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ABSTRACT. We show a sufficient condition for selfadjointness and spectral
commutation of a system of unbounded symmetric operators in a Pontryagin
space. The main concepts are domination and the set of bounded vectors of an
operator. We investigate also operator matrices with unbounded entries and
prove a Pontryagin space version of the Nelson’s criterion.
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INTRODUCTION

An example by Nelson ([17]) shows that two essentially selfadjoint opera-
tors in a Hilbert space are not necessarily jointly selfadjoint, i.e. their closures do
not have to commute spectrally. In his paper Nelson gave also several sufficient
conditions for joint selfadjointness, which involved commutators and the notion
of domination. Since that time the topic has evolved, one should mention here
the works of Poulsen [18] and Stochel and Szafraniec [21]. We refer to the latter
paper for an overview of the history of the research.

Our motivation and starting point is Theorem 10 of [21]. The goal of the
present paper is to extend it onto the classes of symmetric and selfadjoint opera-
tors in a Pontryagin space. Apparently, this can be done without any additional
assumptions (Theorem 4.2). As a consequence we get a Nelson criterion of poly-
nomial type for joint selfadjointness in a Pontryagin space (Theorem 7.1) and a
generalization of the classical Nelson’s sufficient condition for joint selfadjoint-
ness of two operators (Theorem 7.2).

The result from [21] has found applications in approximation theory ([23])
and in multidimensional moment problems ([21], see also [19] for another ap-
proach to multidimensional moment problems). The version presented below
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might be a good tool for investigating multidimensional indefinite moment prob-
lems. We refer the reader to [3], [12] for the classical one dimensional indefinite
moment problem.

Although the way to Theorem 4.2 repeats some parts of its Hilbert space
analogue, we find it worth publishing. It is based on a technique of bounded
vectors, which needs some adjustment in the Pontryagin space environment.

The proof of the indefinite Nelson criterion of polynomial type appears
to be much more complicated than its definite counterpart. We propose a rea-
soning based on matrix decomposition of a symmetric operator in a Pontryagin
space. Although we will not obtain exact analogues of the results of Stochel and
Szafraniec ([21], Propositions 29, 30), we are able to generalize the famous Nelson
criterion ([17]) onto Pontryagin space without any additional assumptions.

We begin our paper in a Krein space environment and prove some general
statements on bounded vectors of definitizable operators (Proposition 2.1, Corol-
lary 2.2 and Theorem 3.1). These are preliminary results and we formulate them
in a very general context.

In the fourth section we prove the main theorem of the paper. It can be
reasonably formulated only in a Pontryagin space and we resign there from the
global setting. It should be mentioned that a straightforward reduction of The-
orem 4.2 to the Hilbert space case is not possible, mainly because commutation
of symmetric operators in a Pontryagin space: AB f = BA f (for f belonging to
some dense subspace E ) does not imply commutation of the operators JA and
JB, where J is any fundamental symmetry. One should think rather about some
results from the theory of noncommuting domination ([5], [24], [25]), where the
commutator is not zero but is bounded in some sense. However, we will not
follow that path but present an independent proof.

The next two sections are devoted to operator matrices with unbounded
entries, which are considered as operators in an orthogonal sum of two Hilbert
spaces. This is an essential tool in the proof of the Nelson criterion, which is
formulated again in Pontryagin space terms.

1. PRELIMINARIES

Let (K, [·, ·]) be a Krein space and let A be an operator in K. By D(A) and
R(A) we understand the domain and range of A, respectively. The sum and
product of unbounded operators is understood in a standard way, see e.g. [10].
We also set

D∞(A) :=
∞⋂

k=0

D(Ak).

We say that an operator A inK is bounded if ‖A f ‖ 6 c‖ f ‖ for some c > 0 and
for all f ∈ D(A). The norm appearing above is one of the equivalent complete
norms in the Krein space, such that the scalar product [·, ·] is continuous (see
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[4], [13]). All the topological notions will refer to that norm. The main results
do not depend on the choice of the norm but in the proofs very often a suitable
fundamental symmetry ([4]) has to be chosen.

We write B(K) for the space of all bounded operators with the domain equal
K. The symbols σ(A) and ρ(A) stand, respectively, for the spectrum and the
resolvent set of a closed operator A in K. We say that E ⊆ D(A) is a core for A if
the graph of A is contained in the closure of the graph A|E .

A+ denotes the adjoint of a densely defined operator A in a Krein space.
We say that a symmetric operator A in K is essentially selfadjoint on E if E is a
dense linear subspace of D(A) and (A|E )+ = A|E . By maximality of selfadjoint
operators, a symmetric operator A is selfadjoint on E if and only if A is selfadjoint
and E is a core for A (see e.g [5], [25]). If A is an operator in K and E is a subspace
of K then by A|E we mean the restriction of A to the subspace E ∩ D(A).

Let (K, 〈·, ·〉) be a Hilbert space and let A be a densely defined, closable
operator inK. We say that a closed subspace L ofK reduces A, if PA ⊆ AP, where
P denotes the orthogonal (in the sense of the inner product 〈·, ·〉) projection from
H to L. If L is contained in D(A) ∩ D(A∗) then it reduces A if and only if it is
invariant for A and A∗ (see [20] for more interesting problems of that type). If
(K, [·, ·]) is a Krein space and J is a fundamental symmetry in K then we say that
a closed subspace L of K J-reduces an operator A if it reduces A in the sense of
the Hilbert space inner product [J·, ·] on K.

