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ABSTRACT. We study and compare the gap and the Riesz topologies of the
space of all unbounded regular operators on Hilbert C∗-modules. We show
that the space of all bounded adjointable operators on Hilbert C∗-modules is
an open dense subset of the space of all unbounded regular operators with re-
spect to the gap topology. The restriction of the gap topology on the space of
all bounded adjointable operators is equivalent to the topology which is gen-
erated by the usual operator norm. The space of regular selfadjoint Fredholm
operators on Hilbert C∗-modules over the C∗-algebra of compact operators is
path-connected with respect to the gap topology, however, the result may not
be true for some Hilbert C∗-modules.
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1. INTRODUCTION

Hilbert C∗-modules are essentially objects like Hilbert spaces, except that
the inner product, instead of being complex-valued, takes its values in a C∗-
algebra. The theory of these modules, together with bounded and unbounded
operators, is not only rich and attractive in its own right but forms an infrastruc-
ture for some of the most important research topics in operator algebras. They
play an important role in the modern theory of C∗-algebra, in KK-theory, in non-
commutative geometry and in quantum groups.

A (left) pre-Hilbert C∗-module over a C∗-algebra A is a left A-module E
equipped with an A-valued inner product 〈·, ·〉 : E × E → A, (x, y) 7→ 〈x, y〉,
which is A-linear in the first variable x and has the properties:

〈x, y〉 = 〈y, x〉∗, 〈ax, y〉 = a〈x, y〉 for all a in A,

〈x, x〉 > 0 with equality only when x = 0.

A pre-HilbertA-module E is called a HilbertA-module if E is a Banach space
with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2. If E, F are two Hilbert A-modules
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then the set of all ordered pairs of elements E⊕ F from E and F is a Hilbert A-
module with respect to theA-valued inner product 〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉E
+〈y1, y2〉F. It is called the direct orthogonal sum of E and F. A HilbertA-submodule
E of a Hilbert A-module F is an orthogonal summand if E⊕ E⊥ = F, where E⊥

denotes the orthogonal complement of E in F. The papers [9], [8], [24], some
chapters in [14], [25], and the book by E.C. Lance [19] are used as standard sources
of reference.

As a convention, throughout the present paper we assume A to be an ar-
bitrary C∗-algebra (i.e. not necessarily unital), we also assume K(H) to be the
C∗-algebra of all compact operators on an arbitrary Hilbert space H. Since we
deal with bounded and unbounded operators at the same time we simply denote
bounded operators by capital letters and unbounded operators by small letters.
We use the notations Dom(·), Ker(·) and Ran(·) for domain, kernel and range of
operators, respectively.

Suppose E, F are HilbertA-modules. We denote the set of allA-linear maps
T : E → F for which there is a map T∗ : F → E such that the equality 〈Tx, y〉 =
〈x, T∗y〉 holds for any x ∈ E, y ∈ F by B(E, F). The operator T∗ is called the
adjoint operator of T. B(E, E) is denoted by B(E).

Unbounded regular operators were first introduced by Baaj and Julg in [4]
and later they were studied more by Woronowicz and Napiórkowski in [27], [26].
Lance gave a brief indication in his book [19] about unbounded regular operators
on Hilbert C∗-modules. An operator t from a Hilbert A-module E to another
Hilbert A-module F is said to be regular if

(i) t is closed and densely defined,
(ii) its adjoint t∗ is also densely defined, and

(iii) the range of 1 + t∗t is dense in E.

Note that if we set A = C i.e. if we take E, F to be Hilbert spaces, then
this is exactly the definition of a densely defined closed operator, except that in
that case, both the second and the third condition follow from the first one. In
the frame work of Hilbert C∗-modules, one needs to add these extra conditions
in order to get a reasonably good theory. The reader is encouraged to study the
publications [11], [12], [18], [23] for more detailed information about unbounded
operators on Hilbert C∗-modules.

