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ABSTRACT. In this paper we explore conditions on simple non-unital C∗-
algebras with real rank zero and stable rank one under which their corona
algebras are purely infinite and not necessarily simple. In particular, our re-
sults allow to characterize when the corona algebra of a simple AF-algebra is
purely infinite in terms of continuity conditions on its scale.
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INTRODUCTION

The extent to which corona algebras are infinite has been of interest in differ-
ent instances. It is of course well known that, in the case of the compact operators
over a separable infinite dimensional Hilbert space, the corresponding corona al-
gebra (i.e. the Calkin algebra) is in fact purely infinite simple.

Several analogies of this phenomenon have been studied, namely in the real
rank zero situation. For example, it was shown by S. Zhang in [22] that if A is of
real rank zero andM(A)/A is simple, then it is purely infinite simple. This has
been further generalized by H. Lin in [15] (see also [14]) to encompass all simple
and σ-unital C∗-algebras. More concretely, Lin proves that for a simple, σ-unital
and non-unital C∗-algebra A with A 6∼= K, simplicity of M(A)/A is actually
equivalent to M(A)/A being purely infinite simple. In turn, this is equivalent
to the base algebra A having a continous scale, a notion that is conveniently ex-
pressed in terms of Cuntz comparison of positive elements (see [14], [15] and the
definitions below). The ideal structure of corona algebras of simple non-unital
AF-algebras was first studied by Elliott in [4], followed by Lin in [13].

It is to be expected, however, that some form of infiniteness in the corona
algebra prevades even when it is not simple. In this direction, it is natural to ask
when such an algebra is going to be purely infinite, in the sense of Kirchberg and
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Rørdam (see [10]). Recall that a C∗-algebra A is termed purely infinite if A has no
characters and, whenever a, b are positive elements with a lying in the closed,
two-sided ideal generated by b, one has xnbx∗n → a in norm, for a sequence (xn)
in A. In the particular case that A is simple, this notion agrees with Cuntz’s
definition of pure infiniteness, that required every non-zero hereditary algebra to
contain a non-zero infinite projection (see [3]). The more general concept allows
examples that lack (non-trivial) projections, as already proved in [10].

The above problem was already considered by the first author and P.W. Ng
in Theorem 1.2 of [12], where they proved pure infiniteness of the corona algebra
of a stable separable algebra A with real rank zero in the case that A has an AF-
skeleton with finitely many extremal tracial rays (see also [12]).

In the present paper we will explore pure infiniteness in the corona algebra
of a wide class of C∗-algebras. Our attention will be directed to those simple and
separable algebras that have real rank zero, stable rank one and weakly unper-
forated K0. One reason to do so is that the projection monoid of their multiplier
algebras is completely described in terms of the projection monoid of the base al-
gebra and a certain semigroup of lower semicontinuous affine functions defined
on the state space (see [18] and Section 2). This semigroup contains (the class of)
the unit of the multiplier algebra, and the fact that the base algebra has a contin-
uous scale is translated, in this setting, to the fact that the function representing
the unit is a continuous affine function. We are able then to weaken this concept
to what we call quasi-continuous scale (see Definition 2.2), which covers a variety
of situations.

The condition of quasi-continuous scale turns out to be what in fact char-
acterizes pure infiniteness of the corona algebra. This is proved in Theorem 3.4,
under the further assumption that the base algebra has finitely many infinite ex-
tremal quasi-traces (see below for the precise definitions), yet it can have infin-
itely many extremal quasi-traces. As a corollary we obtain that if A has quasi-
continuous scale (henceM(A)/A is purely infinite), then the ideal lattice of the
corona algebra is finite (Corollary 3.5). A further corollary shows that in the case
A ⊗ K where A is a unital algebra whose simplex of unital quasi-traces QT(A)
is compact, pure infiniteness ofM(A⊗K)/A⊗K is equivalent to the fact that
QT(A) is finite dimensional.

1. NOTATION AND PRELIMINARIES

If A is a C∗-algebra, we use V(A) to denote the abelian monoid of Murray–
von Neumann equivalence classes of projections coming from matrices over A.
We denote the class of a projection p by [p] and addition in V(A) is defined as
[p] + [q] =

[(
p 0
0 q

)]
. The importance of this monoid is that it captures structural
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aspects of the algebra that the ensuing Grothendieck group K0(A) may fail to do
if we do not have cancellation conditions.