In the rest of this section A, B are two closable operators in K and E is a
linear subspace of K.

We say that A dominates B on E if E ⊆ D(A) ∩D(B) and

(1.1) ‖B f ‖ 6 c(‖ f ‖+ ‖A f ‖), f ∈ E .

If E = D(A) then we will just say that A dominates B. Observe that if A dominates
B on E , which is a core for A thenD(A) ⊆ D(B) and A dominates B. On the other
hand, if D(A) ⊆ D(B) then, by the closed graph theorem, A dominates B.

We say that A and B commute pointwise on E if

E ⊆ D(BA) ∩D(AB), BA f = AB f for f ∈ E .

If the resolvent sets of A and B are non-empty and the bounded operators
(A− z1)

−1, (B− z2)
−1 commute pointwise on K for some (equivalently: for ev-

ery) z1 ∈ ρ(A), z2 ∈ ρ(B) then we say that A and B commute spectrally.
If A and B are symmetric, E ⊆ D(A) ∩ D(B) and [A f , Bg] = [B f , Ag] for

f , g ∈ E then we say that A and B commute weakly on E .
We finish this section with a lemma, the proof goes the same as the proof of

Proposition 2 in [21] with the symbol “ +” instead of “ ∗” .

LEMMA 1.1. If A and B are closable operators in a Krein space (K, [·, ·]) which
commute pointwise on a dense linear subspace E of K and D(A+B+) ∩ D(B+A+) is
dense in K, then A and B commute pointwise on D(A) ∩D(B).
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2. BOUNDED VECTORS

For an operator A in a Krein space (K, [·, ·]) we define:

Ba(A) := { f ∈ D∞(A) : ∃c > 0 ∀n ∈ N ‖An f ‖ 6 can}, a > 0.

Note that the definition above does not depend on the choice of an equivalent
norm on K. We say that f ∈ D∞(A) is a bounded vector for A if f ∈ Ba(A) for
some a > 0. We denote the linear space of all bounded vectors by B(A). The
spaces Ba(A) (a > 0) and B(A) are invariant for A. Moreover, Ba(A) ⊆ Bb(A)
if 0 6 a 6 b. For a normal operator N in a Hilbert space we have the following
description of the set of its bounded vectors (cf. [6], [21]):

(2.1) Ba(N) = R(E({z ∈ C : |z| 6 a})), a > 0,

where E denotes the spectral measure of N. In particular Ba(N) (a > 0) is a closed
subspace ofH which reduces N and B(N) is a core for N.

Let A be a selfadjoint operator in a Krein space (K, [·, ·]). In what follows
we will frequently assume that there exists a fundamental symmetry J and a pair
of closed subspacesH0 andH1 of K such that:

(j1) the Hilbert space (K, [J·, ·]) decomposes as an [J·, ·]-orthogonal sum (in
another words: (H0, [·, ·]) is a Krein space, (H1, [·, ·]) is a Hilbert space, they are
mutually [·, ·]-orthogonal and [J·, ·]-orthogonal and K is a direct sum of H0 and
H1) K = H0 ⊕H1, J|H1= IH1 ;

(j2) both spacesH0,H1 are invariant and J-reducing for the operator A;
(j3) H0 ⊆ D(A), A |H0∈ B(H0) and A |H0 is selfadjoint in the Krein space

(H0, [·, ·]);
(j4) A|H1 is selfadjoint in the Hilbert space (H1, [·, ·]).

Obviously, in nontrivial cases there are infinitely many triplets (J,H0,H1)
satisfying the conditions (j1)–(j4). By theorem of Langer ([11]) such a triplet
(J,H0,H1) exists for a selfadjoint operator in a Pontryagin space and this infor-
mation is sufficient for the purposes of the present paper. However, it is possi-
ble to make a similar construction in the case when A is a definitizable operator
without a critical point at infinity ([8], [13]). Furthermore, one can even take
under consideration some more general classes, like (bounded perturbations of)
locally definitizable operators (see e.g. [2], [9]). We leave the research on the sets
of bounded vectors in those cases for subsequent papers.

We provide the following description of the set of bounded vectors of a self-
adjoint operator with a triplet satisfying (j1)–(j4). The symbol “⊕” (“	”) below
and in Corollary 2.2 means the orthogonal sum (difference) with respect to the
Hilbert space inner product [J·, ·] on K.

