is unital, and A is
a unital-subalgebra of B. For suppose that A⊗max D ⊂ B⊗max D for every unital
C∗-algebra B containing A completely isometrically, and every C∗-algebra D. If
C is a general C∗-algebra containing A as a subalgebra completely isometrically,
and if p ∈ C is the identity for A, then define B = pCp. The canonical projection
of C onto B induces canonical complete contractions

A⊗max D −→ B⊗max D −→ C⊗max D

which compose to a complete isometry, and hence A has AWEP.

Following the C∗-algebraic theory (see e.g. Theorem 3.3 of [24]), we restate
the tensorial condition in terms of a “weak expectation”:

PROPOSITION 4.4. If A is a unital-subalgebra of a unital C∗-algebra B, then

A⊗max D ⊂ B⊗max D
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completely isometrically, for every C∗-algebra D, if and only if there is a UCP map ϕ :
B → C∗max(A)∗∗ such that ϕ|A is the “identity map” on A. This is also equivalent to:
for every C∗-algebra G containing A completely isometrically and as a unital-subalgebra,
there is a UCP map ϕ : B→ G∗∗ such that ϕ|A is the “identity map” on A.

Proof. We follow the usual C∗-algebraic proof. Suppose that the first con-
dition holds, and that G∗∗ is a von Neumann subalgebra M ⊂ B(H). Let D =
M′ ⊂ B(H). We have A⊗max D ⊂ B⊗max D, by the hypothesis. The canonical
product map A⊗max D → B(H) : a ⊗ d = âd extends to a completely contrac-
tive unital, and hence completely positive, map Φ : B⊗max D → B(H). Define
T : B → B(H) by T(x) = Φ(x ⊗ 1). Since Φ(1⊗ d) = d for all d ∈ D, a well
known lemma implies that T(x)d = Φ(x⊗ d) = dT(x) for all d ∈ D, x ∈ B. That
is, T : B→ D′ = M = G∗∗. Finally, T(a) = Φ(a⊗ 1) = â for a ∈ A.

The other direction is much easier, essentially just as in [24]. Namely, we
consider the canonical sequence

A⊗max D → B⊗max D → C∗max(A)∗∗⊗max D,

and use the fact that A⊗max D ⊂ C∗max(A)∗∗⊗max D (see Lemma 2.2 and Exer-
cise 11.6 of [29]).

REMARK 4.5. In the last line of the previous result one may replace B by B∗∗.

By the remark after Proposition 4.2, and by Proposition 4.4, A having the
AWEP is equivalent to the conditions in Proposition 4.4 holding for every unital
C∗-algebra B containing A completely isometrically as a unital-subalgebra. It is
easy to see that this is equivalent to the conditions in Proposition 4.4 holding for
B = B(H), for all Hilbert spaces H and for all embeddings of A in B(H) com-
pletely isometrically as a unital-subalgebra. One may replace the words “for all”
in the last line with “for one fixed”, to obtain condition (iv) in the next theorem.
However this is shown there to be equivalent to the AWEP.

THEOREM 4.6. For a unital operator algebra A, consider the following conditions:
(i) C∗max(A) has the WEP.

(ii) A has the AWEP.
(iii) There exists an injective operator space R ⊂ C∗max(A)∗∗ containing the canonical

copy of A.
(iii’) For every C∗-cover B of A, there exists an injective operator space R ⊂ B∗∗

containing the canonical copy of A.
(iv) For every C∗-algebra B containing A completely isometrically as a unital subal-

gebra, there exists a Hilbert space H and a completely isometric unital homomorphism
π : A→ B(H), and a UCP map T : B(H)→ B∗∗, such that T ◦ π = IA.

(v) C∗e (A) has the WEP.
Then (i)⇒ (ii)⇔ (iii)⇔ (iii′)⇔ (iv)⇒ (v).
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Proof. (i) ⇒ (iii) If (i) holds then there is an injective operator system R
between C∗max(A) and C∗max(A)∗∗.