A submonoid I of an abelian monoid M is said to be an order-ideal provided
x + y ∈ I exactly when x, y ∈ I. For example, if I is a closed two-sided ideal
of a C∗-algebra A, then V(I) is an order-ideal of V(A). Given an order-ideal I of
M, we may define a congruence ∼ on M by setting x ∼ y if there are elements z,
w in I such that x + z = y + w. Denote by M/I the quotient of M modulo this
congruence, which becomes an abelian monoid under the natural operations. In
the case of interest, namely a C∗-algebra A and an ideal I, the quotient monoid
V(A)/V(I) does not always agree with V(A/I), but it does if A has real rank zero
(see [1]), basically due to the fact that projections lift from quotients. Still, when
they do not lift, the quotient monoid proves useful as we shall see below.

Recall that, given an abelian monoid M and an order-unit u in M, then a
(normalized) state on M is a monoid morphism s : M → R+ such that s(u) = 1.
We shall denote the set of (normalized) states by St(M, u) or by Su, which is a
compact and convex set. For example, if A is a unital C∗-algebra, then [1A] is an
order-unit for V(A) and S[1A ]

= St(K0(A), [1A]). If, further, A has real rank zero,
then in fact this state space is a Choquet simplex (see Theorem 1.2 in [7]).

For a compact convex set K, we shall use as customary Aff(K) to denote the
group of all affine real-valued continuous functions defined on the space K. Its
positive (respectively, strictly positive) elements, in the pointwise ordering, will
be denoted by Aff(K)+ (respectively, Aff(K)++). We also denote LAff(K)++ the
semigroup of lower semicontinuous functions with values on R++ ∪ {∞}.

Given a C∗-algebra A and an order-unit u in V(A), we may represent V(A)
as affine functions on its state space Su via the map φu : V(A) → Aff(Su)+. This
is just evaluation, namely φu(x)(s) = s(x) whenever x ∈ V(A) and s ∈ Su.

2. QUASI-CONTINUOUS SCALES

Let A be a C∗-algebra. Recall that a quasitrace on A is a map τ : A+ → [0, ∞]
which is linear on commutative subalgebras of A, satisfies the tracial property
and extends to matrices over A. Let us denote by LQT(A) the set of all lower
semicontinuous, densely defined quasi-traces whose restriction to the Pedersen
ideal of A is finite. We say that a lower semicontinuous, densely defined quasi-
trace τ is infinite provided sup

λ

τ(uλ) = ∞ for some approximate unit (uλ).

For a C∗-algebra A, denote by QT(A) the convex set of normalized quasi-
traces, that is, those 2-quasitraces τ such that ‖τ‖ = 1, and by T(A) the convex
set of normalized traces. If A happens to be unital, then we have 1 = τ(1) = ‖τ‖
for any element τ in either QT(A) or T(A).
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If p is a non-zero projection in A, set Qp = {τ ∈ Q : τ(p) = 1}, which is
a weakly compact convex set if A is simple. If A is exact, then since all quasi-
traces are traces, we shall write Tp instead of Qp. Furthermore, if A is σ-unital
and has real rank zero, a Blackadar–Handelman type theorem shows that Qp is
affinely homeomorphic to the space Su = St(V(A), u) where u = [p] (see, e.g.
Theorem 5.6 in [18]).

The following is possibly well known. We state it as a lemma for future
reference.

LEMMA 2.1. Let A be a simple, σ-unital C∗-algebra of real rank zero. For any
non-zero projection p in A there is an affine homeomorphism Qp ∼= QT(pAp).

Proof. We have mentioned already that Qp is affinely homeomorphic to
St(V(A), [p]). This, in turn, is affinely homeomorphic to St(V(pAp), [p]) (in fact,
there is an ordered group isomorphism from K0(A) to K0(pAp) — see, e.g. Lem-
ma 14.4 in [8]). Now the Blackadar and Handelman Theorem (III.1.3 in [2]) gives
us an affine homeomorphism between QT(pAp) and St(V(pAp), [p]).

