
J. OPERATOR THEORY
65:1(2011), 187–195

© Copyright by THETA, 2011

NOTES ABOUT WEAKLY HYPERCYCLIC OPERATORS

MANUEL DE LA ROSA

Communicated by Şerban Strătilă

ABSTRACT. The present article gives a brief discussion about operators which
are weakly hypercyclic and answers the following three questions:
(i) Must T ⊕ T be weakly hypercyclic whenever T is?
(ii) Is Tn weakly hypercyclic for every n ∈ N whenever T is?
(iii) Is λT weakly hypercyclic for all |λ| = 1 whenever T is?
Question (i) was explicitly posed by Chan and Sanders.

KEYWORDS: Hypercyclic operators, weakly hypercyclic operators, direct sums of
weakly hypercyclic operators, rotations of weakly hypercyclic operators.

MSC (2000): Primary 47A16; Secondary 47A15, 47A05, 47A11, 46A03.

INTRODUCTION

The set of integers is denoted by Z. The set of positive integers without
the element zero is denoted by N, when this set does contain the element zero,
then it is denoted by N0. The fields of rational numbers and complex numbers
are denoted by Q and C respectively. Let (X, ‖·‖) be an infinite-dimensional
normed space over C. A continuous linear operator T : X → X is hypercyclic
if there exists a vector x ∈ X such that its orbit, that is the set Orb(T, x) =
{x, T(x), T2(x), T3(x), . . .}, is a dense set in X. An operator T is called supercyclic
if there exists a vector x ∈ X such that {αTnx : α ∈ C, n ∈ N0} is a dense set in
X. In each case, such a vector x is called a hypercyclic vector for T and a supercyclic
vector for T. An operator T : X → X is called weakly hypercyclic if there exists a
vector x such that its orbit is weakly dense. Similarly, an operator T : X → X is
called weakly supercyclic if there exists a vector x such that {αTnx : α ∈ C, n ∈ N0}
is weakly dense. The concept weakly dense means dense with respect to the weak
topology. Recall that the weak topology of X, denoted by σ(X, X∗), is the smallest
topology for the space such that every member of the dual space X∗ is continu-
ous with respect to that topology. Finally, an operator T : X → X is cyclic if there
exists a vector x such that the linear span of its orbit, denoted by span

(
Orb(T, x)

)
is dense; such a vector x is called a cyclic vector for T.
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We could say that an operator T : X → X is weakly cyclic if there exists a
vector x such that the linear span of its orbit is weakly dense. However S. Mazur
[13] in 1933 proved that the closure and the weak closure agree on convex subsets
of a norm space, thus weak cyclicity and cyclicity are exactly the same. It is ob-
vious from the definition that for either the norm topology or the weak topology,
hypercyclicity implies supercyclicity, which in turn implies cyclicity.

The study of weak orbits was introduced by J. van Neerven [15] in 1996.
Important contributions to weak hypercyclicity are due to K. Chan and R. Sanders
[6], [17]. Also V. Müller [14], S. Dilworth, V. Troitsky [8] and G. Prǎjiturǎ [16], have
shown significant results in this area.

This paper is divided in three sections. Section 1 gives a small survey of
some properties that weakly hypercyclic operators share with hypercyclic ones.

Section 2 presents the three main results of this paper: in Theorem 2.1 it is
shown that there exists an operator T on `p(N) (1 6 p < ∞) whose direct sum
T ⊕ T acting on `p(N)⊕ `p(N) is not weakly hypercyclic, answering in the nega-
tive a question posed by Chan and Sanders [6]. Also it is proved in Theorems 2.4
and 2.8 that the operators Tn for all n > 1 and λT for all complex numbers λ with
|λ| = 1 are weakly hypercyclic provided the operator T is weakly hypercyclic.

The results given in Section 1 and 2 (for weakly hypercyclic operators) are
all satisfied by hypercyclic operators, so the reader may ask if weak hypercyclicity
and hypercyclicity are the same. In Section 3, it is shown that even when the
class of hypercyclic operators shares many properties with the class of weakly
hypercyclic operators, these two classes do not coincide.