The gap topology is induced by the metric d(t, s) = ‖PG(t) − PG(s)‖ where
PG(t) and PG(s) are projections onto the graphs of densely defined closed opera-
tors t, s, respectively. The gap topology on the space of all densely defined closed
operators has been studied systematically in the book [16] and in the seminal
paper by Cordes and Labrousse in [7]. Recently the gap topology on the space
of all unbounded selfadjoint Fredholm operators has been reconsidered in [6],
[15], [21].

We study the gap topology of the space of all unbounded regular operators
on arbitrary Hilbert C∗-modules. We also introduce a strictly stronger topology
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than the gap topology of the space of all unbounded regular operators, which is
called Riesz topology. We show that the space of all bounded adjointable opera-
tors on Hilbert C∗-modules is an open dense subset of the space of all unbounded
regular operators with respect to the gap topology. Moreover the restriction of the
gap topology on the space of all bounded adjointable operators is equivalent to
the topology which is generated by the usual operator norm. The gap metric will
help us to find an isometric operation preserving map of the space of all densely
defined closed operators on Hilbert C∗-modules over the C∗-algebra of compact
operators onto the space of all densely defined closed operators on a suitable
Hilbert space. This fact together with a result of Cordes and Labrousse [7] give
us the opportunity to characterize the path-connected components of the space of
unbounded regular Fredholm operators on Hilbert K(H)-modules with respect
to the gap topology. Indeed, every two unbounded regular Fredholm operators
are homotopic if and only if they have the same index.

2. PRELIMINARIES

In this section we would like to recall some definitions and simple facts
about regular operators on Hilbert A-modules. For details see Chapters 9 and 10
of [19], and the papers [11], [18], [27], [26]. Then we will introduce and compare
the Riesz and gap topologies of the space of all unbounded regular operators.

Let E, F be HilbertA-modules, we will use the notation t : Dom(t) ⊆ E→ F
to indicate that t is an A-linear operator whose domain Dom(t) is a dense sub-
module of E (not necessarily identical with E) and whose range is in F. A densely
defined operator t : Dom(t) ⊆ E→ F is called closed if its graph G(t) = {(x, tx) :
x ∈ Dom(t)} is a closed submodule of the Hilbert A-module E⊕ F. If t is clos-
able, the operator s : Dom(s) ⊆ E → F with the property G(s) = G(t) is called
the closure of t denoted by s = t. A densely defined operator t : Dom(t) ⊆ E→ F
is called adjointable if it possesses a densely defined map t∗ : Dom(t∗) ⊆ F → E
with the domain

Dom(t∗) = {y ∈ F : there is z ∈ E such that 〈tx, y〉F = 〈x, z〉E for all x ∈ Dom(t)}

which satisfies the property 〈tx, y〉F = 〈x, t∗y〉E, for any x∈Dom(t), y∈Dom(t∗).
This property implies that t∗ is a closed A-linear map. A densely defined closed
A-linear map t : Dom(t) ⊆ E → F is called regular if it is adjointable and the
operator 1+ t∗t has a dense range. We denote the set of all regular operators from
E to F by R(E, F). Then R(E, E) is denoted by R(E). A densely defined operator t
which has a densely defined adjoint operator t∗ is regular if and only if its graph
is orthogonally complemented E ⊕ F (cf. [11]). If t is regular then t∗ is regular
and t = t∗∗, moreover t∗t is regular and selfadjoint. Define Qt = (1 + t∗t)−1/2,
Rt = (1 + t∗t)−1 = Q2

t and Ft = tQt, then Ran(Qt) = Dom(t), 0 6 Qt 6 1 in
B(E, E) and Ft ∈ B(E, F) (cf. Chapter 9 of [19]). The bounded operator Ft is called
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the bounded transform (or Woronowicz transform) of the regular operator t. The
map t→ Ft defines a bijection

R(E, F)→ {T ∈ B(E, F) : ‖T‖ 6 1 and Ran(1− T∗T) is dense in E},
(cf. Theorem 10.4 of [19]). This map is adjoint-preserving, i.e. F∗t = Ft∗ , and for
the bounded transform Ft = tQt = t(1 + t∗t)−1/2 we have ‖Ft‖ 6 1 and t =
FtQ−1

t = Ft(1 − F∗t Ft)−1/2. A regular operator t ∈ R(E) is called selfadjoint if
t∗ = t. Obviously a regular operator t is selfadjoint if and only if its bounded
transform Ft is selfadjoint.