Continue to assume that A is a simple, separable, C∗-algebra A with real
rank zero and pick a non-zero projection p in A. Set u = [p] in V(A) and define
d = sup φu([en]) where (en) is an approximate unit for A consisting of projections
and φu is the natural representation map of V(A) in the affine continuous func-
tions on the state space Su of V(A). Then d ∈ LAff(Su)++, which in this paper
will be referred to as the scale of A.

If we assume that A has moreover stable rank one and weak unperfora-
tion on K0(A), then A has continuous scale in the sense defined by Lin in [14]
and [15] if and only if the scale d as defined above is continuous (see Proposi-
tion 2.2 in [15]). One can also show that continuity or finiteness properties of the
scale do not depend on the particular projection p or the approximate unit (en)
chosen (see, e.g. [18]).

The observed affine homeomorphism between Qp and Su allows us to iden-
tify these spaces. Note that every infinite quasitrace in Qp corresponds, in this
setting, to a point of the space Su at which the scale takes an infinite value. De-
note F∞ = d−1(∞) ∩ ∂eSu, where ∂eSu stands for the extreme boundary of Su,
identified with infinite extremal quasitraces in Qp.

In the definition below, we shall need the notion of a complementary face on
a Choquet simplex. Let us recall that, given a face F in a simplex K, the union F′

of all the faces in K that are disjoint from F is the largest face of K that is disjoint
from F (see, e.g. Proposition 10.12 in [6]) and is called the complementary face
of F.

The following notion is key to this paper, hence it is conveniently high-
lighted:
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DEFINITION 2.2. Let A be a simple C∗-algebra with real rank zero. Re-
taining the notations from the previous paragraphs, we say that A has quasi-
continuous scale provided that

(i) F∞ is finite,
(ii) the complementary face F′∞ of the convex hull conv(F∞) is closed, and

(iii) d|F′∞ is continuous.

LEMMA 2.3. The notion of quasi-continuous scale does not depend on the partic-
ular projection chosen.

Proof. Let p and q be projections in A and write u = [p] and v = [q] in V(A).
There is then a homeomorphism α : Su → Sv given by α(s) = s

s(v) , which is not
affine but preserves extreme points and faces (see, e.g. Proposition 6.17 in [6]). It
follows from this that if F is a face of Su then α(F′) = α(F)′.

Let (en) be an approximate unit consisting of projections, and write du =
sup φu(en), and dv = sup φv(en). Observe that, for any s in Su, we have du(s) =
s(v)dv(α(s)). If we denote by Fu

∞ = {s ∈ Su : du(s) = ∞} and F∞ is defined
accordingly, then it is clear that α(Fu

∞) = Fv
∞ and α((Fu

∞)′) = (Fv
∞)′. Thus (Fu

∞)′ is
closed if and only if (Fv

∞)′ is closed, and d|(Fu
∞)′ is continuous if and only if d|(Fv

∞)′

is continuous.

The following lemma is possibly well-known. We include a proof for com-
pleteness.

LEMMA 2.4. Let K be a Choquet simplex and let s1, . . . , sn be extreme points of K.
Then the complementary face {s1, . . . , sn}′ of conv(s1, . . . , sn) is {s1}′ ∩ · · · ∩ {sn}′.

Proof. By induction it is enough to prove the result for n = 2. It is clear that
{s1, s2}′ ⊆ {s1}′ ∩ {s2}′. Now let x ∈ {s1}′ ∩ {s2}′. There exist then faces Fi such
that si /∈ Fi and x ∈ F1 ∩ F2, which is also a face of K. If F1 ∩ F2 ∩ conv(s1, s2) 6= ∅,
take y in this intersection. Then y = αs1 + (1 − α)s2 for α in (0, 1). But since
F1 ∩ F2 is a face of K we do get that, e.g. s1 ∈ F1, a contradiction.

PROPOSITION 2.5. Let A be a simple, separable, non-unital C∗-algebra with real
rank zero, stable rank one and weakly unperforated K0. If A has continuous scale,
then A also has quasi-continuous scale and the converse does not hold in general. If
Su = St(V(A), u) has compact extreme boundary (where u = [p] and p is a non-zero
projection), then A has quasi-continous scale if and only if the set F∞ is finite and iso-
lated, and restriction of the scale to its complement is continuous. Finally in the case
where A = B⊗K where B is unital and QT(B) has finitely many extremal points, then
A has quasi-continuous scale.