1. SIMILAR RESULTS

It follows immediately from the definitions that every hypercyclic vector
for a continuous linear operator T on X is automatically a cyclic vector for T.
The same applies to a weakly hypercyclic vector. Hypercyclic operators always
have an invariant, norm dense, linear subspace in which every nonzero vector
is hypercyclic. The complex scalar case of this result was established by Herrero
([10], Proposition 4.1) and independently by Bourdon [4]. The real scalar case was
established by Bès [3]. Chan and Sanders [6] showed that the same result holds
for weakly hypercyclic operators.

PROPOSITION 1.1 (Chan and Sanders 2004). Let T be a continuous linear op-
erator on X. Then T is a weakly hypercyclic operator if and only if there is an invariant,
norm dense, linear subspace in which every nonzero vector is a weakly hypercyclic vector
for T.

C. Kitai [11] showed that every component of the spectrum of a hypercyclic
operator intersects the unit circle. S.J. Dilworth and V.G. Troitsky [8] showed that
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every component of the spectrum of a weakly hypercyclic operator also intersects
the unit circle.

The spectral properties of the operators are not much different in the case
of weak density. In his paper [16], Prǎjiturǎ did for weakly hypercyclic operators
what Herrero did for hypercyclic operators. He listed some spectral properties
of weakly hypercyclic operators and he used them to prove that the set of hy-
percyclic operators and weakly hypercyclic have the same interior and the same
closure (in the norm topology).

In the following, σ(T) denotes the spectrum of T and σp(T) is the point
spectrum of T, that is, the collection of complex numbers α such that the linear
operator T − α is not injective. The semi Fredholm domain of an operator T will
be denoted by ρsF(T) and for λ ∈ ρsF(T), ind(λ − T) will stand for the semi
Fredholm index of λ − T. Lastly, the Weyl spectrum of an operator T is the set
σW(T) = σ(T) \ {λ ∈ ρsF(T) : ind(λ− T) = 0}.

THEOREM 1.2 ([16]). Let H be a Hilbert space and let T : H → H be a weakly
hypercyclic operator. Then:

(i) for every invariant subspace M of T the compression of T to the orthogonal com-
plement of M is weakly hypercyclic on the space M⊥;

(ii) σp(T∗) = ∅;
(iii) ind(λ− T) = 0 for every λ ∈ ρsF(T);
(iv) σW(T) = σ(T);
(v) σW(T) ∪T is a connected set.

COROLLARY 1.3 ([16]). Every weakly hypercyclic operator is the limit of hyper-
cyclic operators.

PROPOSITION 1.4 ([16]). The operators which are not weakly hypercyclic are
dense in B(H).

2. SIMILAR QUESTIONS

A Fréchet space is a complete, metrizable, locally convex topological vector
space. Given an infinite-dimensional separable Fréchet space X, there exist suf-
ficient conditions that guarantee a linear operator T : X → X to be hypercyclic.
These conditions are contained in the Hypercyclicity Criterion (see Section 3). An
interesting and long-standing problem in the hypercyclicity theory was to know
if every hypercyclic operator satisfies such conditions. After many attempts try-
ing to solve this problem, it turned out that such a problem is equivalent to a
question posed by D. Herrero: must T ⊕ T on X ⊕ X be hypercyclic whenever T
is hypercyclic? Motivated by this question, Chan and Sanders ([6], Question 5.2)
posed a similar problem but for weakly hypercyclic operators. It will be shown
in the following theorem that the answer is in the negative.
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THEOREM 2.1. Let X be either `p(N) (1 6 p < ∞) or c0. Then there exists a
weakly hypercyclic operator T on X whose direct sum T ⊕ T is not weakly hypercyclic.

Proof. De la Rosa and Read [7] constructed a Banach space X and hyper-
cyclic operators on X (called maximal operators) whose direct sum is not hyper-
cyclic. Based on this construction Matheron and Bayart [2] showed that such
operators also exist on classical Banach `p(N) spaces.