(ii)⇒ (iv) This is a corollary of Proposition 4.4.
(iv) ⇒ (iii′) Suppose that A is a unital-subalgebra of a C∗-algebra B, and

that B∗∗ is a unital-subalgebra of B(K). By injectivity of B(H) we can extend the
map π in (iv) to a completely contractive unital, hence UCP, map π̃ : B(K) →
B(H). If T is as in (iv), let T̃ = T ◦ π̃ : B(K)→ B∗∗. We use notation from e.g. [16]
or Section 4.2 of [10]. Let Θ be a minimal Â-projection on B(K). Then ‖T̃(Θ(·))‖
is a Â-seminorm on B(K) which is dominated by ‖Θ(·)‖, and hence the two must
coincide. By Lemma 4.2.2 of [10] we deduce that T̃ ◦Θ is idempotent. Since the
range of T̃ ◦Θ is contained in B∗∗ we deduce that there is an injective operator
system Z with A ⊂ Z ⊂ B∗∗.

(iii′)⇒ (iii) Trivial.
(iii) ⇒ (ii) If A is a unital-subalgebra of a C∗-algebra B, we can extend the

inclusion A ⊂ C∗max(A) to a UCP map B → R. Hence A satisfies the hypotheses
in Proposition 4.4, which yields (ii).

(iii′) ⇒ (v) There is an injective Z with A ⊂ Z ⊂ C∗e (A)∗∗ ⊂ B(H). Let T :
B(H)→ Z be a UCP idempotent. By the rigidity property of C∗e (A), we have that
R = T|C∗e (A) is a complete isometry onto W = T(C∗e (A)). Then R−1 : W → C∗e (A)

extends to a complete contraction µ : C∗e (A)∗∗ → Z ⊂ C∗e (A)∗∗ such that µ|A =
IA. Then µ ◦ T : B(H) → C∗e (A)∗∗ with µ(T(x)) = R−1(T(x)) = R−1(R(x)) = x
for all x ∈ C∗e (A). Hence C∗e (A) has the WEP.

REMARK 4.7. (i) Variants of the above proof shows that if some C∗-algebra
generated by A has the WEP then so does C∗e (A); and that C∗e (A) has the WEP if
and only if there exists an injective R ⊂ C∗e (A)∗∗ containing the canonical copy
of A.

(ii) As in Proposition 4.4, one may replace B in (iv) by C∗max(A).

PROPOSITION 4.8. Let A and B be approximately unital operator algebras, with
A B-nuclear and B having the AWEP. We have A⊗min B = A⊗max B if either A or B
is a C∗-algebra.

Proof. If A is a C∗-algebra with the LLP and if B has the AWEP, then A⊗maxB
is contained in A⊗max C∗e (B). By Theorem 4.6 we have C∗e (B) has the WEP,
and so by the matching theorem of Kirchberg ([17], Proposition 1.1(i)) we have
A⊗min C∗e (B) equal to A⊗max C∗e (B). From this the result is clear.

If B ⊂ B(H) is a C∗-algebra with the WEP, and if A is B-nuclear, then using
Lemma 2.2 we have

A⊗max B ⊂ C∗max(A)⊗max B ⊂ C∗max(A)⊗max B(H) = C∗max(A⊗max B(H)).

Since A⊗min B(H)=A⊗max B(H) and A⊗min B⊂A⊗min B(H) we are done.
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PROPOSITION 4.9. Suppose that A is a C∗-split unital operator algebra. Then
A has AWEP if and only if C∗e (A) has WEP. Also, A has AWEP if C∗(F)⊗min A =
C∗(F)⊗max A completely isometrically for every discrete free group F. The converse of
the last assertion holds too, if A is Dirichlet.

Proof. If C∗e (A) has WEP then there is an injective between C∗e (A) and its
second dual. If also A is C∗-split then there is an injective operator space between
A and C∗max(A)∗∗. The rest of the first “if and only if” follows from Theorem 4.6.
The rest follows from Kirchberg’s matching result for C∗-algebras [17] and the
proof of Proposition 2.15.

REMARK 4.10. We do not know if either direction of the last assertion of the
proposition is true for general operator algebras. It is however easy to see that
like the AWEP, the condition involving C∗(F) holds if C∗max(A) has the WEP. See
also Proposition 5.7 for another result concerning this property.

