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ABSTRACT. We study the C∗-algebra of Wiener–Hopf operators AΩ on a cone
Ω with polyhedral base P. As is known, a sequence of symbol maps may
be defined, and their kernels give a filtration by ideals of AΩ, with liminary
subquotients. One may define K-group valued “index maps” between the
subquotients. These form the E1 term of the Atiyah–Hirzebruch type spectral
sequence induced by the filtration. We show that this E1 term may, as a com-
plex, be identified with the cellular complex of P, considered as CW-complex
by taking convex faces as cells. It follows that AΩ is KK-contractible, and that
AΩ/K and S are KK-equivalent. Moreover, the isomorphism class of AΩ is a
complete invariant for the combinatorial type of P.
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INTRODUCTION

The classical Wiener–Hopf algebra AR+
, also known as the reduced Toeplitz

algebra, is an object of basic interest in operator theory. It may be defined as the C∗-
algebra of bounded operators on L2(R+) generated by all Wiener–Hopf operators

(W f g)(x) =
∞∫

0

f (x− y)g(y)dy for all g ∈ L2(R+), f ∈ L1(R), x ∈ R+.

The symbol map σ : AR+
→ C0(R) is the surjective ∗-morphism defined

on generators by σ(W f ) = f̂ , where the latter denotes the Fourier transform of
f ∈ L1(R). It gives rise to a short exact sequence

(0.1) 0 // K // AR+

σ // S = C0(R) // 0 .
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Let ∂ : K1(S) → K0(K) = Z be the connecting map in K-theory induced by
this exact sequence. The following theorem is well-known.

THEOREM 0.1. If T is a Fredholm operator contained in the unitisation of AR+
,

then

∂[σ(T)] = index T ∈ Z = K0(K).

Moreover, ∂ is a group isomorphism, and for any n ∈ Z, there exists a Fredholm element
T as above such that index T = n.

The six-term exact sequence immediately gives the following corollary.

COROLLARY 0.2. We have Ki(AR+
) = 0 for i = 0, 1.

In fact, the theorem might also be deduced from the statement of the corollary, by
using the six term exact sequence.

Moreover, the theorem can be used to prove Bott periodicity and thus the
existence of the six-term exact sequence. This is the approach taken by Cuntz [5].
(Cuntz defines AR+

algebraically, and his elegant deduction of the K-triviality of
this C∗-algebra is quite different from the one we shall propose below.)

From the point of view of analysis and index theory, it seems natural to
consider the multivariate generalisation of the Wiener–Hopf algebra and to study
its K-theory.

Thus, let Ω ⊂ Rn be a closed convex cone, which we assume to be pointed,
i.e. Ω contains no affine line, and solid, i.e. Ω generates Rn as a vector space. Then
Wiener–Hopf operators shall be the bounded operators on L2(Ω) given by

(W f g)(x) =
∫
Ω

f (x− y)g(y)dy for all g ∈ L2(Ω), f ∈ L1(Rn), x ∈ Ω.

The C∗-algebra AΩ of bounded operators generated by the W f will be called the
Wiener–Hopf algebra. This C∗-algebra and its relatives are the object of study of
quite an extensive literature, and we refer the interested reader to the introduction
of our joint paper with Troels Johansen [1], for a partial overview.

Just as in the n = 1 case, there is an obvious symbol map σ : AΩ → C0(Rn),
which continues to be a surjective ∗-morphism for n > 1. However, it is not
to be expected that the kernel of σ (the commutator ideal) equals the ideal of
compact operators in this case. Rather, AΩ has a composition series whose length
is at most n. For the remainder of the paper, let us assume that Ω is polyhedral,
i.e. finitely generated as a convex cone. Then the length of the composition series
is exactly n, cf. [1].

However, on the level of K- and even KK-theory, this distinction is invisible.
Indeed, we shall prove in this paper the following theorem.

THEOREM 0.3. Let Ω be a polyhedral cone. Then AΩ is KK-contractible, and
AΩ/K and S are KK-equivalent.
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This theorem was previously known only for a particular class of polyhe-
dral cones called exhaustible, and is due to Buyukliev [4] in this case. He exploits
the particular combinatorial structure of these cones to prove the theorem via
Mayer–Vietoris sequences and the exact six-term sequence.