A few years earlier, when Sophie Grivaux [9], like many others, was in the
quest for an answer to the great problem (or equivalent Herrero’s problem), she
found that given a hypercyclic operator T, T ⊕ T is hypercyclic if and only if
T⊕ T is cyclic. We therefore have that our operator [7], in particular, is a counter-
example for cyclic, supercyclic, weakly supercyclic and weakly hypercyclic oper-
ators. That is, T belongs to all these classes since it is hypercyclic but its direct
sum does not.

Another great result in hypercyclicity is the fact that when T is a hypercyclic
operator, then Tn is hypercyclic for all n ∈ N. This result was proved by Ansari
[1] in 1995. A few years later, Bourdon and Feldman [5] proved that somewhere
dense orbits are dense orbits, and as a corollary they obtained the result of Ansari.

THEOREM 2.2 (Bourdon and Feldman, 2003). Let X be a locally convex space
and let T be a continuous linear operator on X. Suppose that x ∈ X is such that
Orb(T, x) is somewhere dense, then Orb(T, x) is dense in X.

COROLLARY 2.3 (Bourdon and Feldman, 2003). Let X be a locally convex space
and let T be a continuous linear operator on X. Tn is hypercyclic for all n ∈ N whenever
T is hypercyclic.

THEOREM 2.4. Let X be a normed space, and let T be a continuous linear operator
on X. Then Tn is weakly hypercyclic for all n ∈ N whenever T is weakly hypercyclic.

Proof. Fix n ∈ N and let T be a continuous linear operator on X. We know
that T is norm to norm continuous if and only if it is weak to weak continuous, so
T is a continuous operator on the locally convex space (Y, T ) = (X, σ(X, X∗)),
where σ(X, X∗) is the weak topology on X. Suppose that T is weakly hypercyclic
on X, or equivalently that T is hypercyclic on (Y, T ).

Observe that

Orb(T, x) =
n⋃

k=1

Orb(Tn, Tkx) =
n⋃

k=1

Orb(Tn, Tkx) = Y.

Therefore, by a basic result of general topology, there exists k ∈ N with 1 6 k 6 n
such that Orb(Tn, Tkx) is somewhere dense, so it must be dense in Y. That is, Tn

is weakly hypercyclic on X and the operator Tn has the same weakly hypercyclic
vectors for T since Tn−k is a continuous function with dense range on Y and

Tn−k(Orb(Tn, Tkx)) = {Tnx, T2nx, T3nx, . . .} ⊂ Orb(Tn, x).
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León-Saavedra and Müller [12] showed that λT hypercyclic for all complex
number λ with |λ| = 1, whenever T is hypercyclic. In order to translate this
result to the class of weakly hypercyclic operators, it is necessary to prove that
the result of León-Saavedra and Müller holds not only for Banach spaces, but
also for locally convex spaces.

The reader should remember that the most common way of defining locally
convex topologies on vector spaces is in terms of seminorms on X. If X is a vector
space, I an index set and {pβ}β∈I is a family of seminorms on X, then the convex
sets

Ux,β,ε = {y ∈ X : pβ(x− y) < ε} (x ∈ X, β ∈ I, ε > 0)

generate a topology on X with respect to which X is a locally convex topological
vector space. Notice that for each x ∈ X, the finite intersections of the sets Ux,β,ε
(β ∈ I, ε > 0) form a neighborhood base at x; a net {xα}α in a locally convex
space X converges to x ∈ X if and only if pβ(xα) → pβ(x) for all β ∈ I; and
lastly an operator T : X → X is continuous if and only if for each β, there exist
β1, β2, . . . , βm in I and C > 0 such that

pβ(Tx) 6 C
m

∑
k=1

pβk (x) for all x ∈ X.

The proof of the following proposition is a slight modification of the original
proof given by León-Saavedra and Müller. Indeed, only the two first parts (of
the original version) were modified here in order to extend the result to locally
convex spaces. Due to that fact, the author presents only these two parts. The
reader can find the rest of the proof in [12].

In the following proposition, D = {z ∈ C : |z| 6 1} is the closed unit disc and
T = {z ∈ C : |z| = 1} is the unit circle. The cardinality of a set A is denoted by #A,
the closure of a set A is denoted by A and its interior by Int(A).