5. SOME CONNECTIONS WITH EXACTNESS

We recall that a C∗-algebra is nuclear if and only if it is both exact and has
the WEP. The reader familiar with Kirchberg’s work on exactness of C∗-algebras
(see e.g. [17], [18]), will expect that we need to consider the following notion of
exactness for nonselfadjoint operator algebras. Fortunately, this coincides with
the usual operator space variant of exactness studied by Pisier [28], as we shall
soon see.

DEFINITION 5.1. We say that an operator algebra D is OA-exact if for every
extension

0 −→ A −→ B −→ C −→ 0

in the sense of [11], the induced sequence

0 −→ A⊗min D −→ B⊗min D −→ C⊗min D −→ 0

is an extension.

PROPOSITION 5.2. For a subalgebra D ⊂ B(H). The following are equivalent:
(i) D is OA-exact.

(ii) The induced sequence

0 −→ K⊗min D −→ B⊗min D −→ (B/K)⊗min D −→ 0

is an extension in the sense of [11].
(iii) D is exact as an operator space.
(iv) If u : D → B(H) is the inclusion map, then for every approximately unital opera-

tor algebra A the map IA ⊗ u extends to a contraction from A⊗min D to A⊗max B(H).
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Proof. By Theorem 14.4.1 of [29] any OA-exact operator algebra is exact as
an operator space. Conversely, if D is exact as an operator space, and if

0 −→ A −→ B −→ C −→ 0

is an extension in the sense of [11], then we have the induced sequence

0 −→ C∗max(A) −→ C∗max(B) −→ C∗max(C) −→ 0

is an extension of C∗-algebras by Lemma 2.7 of [11]. By Theorem 14.4.1(iv) of [15]
we have the extension

0 −→ C∗max(A)⊗min D −→ C∗max(B)⊗min D −→ C∗max(C)⊗min D −→ 0

and we can apply Proposition 3.6 of [11] and the idea in the proof of Lemma 2.8
to see that D is OA-exact.

That (ii) and (iii) are equivalent follows from e.g. Theorem 14.4.2 of [15].
Further, Theorem 17.1 of [29] gives (iv)⇒ (iii). Finally, assuming (iii), recall from
Lemma 2.2 that A⊗max B(H) ⊂ C∗max(A)⊗max B(H) completely isometrically.
Then applying Theorem 17.1 of [29], the map IC∗max(A)⊗ u extends to a contraction

C∗max(A)⊗min D → C∗max(A)⊗max B(H).

Restricting this map to A⊗min D we obtain (iv).

Any exact operator space is a subspace of an exact unital operator algebra.
To see this let E be an exact operator space and let U (E) be the universal algebra
for E as in 2.2.10–2.2.11 of [10]. Using the well known characterization of exact-
ness in terms of subspaces of Mn, we see that U (E) is exact if E is exact as an
operator space by using the following variant of Proposition 2.2.11 of [10]. In our
case we apply the next result to both T and T−1 to see that any finite dimensional
subspace of U (E) can be embedded as a subspace of M2n.

PROPOSITION 5.3. If T : E → F is a linear map between operator spaces with
‖T‖cb > 1, then the induced unital map θT : U (E)→ U (F) satisfies ‖ΘT‖cb = ‖T‖cb.

Proof. Let M = ‖T‖cb. Then u = T/M is completely contractive, so that the
map θu in Proposition 2.2.11 of [10] is completely contractive. But θT = Aθu A−1

where A is the diagonal scalar matrix with entries M and 1. From this it is clear
that ‖θT‖cb 6 M.

We will say more about U (E) in the final subsection of our paper.
We now consider a stronger property than exactness. We say that an oper-

ator algebra A is subexact if it is a subalgebra of an exact C∗-algebra. We show in
Section 6.4 that an exact operator algebra need not be subexact. The following is
obvious:

PROPOSITION 5.4. A is subexact if and only if C∗e (A) is exact.
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The next result (and also Corollary 5.9) suggest that C∗-nuclearity is not as
strong a condition as might at first appear if one views it from a “commutant
lifting theorem” perspective, see Proposition 2.5 of [27].

THEOREM 5.5. A unital operator algebra A is C∗-nuclear if and only if A is exact
and has the AWEP.