COROLLARY 2.1. Let T ∈ R(E, F) be a regular operator and FT be its bounded
transform. Then T ∈ B(E, F) if and only if ‖FT‖ < 1.

Proof. For each T ∈ R(E, F) the bounded adjointable operator QT : E →
Ran(QT) = Dom(T) ⊆ E is invertible and satisfies Q2

T = 1− F∗T FT . Therefore
T ∈ B(E, F) if and only if Dom(T) = E, if and only if ‖FT‖ < 1.

There is a natural metric on the set of regular operators, the so-called gap
metric. Let t ∈ R(E, F) then E⊕ F = G(t)⊕V(G(t∗)), where V ∈ B(E⊕ F, F⊕ E)
is defined by V(x, y) = (y,−x). The orthogonal projection PG(t) : E⊕ F → E⊕ F
can be described through the following matrix

(2.1) PG(t) =

(
Rt t∗Rt∗

tRt 1− Rt∗

)
∈ B(E⊕ F).

It follows from (9.7) of [19] and the equalities FtF∗t = 1 − R∗t and (FtQt)∗ =
(tRt)∗ = t∗Rt∗ .

DEFINITION 2.2. Let t, s ∈ R(E, F), then the gap metric on the space of all
unbounded regular operators is defined by d(t, s) = ‖PG(t) − PG(s)‖ where PG(t)
and PG(s) are orthogonal projections onto G(t) and G(s), respectively. The topol-
ogy induced by this metric is called gap topology.

Let E, F be two Hilbert A-modules and operators t, s be in R(E, F). An
equivalent picture of the gap metric is now definable by using (2.1) as well as the
fact that (tRt)∗ = t∗Rt∗ . Indeed, the following metric, which is again denoted by
d, is uniformly equivalent to the gap metric

(2.2) d(t, s) = sup{‖Rt − Rs‖, ‖Rt∗ − Rs∗‖, ‖tRt − sRs‖}.

REMARK 2.3. Let t ∈ R(E, F) be a regular operator and Ft be its bounded
transform. For every bounded adjointable operator S in B(E, F) of norm ‖S‖ 6 1
the operator F (S) := 1− S∗S is a positive operator. we also have

Rt=Q2
t=1−F∗t Ft=F (Ft), Rt∗=Q2

t∗=1−FtF∗t =F (F∗t ), tRt=tQ2
t=FtQt=FtF (Ft)

1/2.

Therefore we can reformulate the gap metric (2.2) via the bounded transforms of
regular operators t and s as follows:

(2.3) d(t, s)=sup{‖F(Ft)−F (Fs)‖, ‖F(F∗t )−F(F∗s )‖, ‖FtF(Ft)
1/2−FsF(Fs)

1/2‖}.
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The Riesz topology of unbounded selfadjoint operators on Hilbert spaces
has been investigated in [6], [17], [21]. Their works motivate us for the following
definition.

DEFINITION 2.4. Let t, s ∈ R(E, F) then the Riesz metric on the space of
all unbounded regular operators is defined by σ(t, s) = ‖Ft − Fs‖. The topology
induced by this metric is called Riesz topology.

LEMMA 2.5. The Riesz topology is stronger than the gap topology on R(E, F).

Proof. Let {tn} be a sequence in R(E, F) that is convergent to a regular op-
erator t with respect to the Riesz topology, i.e. σ(tn, t) = ‖Ftn − Ft‖ → 0. By
elementary methods and continuity of the function g(x) =

√
x on [0,+∞) we

can deduce

‖F (Ftn)−F (Ft)‖=‖F∗tn Ftn−F∗t Ft‖→0, ‖F (F∗tn)−F (F∗t )‖=‖Ftn F∗tn−FtF∗t ‖→0,

‖F (Ftn)
1/2−F (Ft)

1/2‖→0, ‖FtnF (Ftn)
1/2−FtF (Ft)

1/2‖→0.