Proof. If A has continuous scale, then F∞ = ∅. Examples of algebras hav-
ing quasi-continuous but not continuous scale are easily constructed using the
methods in [18].
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Assume now ∂eSu is compact. Then, by e.g. Corollary 11.20 in [6], there is
an affine homeomorphism between Su and M+

1 (∂eSu) that sends each extremal
point t to εt (the point mass measure at t). Then the argument in Corollary 3.13
in [17] together with Lemma 2.4 show that, if F∞ is finite, then the complementary
face F′∞ is closed if and only if ∂eSu \ F∞ is closed. And that amounts to saying
that F∞ is isolated.

Now suppose that A = B ⊗ K. Consider the element p = 1⊗ e11 in B ⊗
K and set u = [p] in V(B ⊗ K). Observe that, via the natural isomorphism
V(B ⊗ K) ∼= V(B), the element u corresponds to [1]. By III.1.3 in [2], the space
of normalized states on V(B) is affinely homeomorphic to the simplex of unital
(quasi)traces of B.

Since B⊗K is stable, its scale d defined on Su is identically infinite, and we
have that F∞ = ∂eSu, a finite set under our assumption. Thus F′∞ = ∅ and clearly
A has quasi-continuous scale.

3. PURELY INFINITE CORONA ALGEBRAS

In this section we shall use the notion of quasi-continuous scale to analyze
pure infiniteness in corona algebras. As mentioned in the introduction we con-
sider simple, separable algebras with real rank zero, stable rank one and weakly
unperforated K0.

If such an algebra is not unital and not of type one, it was shown by the
second author in Theorem 3.9 in [18] that, for any non-zero projection p in A,
there is an isomorphism of monoids

(†) ϕ : V(M(A)) ∼= V(A) tWd
σ(Su) ,

where u = [p] ∈ V(A) and, by definition,

Wd
σ(Su) = { f ∈ LAff(Su)

++ : f + g = nd , for some n in N, g in LAff(Su)
++} .

In short, ϕ([p]) = [p] if p ∈ A and ϕ([p]) = sup{φu([q]) : [q] ∈ V(A) and q . p},
if p /∈ A. Note that addition on the right hand side is defined as x+ f = φu(x)+ f
if x ∈ V(A) and f ∈ LAff(Su)++. We will identify V(M(A)) with its image
under ϕ.

Recall that, if A is a C∗-algebra and p is a non-zero projection in A, we say
that p is properly infinite if p⊕ p . p.

LEMMA 3.1. Let A be a non-unital, simple, separable C∗-algebra with real rank
zero, stable rank one and with K0(A) weakly unperforated. Let p be a non-zero projection.
Assume that A has finitely many infinite extremal quasi-traces in Qp and that A has
quasi-continuous scale. Then every non-zero projection inM(A) \ A has an image that
is properly infinite in the corona algebra.
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Proof. We may of course assume that A is not of type I.
Adopt the notation from the preceding paragraphs. Let n be the number of

extreme points of Su where d is infinite, and label them as F∞ = {s1, . . . , sn} (the
possibility n = 0 is not excluded). Via the identifications just made before, each
such point corresponds to a infinite extremal quasi-trace.

Next, if p is a projection inM(A) \ A, then its equivalence class is a function
f in Wd

σ(Su). We may of course assume that f is not identically infinite (even if
d is). By assumption F′∞ is a closed subset of Su, hence compact. Since there is g
in Wd

σ(Su) and m in N such that f + g = md and d|F∞ is continuous, we find that
f|F′∞ is continuous and bounded, say f|F′∞ � k for some k.

Without loss of generality we have that f (si) = ∞ for i = 1, . . . , l for some
l 6 n (again, the possibility l = 0 is not excluded). Take x in V(A) such that as =
φu(x)(s)− f (s) > 0 for s in F∞ \ {s1, . . . , sl} and φu(x) � k. Let h ∈ LAff(Su)++

be defined by h(s) = as if s ∈ F∞ \ {s1, . . . , sl}, h(si) = 1 for i = 1, . . . , l and
h|F′∞ = (φu(x)− f )|F′∞ . Note that this can be done because Su is the convex direct
sum of the convex hull of {s1, . . . , sn} and F′∞ (see, e.g. Theorem 11.28 of [6] and
also Corollary 11.27 of [6]).