Also, A is both subexact and has the AWEP, if and only if both A is C∗-nuclear
and C∗e (A) is nuclear.

Proof. We know from Lemma 2.9 that C∗-nuclearity implies exactness, and
from Proposition 4.2 we know that C∗-nuclearity implies the AWEP. Conversely,
suppose A is exact and has the AWEP. For any C∗-algebra D we have by (6.3) of
[10] that A⊗max D ⊂ C∗max(A)⊗max D. Indeed by an argument similar to that of
(6.3) in [10], using the universal property of ⊗max and Corollary 2.5.6 of [10], we
have

A⊗max D ⊂ C∗max(A)⊗max D ⊂ C∗max(A)∗∗⊗max D

completely isometrically. On the other hand, the composition of the maps in the
last string agrees with the composition of the following canonical maps (induced
by the maps in Theorem 4.6(iv) with B = C∗max(A)):

A⊗max D → B(H)⊗max D → C∗max(A)∗∗⊗max D.

This forces A⊗max D ⊂ B(H)⊗max D completely isometrically. By part (iv) of
Proposition 5.2, the exactness of A gives A⊗min D ⊂ B(H)⊗max D. It is now
easy to see that A⊗max D = A⊗min D. That is, A is C∗-nuclear.

For the second equivalence notice that if A is a subalgebra of a nuclear C∗-
algebra N, then the C∗-algebra generated by A in N is exact and hence so is its
quotient C∗e (A). If in addition A has the AWEP, then by Theorem 4.6 we have that
C∗e (A) has the WEP. Hence C∗e (A) is nuclear by Exercise 17.1 of [29]. Since C∗e (A)
is nuclear we know that C∗e (A)⊗min D = C∗e (A)⊗max D for all C∗-algebras D.
Hence A⊗min D ⊂ C∗e (A)⊗max D completely isometrically for all C∗-algebras D.
This, by part (iv) of Proposition 5.2, forces A to be exact. Thus by the first chain
of equivalences we have that A is C∗-nuclear. Finally, if C∗e (A) is nuclear, then A
is clearly subexact; and if A is C∗-nuclear then A has the AWEP.

REMARK 5.6. By Theorem 12.6 of [29], A is C∗-nuclear if and only if there
is a net of finite rank contractions vt : A → Mnt and maps wt : Mnt → C∗max(A)
with ‖wt‖dec 6 1 for all t, such that wtvt converges pointwise to the natural
inclusion map of A into C∗max(A). This is because A is C∗-nuclear if and only if
the canonical map A⊗D → C∗max(A)⊗max D is a complete isometry with respect
to ⊗min for every C∗-algebra D.

The following result is a variant of the last theorem.
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PROPOSITION 5.7. If A is an exact approximately unital operator algebra then A
is C∗-nuclear if and only if C∗(F)⊗min A = C∗(F)⊗max A completely isometrically for
every discrete free group F.

Proof. If A is exact then the fact that any C∗-algebra B is a quotient of C∗(F)
for some F, forces exactness of the sequence

0 −→ A⊗min J −→ A⊗min C∗(F) −→ A⊗min B −→ 0.

Applying Lemma 2.8, we have the exact sequence

0 −→ A⊗max J −→ A⊗max C∗(F) −→ A⊗max B −→ 0.

If C∗(F)⊗min A = C∗(F)⊗max A it follows that A⊗min B = A⊗max B.

COROLLARY 5.8. If A is C∗-nuclear and approximately unital, and if either A is
subexact or A is generated by unitaries, then C∗e (A) is nuclear.

Proof. If A is C∗-nuclear then so is A1 by Corollary 2.14. Similarly if A is
subexact then so is A1, since the unitization of an exact C∗-algebra is exact. By
Theorem 5.5 it follows that C∗e (A1) = C∗e (A)1 is nuclear and hence so is C∗e (A).
On the other hand if A is generated by unitaries, then so is C∗e (A), and so C∗e (A)
is nuclear by Theorem 13.4 of [29].

COROLLARY 5.9. If a unital operator algebra A is C∗-split, then A is C∗-nuclear
if and only if it is both exact and C∗e (A) has WEP.