PROPOSITION 2.1. Let A be a selfadjoint operator in a Krein space (K, [·, ·]) and
let a triplet (J,H0,H1) fulfill the conditions (j1)–(j4). Then there exists a number a0 > 0
(depending on A and on the choice of the triplet) such that for a > a0:
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(i) Ba(A) = H0 ⊕Ba(A|H1);
(ii) J(Ba(A)) = Ba(A) and J|K	Ba(A)= IK	Ba(A);

(iii) the space (Ba(A), [·, ·]) is a Krein space and its [J·, ·]-orthogonal complement is a
Hilbert space;

(iv) Ba(A) is J-reducing space for A;
(v) the operator A |Ba(A) belongs to B(Ba(A)) and is selfadjoint in the Krein space

(Ba(A), [·, ·]).
Proof. (i) In the calculations below we will use the norm ‖ f ‖ := [J f , f ] ( f ∈

K). We put a0 := max{‖A |H0 ‖, 1}. It results from (j2) and (j3) that D∞(A) =
H0 ⊕D∞(A|H1). Let f = f0 ⊕ f1 ∈ Ba(A), fi ∈ Hi (i = 0, 1). For some d > 0 we
have

d2a2n > ‖An f ‖2 = ‖(A|H0)
n f0‖2 + ‖(A|H1)

n f1‖2.

Hence, ‖(A|H1)
n f1‖ 6 dan, which finishes the proof of Ba(A) ⊆ H0 ⊕Ba(A|H1).

To see the reverse inclusion let first f0 ∈ H0. Then ‖An f0‖ = ‖(A |H0)
n f0‖ 6

an
0‖ f0‖ 6 an‖ f0‖. If f1 ∈ Ba(A|H1) then ‖An f1‖ = ‖(A|H1)

n f1‖ 6 can for some
c > 0. These two inequalities lead easily to the desired inclusion.

Point (ii) follows from (j1) and (i). Claim (iii) results directly from (i) and (ii).
To prove (iv) it is enough to note that the space Ba(A|H1) J-reduces the selfadjoint
operator A|H1 inH1 (cf. (2.1)) and use (j2) and (i).

Point (v) is a consequence of the closed graph theorem and invariance of
Ba(A) for A.

COROLLARY 2.2. Let A be a selfadjoint operator in a Krein space (K, [·, ·]) such
that there exists a triplet (J,H0,H1) satisfying (j1)–(j4). Then there exists a0 > 0 such
that for all a > a0 the space (Ba(A), [·, ·]) is a Krein space, in particular it is closed in
K. Moreover, B(A) is a core for A.

Proof. Only the second sentence of the statement requires proof. Proposi-
tion 2.1(i) gives us

(2.2) B(A) = H0 ⊕B(A|H1).

Let f = f0 ⊕ f1 ∈ D(A), ( fi ∈ Hi, i = 0, 1). Since f1 ∈ D(A |H1), there exists
a sequence (gn)∞

n=0 ⊆ B(A |H1) tending to f1 in graph norm of A |H1 . Hence,
( f0 ⊕ gn)∞

n=0 ⊆ B(A) tends to f in the graph norm of A, which completes the
proof.

3. DOMINATION AND POINTWISE COMMUTATIVITY IN KREIN SPACES

The following result is an indefinite inner product version of Theorem 7 of
[21]. Although the proof of (i) repeats many arguments from the proof of that
theorem, we present it for the convenience of the reader. In the proof of (ii) one
can observe some differences between the Hilbert and the Krein space case.
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THEOREM 3.1. Let A, B be symmetric operators in a Krein space (K, [·, ·]) and
let E ⊆ D(A) ∩D(B) be such a dense subspace of K that

- A is essentially selfadjoint on E ,
- A dominates B on E ,
- A and B commute weakly on E .

Then:
(i) AD∞(A) ⊆ D∞(A), and BD∞(A) ⊆ D∞(A); moreover AB f = BA f for

f ∈ D∞(A);
(ii) if a > 0 and the space Ba(A) is closed, then it is contained in B(B) and invariant

for B;
(iii) if for all a > 0 there exists a′ > a such that space Ba′(A) is closed, then B(A) ⊆
B(B), and B(A) is invariant for B.

Note that if (j1)–(j4) are satisfied in K (with some J,H0,H1) then the as-
sumption in (ii) is satisfied for a > a0 and the assumption in (iii) is satisfied
automatically (cf. Corollary 2.2).

Proof. We fix a Hilbert space norm ‖ · ‖ on K.
(i) Since E is a core for A and A dominates B on E we have

(3.1) D(A) ⊆ D(B), ‖B f ‖ 6 c(‖ f ‖+ ‖A f ‖), f ∈ D(A),

with some c > 0 (see Section 1).
The inclusion D(A) ⊆ D(B) implies that

(3.2) D(Ak+1
) ⊆ D(BAk

), k ∈ N.

Now let g ∈ D(A). Since E is a core A, there exists a sequence (gn)∞
n=1 ⊆ E

such that gn → g and Agn → Ag with n→ ∞. It follows from (3.1) that Bgn → Bg
with n→ ∞. Consequently, by weak commutativity of A and B on E ,

(3.3) [A f , Bg] = [B f , Ag], f ∈ E , g ∈ D(A)(⊆ D(B)).

As a next step of the proof we show that for each n ∈ N we have

D(An+1
) ⊆ D(AnB) ∩D(BAn

), B(D(An+1
)) ⊆ D(An

),(3.4)

BAn f = AnB f , f ∈ D(An+1
).(3.5)

The proof goes by induction with respect to n ∈ N. The case n = 0 is obvious.
Suppose that (3.4) and (3.5) hold for some n ∈ N. Let f ∈ D(An+2

). Then f ∈
D(An+1

) and, by induction, we get:

[AnB f , Ah] ind.
= [BAn f , Ah]

(3.3)
= [A(n+1) f , Bh]

(3.2)
= [BA(n+1) f , h], h ∈ E .