Restricting to the extreme boundary ∂eSu of Su, we find that ( f + φu(x))|∂eSu

= (2 f + h)|∂eSu . Therefore f + x = 2 f + h. This implies that h ∈ Wd
σ(Su)

and also that [ f ] = 2[ f ] + [h] in V(M(A))/V(A). Note that h does not rep-
resent a projection in A, but inM(A). Consider the natural monoid morphism
π∗ : V(M(A))/V(A)→ V(M(A)/A) defined using the quotient map π : M(A)
→M(A)/A. It then follows that π∗([ f ]) is properly infinite.

We now analyse the purely infinite property of multiplier algebras of sim-
ple C∗-algebras with real rank zero. Recall that, if A is a σ-unital, simple, non-
elementary C∗-algebra, then M(A) contains a closed ideal L(A) that properly
contains A and is minimal with this property (see Remark 2.9 in [14]). Roughly
speaking, it consists of the elements that have continuous scale.

With the isomorphism provided in (†) at hand (and for the class to which
it applies), we have that L(A) is the unique closed ideal such that V(L(A)) ∼=
V(A) t Aff(Su)++. Then we can define Ifin(A) as the unique closed ideal of
M(A) such that ϕ(V(Ifin(A))) = V(A) t { f ∈ Wd

σ(Su) : f|∂eSu < ∞}. As it turns
out, Ifin(A)/L(A) is the maximal ideal with the condition that V(Ifin(A))/V(L(A))
is a cancellative monoid; and if furthermore M(A) has real rank zero, then
Ifin(A)/L(A) is the maximal ideal of stable rank one inM(A)/L(A) (see Propo-
sition 6.1 in [18]).

PROPOSITION 3.2. Let A be a separable and simple C∗-algebra with real rank
zero. ThenM(A)/A is purely infinite if and only ifM(A)/L(A) is.
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Proof. We may of course assume at the ouset that A is not unital. We know
from Theorem 4.19 in [10] that pure infinitess has a 2-of-3 property. Hence, con-
sidering

0→ L(A)/A→M(A)/A→M(A)/L(A)→ 0 ,

we see that we need only prove that L(A)/A is purely infinite. Since A has real
rank zero, we know that every hereditary algebra inM(A)/A is the closed linear
span of projections coming from M(A) (by Theorem 1.1 in [22]), and all (non-
zero) projections in M(A)/A are infinite, by Theorem 1.3 in [22]. This implies
that L(A)/A is purely infinite simple.

For the proof of our main result below, we need to use Cuntz comparison of
positive elements. We recall the definition for the convenience of the reader.

Given positive elements a and b in a C∗-algebra A, we say that a is Cuntz
subequivalent to b, in symbols a . b, in case there is a sequence (xn) in A such
that xnbx∗n → a in norm. This can be extended to the (local) algebra M∞(A) in
the obvious way. Given a positive a in A and ε > 0, write (a− ε)+ as the positive
part of a − ε · 1. In other words, (a − ε)+ = f (a), where f : R → R is given by
f (t) = max(t− ε, 0). We say that a is Cuntz equivalent to b in case a . b and b . a.
It is well known that the relation . gives, when restricted to projections, the usual
Murray von Neumann subequivalence, although the relation ∼ does not restrict
to equivalence of projections unless the algebra is stably finite.

One of the useful characterizations of the relation . is proved in Proposi-
tion 2.6 in [10] (see also Proposition 2.4 in [21]): a . b if and only if for any ε > 0,
there is δ > 0 and x in A such that (a− ε)+ = x(b− δ)+x∗. This is also equivalent
to saying that for any ε > 0, there is δ > 0 such that (a− ε)+ . (b− δ)+. Note
that, in case we have a projection p, then (p− ε)+ ∼ p for ε < 1, so that in this
case p . b if and only if there is δ > 0 for which p . (b− δ)+.