Therefore (2.3) implies that

d(tn, t)=sup{‖F(Ftn)−F (Ft)‖, ‖F (F∗tn)−F(F∗t )‖, ‖FtnF(Ftn)
1/2−FtF(Ft)

1/2‖}→0,

i.e. the sequence {tn} is gap convergent to the regular operator t.

COROLLARY 2.6. LetB = {T ∈ B(E, F) : ‖T‖ 6 1 and Ran(1−T∗T) is dense
in E}, then the map

(B, ‖ · ‖)→ (R(E, F), d), Ft 7→ t = Ft(1− F∗t Ft)
−1/2

is bijective and continuous.

Bijectivity and continuity of the map are obtained from Theorem 10.4 of
[19] and Lemma 2.5. Suppose E is a Hilbert A-module, UB(E) and SR(E) denote
unitary elements of B(E) and selfadjoint elements of R(E).

REMARK 2.7. Let E be a Hilbert A-module and let t ∈ SR(E). According to
Lemmata 9.7, 9.8 of [19], the operators t± i are bijection (see also Proposition 6 of
[18]). Then

ct : SR(E) −→ C = {U ∈ UB(E) : 1−U has dense range},

t 7→ ct = (t− i)(t + i)−1,

is a bijection which is called the Cayley transform of t, cf. Theorem 10.5 of [19]. The
Cayley transform ct can be written as ct = 1− 2i(t + i)−1. Thus (t + i)−1 − (s +
i)−1 = i

2 (ct − cs), for each t, s ∈ SR(E).

COROLLARY 2.8. On the space SR(E) the gap metric is uniformly equivalent to
the metric d̃ given by

(2.4) d̃(t, s) := ‖(t + i)−1 − (s + i)−1‖ = 1
2
‖ct − cs‖, for all t, s ∈ SR(E).
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Proof. For each t, s ∈ SR(E), the expression (2.2) can be written as follows:

(2.5) d(t, s) = sup{‖Rt − Rs‖, ‖tRt − sRs‖}.

On the other hand the operators t± i are bijective, hence the identities (t− i)−1 =
(t+ i)(t2 + 1)−1 = tRt + iRt, (t+ i)−1 = (t− i)(t2 + 1)−1 = tRt− iRt hold, which
yield

(2.6) Rt =
1
2i
((t− i)−1 − (t + i)−1), tRt =

1
2
((t− i)−1 + (t + i)−1).

Now from (2.4), (2.5) and (2.6) we infer that 1
2 d̃(t, s) 6 d(t, s) 6 d̃(t, s), for all

t, s ∈ SR(E).

The following example attributed to Fuglede is used to show that the Riesz
and gap metrics are different, cf. [6], [21].

EXAMPLE 2.9. Let A be unital C∗-algebra and HA be the standard Hilbert
A-module which is countably generated, for j ∈ N, by orthonormal basis ξ j =
(0, . . . , 0, 1, 0, . . . , 0). For every integer n > 0 we define tn : Dom(tn) = {∑ λjξ j :
∑ j2|λj|2 < +∞} ⊆ HA −→ HA by

tn(ξ j) =

{
jξ j if j 6= n,
−jξ j if j = n .

The sequence tn of selfadjoint regular operator converges to the selfadjoint regu-
lar operator t0 in gap topology. To see this, we apply (2.4) and get

d̃(tn, t0) = ‖(tn + i)−1 − (t0 + i)−1‖ = ‖(tn + i)−1ξn − (t0 + i)−1ξn‖

=
∣∣∣ 1
i− n

− 1
i + n

∣∣∣→ 0, as n→ ∞.

But

σ(tn, t0) > ‖Ftn ξn − Ft0 ξn‖ =
2n√

1 + n2
→ 2.