Since E is a core for A, left hand side and right hand side of the above are equal
for h ∈ D(A). Therefore, we obtain that AnB f ∈ D(A+) = D(A) (equivalently:

f ∈ D(A(n+1)B), so B f ∈ D(An+1
)), and BA(n+1) f = A(n+1)B f , which finishes

the induction argument.



DOMINATION AND COMMUTATIVITY IN PONTRYAGIN SPACES 121

The inclusion AD∞(A) ⊆ D∞(A) follows from the definition of D∞(A).
Formula (3.4) implies that BD∞(A) ⊆ D∞(A). Moreover, by (3.5), we have
AB f = BA f for f ∈ D∞(A).

(ii) It follows from (i) that Ba(A) ⊆ D∞(A) ⊆ D(B). By the closed graph
theorem, the operator B|Ba(A): Ba(A)→ K is bounded ((Ba(A), ‖ · ‖) is a Banach

space as a closed subspace of K. However, we do not know if (Ba(A), [·, ·]) is a
Krein space, if we do not assume anything like (j1)–(j4)). Let φ(a) denote its norm.
If f ∈ Ba(A) then, by (i),

‖AnB f ‖ = ‖BAn f ‖ 6 φ(a)‖An f ‖, n ∈ N.

Hence B f ∈ Ba(A) and so Ba(A) is invariant for B. This and the closed graph
theorem imply that Ba(A) ⊆ B(B).

(iii) follows directly from (ii).

COROLLARY 3.2. Assume that (K, [·, ·]) is a Krein space and the operators A and
B are as in Theorem 3.1. Let (J,H0,H1) satisfy (j1)–(j4) (with A instead of A) and let
a0 be chosen as in Proposition 2.1. Then

(i) B |Ba(A) is selfadjoint and bounded in the Krein space (Ba(A), [·, ·]) and com-
mutes pointwise (on K) with A|Ba(A);

(i) the space Ba(A) J-reduces B.

Proof. The closed graph theorem implies that B|Ba(A)∈ B(Ba(A)). Since the

operator B is symmetric, B|Ba(A) is selfadjoint in (Ba(A), [·, ·]) (which is a Krein
space by Corollary 2.2). Theorem 3.1(i) gives us pointwise commutativity of the
operators A|Ba(A) and B|Ba(A) belonging to B(Ba(A)).

We show now that Ba(A) J-reduces B. Let B∗ denote the adjoint of B in the
Hilbert space (K, [J·, ·]), which means that B∗ = JB+ J. Note, that J(Ba(A)) =

Ba(A) (Proposition 2.1(ii)). Therefore, Ba(A) ⊆ D(B∗) and

B∗(Ba(A)) = JB+ J(Ba(A)) = JB(Ba(A))
Thm.3.1(ii)
⊆ J(Ba(A)) = Ba(A).

Hence, the space Ba(A) is contained in the domain and is invariant for the oper-
ators B and B∗. This means that it J-reduces B.

4. DOMINATION AND SPECTRAL COMMUTATIVITY IN PONTRYAGIN SPACES

The following simple lemma is left to the reader.

LEMMA 4.1. Let (Hk)
∞
k=0 be a sequence of Hilbert spaces and let Sk ∈ B(Hk)

(k ∈ N) be such that Sk is a selfadjoint operator in Hk for all but a finite number of
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k ∈ N. Then the set
( ∞⋂

k=0
ρ(Sk)

)
\R is nonempty, is contained in ρ

( ∞⊕
k=0

Sk

)
, and

(4.1)
( ∞⊕

k=0

Sk − z
)−1

=
∞⊕

k=0

(
Sk − z

)−1
, z ∈

( ∞⋂
k=0

ρ(Sk)
)
\R.

Moreover, if Tk ∈ B(Hk) (k ∈ N) is a second sequence of operators with only finite
number of entries which are not selfadjoint and if TkSk = SkTk for k ∈ N, then the

operators S :=
∞⊕

k=0
Sk and T :=

∞⊕
k=0

Tk commute spectrally.

The theorem below is a Pontryagin space version of a criterion for selfad-
jointness (normality) from [21], cf. also [17], [18]. We need the following defini-
tion. If A0, . . . , An are operators in K then we say that E ⊆ D(A0) ∩ · · · ∩ D(An)
is a joint core for the system (A0, . . . , An) if

{( f , A0 f , . . . , An f ) : f ∈ D(A0) ∩ · · · ∩ D(An)} ⊆ {( f , A0 f , . . . , An f ) : f ∈ E} .

For the basic properties of joint cores and joint graphs see e.g. [21].

THEOREM 4.2. Suppose that A0, . . . , An (n > 1) are symmetric operators in a
Pontryagin space (K, [·, ·]) and that Ei,j, 0 6 i < j 6 n, are dense linear subspaces of K
such that:

(i) Aj commutes weakly with A0 on E0,j for j = 1, . . . , n;
(ii) Ai commutes pointwise with Aj on Ei,j for 1 6 i < j 6 n;

(iii) A0 is essentially selfadjoint on E0,j for j = 1, . . . , n;
(iv) A0 dominates Aj on E0,j for j = 1, . . . , n.