LEMMA 3.3. Let A be a non-unital, separable C∗-algebra with real rank zero. Let
p, q, r be projections inM(A) and let a ∈ M(A)+. If p⊕ q . r ⊕ a, then there are

projections q1, . . . , qm in aM(A)a such that p⊕ q . r⊕
m⊕

i=1
qi.

Proof. Let 0 < ε < 1. Then p ⊕ q ∼ ((p ⊕ q) − ε)+ . ((r ⊕ a) − δ)+ .
r⊕ (a− δ)+ for some δ > 0. Since aM(A)a is the closed linear span of its projec-
tions we have that, given δ > 0, there are projections p1, . . . , pn in aM(A)a and

complex scalars λ1, . . . , λn such that with bn =
n
∑

i=1
λi pi,

‖a1/2 − bn‖ <
√

δ .

Thus ‖(a1/2 − bn)(a1/2 − b∗n)‖ < δ, which yields

δ0 := ‖a− (a1/2b∗n + bna1/2 − bnb∗n)‖ < δ ,
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so if we put cn = a1/2b∗n + bna1/2 − bnb∗n, the same argument as in Proposition 2.2
in [21] shows that

(δ− δ0)(a− δ)+ 6 (a− δ)1/2
+ (a− δ0)(a− δ)1/2

+ 6 (a− δ)1/2
+ cn(a− δ)1/2

+

6 (a− δ)1/2
+ (a1/2b∗n + bna1/2)(a− δ)1/2

+ .

From this it follows easily that (a− δ)+ . 2 ·
n⊕

i=1
pi.

Hence,

p⊕ q . r⊕ (a− δ)+ . r⊕
(

2 ·
n⊕

i=1

pi

)
,

as was to be shown.

THEOREM 3.4. Let A be a non-unital, simple, separable C∗-algebra with real rank
zero, stable rank one and weakly unperforated K0. Let p be a non-zero projection and
suppose that A has finitely many infinite extremal quasi-traces in Qp. Then the following
conditions are equivalent:

(i) A has quasi-continuous scale;
(ii)M(A)/A is purely infinite;

(iii)M(A)/L(A) is purely infinite;
(iv) Ifin(A) = L(A).

Proof. (i)⇒ (ii) This follows using the argument in Theorem 2.5 in [12]. We
provide some details for the convenience of the reader. Using the work of Zhang
(Theorem 1.1 in [22]) we know that every hereditary algebra of the corona is the
closed linear span of some projections coming from the multipliers, and so the
same will be true for a hereditary algebra in any quotient of the corona. Since
by Lemma 3.1, all projections inM(A) \ A have a properly infinite image in the
corona, we conclude using Proposition 4.7 in [10] thatM(A)/A is purely infinite.

(ii)⇔ (iii) This is Proposition 3.2.
(iii)⇒ (iv) Suppose that Ifin(A)/L(A) is not zero. Then as A has real rank

zero we have a non-zero projection p in Ifin(A) \ L(A). If we denote by πL : M(A)
→ M(A)/L(A) the natural quotient map, we see that (iii) together with Theo-
rem 4.16 in [10] imply that πL(p)⊕ πL(p) . πL(p). Hence, there is an element a
in L(A)+ such that

p⊕ p . p⊕ a ,

(see, e.g. Lemma 4.12 in [10]).
Using Lemma 3.3 we find projections p1, . . . , pn in the hereditary subalgebra

ofM(A) generated by a, hence also in L(A), such that p⊕ p . p⊕
n⊕

i=1
pi.

Denote also by πL : V(M(A)) → V(M(A))/V(L(A)) the natural monoid
map. We then get that πL([p]) + πL([p]) 6 πL([p]). We have observed in the
comments preceding this theorem that this is a cancellative monoid, hence πL([p])
= 0. This entails that p ∈ L(A), a contradiction.
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(iv) ⇒ (i) Use the notation in Lemma 3.1. We may of course assume that
A does not have continuous scale. Then, because of our assumption there is an
extremal state s in Su such that d(s) = ∞. Consider the complementary face {s}′
of {s}. We claim that {s}′ is closed.

Suppose, by way of contradiction, that this is not the case. By using Propo-
sition 4.10 in [18] we can construct a function g in LAff(Su)++ such that g(s) = 1
and g|{s}′ = 2. Moreover d + g = 2 + d, and so g ∈ Wd

σ(Su) and its restriction to
∂eSu is finite. Then g is continuous by (iv).