Proof. This is a combination of Theorem 5.5 and Proposition 4.9.

6. EXAMPLES

This main purpose of this section is to illuminate connections (or lack
thereof) of the properties studied above, in the case of some extremely com-
monly encountered examples, to the matching C∗-algebraic properties for their
C∗-covers.

6.1. THE DISK ALGEBRA. It is well known (see e.g. 6.2.5 of [10]) that A(D) is
C∗-nuclear. Hence it has the AWEP and the HLLP, etc. We shall show that
C∗max(A(D)) has the LLP but is not nuclear (nor exact). This shows amongst other
things that the converse of the first assertion in Proposition 2.4 fails.

To see that C∗max(A(D)) is not exact, we will use the fact that C∗max(A(D))
is the universal C∗-algebra generated by a contraction. Let B be any separable
C∗-algebra which is not exact. Since K⊗min B contains a complemented copy
of B and exactness, viewed as an operator space property, would pass to this
copy, it follows that K⊗min B is not exact. By [22], K⊗min B is singly gener-
ated as a C∗-algebra by a contractive element, call it x. Since C∗max(A(D)) is the
universal C∗-algebra generated by a contraction, there exists a ∗-representation
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π : C∗max(A(D)) → K⊗min B which is onto. Since the exactness is preserved by
C∗-quotients it must be the case that C∗max(A(D)) is not exact, and hence is not
nuclear.

One may identify C∗max(A(D)) with C∗u〈C〉, the universal C∗-algebra for the
operator space C, by comparing their universal properties (see [23]). With this
identification we can use Theorem 16.5 of [29] to see that C∗max(A(D)) does in fact
have the LLP.

In Proposition 16.13 of [29] one finds the striking fact that C∗max(A(D)) hav-
ing the WEP is equivalent to Kirchberg’s important conjecture from [17] that LLP
implies WEP. It is easy to argue that this is also equivalent to whether

C∗max(A(D))⊗min C∗max(A(D)) = C∗max(A(D))⊗max C∗max(A(D)).

Indeed this follows from Kirchberg’s remarkable result from [17] that a C∗-algebra
B has WEP if and only if B⊗min Bop = B⊗max Bop; together with the fact that
C∗max(A(D)) = C∗max(A(D))op. The latter is a special case of the more general fact
that for an operator algebra A, C∗max(Aop) = C∗max(A)op; whose proof is left as a
simple exercise.

We remark that it is easy to see that

C∗max(A(D)⊗max A(D)) 6= C∗max(A(D))⊗max C∗max(A(D)).

Indeed by (6.9) in [10], we have A(D)⊗max A(D) = A(D)⊗min A(D) is the bidisk
algebra (see 6.2). A pair of commuting contractive representations of A(D) gives
rise to a representation of A(D)⊗max A(D), and hence to a ∗-representation π
of C∗max(A(D)⊗max A(D)). It is easy to construct an example of such represen-
tations (even two dimensional, taking z to E21, where z is the usual generator
of A(D)) such that π(z ⊗ 1) does not commute with π(1 ⊗ z). On the other
hand, these would have to commute for any representation π of the C∗-algebra
C∗max(A(D))⊗max C∗max(A(D)), by Corollary 6.1.7 of [10].

6.2. THE BIDISK ALGEBRA. Using a result of Parrott [25] one may see that the
bidisk algebra A(D2) is C∗-nuclear (see e.g. p. 266 in [10]). Thus it has the AWEP
and the HLLP, etc. On the other hand, it is easy to argue from the universal prop-
erty of C∗max applied to obvious maps between A(D) and A(D2), that C∗max(A(D))
is contained in C∗max(A(D2)). Hence C∗max(A(D2)) is not exact. We do not know
if C∗max(A(D2)) has the LLP, or if C∗max(A(D))⊗max C∗max(A(D)) has the LLP.

