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ABSTRACT. We describe the enveloping C∗-algebra associated to a partial ac-
tion of a countable discrete group on a locally compact space as a groupoid
C∗-algebra (more precisely as a C∗-algebra from an equivalence relation) and
we use our approach to show that, for a large class of partial actions of Z on the
Cantor set, the enveloping C∗-algebra is an AF-algebra. We also completely
characterize partial actions of a countable discrete group on a compact space
such that the enveloping action acts in a Hausdorff space.

KEYWORDS: Enveloping algebras, partial actions, groupoid C∗-algebras.

MSC (2000): 46L05, 46L55.

INTRODUCTION

The concept of partial actions was introduced in [5] and [9] and it has been
a very important tool in C∗-algebras and dynamical systems ever since. As the
name suggests, partial actions generalize the notion of an action in a C∗-algebra
or in a topological space. The problem of deciding whether or not a given par-
tial action is the restriction of some global action (called enveloping action) was
studied by F. Abadie in [1], where, among other things, he shows that the cross
product of the enveloping C∗-algebra by the enveloping action is Morita–Rieffel
equivalent (previously known as strongly Morita equivalent) to the partial cross
product.

In this paper we are interested in partial actions of a countable discrete
group G (in particular of Z) on a locally compact, second countable space X (par-
ticularly on a Cantor set, that is, a compact, totally disconnected, with no isolated
points, metric space). It is well known that there is a correspondence between
partial actions on a Hausdorff locally compact space X and the partial actions on
the C∗-algebra C0(X). In [1], it is shown that a partial action on a topological
space always has an enveloping action, which may not act on a Hausdorff space
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(the odometer partial action for example). When the enveloping space is Haus-
dorff the notion of the enveloping action in the category of C∗-algebras is a rather
natural one, but when the enveloping space is non Hausdorff the notion of the
enveloping action has to be reformulated with the use of C∗-ternary rings and the
introduction of the notion of strong Morita equivalence between partial actions.
Although it seems that this approach can not be avoided in general, in the case
of a partial action of a countable discrete group on a locally compact space we
give a description of the Morita enveloping C∗-algebra as a C∗-algebra from an
equivalence relation (viewed as a groupoid). Our approach has the advantage
of working for either Hausdorff or non Hausdorff enveloping spaces. We also
use our description of the enveloping algebra to show that it is an AF-algebra,
provided we have a partial action of Z on the Cantor set with some mild assump-
tions, namely that it arises as a "restriction" of a global action (we should warn
the reader that we use the word restriction here with a slight different meaning
then what usually appears in the literature).

The paper is structured as follows. In Section 2 we make a quick review of
the necessary notions on partial actions and enveloping actions. We completely
characterize the partial actions of a countable discrete group on a second count-
able, compact space such that the enveloping space is Hausdorff in Section 3 and
finally in Section 4 we describe the enveloping algebra as a groupoid C∗-algebra
and show it is an AF-algebra under the assumptions mentioned above.

1. PARTIAL ACTIONS AND ENVELOPING ACTIONS

DEFINITION 1.1. A partial action of a group G on a set Ω is a pair θ = ({∆t}t∈G,
{ht}t∈G), where for each t ∈ G, ∆t is a subset of Ω and ht : ∆t−1 → ∆t is a bijection
such that:

(i) ∆e = Ω and he is the identity in Ω;
(ii) ht(∆t−1 ∩∆s) = ∆t ∩∆ts;

(iii) ht(hs(x)) = hts(x), x ∈ ∆s−1 ∩∆s−1t−1 .
If Ω is a topological space, we also require that each ∆t is an open subset of

Ω and that each ht is a homeomorphism of ∆t−1 onto ∆t.
Analogously, a pair θ = ({Dt}t∈G, {αt}t∈G) is a partial action of G on a C∗-

algebra A if each Dt is a closed two sided ideal and each αt is a ∗-isomorphism of
Dt−1 onto Dt.

Since we are very interested in partial actions of Z, below we give the most
important example of such partial actions.

EXAMPLE 1.2. Let X be a locally compact space, U and V open subsets of X
and h a homeomorphism from U to V. Let X−n = dom(hn) and hn : X−n → Xn
be defined by hn, for n ∈ Z. Then θ = ({Xn}n∈Z, {hn}n∈Z) is a partial action of Z.