Take x in {s}′ \ {s}′. Then x can be approximated by a net (xλ) in {s}′. Since
g is continuous we have that g(x) = lim g(xλ) = 2. On the other hand, since Su is
the convex direct sum of {s} and {s}′ there exist α in (0, 1] and t in {s}′ satisfying
x = αs + (1− α)t. Hence g(x) = 2− α 6= 2, a contradiction. This establishes the
claim.

We have then proved that for any s in F∞, the complementary face {s}′ is
closed. Now F∞ is a finite intersection of closed faces, hence will be closed by
Lemma 2.4.

Finally, since F∞ is finite by hypothesis, there exists by Corollary 4.12 in [18]
a lower semicontinous and affine function d′ such that d′|F∞

= 1 and d′|F′∞ = d|F′∞ .

In particular d + d′ = 2d so d′ ∈ Wd
σ(Su). By construction d′|∂eSu

is finite, hence it
is continuous by (iv). Therefore A has quasi-continuous scale.

The fact that continuous scale characterizes simplicity of the corona (by the
results of Lin [15]), suggests the possibility that finiteness of the ideal lattice in
the corona may be closely tied up with the property of being purely infinite and
having quasi-continuous scale. This possibility is explored in the next results.

COROLLARY 3.5. Let A be a non-unital, simple, separable C∗-algebra with real
rank zero, stable rank one, and weakly unperforated K0. If A has quasi-continuous scale
then the ideal lattice ofM(A) is finite.

Proof. By Theorem 3.4 we know that Ifin(A) = L(A). Since by Theorem 6.3
in [18] the ideal lattice ofM(A)/Ifin(A) is finite, the result follows.

THEOREM 3.6. Let A be a simple, unital C∗-algebra with real rank zero, stable
rank one and with weakly unperforated K0. Assume that the simplex of unital quasitraces
QT(A) is a Bauer simplex. Then the following conditions are equivalent:

(i) QT(A) has finitely many extreme points;
(ii)M(A⊗K)/A⊗K is purely infinite;

(iii)M(A⊗K)/L(A⊗K) is purely infinite;
(iv) Ifin(A⊗K) = L(A⊗K).

Any of these conditions imply
(v)M(A⊗K)/A⊗K has finitely many ideals,

and if A is furthermore exact, then all five conditions are equivalent.
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Proof. As in the proof of Proposition 2.5, we have that if p = 1⊗ e11 ∈ A⊗K
then we have V(A⊗K) ∼= V(A) with u = [p] corresponding to [1]. Also, the state
space of V(A) (normalized at [1]) is homeomorphic to QT(A).

The scale d defined on Su is identically infinite by stability, hence F∞ = ∂eSu.
Thus the monoid isomorphism in (†) says in this case

ϕ : V(M(A⊗K)) ∼= V(A⊗K) t LAff(Su)
++ .

Assume that (i) holds. Then the argument in Proposition 2.5 shows that A⊗ K
has quasi-continuous scale and by Theorem 3.4 we obtain (ii).

(ii)⇒ (iii) and (iii)⇒ (iv) follow exactly as in Theorem 3.4.
Assume now (iv) and also that Su has infinitely many extremal points. Since

∂eSu is compact, this implies that there is an accumulation point s (in ∂eSu). De-
note by {s}′ the complementary face of {s}, and define an affine function f on Su
by setting f|{s}′ = 2 and f (s) = 1. Then f ∈ LAff(Su)++, represents a projection
in Ifin(A⊗K), and is not continuous. To see the latter, note that since we can find
(sn) in ∂eSu such that sn → s, then lower semicontinuity entails

1 = f (s) 6 lim inf f (sn) = 2 .

Hence we have that the inclusion V(L(A⊗K)) ⊆ V(Ifin(A⊗K)) is strict, and so
L(A⊗K) and Ifin(A⊗K) are distinct.

That condition (v) is implied by any of the previous conditions follows, for
example, by assuming (i) and using Corollary 3.5. For the converse direction,
assume further that A is exact and let us show (v)⇒ (ii).