In view of Corollary 2.8 this shows that the Riesz topology is strictly stronger
than the gap topology.

3. ON THE GAP TOPOLOGY

Recall that every bounded adjointable operator is regular, that is, for Hilbert
C∗-modules E, F, the space B(E, F) can be regarded as a subset of R(E, F). We
show that the space of all bounded adjointable operators on Hilbert C∗-modules
is an open dense subset of the space of all unbounded regular operators with
respect to the gap topology. Then we can conclude that the space of odd bounded
adjointable operators is a dense subset of odd unbounded regular operators. The
author believe that these results are new even in the case of Hilbert spaces.
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LEMMA 3.1. Let E, F be Hilbert C∗-modules. Then the space B(E, F) is open in
R(E, F) with respect to the gap metric d.

Proof. Let S ∈ B(E, F) then ‖FS‖2 < 1 by Corollary 2.1, and so, there is a real
number δ such that 0 < δ < 1− ‖FS‖2 < 1. We claim {T ∈ R(E, F) : d(T, S) <
δ} ⊆ B(E, F). Let T be a (possibly unbounded) operator in R(E, F) and d(T, S) <
δ, then

‖F∗T FT‖ − ‖F∗S FS‖ 6 ‖F∗T FT − F∗S FS‖ = ‖F (FT)−F (FS)‖ 6 d(T, S) < δ.

That is, ‖FT‖2 = ‖F∗T FT‖ < δ + ‖FS‖2 < 1, and T is therefore bounded by Corol-
lary 2.1.

PROPOSITION 3.2. The metric which is given by the usual norm of bounded oper-
ator and the gap metric d are equivalent on the space of all bounded adjointable operators.

A similar result has been proved in the case of Hilbert spaces in Addendum
of [7]. Our argument seems to be shorter.

Proof. Let T, S ∈ B(E, F), we use the expression (2.2) to show that there
exist real numbers M1, M2 such that M2‖T − S‖ 6 d(T, S) 6 M1‖T − S‖. Since
‖RT‖, ‖RS‖ 6 1, we have

‖RT − RS‖ 6 ‖RT‖‖S∗S− T∗T‖‖RS‖ 6 ‖S∗(S− T) + (S∗ − T∗)T‖
6 ‖S∗‖‖S− T‖+ ‖S∗ − T∗‖‖T‖ = (‖T‖+ ‖S‖)‖T − S‖,

‖TRT − SRS‖ = ‖(T − S)RT + S(RT − RS)‖ 6 ‖T − S‖+ ‖S‖‖RT − RS‖
6 ‖T − S‖(1 + ‖S‖(‖S‖+ ‖T‖)).

Similarly ‖RT∗ − RS∗‖ 6 (‖T‖+ ‖S‖)‖T − S‖. Therefore the above inequalities
imply that d(T, S) 6 M1‖T − S‖, where M1 = max{‖T‖+ ‖S‖ , 1 + ‖S‖(‖S‖+
‖T‖)}. We know that T − S = (T − S)RT R−1

T and (T − S)RT = TRT − SRS +
S(RS − RT), so we obtain

‖T − S‖ = ‖(T − S)RT‖‖R−1
T ‖ 6 (1 + ‖T‖2)‖(T − S)RT‖

6 (1 + ‖T‖2)(‖TRT − SRS‖+ ‖S‖‖RS − RT‖)
6 (1 + ‖T‖2)(d(T, S) + ‖S‖d(T, S)) 6 (1 + ‖T‖2)(1 + ‖S‖)d(T, S).

Therefore M2‖T − S‖ 6 d(T, S), for M2 = [(1 + ‖T‖2)(1 + ‖S‖)]−1.

REMARK 3.3. Let t ∈ R(E, F) and Ft be its bounded transform. Then 1−
F∗t Ft has dense range if and only if c1− F∗t Ft has dense range for each real number
c > 1 (cf. Lemma 10.1 and Corollary 10.2 of [19]).

THEOREM 3.4. Let E, F be Hilbert C∗-modules, then B(E, F) is an open dense
subset of the space R(E, F) with respect to the gap topology.