For the proof see [5].
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EXAMPLE 1.3 (The Odometer). Let X = {0, 1}∞ = ∏
N
{0, 1}. Let max = 1∞

(sequence of all 1’s), min = 0∞ (sequence of all 0’s), X−1 = X− {max}, X1 =
X− {min} and h : X−1 → X1 be addition of 1 with carryover to the right. Then
θ = ({Xn}n∈Z, {hn}n∈Z), where X−n = dom(hn), is a topological partial action.

REMARK 1.4. With Dt = { f ∈ C0(X) : f |Xc
t
= 0}, where Xc

t means the
complement of Xt in X, and αt : Dt−1 → Dt defined by αt( f ) = f ◦ h−1

t , we have
a partial action on the C∗-algebra C(X).

We recall the definition of the enveloping action in the topological sense.

DEFINITION 1.5. Let θ = ({Xt}t∈G, {ht}t∈G) be a partial action. The envelop-
ing space, denoted by Xe, is the topological quotient space (G×X)

∼ , where ∼ is the
equivalence relation given by

(r, x) ∼ (s, y)⇔ x ∈ Xr−1s and hs−1r(x) = y.

The enveloping action, denoted by he, is the action induced in Xe by the action
he

s(t, x) 7→ (st, x).

Given a locally compact space X, the definition of the enveloping action
and space in the C∗-algebraic sense is motivated by the 1-1 relation between
partial actions on X and partial actions on C0(X). Basically, if a partial action
θ = ({Xt}t∈G, {ht}t∈G) on X has a Hausdorff enveloping space Xe and envelop-
ing action he, then C0(Xe) is the enveloping C∗-algebra and αe( f ) = f ◦ (he)−1

is the induced global action associated to the partial action in C0(X). In [1], it is
proved that when Xe is Hausdorff, the partial cross product of C0(X) by the par-
tial action is Morita–Rieffel equivalent to the global cross product of the envelop-
ing algebra C0(Xe) by the enveloping action. The problem arises when Xe is not
Hausdorff (as for example in the Odometer partial action). The result mentioned
above is not valid anymore, as we may have very few continuous functions in
C0(Xe). Abadie, in [1], goes around this problem by making use of C∗-ternary
rings and introducing the notion of Morita equivalence between partial actions.
Below we completely characterize partial actions of a countable discrete group on
a second countable, compact space for which the enveloping space is Hausdorff.
Throughout the rest of the paper G will denote a countable discrete group and
we will assume that the space X is always second countable.

2. PARTIAL ACTIONS OF G ON A COMPACT SPACE SUCH THAT
THE ENVELOPING SPACE IS HAUSDORFF

In [1] it is shown that a partial action has a Hausdorff enveloping space if
and only if the graph of the action is closed. Below we give a concrete charac-
terization of partial actions of a countable discrete group on compact spaces for
which the enveloping space is Hausdorff.
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Let X be a second countable, compact space, {Xt, ht} a partial action of
G on X and (Xe, he) the enveloping space and action respectively. Recall that
Xe is the quotient of G × X by the equivalence relation (r, x) ∼ (s, y) ⇔ x ∈
Xr−1s and hs−1r(x) = y, with the quotient topology. We denote the equivalence
class of (n, x) in Xe by [n, x].

PROPOSITION 2.1. Let G be a countable discrete group with unit e, let X be a
second countable, compact space, and let {Xt, ht} be a partial action of G on X. Then Xe

is Hausdorff if and only if the partial action {Xt, ht} acts in clopen subsets of X, that is,
if and only if Xt is clopen for each t ∈ G.

Proof. First assume that Xe is Hausdorff. We will show that each Xt is closed
(it is already open by the definition of a partial action).

Suppose there exists t ∈ G such that Xt is not closed (we will show that this
implies that Xe is non-Hausdorff).

Since Xt is not closed, there exists a sequence (xk)k∈N such that xk ∈ Xt for
all k and such that xk → x, where x /∈ Xt. By the compactness of X, (ht−1(xk))k∈N
has a converging subsequence and we may pass to this subsequence. We may
therefore assume that there exists a sequence (xk)k∈N in Xt such that xk → x,
where x /∈ Xt and such that (ht−1(xk))k∈N converges to a point y ∈ X.