6.3. TRIANGULAR MATRICES. Let Tn denote the n× n upper triangular matrices,
which are known to be C∗-nuclear [27], and hence it also has AWEP and the
HLLP, etc. We will show that C∗max(Tn) is not exact if n > 3, but it does have the
LLP. Note that C∗max(T2) is nuclear, since it can be identified with the subalgebra
of C([0, 1], M2) consisting of matrices which are diagonal matrices at t = 0 (see
2.4.5 of [10]).
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For n > 3 we will first show that Tn is essentially a free product of copies of
T2. Define for 1 6 i 6 n− 1 the algebra

Ai := C⊕ · · · ⊕C︸ ︷︷ ︸
i−1 copies

⊕T2 ⊕ C⊕ · · · ⊕C︸ ︷︷ ︸
n−i−1 copies

⊆ Mn.

We will denote by ιi the inclusion map of Ai into Mn and we will let D be the
subalgebra of Ai given by the diagonal matrices.

LEMMA 6.1. The algebra Tn is completely isometrically isomorphic to ∗D Ai.

Proof. For each i we have Ai ⊆ Tn completely isometrically isomorphically.
It follows that there is a completely contractive representation ∗ιi of ∗D Ai into Tn.
The range of ∗ιi contains a generating set for Tn and hence the representation ∗ιi
maps onto Tn. Next let π : Tn → ∗D Ai be given by defining

π(Ei,i) = 0⊕ · · · ⊕ 0︸ ︷︷ ︸
i−1 copies

⊕1⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
n−i copies

∈ D

and
π(Ei,i+1) = 0⊕ · · · ⊕ 0︸ ︷︷ ︸

i−1 copies

⊕E1,2 ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
n−i−1 copies

∈ Ai,

where Ei,j is the usual elementary matrix. It is easy to see that π is well defined.
Now extending using linearity and algebra operations we have a representation.
Notice that π ◦ ∗ιi is trivial on generators, as is ∗ιi ◦ π, and hence these two maps
are inverses. The result will follow if we can show that π is completely con-
tractive. This follows easily from the now standard result from [21] stating that
it suffices to show that π is contractive on matrix units. But by construction,
π(Ei,i+k) = π(Ei,i+1)π(Ei+1,i+2) · · ·π(Ei+k−1,i+k) which is a product of contrac-
tions and hence is a contraction. This is true for 1 6 i 6 n and 1 6 k 6 n− i, and
we are done.

We now combine the last result with the fact that free products “commute”
with C∗max (which follows immediately from the universal properties, as in Propo-
sition 2.2 of [4]), to obtain

C∗max(Tn) = ∗
i

C∗max(Ai) = ∗
i
C⊕ · · · ⊕C︸ ︷︷ ︸

i−1 copies

⊕C∗max(T2)⊕ C⊕ · · · ⊕C︸ ︷︷ ︸
n−i−1 copies

.

These free products are amalgamated over D.
Since C∗max(Tn) is the n-fold free product of nuclear C∗-algebras, amalga-

mated over D, by Theorem 13.2 of [29] and the remark after Proposition 3.21 in
[24], we have that C∗max(Tn) has the LLP for all n. The fact that C∗max(Tn) is not
exact for n > 3 follows from the next lemma, and the fact that C([0, 1]) ∗ C([0, 1])
is not exact. The latter is probably well known, but for the readers convenience
we give a proof, using facts in Section 5 of [20] about the universal C∗-algebra
C∗u(X) of an operator system X. Namely, C∗u(`∞

2 ) = C([0, 1]) and C∗u(`∞
3 ) is not
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exact. Define πk : `∞
2 → `∞

3 by π1((λ, µ)) = (λ, λ, µ) and π2((λ, µ)) = (λ, µ, µ).
Clearly πk is a unital complete isometry for k = 1, 2. Notice also that the ranges of
the πk are jointly spanning. By the universal property for C∗u(`∞

2 ), there are uni-
tal ∗-homomorphisms π̃k : C([0, 1]) → C∗u(`∞

3 ) whose ranges together generate
C∗u(`∞

3 ). By the universal property for free products, there is a ∗-representation of
C([0, 1]) ∗C([0, 1]) onto C∗u(`∞

3 ). Since exactness passes to C∗-quotients, it follows
that C([0, 1]) ∗ C([0, 1]) is not exact.

LEMMA 6.2. There is a completely isometric embedding of the amalgamated free
product C([0, 1]) ∗ C([0, 1]) into C∗max(Tn) for n > 3.