Let τ be an extremal element in T(A), and put Iτ = {x ∈ M(A ⊗ K) :
τ(x∗x) < ∞}− as in [20], which is a closed, two-sided ideal. If, for τ1 and τ2
we have Iτ1 = Iτ2 , then Proposition 4.1 in [20] implies that there are positive
numbers c and d such that cτ1 6 τ2 and dτ2 6 τ1. We claim that c = 1, whence
τ1 = τ2. Indeed, if c < 1, then we have that σ := 1

1−c (τ2 − cτ1) ∈ T(A). Since
(1− c)σ + cτ1 = τ2 and τ2 is extremal, this implies c = 1, impossible.

Thus τ1 6= τ2 implies Iτ1 6= Iτ2 . As by assumption there are finitely many
ideals in the corona algebra, we conclude that there must be finitely many ex-
tremal points in T(A).

COROLLARY 3.7. Let A be a unital AF-algebra whose simplex of unital traces has
compact extreme boundary. Then M(A ⊗ K)/A ⊗ K is purely infinite if and only if
M(A⊗K)/A⊗K has finitely many ideals.

COROLLARY 3.8. Let A be a simple, separable and non-unital C∗-algebra with
real rank zero, stable rank one and with weakly unperforated K0. Assume that for some
(hence any) non-zero projection p in A the simplex Qp is a Bauer simplex. Then the
following conditions are equivalent:

(i) Qp has finitely many extreme points;
(ii)M(A⊗K)/A⊗K is purely infinite;

(iii)M(A⊗K)/L(A⊗K) is purely infinite;
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(iv) Ifin(A⊗K) = L(A⊗K).
Any of these conditions imply

(v)M(A⊗K)/A⊗K has finitely many ideals,
and if A is furthermore exact, then all five conditions are equivalent.

Proof. Notice that A will be Morita equivalent to pAp, hence A ⊗ K ∼=
pAp⊗K.

By Lemma 2.1, we have Qp ∼= QT(pAp), and since there is an ordered group
isomorphism from K0(A) to K0(pAp), the latter will also be weakly unperforated.
We may then apply Theorem 3.6 to pAp and QT(pAp) to obtain the result.

Recall that a given trace τ on a C∗-algebra A can be extended to a trace τ′

on the multiplier algebraM(A), by

τ′(a) = sup{τ(b) : b ∈ A+ and b 6 a} ,

whenever a ∈ M(A)+. If τ is normalized, then also τ′ is normalized (see Sec-
tion 13 in [8] and also [16]). This defines an embedding of T(A) into T(M(A)).

In the theorem below, recall that F∞ is (identified with) the set of infinite
extremal (quasi)traces.

THEOREM 3.9. Let A be a simple, exact, non-unital, separable, C∗-algebra with
real rank zero, stable rank one and weakly unperforated K0. Assume A is not of type I.
Let p be a non-zero projection of A and assume that Tp has compact extreme boundary.
Then the following conditions are equivalent:

(i)M(A)/A has finitely many ideals and T(A) is compact;
(ii)M(A)/A is purely infinite and F∞ is a finite set.

Proof. By setting u = [p] in V(A) for a non-zero projection p and Su =
St(V(A), u), the hypotheses ensure that ∂eSu is a compact space.

(i)⇒ (ii) IfM(A)/A has finitely many ideals, then F∞ is a finite set of ∂eSu
which is also isolated, by Theorem 6.6 and Theorem 6.8 in [18]. The fact that
T(A) is compact means exactly that the restriction of d to the set where it is finite
is actually continuous (by Theorem 14.6 in [8]), hence d|∂eSu\F∞ is continuous. But
this means exactly that A has quasi-continuous scale and soM(A)/A is purely
infinite, by Theorem 3.4.

(ii) ⇒ (i) Clearly, if M(A)/A is purely infinite, then T(M(A)/A) = ∅.
It then follows from standard arguments that T(A) is compact. Indeed, in this
case the embedding of T(A) into T(M(A)) by extension is onto, and restriction
of traces inM(A) to A, which is w∗-continuous, maps T(A) to T(A) (see p. 108
in [5]).

The fact that the ideal lattice ofM(A)/A is finite follows from Corollary 3.5
once we notice that our hypotheses imply that A has quasi-continuous scale.
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