We now have that the points [t−1, x] and [e, y] can not be separated. Let’s
see why:

Suppose that U and V are open, [t−1, x] ∈ U and [e, y] ∈ V. Remember that
U is open if and only if q−1(U) is open, where q is the quotient map.

Well, since xk → x and ht−1(xk)→ y, there exists N ∈ N such that

(t−1, xk) ∈ q−1(U) and (e, ht−1(xk)) ∈ q−1(V) for all k > N.

Now notice that (t−1, xk) ∼ (e, ht−1(xk)) and hence [t−1, xk] = [e, ht−1(xk)] and
U ∩V 6= ∅.

For the converse, we may now assume that each Xt is a clopen subset of X.
Let [r, x] 6= [s, y] in Xe. So (r, x) is not equivalent to (s, y). We have two

possibilities:

(i) If x /∈ Xr−1s then there exists Vx such that x ∈ Vx and Vx ∩ Xr−1s = ∅ (since
Xr−1s is clopen).

We may assume r 6= s (if r = s then x 6= y and we find the desired neigh-
borhoods using the fact that X is Hausdorff).

Take V = (r, Vx) and U = (s, X). Then ir(V) and is(U) are the desired open
sets. (Where ir(x) = q(r, x), is(x) = q(s, x) and q is the quotient map. Also notice
that it is an open map and the proof is analogous to what is done in Theorem 2.1
of [1], for the map i.)

(ii) If x ∈ Xr−1s then hs−1r(x) 6= y.

Let z = hs−1r(x). We have that z 6= y. Since X is Hausdorff, there exist
open sets Uz and Uy such that Uz ∩ Uy = ∅, z ∈ Uz and y ∈ Uy. Take Vx =



ENVELOPING ALGEBRAS OF PARTIAL ACTIONS AS GROUPOID C∗ -ALGEBRAS 201

h−1
s−1r(Uz ∩ Xs−1r), which is an open set. Then ir(Vx) and is(Uy) have the desired

properties.

REMARK 2.2. Dokuchaev and Exel have a result in the more general context
of partial actions on associative algebras, see Theorem 4.5 of [4], that implies the
proposition above. Still we believe our proof above helps to give the reader a
feeling for the space Xe.

Let X be a locally compact Hausdorff space with a countable basis of clopen
sets. Following Danilenko [2], if X has no isolated points we call it a locally com-
pact Cantor set. Recall [2] that any two non-compact locally compact Hausdorff
Cantor set are homeomorphic.

PROPOSITION 2.3. Let X be the Cantor set, G a countable discrete group and
{Xt, ht} a partial action of G on X such that Xt is clopen for all t ∈ G. Then the envelop-
ing space Xe is a locally compact Cantor set.

Proof. By Proposition 2.1, Xe is Hausdorff. To prove that Xe is locally com-
pact, let us first note that for each t ∈ G the function it(x) = q(t, x) is a continu-
ous, open and closed map (we already know that it is continuous and open by an
argument similar to what is done in Theorem 2.1 of [1]). To see that it is a closed
map, let F be closed in X. Then F is compact and hence it(F) is compact. Since Xe

is Hausdorff we have that it(F) is closed.
Let [(r, x)] in Xe. Since X is compact, there exists a compact neighborhood,

Ux, of x in X. But then ir(Ux) is a compact neighborhood of [(r, x)] in Xe. Hence
Xe is locally compact.

Now, if {Un}n∈G be a countable basis of clopen sets of X then {it(Un)}n,t∈G
is a countable basis of clopen subsets of Xe.

Finally, we have that Xe has no isolated points, since if [(t, x)] ∈ Xe and
V is an open set that contains [(t, x)] then (t, x) ∈ q−1(V) (we may assume that
q−1(V) is of the form (t, U), where U is open in X). So there exists (y, t) 6= (x, t)
such that (y, t) ∈ q−1(V) and hence [(y, t)] ∈ V and [(y, t)] 6= [(x, t)].