Proof. Without loss of generality we will stick to the case of n = 3. The proof
n > 3 will follow in the same manner, or by noting C∗max(T3) ⊂ C∗max(Tn).

We have C∗max(T3) = (C∗max(T2) ⊕ C) ∗D (C⊕C∗max(T2)). Notice that the
map E1 :

[
f1,1 f1,2
f2,1 f2,2

]
⊕ λ 7→ f2,2 is a conditional expectation of C∗max(T2)⊕C onto

a copy of C([0, 1]). Similarly E2 : λ ⊕
[
g1,1 g1,2 g2,1 g2,2

]
7→ g2,2 defines a

conditional expectation onto a copy of C([0, 1]). Lastly the map d : D → C taking
a 3× 3 diagonal matrix to its 2-2 entry, is a conditional expectation of D onto a
copy of C. The result now follows from Proposition 2.4 of [2].

6.4. THE ALGEBRA U (X) FOR AN OPERATOR SPACE X. The operator algebra U (X)
consists of 2× 2 upper triangular matrices with elements from X in the 1-2 cor-
ner and scalars in the two diagonal entries; see 2.2.10–2.2.11 of [10]. We refer the
reader to Section 6.4 of [10] for a discussion of Pisier’s δ norm on tensor products.

LEMMA 6.3. If X is an operator space, and if U (X)⊗min D = U (X)⊗max D
isometrically for a unital C∗-algebra D, then δ = min on X⊗ D. The converse of this is
true if D ∼= Mn(D) for all n ∈ N. In particular, X has the 1-OLLP of Ozawa [23], [29]
if and only if U (X) is B-nuclear.

Proof. If Φ : X → B(H) and π : D → B(H) are commuting complete con-
tractions, with π a representation, then by Proposition 2.2.11 of [10] we obtain a
representation θΦ : U (X) → B(H(2)) which commutes with π(2) : D → B(H(2)).
Thus if U (X)⊗min D = U (X)⊗max D then for xk ∈ X, dk ∈ D, and with ak the
matrix with xk in its 1-2 corner and 0 elsewhere, we have∥∥∥∑

k
θΦ(ak)π

(2)(dk)
∥∥∥ =

∥∥∥Φ(xk)π(dk)
∥∥∥ 6 ∥∥∥∑

k
ak ⊗ dk

∥∥∥
min

=
∥∥∥∑

k
xk ⊗ dk

∥∥∥
min

.

Hence δ = min on X⊗ D.
Conversely, suppose δ = min on X ⊗ D, and let θ and ρ be two commuting

completely contractive representations of U (X) and D respectively. The diagonal
projections in U (X) induce a decomposition of the Hilbert space as a sum H ⊕ K
so that θ = θΦ for a complete contraction Φ : X → B(K, H), and ρ(d) = π1(d)⊕
π2(d), for d ∈ D and two ∗-representations π1, π2 of D on H and K respectively,
such that Φ(x)π2(d) = π1(d)Φ(x) for x ∈ X, d ∈ D. Note that θΦ ◦ c commutes
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with ρ, where c : X → U (X) is the canonical embedding. It follows that with
notation as above, for xk ∈ X, dk ∈ D,∥∥∥∑

k
θΦ(c(xk))ρ(dk)

∥∥∥=∥∥∥∑
k

Φ(xk)π2(dk)
∥∥∥6∥∥∥∑

k
xk ⊗ dk

∥∥∥
δ
=
∥∥∥∑

k
xk ⊗ dk

∥∥∥
min

.

Notice that W = Φ(X)π2(D) is an operator D-bimodule, a D-subbimodule of
B(K, H). Also, X⊗min D is an operator D-bimodule with the canonical actions.
The computation above shows that the map u : x⊗ d 7→ Φ(x)π2(d) is a contrac-
tive D-bimodule map from X⊗min D to W. If D ∼= Mn(D), then we also have δ =
min on X⊗Mn(D), and it is easy to see from this that u is completely contractive.
The map induced from the bimodule map u by (3.12) of [10] is also completely
contractive. One may argue from this that for b1, . . . , bn ∈ U (X), d1, . . . , dn ∈ D:∥∥∥∑

k
θ(bk)ρ(dk)

∥∥∥6∥∥∥[ ∑
k

λk1⊗dk ∑
k

xk⊗dk 0 ∑
k

µk1⊗ dk
]∥∥∥ =

∥∥∥∑
k

bk⊗dk

∥∥∥
min

.