PROPOSITION 2.5. Let X be a locally convex space, let F be a semigroup of con-
tinuous linear operators on X and let x ∈ X be such that the set

{µSx : S ∈ F, µ ∈ C, |µ| = 1}
is dense in X. Suppose that there is a continuous linear operator T on X with σp(T∗) =
∅ satisfying TS = ST for each S ∈ F. Then the set {Sx : S ∈ F} is dense in X.

Proof. For each x ∈ X, set

Mx = {Sx : S ∈ F}.
For x and y in X set

Fx,y = {µ ∈ T : µy ∈ Mx}.
Note that Fx,y is a closed subset of the unit circle. Let X0 be the set of all vectors x
such that {µSx : S ∈ F, µ ∈ C, |µ| = 1} is dense in X.

The proof will be done in several steps.
Step 1. If x is in X0, then Fx,y 6= ∅ for all y ∈ X.
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Since the set {µSx : S ∈ F, µ ∈ T} is dense, there exists a net {µαSα}α with
µα ∈ T and Sα ∈ F such that µαSα → y. Passing to a subnet if necessary, we can
suppose that µα → µ for some µ ∈ T.

Let {pβ}β∈I be a family of seminorms which generates the locally convex
topology on X. Then for all β ∈ I we have

pβ(Sαx− µ−1y) 6 pβ(Sαx− µ−1
α y) + pβ((µ

−1
α − µ−1)y)→ 0.

Therefore µ−1 ∈ Fx,y.
Step 2. If x, y and w are in X, µ1 ∈ Fx,y and µ2 ∈ Fy,w, then µ1µ2 ∈ Fx,w.
Note that µ ∈ Fx,y if and only if µy ∈ Mx = {Sx : S ∈ F}. That is, if and

only if for every ε1, ε2, . . . , εn > 0 and β1, β2, . . . , βn ∈ I there exists S ∈ F such
that

pβi (Sx− µy) < εi for all i = 1, 2, . . . , n.

Let µ1 ∈ Fx,y, µ2 ∈ Fy,w, ε1, ε2, . . . , εn > 0 and let β1, β2, . . . , βn ∈ I.
Since µ2 ∈ Fy,w, there exists S1 ∈ F such that

pβi (S1y− µ2w) <
εi
2

for all i = 1, 2, . . . , n.

The continuity of S implies that for each βi (1 6 i 6 n), there exist
βi

1, βi
2, . . . , βi

mi
in I and Ci > 0 such that

pβi (Sx) 6 Ci

mi

∑
k=1

pβi
k
(x) for all x ∈ X.

Since µ1∈Fx,y, there exists S2∈F such that for every k=1, 2, . . . , mi, we have

pβi
k
(S2x− µ1y) <

εi
2Cimi

.

Then for i = 1, 2, . . . , n we have

pβi (S1S2x− µ1µ2w) 6 pβi (S1(S2x− µ1y)) + pβi (µ1(S1y− µ2w))

6 Ci

mi

∑
k=1

pβi
k
(S2x− µ1y) + pβi (S1y− µ2w)

6 Ci

mi

∑
k=1

εi
2Cimi

+
εi
2
= εi.

Hence µ1µ2 ∈ Fx,w.
The reader can find the the rest of the proof in [12].

COROLLARY 2.6. Let X be a locally convex space and let T be a continuous linear
operator on X. A vector x ∈ X is hypercyclic for T if and only if {µTnx : µ ∈ T, n ∈ N0}
is dense in X.

Proof. If x ∈ X is hypercyclic for T, then {Tnx : n ∈ N0} is dense in X and

{Tnx : n ∈ N0} ⊂ {µTnx : µ ∈ T, n ∈ N0}.
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On the other hand, let x ∈ X be such that the set {µTnx : µ ∈ T, n ∈ N0}
is dense in X. Set F = {Tn : n ∈ N0}, by previous proposition, it is sufficient to
prove that σp(T∗) = ∅.