With the above propositions we completely characterized the enveloping
actions of partial actions of G acting on clopen subsets of the Cantor set. The
cross product of their enveloping C∗-algebra by the enveloping action is Morita–
Rieffel equivalent to the partial cross product, see [1]. The problem is that most of
the interesting examples, including the famous odometer (or adding machine),
do not satisfy the conditions of the propositions above. Namely they fail to be
partial actions on clopen sets. We note here that the majority of examples from
partial actions arise as in Example 1.2. In the next section we show how to deal
with these examples in a different (and we believe easier) way from what was
done in [1]. As a consequence of our approach we show that the enveloping C∗-
algebra associated to a partial action of Z on the Cantor set, as in Example 1.2, is
an AF-algebra.
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3. THE ENVELOPING C∗-ALGEBRA AS A GROUPOID C∗-ALGEBRA

In this section, we start by showing that the enveloping C∗-algebra associ-
ated to a partial action of a countable discrete group G on a locally compact space
can be seen as a C∗-algebra of an equivalence relation (seen as a groupoid in the
usual way). Before we proceed we need to introduce the notion of core subalge-
bras, which will be used in our proof that the enveloping algebra can be realized
as a groupoid C∗-algebra.

DEFINITION 3.1. Let A be a C∗-algebra and let B ⊆ A be a (not necessarily
closed) ∗-subalgebra. We shall say that B is a core subalgebra of A when every
representation of B is continuous relative to the norm induced from A. (By a
representation of a ∗-algebra B we mean a multiplicative, ∗-preserving, linear
map π : B→ B(H), where H is a Hilbert space.)

Assuming that B is a core subalgebra of A, and given a representation π of
B, we may therefore extend π to a representation π of B (the closure of B in A).
Since B is a C∗-algebra we have by [3] that π is necessarily contractive. Therefore
we have:

PROPOSITION 3.2. B is a core subalgebra of A if and only if every representation
of B is contractive.

EXAMPLES 3.3. (i) Every closed ∗-subalgebra of a C∗-algebra is a core sub-
algebra by [3].

(ii) Let B be a ∗-subalgebra of a C∗-algebra A, such that B =
⋃
i∈I

Bi, where each

Bi is a core subalgebra of A. Then B is a core subalgebra of A. This is because
every representation of B must be contractive on each Bi.

(iii) If X is a locally compact space then Cc(X) is a core subalgebra of C0(X).
This follows from the fact that Cc(X) is the union of the closed ∗-subalgebras
C0(U), where U ranges in the collection of all relatively compact open subsets
of X.

(iv) Let G be a groupoid satisfying the hypotheses of Corollary 1.22 of [11].
Then Cc(G) is a core subalgebra of C∗(G) by the same corollary of [11].

(v) Let B be a ∗-algebra such that

(3.1) |‖b‖| := sup ‖π(b)‖ < ∞, ∀ b ∈ B,

where the supremum is taken over the collection of all representations π of B.
Then one may define the enveloping C∗-algebra, C∗(B), by moding out the ele-
ments b such that |‖b‖| = 0, and completing under |‖ · ‖|. The image of B within
C∗(B) is therefore a dense core subalgebra.

Let B be a core subalgebra of a C∗-algebra A. It is then evident that B sat-
isfies (3.1) and moreover that |‖b‖| = ‖b‖, where the right hand side refers to
the norm of b computed as an element of A. Supposing that B is dense in A, it
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follows that A is isomorphic to the enveloping C∗-algebra C∗(B). From this one
immediately has:

PROPOSITION 3.4. Suppose that A1 and A2 are C∗-algebras, and that Bi is a
dense core subalgebra of Ai, for i = 1, 2. If B1 and B2 are isomorphic as ∗-algebras, then
A1 and A2 are isometrically ∗-isomorphic.

THEOREM 3.5. Let A be a C∗-algebra and let {pi}i be a family of mutually or-
thogonal projections in the multiplier algebra of A, here denoted as M(A). Also let B be
a ∗-subalgebra of A such that B is contained in the algebraic direct sum⊕

i,j∈I
B ∩ (pi Apj),

and such that B∩(pi Api) is a core subalgebra for every i∈ I. Then B is a core subalgebra.