Proof. Let t ∈ R(E, F) and Ft be its bounded transform. We set Pn = n
n+1 Ft,

for all n ∈ N. Then for every n > 1 the operator Pn is bounded and satisfies
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‖Pn‖ < 1. The operator 1 − F∗t Ft has dense range and so is 1 − P∗n Pn (cf. Re-
mark 3.3). By Theorem 10.4 of [19], for any natural number n there exists a regu-
lar operator Tn such that FTn = Pn = n

n+1 Ft. Therefore ‖FTn‖ = ‖Pn‖ < 1, so Tn

will be in B(E, F). We also have σ(Tn, t) = ‖FTn − Ft‖ =
∥∥ n

n+1 Ft− Ft
∥∥→ 0. Recall

that the Riesz topology was stronger than the gap topology, that is d(Tn, t) → 0.
B(E, F) is therefore dense in R(E, F) with respect to the gap topology. Openness
of B(E, F) was given in Lemma 3.1.

COROLLARY 3.5. The uniform structures induced by the gap metric and by the
operator norm on the space of bounded adjointable operators are different. This follows
from the fact that the metric which is given by the usual norm of bounded operator is
complete while the gap metric on the set of bounded adjointable operators is not complete.

LEMMA 3.6. Let E be a Hilbert A-module and t ∈ R(E). Then t̂ : Dom(t̂) =

Dom(t) × Dom(t∗) ⊆ E ⊕ E −→ E ⊕ E, t̂ =

(
0 t∗

t 0

)
is a selfadjoint regular

operator on the Hilbert A-module E⊕ E.

Proof. t and t∗ are densely defined closed operators and so is t̂. For each
(x, y), (u, v) ∈ Dom(t̂) we have

〈t̂(x, y), (u, v)〉 = 〈(t∗y, tx), (u, v)〉 = 〈t∗y, u〉+ 〈tx, v〉 = 〈y, t∗∗u〉+ 〈x, t∗v〉
= 〈x, t∗v〉+ 〈y, tu〉 = 〈(x, y), (t∗v, tu)〉.

Consequently, Dom(t̂) = Dom(t̂∗) and t̂∗ = t̂. The operator t is regular and so is
t∗, therefore the range of the operator

1 + t̂∗ t̂ = 1 + t̂2 =

(
1 + t∗t 0

0 1 + tt∗

)
is dense in E⊕ E. That is, t̂ is a selfadjoint regular operator on E⊕ E.

Let E be a Hilbert A-module, then the operators of the sets

SR(E⊕E)odd :=
{(

0 t∗

t 0

)
: t∈R(E)

}
, SB(E⊕E)odd :=

{(
0 T∗

T 0

)
: T∈B(E)

}
,

are called odd unbounded regular and odd bounded adjointable operators on the Z/2-
graded Hilbert A-module E ⊕ E, respectively. Odd operators appear in Kas-
parov’s KK-theory.

PROPOSITION 3.7. The map which associates to a regular operator t ∈ R(E) the

selfadjoint operator t̂ =
(

0 t∗

t 0

)
is an isometric map from R(E) onto SR(E⊕ E)odd

with respect to the gap metric, i.e. d(t, s) = d(t̂, ŝ), for all t, s ∈ R(E).

Proof. Clearly the map t→ t̂ is a bijection from R(E) onto SR(E⊕ E)odd. So
it is enough to check that the map preserves the gap distance. For this end we
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have

1 + t̂∗ t̂ = 1 + t̂ 2 =

(
1 + t∗t 0

0 1 + tt∗

)
,

(1 + t̂ 2)−1 =

(
(1 + t∗t)−1 0

0 (1 + tt∗)−1

)
,

t̂(1 + t̂ 2)−1 =

(
0 t∗(1 + tt∗)−1

t(1 + t∗t)−1 0

)
.