Arguably, in the general polyhedral case, the proof of KK-contractibility
must take the whole combinatorial structure of an arbitrary polyhedral cone into
account. In fact, the following result comes about as spin-off of our proof the
above theorem.

THEOREM 0.4. Let Ω be a cone with polyhedral base P. Then the isomorphism
class of AΩ completely determines the combinatorial type of P, i.e., the lattice isomor-
phism class of its lattice of faces.

This in turn relies on the fact that the cellular differential of P, considered as
a CW-complex by considering each j-face as a j-cell, may be identified with the d1

differential of the E1 term of the Atiyah–Hirzebruch spectral sequence induced
by the composition series alluded to above, a result which may be interesting in
itself. We will describe this in detail below.

1. STRUCTURE OF THE WIENER–HOPF ALGEBRA

In this section, we review some results on the composition series of the
Wiener–Hopf algebra AΩ, in particular, the construction and computation of cer-
tain “index maps”. These results are actually valid far beyond the case of poly-
hedral cones. However, restricting to polyhedral cones simplifies matters consid-
erably, so we state them in this case only. The interested reader is referred to our
joint papers with Troels Johansen [1], [2], for the general case.

1.1. COMPOSITION SERIES AND ANALYTICAL INDEX FORMULA. Let Ω ⊂ Rn be
a pointed and solid polyhedral cone. Ω is spanned by its exposed rays, and one
may choose a set E of generators of exposed rays contained in an affine hyper-
plane H. There exists a linear automorphism L of Rn such that L(H) = 1×Rn−1.
Let P be the convex hull of all x such that (1, x) ∈ L(E). Then P is a convex
polyhedron in Rn−1, and

L(Ω) = R+ · (1× P) =
{
(λ, λ · x) : λ > 0, x ∈ P ⊂ Rn−1}.

Henceforth, we will omit reference to the linear automorphism L, and as-
sume that Ω = R+ · (1× P) where the set P ⊂ Rn−1 is a convex polyhedron.
This assumption is no loss of generality, since the C∗-algebras AΩ and AL(Ω) are
isomorphic.

For j = −1, . . . , n− 1, let f j be the number of j-dimensional convex faces of
P (where the empty set is considered as the unique face of dimension −1). This
somewhat annoying index shift is an artefact introduced by considering j-faces
of P as (j + 1)-faces of Ω, and will continue to trouble us in the following.
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THEOREM 1.1 ([7]). There exists a finite filtration of AΩ by ideals I0 = 0 ⊂
I1 = K ⊂ · · · ⊂ In+1 = AΩ such that Ij+1/Ij is a liminary C∗-algebra with spectrum
{1, . . . , f j−1} ×Rj.

Both the ideals Ij and the isomorphism of the subquotients Ij+1/Ij with
C0({1, . . . , f j−1} ×Rj) ⊗ K, j < n, and C0(Rn), j = n, respectively, are given
quite explicitly, but we shall not need the precise formulae.

Let ∂j : Ki
c({1, . . . , f j−1} ×Rj) → Ki+1

c ({1, . . . , f j−2} ×Rj−1), j = 1, . . . , n ,
be the K-theory connecting maps induced by the exact sequences

0 // Ij/Ij−1 // Ij+1/Ij−1
σj // Ij+1/Ij // 0 .

Let Fj be the set of j-dimensional faces of P, and let ΩF, for F ∈ P, be the
face of Ω spanned by F. For any A ⊂ Rn, let 〈A〉 denote the linear span. We may
identify {1, . . . , f j−1} ×Rj with the trivial rank j vector bundle

Σj =
{
(F, y) ∈ Fj−1 ×Rn : y ∈ 〈ΩF〉

}
over the finite base Fj−1.

For any subset A ⊂ Rn, let A∗ = {y ∈ Rn : (y|A) > 0} be the dual cone,
and let A⊥ = {y ∈ Rn : (y|A) = 0} be the orthogonal complement of the linear
span. Then define, for any face F of P,

Ω~
F =

{
x ∈ 〈Ω⊥F ∩Ω∗〉 : (x|y) > 0 for all y ∈ Ω⊥F ∩Ω∗

}
.