Proof. Given b ∈ B, by hypothesis we have that

b = ∑
k,l∈I

akl ,

where the nonzero summands are finite and each akl ∈ B∩ (pk Apl). We therefore
have for all i, j ∈ I, that

pibpj = ∑
k,l∈I

piakl pj = aij,

from where we see that aij = pibpj. From now on we will adopt the notation

bij := pibpj ∀ b ∈ A, ∀ i, j ∈ I,

and hence we have for every b ∈ B that bij ∈ B ∩ (pi Apj), while b = ∑
i,j∈I

bij, a

sum with finitely many nonzero terms.
For each finite set of indices F ⊆ I, let

BF =
⊕
i,j∈F

B ∩ (pi Apj).

It is easy to see that BF is a ∗-subalgebra of A and we claim that it is a core sub-
algebra. In fact, given a representation π of BF, we have for all i, j ∈ F, and all
bij ∈ B ∩ (pi Apj) that

‖π(bij)‖2 = ‖π(bijb∗ij)‖ 6 ‖bijb∗ij‖ = ‖bij‖2,

where the crucial second step follows from the fact that bijb∗ij ∈ B ∩ (pi Api), the
latter being a core subalgebra by hypothesis. Given any b ∈ BF, we then have

‖π(b)‖ 6 ∑
i,j∈F
‖π(bij)‖ 6 ∑

i,j∈F
‖bij‖ 6 |F|2‖b‖.

This proves that π is bounded and hence that BF is a core subalgebra, as claimed.
Now observe that B =

⋃
F

BF, where F ranges in the collection of all finite

subsets of F, so the conclusion follows from Example 3.3(ii).
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We can now focus again on realizing the enveloping algebra as a groupoid
C∗-algebra.

For this we fix, as before, a partial action of the discrete group G on a locally
compact space X.

Recall that the enveloping space is the quotient of G×X by the equivalence
relation (r, x) ∼ (s, y) ⇔ x ∈ Xr−1s and hs−1r(x) = y. Since this quotient may
be non Hausdorff, instead of considering it, we will consider the equivalence
relation R ⊆ G× X×G× X above, with the product topology.

Notice that a neighborhood base for z = (t, x, s, y) is formed by neighbor-
hoods of the following form, where Ux ⊆ Xt−1s is open:

Utxs = {(t, x′, s, hs−1t(x′)) : x′ ∈ Ux}.

Before we can consider the groupoid C∗-algebra of this equivalence relation
we will show that R with this topology is étale, which, in the language of [11],
means that R is an r-discrete groupoid with counting measure as a Haar system.
In our context, this means that R can be equipped with two maps, called range
and source, defined by r(t, x, t′, y) = (t, x) and s(t, x, t′, y) = (t′, y) and such that
R is σ-compact, ∆ = {(t, x, t, x) ∈ R : (t, x) ∈ G× X} is an open subset of R and
for all (t, x, t′, y) ∈ R, there exists a neighborhood U of (t, x, t′, y) in R, such that
r restricted to U and s restricted to U are homeomorphisms from U onto open
subsets of G× X, see also [10].

PROPOSITION 3.6. R is étale.

Proof. To see that R is sigma compact, we notice that for each fixed s and
t ∈ G, Xt−1s is a countable union of compact sets and hence each Utxs, with Ux =
Xt−1s is a countable union of compact sets.

For (t, x, t, x) ∈ ∆, we take Utxt with Ux = X to see that ∆ is open.
Finally, given (t, x, s, y) ∈ R, it is not hard to see that the range and source

map are homeomorphisms, once restricted to Utxs, with Ux = Xt−1s.

We are now able to consider the full groupoid C∗-algebra of R, which we
denote by C∗(R) (see [8] or [10] for details on the groupoid C∗-algebra of étale
equivalence relations). Next we show that C∗(R) is isomorphic to the Morita
enveloping algebra defined in [1]. In order to do so, we quickly remind the reader
of the definitions in [1] (adapted to the case at hand).

Given a Fell bundle B = (Bt)t∈G of a partial action {Xt, ht}t∈G, (in our case
Bt = C0(Xt)δt), we consider the linear space, kc(B), of all functions k : G×G →
B, with finite support and such that k(r, s) ∈ Brs−1 . We now equip kc(B) with
the involution k∗(r, s) = k(s, r)∗, ∀k ∈ kc(B), the multiplication k1 ∗ k2(r, s) =

∑
t∈G

k1(r, t)k2(t, s), ∀k1, k2 ∈ kc(B) and the norm ‖k‖ =
(

∑
r,s∈G

‖k(r, s)‖2
)1/2

. The

universal C∗-algebra of the completion of kc(B) with respect to the norm above is
the enveloping algebra, k(B). Finally we notice that there exists a natural action
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of G on kc(B), which can be extended to k(B), given by βt(k)(r, s) = k(rt, st).
The pair (k(B), β) is the enveloping action as in [1]. We can now prove our main
result.