Therefore we have ‖Rt̂ − Rŝ‖ = sup{‖Rt − Rs‖, ‖Rt∗ − Rs∗‖} and ‖tRt − sRs‖ =
‖t̂Rt̂ − ŝRŝ‖, for t, s ∈ R(E). We get

d(t, s) = sup{‖Rt − Rs‖, ‖Rt∗ − Rs∗‖, ‖tRt − sRs‖}
= sup{‖Rt̂ − Rŝ‖, ‖t̂Rt̂ − ŝRŝ‖} = d(t̂, ŝ).

COROLLARY 3.8. Let E be a Hilbert C∗-module, then SB(E⊕ E)odd is dense in
SR(E⊕ E)odd with respect to the gap topology.

By an arbitrary C∗-algebra of compact operators A we mean that A = c0 −⊕
i∈I
K(Hi), i.e.A is a c0-direct sum of elementary C∗-algebrasK(Hi) of all compact

operators acting on Hilbert spaces Hi, i ∈ I cf. Theorem 1.4.5 of [2]. Hilbert C∗-
modules over C∗-algebras of compact operators are generally neither self-dual
nor countably generated. However, they share many of their properties with
Hilbert spaces. Generic properties of these Hilbert C∗-modules have been studied
by several authors, e.g. [1], [5], [11], [12], [13], [22], [23], [24]. Let A be a C∗-
algebra, then A is an arbitrary C∗-algebra of compact operators if and only if
for every pair of Hilbert A-modules E, F, every densely defined closed operator
t : Dom(t) ⊆ E→ F is regular (see [11]).

The following results are borrowed from [5], [13]. Let A = c0 −
⊕
i∈I
K(Hi)

be a C∗-algebra of compact operators and E be a Hilbert A-module. For each
i ∈ I consider the associated submodule Ei = span{K(Hi)E}. Obviously, {Ei} is
a family of pairwise orthogonal closed submodule of E and it is well known (cf.
[24]) that E admits a decomposition into the direct orthogonal sum E =

⊕
i∈I

Ei as

well as E⊕ E =
⊕
i∈I

(Ei ⊕ Ei). Suppose t is a densely defined closed operator on E

and ti := t|Dom(t)∩Ei
, then G(t) =

⊕
i∈I

G(ti). This enable us to reduce our attention

to the case of a Hilbert C∗-module over an elementary C∗-algebra K(H). Let
e ∈ K(H) be an arbitrary minimal projection and E be a K(H)-module. Suppose
Ee := eE = {ex : x ∈ E}, then Ee is a Hilbert space with respect to the inner
product (·, ·) = trace(〈·, ·〉), which is introduced in [5]. Let B(E) and B(Ee) be
C∗-algebras of all bounded adjointable operators on Hilbert K(H)-module E and
Hilbert space Ee, respectively. Bakić and Guljaš have shown that the map Ψ :
B(E)→ B(Ee), Ψ(T) = T|Ee is a ∗-isomorphism of C∗-algebras ([5], Theorem 5).
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Suppose R(E) and R(Ee) are the spaces of densely defined closed operators
on Hilbert K(H)-module E and Hilbert space Ee, respectively. Then ψ : R(E) →
R(Ee), ψ(t) = t|Ee is a bijection operation preserving map of R(E) onto R(Ee), cf.
Theorem 2.4 of [13]. By the restriction t|Ee of an operator t ∈ R(E) we mean the re-
striction of t onto the subspace eDom(t), where eDom(t)⊆Ee and eDom(t)= Ee.

THEOREM 3.9. Let E be a Hilbert K(H)-module and e ∈ K(H) be any min-
imal projection. We equip R(E) and R(Ee) with the gap metric, then ψ : R(E) →
R(Ee), ψ(t) = te is an isometric operation preserving map of R(E) onto R(Ee)

Proof. ψ is a bijection operation preserving map of R(E) onto R(Ee) by The-
orem 2.4 of [13]. Let t be a regular operator on E and te := t|Ee , then (Rt)|Ee and
(tRt)|Ee are bounded operators on the Hilbert space Ee and (Rt)|Ee = Rte and
(tRt)|Ee = teRte . For t, s ∈ R(E), the equalities ‖Rt − Rs‖ = ‖Rte − Rse‖, ‖Rt∗ −
Rs∗‖ = ‖Rt∗e − Rs∗e ‖, ‖tRt − sRs‖ = ‖teRte − seRse‖ hold by utilizing Theorem 5
of [5]. Therefore d(t, s) = d(ψ(t), ψ(s)) as we required.