Assume towards a contradiction that α ∈ σ(T∗) and let f ∈ X∗ be the cor-
responding eigenvector. Then

C = {〈µTnx, f 〉 : µ ∈ T, n ∈ N0} = {〈µx, αn f 〉 : µ ∈ T, n ∈ N0}

= 〈x, f 〉{µαn : µ ∈ T, n ∈ N0},

which is a contradiction since if |α| < 1 or 〈x, f 〉 = 0, then the last set is bounded
and therefore nondense in C. If |α| > 1 and 〈x, f 〉 6= 0, then the last set is bounded
below, and therefore nondense in C. Thus σp(T∗) = ∅.

COROLLARY 2.7. Let X be a locally convex space and let T be a hypercyclic oper-
ator on X. If µ ∈ T, then µT is hypercyclic and has the same set of hypercyclic vectors
as T.

Proof. Given µ ∈ T, the operator µT is hypercyclic if and only if

{λ(µT)nx : λ ∈ T, n ∈ N0}

is dense, but {λ(µT)nx : λ ∈ T, n ∈ N0} = {λµnTnx : λ ∈ T, n ∈ N0} which is
equal to {λTnx : λ ∈ T, n ∈ N0}, and the operator T is hypercyclic if and only if
{λTnx : λ ∈ T, n ∈ N0} is dense.

THEOREM 2.8. Let X be a normed space and let T be a weakly hypercyclic operator
on X. Then µT is weakly hypercyclic for all µ ∈ T and has the same set of weakly
hypercyclic vectors as T.

Proof. Let µ∈T and let T be a weakly hypercyclic operator on X. The oper-
ator T is norm continuous if and only if it is weakly continuous, so T is a hyper-
cyclic operator on the locally convex space (Y, T ) = (X, σ(X, X∗)). By previous
corollary µT is hypercyclic on Y and has the same set of hypercyclic vectors as T.
However µT is hypercyclic on Y if and only if µT is weakly hypercyclic on X.

3. SIMILAR BUT NOT EQUAL

In this section all the examples and the observations were made by Chan and
Sanders and they can be found in their article “A weakly hypercyclic operator
that is not norm hypercyclic” [6]. The author includes this section for complete-
ness of these notes.

As we have seen, the class of weakly hypercyclic operators shares many
properties with the class of hypercyclic operators. However these two classes
are not the same, indeed, there exist weakly hypercyclic operators on `p(Z) with
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2 6 p < ∞ that fail to be norm hypercyclic. The operator T : `p(Z) → `p(Z)
given by

Teα =

{
eα−1 if α 6 0,
2eα−1 if α > 1,

is one of those operators.

THE HYPERCYCLICITY CRITERION. Let X be a separable Banach space and let
T be a continuous linear operator on X. If there are dense subsets X0 and Y0 of X and an
increasing sequence of natural numbers (nk)k and maps Sk : Y0 → X, k ∈ N such that:

(i) Tnk Sky→ y ∀y ∈ Y0,
(ii) Sky→ 0 ∀y ∈ Y0,

(iii) Tnk x → 0 ∀x ∈ X0,
then T is hypercyclic.

It makes sense to ask what would happen if we replace in the Hypercyclic-
ity Criterion the norm topology by the weak topology, and the answer is that,
unfortunately, the resulting statement fails to hold.

EXAMPLE 3.1. Let X = `2 and define T : X → X by

T(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

If we take X0 = Y0 = span{en : n ∈ N0} where {en} is the canonical basis on X
and we define S : Y0 → Y0 by S(x0, x1, x2, . . .) = (0, x0, x1, x2, . . .). Then:

(i) TS = I on Y0,
(ii) Tnx → 0 weakly for all x ∈ X0 and

(iii) Sny→ 0 weakly for all y ∈ Y0.
However, since ‖T‖ = 1, T cannot be weakly hypercyclic.

Another property that weakly hypercyclic operators do not share with hy-
percyclic operators is the following: given an invertible operator T, T−1 is hy-
percyclic if and only if T is hypercyclic. However this is not the case for weakly
hypercyclic operators since there exists an invertible weakly hypercyclic operator
whose inverse fails to be weakly hypercyclic (see Corollary 3.6 of [6]).
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