(This notation differs from [1], [2].)
The continuous field of Hilbert spaces (L2(Ω~

F ))(F,y)∈Σj
naturally defines a

Hilbert C0(Σj)-module Ej. The ∗-morphism σj extends to a representation of AΩ

by adjointable endomorphisms of this Hilbert module. By these means, the map
∂j lends itself to an analytical expression, as follows.

THEOREM 1.2 ([1]). Let a ∈ MN(I+j+1) represent the K-theory class [σj(a)] ∈
K1

c (Σj). Then σj−1(a) is a Fredholm operator on the Hilbert C0(Σj−1)-module EN
j−1, and

∂j[σj(a)] = index σj−1(a) ∈ K0
c (Σj−1).

1.2. KK-THEORETICAL INDEX FORMULA. The finite set

Pj =
{
(E, F) ∈ Fj−2 × Fj−1 : E ⊂ F

}
may be considered as bibundle with respect to the obvious projections ξ : Pj →
Fj−2 and η : Pj → Fj−1 (j > 1). The map

η∗Σj → ξ∗Σj−1 : (E, F, y) 7→ (E, F, pE(y))

realises η∗Σj as the trivial line bundle over the base ξ∗Σj−1. (Here, for A ⊂ Rn,
pA denotes the orthogonal projection onto 〈A〉.) Indeed, a nowhere vanishing
section is given by the map

sj : ξ∗Σj−1 → η∗Σj : (E, F, u) 7→ (E, F, u + eF(E))
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where the unit vector eF(E) ∈ Ω⊥E ∩ 〈ΩF〉 is given as follows. If Ω̌F = Ω⊥F ∩Ω∗

denotes the dual face of ΩF, then Ω̌⊥F ∩Ω~
E is an extreme ray of Ω~

E , and eF(E) is
the unique unit vector contained in this ray.

The trivial line bundle η∗Σj → ξ∗Σj−1 induces an isomorphism of K-groups
Ki

c(η
∗Σj) → Ki+1

c (ξ∗Σj−1). It is given by multiplication by an invertible KK-
theory element yj ∈ KK1(η∗Σj, ξ∗Σj−1) where for locally compact Hausdorff
spaces X and Y, we write KKq(X, Y) = KK(C0(X), C0(Rq ×Y)). Another way to
think about yj is that it is “fibre integration”, i.e. the inverse of the Thom isomor-
phism for the above line bundle. This depends on the choice of an orientation;
we will go into detail further below.

The only other ingredients needed for our index formula (at least in the
polyhedral case) are the projections pξ : ξ∗Σj−1 → Σj−1 and pη : η∗Σj → Σj
induced, respectively, by ξ and η. Since ξ and η have finite domain, pξ and pη

are proper, and thus induce ∗-morphisms ξξξ : C0(Σj−1) → C0(ξ
∗Σj−1) and ηηη :

C0(Σj)→ C0(η
∗Σj), respectively.

THEOREM 1.3 ([2]). Let 1 6 j 6 n. As elements of KK1(Σj−1, Σj),

∂j = ξξξ∗ηηη
∗yj.

2. COHOMOLOGICAL INDEX AND CELLULAR DIFFERENTIAL

2.1. COHOMOLOGICAL EXPRESSION OF THE INDEX. If X is a locally compact

space, then there is a natural ring morphism ch : K∗c (X) →
∞⊕

k=0
H∗+2k(X,Q),

called the Chern character, which is rationally an isomorphism.
Let π : V → X be an oriented real vector bundle. We have Thom isomor-

phisms

ϕV : K∗c (X)→ K∗+rk V
c (V) and ψV : H∗c (X)→ H∗+rk V

c (V).

In the special case that V is trivial, these are related via the Chern character,
i.e. ch ◦ϕV = ψV ◦ ch. (In general, of course, the interplay is more subtle.) As
is customary, we denote integration along the fibres of π, which is the inverse
map ψ−1

V : H∗+rk V
c (V)→ H∗c (X), by π∗.

In particular, applying this to y−1
j : K∗c (ξ∗Σj−1)→ K∗+1

c (η∗Σj), we immedi-
ately obtain the following cohomological expression of the index map ∂j.