THEOREM 3.7. Given a partial action h of a countable discrete group G on a locally
compact space X, the groupoid C∗-algebra C∗(R), as defined above, is isomorphic to the
enveloping C∗-algebra k(B).

Proof. Initially let us observe that, given any element (r, x, s, y) ∈ R, one has
that y = hs−1r(x). Therefore the fourth variable “y" is a function of the first three,
and hence we may discard it. In more precise terms we have that

(r, x, s, y) 7→ (x, r, s)

establishes a one-to-one correspondence from R to the set

R′ = {(x, r, s) ∈ X× G× G : x ∈ Xr−1s}.

Moreover this correspondence is seen to be a homeomorphism if R′ is view-
ed as a subspace of the topological product space X× G× G.

Borrowing the groupoid structure from R we have that R′ itself becomes an
étale groupoid under the multiplication operation

(x, r, s) · (y, t, u) = (x, r, u),

defined if and only if y = hs−1r(x), and s = t, while the inversion operation is
given by

(x, r, s)−1 = (hs−1r(x), s, r).

Since R and R′ are isomorphic topological groupoids, it is enough to show that
C∗(R′) and k(B) are isomorphic C∗-algebras. We will derive this result from
Proposition 3.4, by showing the existence of two isomorphic dense core subal-
gebras of C∗(R′) and k(B), respectively.

On the one hand recall that Cc(R′) is a dense core subalgebra of C∗(R′), as
observed in Example 3.3(iv). To define the relevant dense core subalgebra of k(B),
recall that B is the Fell bundle with fibers Bt = C0(Xt)δt.

Denoting by Cc(Xt) the set of all continuous compactly supported functions
on X whose support is contained in Xt, put Dt = Cc(Xt)δt, so that each Dt is a
dense linear subspace of Bt. Moreover it is easy to see that, for all r, s ∈ G,

(3.2) DrDs ⊆ Drs and D∗r = Dr−1 .

Denote by kc(D) the subset of kc(B) formed by all k ∈ kc(B) such that
k(r, s) ∈ Drs−1 , for all r and s. As a consequence of (3.2) one easily proves that
kc(D) is a ∗-subalgebra of k(B), which is also easily seen to be dense.

We will next show that kc(D) is a core subalgebra of k(B) by using Theo-
rem 3.5. With this in mind we must first define a family of projections {pt}t∈G in
the multiplier algebra M(k(B)). Given t ∈ G, consider the maps

Lt, Rt : kc(B)→ kc(B),
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given, for every k ∈ kc(B), by

Lt(k)(r, s) =

{
k(r, s) if r = t,
0 otherwise,

∀r, s ∈ G;

Rt(k)(r, s) =

{
k(r, s) if s = t,
0 otherwise,

∀r, s ∈ G.

One may then prove that both Lt and Rt extend continuously to k(B), giving a
multiplier

pt = (Lt, Rt) ∈ M(k(B)),
which is also self-adjoint and idempotent, thus producing a family {pt}t∈G of
mutually orthogonal projections.

For every r, s ∈ G one has that prkc(D)ps consists of all the k ∈ kc(D) which
are supported on the singleton {(r, s)}. In particular ptkc(D)pt ' Cc(X).

On the other hand notice that, by similar reasons, ptkc(B)pt ' C0(X). As a
C∗-algebra this is complete and hence it coincides with its closure which is clearly
ptk(B)pt.

Therefore the inclusion of ptkc(D)pt within ptk(B)pt is, modulo a canon-
ical isomorphism, the same as the inclusion of Cc(X) within C0(X), and hence
ptkc(D)pt is a core subalgebra of ptk(B)pt, as desired. Theorem 3.5 therefore ap-
plies and hence we deduce that kc(D) is a core subalgebra of k(B).