Here λk, xk, µk are the three nonzero “corners” of bk, and the norm of the mid-
dle matrix is taken in M2(B(H ⊗ K), where X ⊂ B(H), D ⊂ B(K). That is,
U (X)⊗min D = U (X)⊗max D isometrically.

We leave the remaining assertion to the reader.

COROLLARY 6.4. There exist unital operator algebras A with C∗e (A) nuclear
(hence having the LLP and WEP), but A is neither B-nuclear nor C∗-nuclear nor has the
AWEP.

Proof. If X is a minimal operator space without the 1-OLLP, and if A =
U (X), then A is not B-nuclear by Lemma 6.3, and hence not C∗-nuclear. But
C∗e (A) is nuclear: it is a subalgebra of M2(B) for a commutative C∗-algebra B
by Theorem 4.21 of [5], hence Type I, and so nuclear. Since A is exact but not
C∗-nuclear it cannot have AWEP by Theorem 5.5.

From Lemma 6.3 and facts in [23], it is easy to build B-nuclear operator
algebras with bad properties. Indeed for any finite dimensional operator space X
with X∗ 1-exact, we have that X has the 1-OLLP, so that U (X) is B-nuclear.

REMARK 6.5. (i) We do not have an example of a C∗-nuclear algebra A with
C∗e (A) not nuclear, but presumably they exist in abundance. Equivalently, we do
not know if C∗-nuclearity implies subexactness.

(ii) For a given operator space it seems rather restrictive, and therefore proba-
bly uninteresting, for U (X) to be C∗-nuclear. Indeed, this is equivalent to saying
that the δ tensor norm agrees with the spatial (minimal) norm on X ⊗ D, for all
C∗-algebras D. Of course this occurs if X = C, and if X is a Hilbert row or column
space (since Cn ⊗h D = Cn⊗min D for any C∗-algebra D, and so these also agree
with Cn ⊗δ D, since δ 6 h), but probably in few other cases. We are indebted to
Gilles Pisier and N. Ozawa for conversations on this matter, which is related to
the discussion on p. 341 of [29] of exact spaces whose dual is exact too. If X is
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finite dimensional with U (X) C∗-nuclear, then as we saw in Lemma 2.9, U (X) is
1-exact and hence so is X. On the other hand, by [24], since X has 1-OLLP, X∗ is
1-exact. There is only a small list of 1-exact finite dimensional spaces whose dual
is known to be 1-exact too (see p. 341 of [29]).

We do not have an operator algebra version of Kirchberg’s profound char-
acterization of separable exact C∗-algebras as subalgebras of a fixed “universal”
separable exact C∗-algebra (see e.g. [17], [18], [19]). It seems feasible that there
does exist some such result, although the following rules out one approach:

PROPOSITION 6.6. There exists a separable exact operator space that is not lin-
early completely isometric to a subspace of an exact C∗-algebra. There exists a separable
unital exact operator algebra which is not subexact.

Proof. It is shown in Theorem 18 of [20] that there exists a separable exact
operator system S that is not a unital-subsystem of any unital separable exact
C∗-algebra. Suppose that S was a subspace of an exact C∗-algebra A. We will
use notation from [16] (see also p. 285–286 of [5]). Clearly M2(A) is exact, and
hence so too is its C∗-subalgebra generated by the copy of the “Paulsen system”
of S . Since exactness also passes to C∗-quotients, the C∗-envelope of the latter
system is exact, and hence so too is its upper right corner, the “ternary envelope”
of S (see [16] or p. 286 of [5]). This envelope is completely isometric to C∗e (S), by
the uniqueness of the ternary envelope. Thus C∗e (S) is exact, with S as a unital
subsystem, contradicting the result cited from [20] above.

For the last part, consider U (S), an exact separable operator algebra by the
remarks above Proposition 5.3, which is not a subspace of an exact C∗-algebra.
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