Then A0, . . . , An are spectrally commuting selfadjoint operators. Furthermore, if E0,j =

E for j = 1, . . . , n, then E is a joint core for every subsystem of (A0, . . . , An).

Proof. Fix the fundamental symmetry J and the spacesH0 andH1 satisfying
the conditions (j1)–(j4) and define the number a0 as in Proposition 2.1 (both for
A := A0). The symbols “	” and “⊕” below mean respectively the orthogonal
difference and sum in the Hilbert space (K, [J·, ·]). We put

L0 := Ba0(A0), Lk := Ba0+k(A0)	Ba0+k−1(A0), k ∈ N \ {0}.

By Proposition 2.1 (L0, [·, ·]) is Pontryagin space and (Lk, [·, ·]) (k ∈ N \ {0}) is a
Hilbert space. Corollary 2.2 implies that

K =
∞⊕

k=0

Lk.

Since each of the spaces Ba0+k(A0) (k ∈ N) J-reduces each of A0, . . . , An to a
bounded operator (Corollary 3.2), the spaces Lk (k ∈ N) also have this prop-
erty. Set

Si,k := Ai|Lk , k ∈ N, i = 0, . . . , n.
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For each i = 0, 1, . . . , n the operator Si,0 is selfadjoint in the Pontryagin space
(L0, [·, ·]) and Si,k is selfadjoint in the Hilbert space (Lk, [·, ·]) (k ∈ N \ {0}).
Furthermore, S0,kSi,k = Si,kS0,k for k ∈ N, i = 0, . . . , n (Theorem 3.2(i)). Let
1 6 i < j 6 n. Since Ai Aj f = Aj Ai f for f ∈ Ei,j, Lemma 1.1 and Theorem 3.1(ii)
give us Si,kSj,k = Sj,kSi,k for k ∈ N. All these facts allow us to apply Lemma 4.1 to

each pair of operators
∞⊕

k=0
Si,k,

∞⊕
k=0

Sj,k, 0 6 i < j 6 n. In consequence, the opera-

tors
∞⊕

k=0
Si,k, i = 0, . . . , n, commute spectrally in K. Moreover, by Proposition 2.1,

( ∞⊕
k=0

Si,k

)+
= J
( ∞⊕

k=0

Si,k

)∗
J = J

(
S∗i,0 ⊕

∞⊕
k=1

Si,k

)
J = S+

i,0 ⊕
∞⊕

k=1

Si,k =
∞⊕

k=0

Si,k.

And so the operators
∞⊕

k=0
Si,k, (i = 0, . . . , n) are selfadjoint in (K, [·, ·]). Since

∞⊕
k=0

Si,k ⊆ Ai and selfadjoint operators are maximal among symmetric ones, we

have

(4.2)
∞⊕

k=0

Si,k = Ai, i = 0, . . . , n.

Therefore, A0, . . . , An are spectrally commuting selfadjoint operators.
The proof of the “Furthermore” part of the theorem goes essentially the

same as the proof of the analogue part of Theorem 10 of [21]. The difference
is that in our situation we need to define X as

X :=
∞⋃

k=0

Ba0+k(A0).

and instead of the spectral projections E(∆k), appearing in [21], we need to use
the orthogonal (in the sense of the [J·, ·] inner product) projection onto
Ba0+k(A0).

5. OPERATOR MATRICES WITH UNBOUNDED ENTRIES

The following approach to operator matrices comes from the papers by
Szafraniec [22] and Szafraniec and Möller [14]. As a pioneering work in this topic
we quote Nagel [15], [16]. Later on we apply the results from the previous section
to a symmetric operator in a Pontryagin space. We also refer the reader to [1] for
another view on powers of symmetric operators in Krein spaces.

In this section we will consider operators in the orthogonal sum of two
Hilbert spaces H := H0 ⊕H1 having in mind a matrix representation of a sym-
metric operator in a Pontryagin space. We say that A = (Aij)i,j=0,1 is an operator
matrix in H0 ⊕ H1 if Aij is an operator (not necessarily bounded) acting from
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Hj to Hi (i, j = 0, 1). Let Pi denote the orthogonal projection from H onto Hi
(i = 0, 1). With the matrix A we link an operator MA in H, which we call an
operator generated by A, and which is defined in the following way:

D(MA) := (D(A00) ∩D(A10))⊕ (D(A01) ∩D(A11)),

MA f = (A00 f0 + A01 f1)⊕ (A10 f0 + A11 f1), f ∈ D(MA),

where fi := Pi f (i = 0, 1). If B = (Bij)ij=0,1 is a second operator matrix inH0⊕H1
then

(5.1) MA +MB = MA+B, where A + B := (Aij + Bij)ij=0,1,

and the sum MA +MB is understood as the sum of unbounded operators. One
can also easily see that MA MB ⊇ MAB, where AB := (Ai0B0j + Ai1B1j)ij=0,1. The
reverse inclusion does not hold in general, therefore later on we will not use the
product AB.