PROPOSITION 2.1. For all u ∈ Ki
c(Σj), we have

ch(∂j(u)) = pη∗π∗p∗ξ ch(u) in
∞⊕

k=0

H2k+i+1
c (Σj−1,Q)

where π denotes the projection of the (trivial) line bundle η∗Σj → ξ∗Σj−1.
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We remark that

Ki
c(Σj) = Ki

c(Fj−1 ×Rj) =

{
0 i + j ≡ 1 (mod 2),
Z f j−1 i + j ≡ 0 (mod 2),

so that K∗c (Σj) has no torsion. In particular, ch is injective on K∗c (Σj). It is known
that its image is the integral cohomology H∗c (Σj,Z), cf. Proposition 4.3 of [6]. In
particular, ∂j is completely determined by its cohomological expression, and the
latter is integral.

If we take the trivialisation of η∗Σj → ξ∗Σj−1 to be given by the non-
vanishing section sj defined above, then the orientation of this bundle is induced
by choices of orientations of Σj−1 and Σj. These will be induced by choices of
trivialisations of these bundles. (The triviality of the latter bundles is particular
to the polyhedral situation.) As we shall presently see, the detailed inspection of
these choices leads directly to the explicit expression of ∂j as a cellular differential.

2.2. THE WIENER–HOPF INDEX AS A CELLULAR DIFFERENTIAL. The n-dimen-
sional convex polytope P can be considered as a finite CW-complex by taking the
j-faces to be the j-cells. (Topologically, P is of course an n-cell, so there are simpler
ways to consider it as a CW-complex. However, our point of view captures the
combinatorics of the face lattice.) The cellular complex is then (H0(Fj), dj) where
H0(Fj) is the free Abelian group generated by the j-faces.

The vector bundle Σj → Pj is trivial, hence orientable, and we have a Thom

isomorphism ψj : H0(Fj) → H j
c(Σj+1) given by the choice of an orientation. Let

us make this choice explicit. A trivialisation of Σj is given by the map

Fj−1 ×Rj → Σj : (F, y) 7→ (F, AFy)

where for each F ∈ Fj−1, AF : Rj → 〈ΩF〉 is a linear isomorphism. An orientation
of (the fibres of) Σj is given by pulling back the standard orientation σ+ = ε ◦ det
of Rj to 〈ΩF〉 along A−1

F to an orientation σF. The Thom isomorphism ψj is given

by the cup product with the Thom class cj ∈ H j
c(Σj) which is determined by the

condition ∫
(〈ΩF〉,σF)

cj(F, ·) = 1 for all F ∈ Fj−1.

The line bundle π : η∗Σj → ξ∗Σj−1 is oriented by the choice of the non-
vanishing section sj. Observe that for each (E, F) ∈ Pj, there exists a unique
orientation σ on 〈ΩF〉 such that

σ(eF(E), v1, . . . , vj−1) = σE(v1, . . . , vj−1) for all v1, . . . , vj−1 ∈ 〈ΩE〉.

We denote by [E : F] = ±1 the unique sign such that σF = [E : F] · σE. If E 6⊂ F,
we define [E : F] = 0.
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PROPOSITION 2.2. For 0 6 j 6 d, let d̃j : H0(Fj) → H0(Fj−1) be the map

induced by the index map ∂j+1 : K j+1
c (Σj+1) → K j

c(Σj) and the Thom isomorphisms
ψj+1, ψj, via the relation

ψj ◦ d̃j ◦ ψ−1
j+1 ◦ ch = ch ◦∂j+1.

Then d̃j is given on generators by the formula

d̃j(F) = ∑
E⊂F

[E : F] · E.

Proof. Consider a form cj+1 ∈ Γc

(
Σj+1,

j+1∧
T∗Σj+1

)
representing the Thom

class in H j+1
c (Σj+1). Then p∗ηcj+1 is represented by

η∗Σj+1 →
j+1∧

T∗η∗Σj+1 : (E, F, u) 7→ cj+1(F, u).

Because we have the decomposition 〈ΩF〉 = R · eF(E)⊕〈ΩE〉, the Fubini theorem
gives ∫

(〈ΩE〉,σE)

∫
R

p∗ηcj+1(E, F, ·+ te)(e, ·)dt = [E : F] ·
∫

(〈ΩF〉,σF)

cj+1(F, ·) = [E : F],

where we write e = eF(E). Since this condition characterises the Thom class cj up
to the factor [E, F],

π∗p∗ηcj+1(E, F, ·) = [E : F] · cj(E, ·) in H j
c(〈ΩE〉).