We will next prove that Cc(R′) and kc(D) are isomorphic as ∗-algebras and
hence the result will follow from Proposition 3.4. Given r, s ∈ G, let

R′r,s = R′ ∩ (X× {r} × {s})
or, equivalently,

R′r,s = {(x, r, s) : x ∈ Xr−1s},
so R′r,s naturally identifies with Xr−1s. Given f ∈ Cc(R′), denote by fr,s the re-
striction of f to R′r,s, seen as an element of Cc(Xr−1s). Alternatively (and more
precisely) one may define fr,s as follows:

fr,s(x) =

{
f (x, r, s) if x ∈ Xr−1s,
0 otherwise.

Since f is compactly supported, only finitely many fr,s will be nonzero. De-
fine ψ : Cc(R′)→ kc(D) by

ψ( f )(r, s) = fr−1,s−1 δrs−1 , ∀ f ∈ Cc(R′), ∀r, s ∈ G.

Observing that R′ is the disjoint union of the R′r,s, it should be obvious that
ψ is a well defined vector space isomorphism. The proof will then be concluded
once we show that ψ is a ∗-homomorphism.

In order to prove that ψ( f ∗ g) = ψ( f )ψ(g), we may suppose without loss of
generality that f is supported in R′r,s and that g is supported in R′t,u. When s 6= t,
the product in R′ of (x, r, s) and (y, t, u) is never defined, so f ∗ g = 0.
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Otherwise, if s = t, we have that f ∗ g is supported in R′r,u. Moreover, given
(x, r, u) ∈ R′r,u, the only way of writting (x, r, u) as a product of an element of R′r,s
and an element of R′s,u is

(x, r, u) = (x, r, s)(hs−1r(x), s, u),

as long as x ∈ Xr−1s. Thus

( f ∗ g)(x, r, u) = f (x, r, s)g(hs−1r(x), s, u) = fr,s(x)gs,u(hs−1r(x)).

On the other hand, since ψ( f ) is supported on the singleton {(r−1, s−1)},
and ψ(g) is supported on {(s−1, u−1)}, we have that ψ( f )ψ(g) is supported on
{(r−1, u−1)}, and

(ψ( f )ψ(g))(r−1, u−1) = ψ( f )(r−1, s−1) ψ(g)(s−1, u−1)

= ( fr,sδr−1s) (gs,uδs−1u) = fr,s(gs,u ◦ hs−1r)δr−1u,

from where it is easily seen that ψ( f ∗ g) = ψ( f )ψ(g). We leave it for the reader
to prove that ψ preserves the adjoint operation.

COROLARY 3.8. Let α be the action on C∗(R) given by αt( f )(r, x, s, y) = f (rt, x,
st, y). Then C∗(R)oα G is isomorphic to k(B)oβ G, which is strong Morita equivalent
to the partial cross product C(X)o G.

Proof. It is clear that the actions α and β are intertwined by the isomorphism
C∗(R) ∼= k(b) of Theorem 3.7 and hence the isomorphism follows. The second
part is done in [1].

We finish the paper showing that for the partial actions of Z on the Cantor
set, X, as in Example 1.2, with X−1 6= X, R is an approximately proper equivalence
relation and C∗r (R) (and hence the enveloping C∗-algebra) is an AF-algebra.

Recall that an equivalence relation is said to be proper when the quotient
space is Hausdorff. In [12], Renault defines approximately proper and approxi-
mately finite equivalence relations as below.

DEFINITION 3.9. An equivalence relation R, on a locally compact, second
countable, Hausdorff space X, is said to be approximately proper if there exists
an increasing sequence of proper equivalence relations {Rn}n∈N such that R =⋃
n∈N

Rn. An approximately proper equivalence relation on a totally disconected

space is called an AF equivalence relation.

REMARK 3.10. In [7], Giordano, Putnam and Skau define an AF equivalence
relation as an equivalence relation that can be written as an increasing union of
compact open étale sub-equivalence relations. They also mention that their defi-
nition is equivalent to the definition above.

To prove that R is approximately proper we will come up with a sequence
of partial actions by clopen sets (so that their enveloping space is Hausdorff) such
that the union of the induced equivalence relations is R.
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Recall that R is associated with a partial action θ = {X−n, hn} on X, as in
Example 1.2. That is, h is a homeomorphism from U to V (where U is a proper
open subset of X), X−n = dom(hn) and hn = hn.