Suppose now that A00 ∈ B(H0), A10 ∈ B(H0,H1), A01 ∈ B(H1,H0) and
that A11 is densely defined. Then it is easy to show (see e.g. Lemma 3.1 of [24])
that the operator MA is closable if and only if A11 is closable. Moreover, the

closure of MA is generated by the matrix
(

A00 A01
A10 A11

)
. The following lemma,

concerning powers of the operator MA, was proved in [24].

LEMMA 5.1. Let A := (Aij)i,j=0,1 be an operator matrix such that A00 ∈ B(H0),
A10 ∈ B(H0,H1), and A01 ∈ B(H1,H0). For each m ∈ N \ {0} the following condi-
tions are equivalent:

(am)H0 ⊆ D((MA)
m);

(bm)R(A10) ⊆ D(Am−1
11 );

(cm) D(Am) = H0 ⊕D(Am
11).

It also apparent that if A is an operator in H = H0 ⊕H1 such that D(A) =
D0 ⊕ D1 with Dj ⊆ Hj (j = 0, 1) then the operator A can be identified with an
operator matrix, namely

(5.2) A = MA, where A = (Aij)i,j=0,1, Aij = Pi A|Hj (i, j = 0, 1).

Note that ifH0 ⊆ D(A) (in what follows this will be a usual assumption), then the
domain of A decomposes asH0⊕D1 withD1 ⊆ H1. Suppose now that m ∈ N, A
satisfies the assumptions of the above lemma, (am) holds and the operator (MA)

m

is densely defined (apparently, we could proceed without this assumption, but
we keep it here for simplicity) and all the operators (MA)

k (k = 0, . . . , m) are
closable. Since

H0 ⊆ D((MA)
m) ⊆ D((MA)

k), k = 0, . . . , m,

the first m powers of MA are generated by operator matrices, i.e. for k = 0, . . . , m

(MA)
k = MS(k), where S(k) = (Sij(k))i,j=0,1 := (Pi(MA)

k|Hj)i,j=0,1.
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By the closed graph theorem S00(k) ∈ B(H0) and S10(k) ∈ B(H0,H1) for k =
0, . . . , m. The other two entries of the matrices S(k) might be unbounded op-
erators, but they are densely defined. In fact, by (ck) we have D(S01(k)) =
D(S11(k)) = D(Ak

11) (k = 0, . . . , m). Assume additionally that S01(k) is bounded
for k = 0, . . . , m. Then (MA)

k can be decomposed as a sum of a diagonal operator
and a bounded one, namely if we set

S′(k) :=
(

S00(k) S01(k)
S10(k) 0

)
, k = 0, . . . , m,

then for k = 0, . . . , m

(5.3) (MA)
k = (0|H0 ⊕S11(k)) + MS′(k), MS′(k) ∈ B(H).

We continue our reasoning with a lemma.

LEMMA 5.2. Let A be like in Lemma 5.1 and let m ∈ N \ {0}. If (am) holds,
(MA)

m is densely defined, (MA)
k is closable and P0(MA)

k|H1 is bounded for all k 6 m,
then

(MA)
k = (0|H0 ⊕Ak

11) + Kk

with some Kk ∈ B(H) for all k = 0, . . . , m.

Proof. We will show by induction with respect to k that for k = 1, 2, . . . , m

(5.4) S11(k) = Ak
11 + Bk, where Bk ∈ B(H1), R(Bk) ⊆ D(Am−k

11 ).

The above formula together with (5.3) will give us the claim. For k = 1 (5.4)
is obvious. Suppose that it holds for some k ∈ {1, . . . , m− 1}. Note that, by the
induction hypothesis,D(A11Bk) = H1. Hence, the closed graph theorem gives us

(5.5) A11Bk ∈ B(H).

Since 1 6 k < m and we assumed (am), (ak+1) and in consequence (ck+1) hold as
well. We take f ∈ D(Ak+1

11 ). Observe that f is in D(Ak
11), which by (ck) equals

D(A10S01(k)). Therefore, f is in the domains of all three operators A10S01(k),
Ak+1

11 and A11Bk and we can compute, using the induction assumption,

A10S01(k) f+Ak+1
11 f+A11Bk f =A10S01(k) f + A11(Ak

11 + Bk) f ind.

=A10S01(k) f+A11S11(k) f=P1(MA)(S01(k) f+S11(k) f )

=P1(MA)(MA)
k f = S11(k + 1) f .(5.6)

Put C = S01(k), it belongs to B(H1,H0) by assumption. Take Bk+1 := A10C +
A11Bk, which belongs to B(H1), by (5.5). Equation (5.6) together with the fact
that D(Ak+1

11 ) = D(S11(k + 1)) give us S11(k + 1) = Ak+1
11 + Bk+1. To complete

the proof we need to show that R(Bk+1) ⊆ D(Am−k−1
11 ). From (bm) we obtain

that R(A10C) ⊆ R(A10) ⊆ D(Am−1
11 ) ⊆ D(Am−k−1

11 ). Since R(Bk) ⊆ D(Am−k
11 ),

we haveR(A11Bk) ⊆ D(Am−k−1
11 ), which finishes the proof.
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6. POWERS OF SYMMETRIC OPERATORS