The above theorem lifts the properties of the gap metric from the space of
densely defined closed operators on Hilbert spaces to the space of densely de-
fined closed operators on Hilbert C∗-modules over C∗-algebras of compact oper-
ators.

4. CONNECTIVITY

Unbounded Fredholm operators has been studied systematically in the pa-
pers [6], [7], [15] and the book [16]. In this section we use Theorem 3.9 to classify
the path-components of the set of regular Fredholm operators in Hilbert K(H)-
modules.

Suppose E is a Hilbert A-module. Recall that a bounded operator T ∈ B(E)
is said to be Fredholm (or A-Fredholm) if there exists G ∈ B(E) such that GT =
TG = 1 mod K(E). Consider a regular operator t on E. An adjointable bounded
operator G ∈ B(E) is called a pseudo left inverse of t if Gt is closable and its closure
Gt satisfies Gt ∈ B(E) and Gt = 1 mod K(E). Analogously G is called a pseudo
right inverse if tG is closable and its closure tG satisfies tG ∈ B(E) and tG =
1 mod K(E). The regular operator t is called Fredholm (or A-Fredholm), if it
has a pseudo left as well as a pseudo right inverse. The regular operator t is
Fredholm if and only if Ft is, cf. [15], [22]. For the general theory of bounded and
unbounded Fredholm operators on Hilbert C∗-modules we refer to [14], [15], [25].
Let FredR(E) denote the space of regular Fredholm operators on E, equipped
with the gap topology, and let FredSR(E) denote the subspace consisting of the
set selfadjoint regular Fredholm operators.

Every two operators in FredR(E) are called homotopic if they are in the same
path-connected component of FredR(E). It is natural to ask for a characterization
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of the path-components of FredR(E). This question was completely answered by
Cordes and Labrousse in [7] in the case of Hilbert spaces.

THEOREM 4.1. Let H be a Hilbert space of infinite dimension. Every two operators
in FredR(H) have the same index if and only if they are homotopic, i.e. they can be
connected by a continuous path in FredR(H).

Suppose E is a Hilbert K(H)-module and t is a regular operator on E. Then
t is Fredholm if and only if the range of t is a closed submodule of E and both
dimKKer(t), dimKKer(t∗) are finite. In this case we can define an index of t for-
mally, i.e. we can define:

indt = dimKKer(t)− dimKKer(t∗).

We refer to the publications [5], [20], [22] for the proof of the preceding results.
More information about orthonormal Hilbert bases can be found in [1], [10]. Ap-
ply Theorems 3.9, 4.1 to get the following fact.

COROLLARY 4.2. Let E is a Hilbert K(H)-module. Every two operators in
FredR(E) have the same index if and only if they are homotopic, i.e. they can be con-
nected by a continuous path in FredR(E).

COROLLARY 4.3. Suppose E is a Hilbert K(H)-module. The space FredSR(E)
is path-connected and the space FredR(E) is not path-connected.

For the proof, just recall that any element of FredSR(E) has zero index and
then apply Corollary 4.2.

We close the paper with the notification that the previous corollary may
fail for some other C∗-algebra of coefficients. To find an example one can use a
result due to Joachim ([15], Theorem 3.5). Indeed, Joachim’s theorem is a remark-
able generalization of a result due to Atiyah and Singer [3] which describes the
space of regular (respectively, selfadjoint regular) Fredholm operators on stan-
dard Hilbert C∗-modules over unital C∗-algebra of coefficients. Mingo also gave
a description of path-components in the set of bounded Fredholm operators on
standard Hilbert modules [20].
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