To create the partial actions, let {Uk}k=0,1,... be an increasing sequence of
clopen sets such that their union is X−1 = U 6= X. For each Uk, denote the
partial action by clopen sets obtained by restricting h to Uk and proceeding as in
Example 1.2 by θk = {Xk

−n, hn}n∈Z, where Xk
−1 = Uk and h1 is h restricted to Uk.

Now, we consider the sub equivalence relation Rk ⊆ Z× X× Z× X given
by (r, x) ∼k (s, y) ⇔ x ∈ Xk

r−1s and hs−1r(x) = y. Since each Rk is associated to
a partial action on clopen sets, we have by Proposition 2.1 that the quotient Z×X

∼k
is Hausdorff for every k. With this set up we can prove that R is approximately
proper.

PROPOSITION 3.11. R is approximately proper.

Proof. It remains to show that R =
⋃

k∈N
Rk (it is clear that Rk ⊆ Rk+1 for

k = 0, 1, . . .). It follows promptly that Rk ⊆ R for all k. Next we show that
R ⊆ ⋃

k∈N
Rk.

Let (r, x, s, y) ∈ R (which happens if and only if x ∈ Xr−1s and hs−1r(x) = y).
All we need to do is find a K such that x ∈ XK

r−1s, since this would imply that
(r, x, s, y) ∈ RK. Now recall that X−n = dom(hn) and assuming that r−1s > 0 (the
case r−1s 6 0 is analogous) we have that

Xr−1s = dom(hr−1s) = U∩ h−1(U) ∩ · · · ∩ hs−1r+1(U).

So x, h(x), h2(x), . . . , hr−1s+1 belong to U and hence we can find a K such that
x, h(x), h2(x), . . . , hr−1s+1 all belong to the same UK, since U =

⋃
k∈N

Uk with Uk ⊆

Uk+1. We conclude that x ∈ UK ∩ h−1(UK) ∩ · · · ∩ hs−1r+1(UK) = XK
r−1s as de-

sired.

Since we have shown that R is approximately proper, it is natural to con-
sider R =

⋃
Rk with the inductive limit topology. This approach will allow us to

write C∗r (R) as an inductive limit C∗-algebra. But first we need to show that the
inductive limit and product topology agree on R.

PROPOSITION 3.12. Let R =
⋃

k∈Z
Rk above. Then the inductive limit topology

and the product topology on R are the same.

Proof. Suppose U 6= ∅ is open in the inductive limit topology. Then U ∩ Rk
is open for all k. Let (t, x, s, y) ∈ U and find K such that (t, x, s, y) ∈ RK. Then
U∩ RK contains an open neighborhood of (t, x, s, y) of the form

{(t, z, s, hs−1t(z)) : z ∈ UK ⊆ XK
t−1s ⊆ Xt−1s},
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where UK is open in XK
t−1s and hence open in Xt−1s. So U is open in the product

topology.
Now, notice that

Utxs ∩ Rk = {(t, x, s, hs−1t(x)) : x ∈ Ux ⊆ Xt−1s,where Ux is open} ∩ Rk

is open in Rk for all k and hence Utxs is open in the inductive limit topology.

COROLARY 3.13. C∗r (R) = lim
−→

C∗r (Rk).

The proof is analogous to what is done in [8] for C∗-algebras from substitu-
tion tilings.

PROPOSITION 3.14. C∗r (R) is an AF-algebra.

Proof. We already know, by proposition 3.11, that R is approximately proper.
Also, R is an equivalence relation in Z× X and since X is the Cantor set it is clear
that R is an AF equivalence relation. Then by Theorem 3.9 of [7] we have that R is
isomorphic to tail equivalence in some Bratteli diagram and by [6] we have that
the associated C∗-algebra is an AF-algebra.

Another way to prove this proposition would be to show that each Rk is an
AF equivalence relation, (as defined in [7]), so that C∗r (Rk) is an AF C∗-algebra.
Since inductive limits of AF C∗-algebras are again AF (via the local characteriza-
tion of AF-algebras) this will yield that C∗r (R) is also AF. To see that each Rk is
AF, notice that

⋃
n

Rn
k = Rk, where Rn

k = {(r, x, s, y) ∈ Z× X× Z× X : |r|, |s| 6

n} ∩ Rk.
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