Let A be a symmetric operator in a Pontriagin space K. Note that a power
of A does not have to be densely defined even if K is a Hilbert space. However,
if D(Am) is a dense in K then all the operators Ak (k = 1, . . . , m) are symmetric
and hence closable. Moreover, by a well known fact ([4], Theorem IX.1.4, [7],
Lemma 2.1 ), we can find a maximal negative space H0 ⊆ D(Am). We put H1 =

H[⊥]
0 and fix a fundamental symmetry J( f0 [u] f1) = − f0 + f1, f j ∈ Hj, j =

0, 1. The Hilbert space (K, [J·, ·]) is an orthogonal sum of two its subspaces K =
H0⊕H1. With respect to this decomposition we can identify A with the operator
matrix, see formula (5.2).

LEMMA 6.1. Let A be a symmetric operator in a Pontryagin space (K, [·, ·]) and
let q be a real polynomial of degree m. If Am is densely defined, thenD(q(A)) = D(Am),
i.e. q(A) dominates Am and conversely. If, additionally, p is a real polynomial of degree
not greater than m, then q(A) dominates p(A).

Proof. To prove both claims of the lemma it is enough to show that Am dom-
inates Ak for k = 0, . . . , m. We fix the spaces H0 and H1 and a fundamental
symmetry as it was described before the lemma. Let k ∈ {0, . . . , m}. We apply
Lemma 5.2 to the matrix A defined by (5.2) and get

Am = (MA)
m = (0⊕ Am

11) + Km, Km ∈ B(K),(6.1)

Ak = (MA)
k = (0⊕ Ak

11) + Kk, Kk ∈ B(K).(6.2)

The operators (0⊕ Am
11) and (0⊕ Ak

11) are both symmetric in the Hilbert space
(K, [J·, ·]) and they are both powers (respectively m-th and k-th) of the same sym-
metric operator (0⊕ A11). Using the spectral measure of the Naimark’s extension
of the latter operator one can easily show that (0⊕ Am

11) dominates (0⊕ Ak
11). By

(6.1) and (6.2), Am dominates Ak.

LEMMA 6.2. Let B(1), . . . , B(n) (n > 1) be symmetric operators in a Pontryagin
space (K, [·, ·]). If the operator

(6.3) B(0) := (B(1))2 + · · ·+ (B(n))2

is densely defined, then it dominates each of the operators B(j) (j = 1, . . . , n).

Proof. Let H0 be a maximal negative space contained in D(B(0)). As in the
proof of the previous lemma fix a Hilbert space inner product [J·, ·] on K and we
writeK = H0⊕H1. Each of the operators B(j) (j = 0, . . . , n) is generated by some
operator matrix ((B(j))ij)i,j=0,1 (see again formula (5.2)). Put

Cj = (0|H0)⊕ (B(j))11, j = 0, . . . , n.

Obviously, B(j) is a bounded perturbation of Cj for j = 0, . . . , n. Lemma 5.2 im-
plies that B(0) is a bounded perturbation of C := C2

1 + · · · + C2
n. Hence, it is
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enough to show that C dominates each Cj (j = 1, . . . , n). Recall that these two op-
erators are symmetric in the Hilbert space (K, [J·, ·]). Hence, (cf. proof of Propo-
sition 30 in [21]):

‖Cj f ‖2 = [JC2
j f , f ] 6 [JC f , f ] 6 2(‖C f ‖2 + ‖ f ‖2), f ∈ D(Cj), j = 1, . . . , n.

7. NELSON CRITERION

Compare the theorem below with Propositions 29 and 30 of [21].

THEOREM 7.1. Let D be a dense subspace of a Pontryagin space (K, [·, ·]) and let
A1, . . . , An : D → D be symmetric operators, which commute pointwise on D. Suppose
also that q1, . . . , qn are real polynomials of one variable. If the operator

A0 := q1(A1)
2 + · · ·+ qn(An)

2

is essentially selfadjoint on D, then for all real polynomials of one variable p1, . . . , pn

of degrees satisfying deg pj 6 deg qj (j = 1, . . . , n) the operators p1(A1), . . . , pn(An)
are spectrally commuting, selfadjoint operators in K and D is a joint core for the system
(p1(A1), . . . , pn(An)).

Proof. Lemma 6.2 implies that A0 dominates qj(Aj), Lemma 6.1 says that
qj(Aj) dominates pj(Aj) (j = 1, . . . , n). In particular A0 dominates pj(Aj) on D
for j = 1, . . . , n. It is clear that A0 commutes pointwise (thus weakly) on D with
each of the operators p1(A1), . . . , pn(An). Therefore, we can apply Theorem 4.2
to the operators A0, p1(A1), . . . , pn(An) and Ei,j = D for 0 6 i < j 6 n which
finishes the proof.

The following theorem is well known in the Hilbert space context as the
Nelson’s criteria (cf. Corollary 9.2 of [17], see also Corollary 27 of [21]). Note that
it is not a direct consequence of Theorem 7.1 above, since we dot assume that D
is invariant for A and B.