We find

pξ∗π∗p∗ηcj+1(E, u) = ∑
F⊂E

π∗p∗ηcj+1(E, F, u) = ∑
F⊂E

[E : F] · cj(E, u).

Applying the cup product, the conclusion follows.

In order to see that the maps d̃j coincide with the cellular differentials dj, let
us explicitly describe dj. To that end, we construct attaching maps. First, for any
convex set C ⊂ Rj containing the origin in its interior, let µc be its Minkowski
gauge. If, more generally, the convex set C has non-void interior and bc is its
barycentre, then the map

ϕc : Rj → Rj, ϕc(x) =

{
µC−bc (x−bc)
‖x−bc‖ · (x− bc) x 6= bc,

0 x = bc,

is a homeomorphism inducing homeomorphisms C → Bj and ∂C → Sj−1 where
the latter has degree 1.

Next, for any j-face F ∈ Fj, let the linear isomorphism AF : Rj+1 → 〈ΩF〉
used above to trivialise Σj+1 be chosen such that AF(0×Rj) is the linear subspace
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parallel to the affine span of F, and such that F̃ := A−1
F (F − bF) ⊂ Bj. We then

define the attaching map for the j-cell associated with F by

φF : Bj → F ⊂ P : x 7→ A
F

ϕ−1
F̃

(x) + bF.

If for any pair (E, F) ∈ Fj−1 × Fj the number cEF ∈ Z denotes the degree of
the composite

Sj−1
φF // ∂F // P/(P \ E◦) = E/∂E

φ−1
E // Bj−1/Sj−2 // Sj−1

where the rightmost map is the standard one (x 7→ (ux, 2‖x‖ − 1) where u is
suitably chosen), then the cellular differential dj : H0(Fj) → H0(Fj−1) is defined
on generators by

dj(F) = ∑
E⊂F

cEF · E.

PROPOSITION 2.3. We have cEF = [E, F] for any pair (E, F) ∈ Fj−1 × Fj. In
particular, the cellular differential dj coincides with d̃j.

Proof. Let H0 : ∂F → Sj−1 be the composite

∂F // P/(P \ E◦) = E/∂E
φ−1

E // Bj−1/Sj−2 // Sj−1 .

Next, let 1 > t > 0. Let e be a positive multiple of the projection of eF(E) onto the
subspace 0×Rn = 〈P〉, and define

Fs =
{

x ∈ F : (x− bE : e) 6 s
}

for all s ∈ [0, 1],

the elements of “height” 6 s over E. By definition of e, F0 = E. We may take e to
be normalised in such a way that F1 = F.

We wish to define a map Ht : ∂Ft → Sj−1. To that end, define an affine map

At : R×Rj−1 → Rn by At(2s− t, x) = s · e + AEx + bE.

Then F̃t = A−1
t (Ft) is a compact convex subset of Rj containing 0 in its interior.

Define
Ht : Ft ∩ ∂F → Sj−1 by Ht = ft ◦ ϕ−1

t ◦ A−1
t ,

where ϕt = ϕF̃t
and for r ∈ [0, 1], fr : Sj−1 → Sj−1 is given by

fr(s, x) =
(
ux, min

(
1,−1 + 2 s+1

r+1
))

,

for suitably chosen u. The map fr maps all points of the sphere of height > r to
the “north pole” ej = (0, . . . , 0, 1).

The set B = ∂Ft ∩
{

x : (x− bE : e) = t
}

bounds a flat in Ft. Since F̃t ⊂ Bj,
the elements of ϕ−1

t (A−1
t (B)) have jth coordinate > t. Thus, Ht maps B to ej, and

hence extends to all of ∂F by sending ∂F \ Ft to ej. Moreover, Ht, together with
H0, form a homotopy. We have the following which proves our claim:

cEF = deg H0 ◦ φF = deg H1 ◦ φF = sign det((e, AE)
−1 AF) = [E : F].