THEOREM 7.2. Let A and B be symmetric operators in a Pontryagin space K and
let D be linear subspace of K. If A2 + B2 is essentially selfadjoint on D and A and B
commute pointwise on D then A and B are spectrally commuting selfadjoint operators.

Proof. As in the last proof we obtain that the operator C := A2 + B2 domi-
nates A and B on D. To apply Theorem 4.2 to the operators C, A, B and the space
D we need to show that C commutes weakly with A and B on D. This can be
seen as follows: note that the assumptions guarantee that D ⊆ D(A2) ∩D(B2) ∩
D(AB) ∩D(BA). Hence, for f , g ∈ D we have

[B2 f , Ag] = [B f , BAg] = [B f , ABg] = [AB f , Bg] = [BA f , Bg] = [A f , B2g],

which shows that C commutes weakly with A on D. The proof of weak commu-
tation of C and B on D goes in the same way.
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[5] D. CICHOŃ, J. STOCHEL, F.H. SZAFRANIEC, Noncommuting domination, Oper. The-
ory Adv. Appl., vol. 154, Birkhäuser-Verlag, Basel 2004, pp. 19–33.

[6] P.R. HALMOS, Commutativity and spectral properties of normal operators, Acta Sci.
Math. (Szeged) 12(1950), 153–156.

[7] I.S. IOHVIDOV, M.G. KREIN, H. LANGER, Introduction to Spectral Theory of Operators
in Spaces with Indefinite Metric, Math. Res., vol. 9, Akademie-Verlag, Berlin 1982.

[8] P. JONAS, On the functional calculus and the spectral function for definitizable oper-
ator in Krein space, Beiträge Anal. 16(1981), 121–135.

[9] P. JONAS, On locally definite operators in Krein spaces, in Spectral Theory and its Ap-
plications, Theta. Ser. Adv. Math., vol. 2, Theta, Bucharest 2003, pp. 95–127.

[10] T. KATO, Perturbation Theory for Linear Operators, Grunlehren Math. Wiss., vol. 132,
Springer-Verlag, New York 1966.

[11] M.G. KREIN, H. LANGER, Über die Q-Funktion eines π-hermiteschen Operators im
Raume Πκ , Acta. Sci. Math. (Szeged) 34(1973), 191–230.

[12] M.G. KREIN, H. LANGER, On some extension problems which are closely connected
with the theory of Hermitian operators in a space Πκ . III. Indefinite analogues of
the Hamburger and Stieltjes moment problems, Part I, Beiträge Anal. 14(1979), 25–40
(loose errata); Part II, Beiträge Anal. 15(1980), 27–45.

[13] H. LANGER, Spectral functions of definitizable operators in Krein spaces, in Func-
tional Analysis (Dubrovnik 1981), Lecture Notes in Math., vol. 948, Springer-Verlag,
Berlin-New York 1982, pp. 1–46.

[14] M. MÖLLER, F.H. SZAFRANIEC, Adjoints and formal adjoints of matrices of un-
bounded operators, Proc. Amer. Math. Soc. 136(2008), 2165–2176.



DOMINATION AND COMMUTATIVITY IN PONTRYAGIN SPACES 129

[15] R. NAGEL, Towards a "Matrix Theory" for unbounded operator matrices, Math. Z.
201(1989), 57–68.

[16] R. NAGEL, The spectrum of unbounded operator matrices with non-diagonal do-
main, J. Fuct. Anal. 89(1990), 291–302.

[17] E. NELSON, Analytic vectors, Ann. of Math. 70(1959), 572–615.

[18] N.S. POULSEN, On the cannonical commutation relations, Math. Scand. 32(1973), 112–
122.

[19] M. PUTINAR, F.-H. VASILESCU, Solving moment problems by dimensional exten-
sion, Ann. of Math. 149(1999), 1087–1107.

[20] J. STOCHEL, F.H. SZAFRANIEC, The normal part of an unbounded operator, Nederl.
Akad. Wetensch. Proc. Ser. A 92(1989), 495–503.

[21] J. STOCHEL, F.H. SZAFRANIEC, Domination of unbounded operators and commuta-
tivity, J. Math. Soc. Japan 55(2003), 405–437.

[22] F.H. SZAFRANIEC, On normal extensions of unbounded operators. IV. A matrix con-
struction, in Operator Theory and Indefinite Inner Product Spaces, Oper. Theory Adv.
Appl., vol. 163, Birkhäuser, Basel 2005, pp. 337–350.

[23] M. WOJTYLAK, Algebras dense in L2-spaces: an operator approach, Glasgow Math. J.
47(2005), 155–165.

[24] M. WOJTYLAK, Noncommuting domination in Krein spaces via commutators of
block operator matrices, Integral Equations Operator Theory 59(2007), 129–147.

[25] M. WOJTYLAK, A criterion for selfadjointness in a Krein space, Bull. London Math. Soc.
40(2008), 807–816.

MICHAŁ WOJTYLAK, JAGIELLONIAN UNIVERSITY, FACULTY OF MATHEMATICS

AND COMPUTER SCIENCE, ŁOJASIEWICZA 6, 30–348 KRAKÓW, POLAND

E-mail address: michal.wojtylak@gmail.com

Received April 25, 2008; revised November 6, 2008.