POLYTOPES AND INDEX 153

3. PROOF OF THE MAIN THEOREM

3.1. INVARIANCE OF THE COMBINATORIAL TYPE OF P. Recall that the combinato-
rial type of the convex polyhedron P is the lattice isomorphism class of the lattice
of convex faces of P. The f -vector of P is the vector ( f0, . . . , fn) whose component
f j is the numbers of j-faces.

The following theorem is a somewhat surprising if simple consequence of
Proposition 2.3.

THEOREM 3.1. Let Ω be a convex cone with polyhedral base P. Then the isomor-
phism class of AΩ determines the combinatorial type of P. I.e., if Ω′ is another cone with
polyhedral base P′, and AΩ and AΩ′ are isomorphic, then P and P′ have isomorphic face
lattices.

Proof. The ideals in the filtration (Ij) of AΩ from Theorem 1.1 are recursively
characterised by the property that Ij+1/Ij is the largest liminary ideal of AΩ/Ij
with Hausdorff spectrum. Thus, the f -vector of P and the index maps, and thus
the maps dj, are uniquely determined up to a choice of orientations. In particular,
the absolute values |[E : F]| are uniquely determined for any pair of faces (E, F).
But these numbers determine the lattice order. Hence the assertion.

3.2. THE KK-CONTRACTIBILITY OF AΩ . As C∗-algebras with finite ideal filtra-
tions with subquotients stably isomorphic to multiples of C0(Rn), AΩ and AΩ/K
belong to the bootstrap category N and therefore obey the UCT ([3], Defini-
tion 22.3.4, Theorem 23.1.1). In order to determine their KK equivalence class,
it suffices to compute their K-theory.

The C∗-algebra AΩ has a filtration by ideals (Ij), and since I1 = K, AΩ/K
has the filtration by ideals given by (Ij/I1). For any C∗-algebra A filtered by
ideals (Ij), Schochet has introduced an Atiyah–Hirzebruch type homology spec-
tral sequence (Er

p,q) which converges to the K-theory of A. In the case of A = AΩ,
by Theorem 2.1 of [8], its E1 term is

E1
p,q = Kp+q(Ip/Ip−1) =

{
H0(Fp−2) q ≡ 1 (mod 2),
0 q ≡ 0 (mod 2).

Hence, every other column of E1 is zero, and Er abuts to E2.

PROPOSITION 3.2. The homology spectral sequence Er
p,q in K-theory induced by

the filtration (Ij) abuts to its E2 term, which is zero. In particular, K∗(AΩ) = 0 and
K∗(AΩ/K) = K∗+1(C) = K∗(S).

Proof. By definition, the d1 differential is the composite

E1
p,1 = Kp+1(Ip/Ip−1)

∂ // Kp(Ip−1) // Kp(Ip−1/Ip−2) = E1
p−1,1
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where the first map is the boundary map in the exact six-term sequence in K-
theory, and the second is induced by the quotient map Ip−1 → Ip−1/Ip−2. Con-
sidering the commutative diagram with exact rows,

0 // Ip−1 //

��

Ip //

��

Ip/Ip−1 // 0

0 // Ip−1/Ip−2 // Ip/Ip−2 // Ip/Ip−1 // 0

it follows from the naturality of connecting maps that d1 is also given by the
connecting map for the lower line. This is just the map ∂p−1. We have already
noted that ∂p−1 is uniquely determined by its cohomological expression, and the
latter gives the cellular differential dp−2. Thus, (E1

p,1, d1
p) is, up to a shift, just the

augmented cellular chain complex of the CW-complex P. Since P is contractible,
this complex is exact. Hence, E2 = 0, and the first statement follows.

To complete the proof, observe that dividing by I1 = K corresponds to re-
moving the augmentation from the cellular complex. The resulting complex has
cohomology concentrated in degree zero, and H0(F0) = Z. (Alternatively, use
the exact six-term sequence.)

COROLLARY 3.3. The C∗-algebra AΩ is KK-contractible, and AΩ/K and S are
KK-equivalent.

COROLLARY 3.4. The isomorphism K1(AΩ/K) → Z given by computing the
numerical index of Fredholm Wiener–Hopf operators, is an isomorphism.

Proof. The groups K1(AΩ/K) and Z are isomorphic, and Buyukliev [4] has
constructed a Fredholm Wiener–Hopf operator of index one.
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