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ABSTRACT. A finite von Neumann algebraM with a faithful normal trace τ
has Haagerup’s approximation property if there exists a pointwise deforma-
tion of the identity in 2-norm by subtracial compact completely positive maps.
In this paper we prove that the subtraciality condition can be removed. This
enables us to provide a description of Haagerup’s approximation property in
terms of correspondences. We also show that ifN ⊂M is an amenable inclu-
sion of finite von Neumann algebras and N has Haagerup’s approximation
property, thenM also has Haagerup’s approximation property.
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INTRODUCTION

The objective of this paper is to solve two problems regarding Haagerup’s
approximation property posed by Sorin Popa in [13]. Specifically, Theorem 3.2
answers a problem posed in Remark 2.6 of [13], while Theorem 5.1 answers a
problem stated at the end of Remark 3.5.2◦ in [13].

A finite von Neumann algebra M with a faithful normal trace τ has
Haagerup’s approximation property if there exists a net (ϕα)α∈Λ of normal com-
pletely positive maps fromM toM that satisfy the subtracial condition τ ◦ ϕα 6
τ, the extension operators Tϕα are bounded compact operators on L2(M, τ), and
pointwise approximate the identity map in the trace-norm, i.e., lim

α
‖ϕα(x) −

x‖2 = 0 for all x ∈ M. In this paper we will prove that the subtracial condition
can in fact be removed from the above definition. Precisely, we will prove the fol-
lowing result (Theorem 2.2): LetM be a finite von Neumann algebra with a faith-
ful normal trace τ and N a von Neumann subalgebra. Denote by 〈M, eN 〉 the
associated basic construction semifinite von Neumann algebra and J (〈M, eN 〉)
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its compact ideal space. Suppose {ϕα}α∈Λ is a net of normal completely posi-
tive N -bimodular maps from M to M such that lim

α
‖ϕα(x) − x‖2 = 0 for all

x ∈ M, and the extension operators Tϕα are bounded operators in J (〈M, eN 〉)
for every α ∈ Λ. Then there exists a net {ψβ}β∈Γ of normal completely positive
N -bimodular maps fromM toM satisfying:

(i) ψβ(1) = 1 and τ ◦ ψβ = τ , ∀β ∈ Γ;
(ii) Tψβ

∈ J (〈M, eN 〉), ∀β ∈ Γ;
(iii) lim

β
‖ψβ(x)− x‖2 = 0, ∀x ∈ M.

As the first application of Theorem 2.2, we provide a description of
Haagerup’s approximation property in the language of correspondences [6], [12].
We then prove that a finite von Neumann algebraM has Haagerup’s approxima-
tion property if and only if the identity correspondence ofM is weakly contained
in some C0-correspondence ofM (see Section 4). We also show that ifM is a fi-
nite von Neumann algebra with Haagerup’s approximation property, then the
set of classes of C0-correspondences ofM is dense in Corr(M), the space of all
classes of correspondences ofM.

In [11], Jolissaint proved that if the basic construction 〈M, eN 〉 is a finite
von Neumann algebra and N has Haagerup’s approximation property, thenM
also has Haagerup’s approximation property. In [1], Anantharaman-Delaroche
proved that if LH ⊂ LG is an inclusion of group von Neumann algebras which
is amenable in the sense of Popa [13] and LH has Haagerup’s approximation
property, then LG also has Haagerup’s approximation property. As the second
application of Theorem 2.2, we prove the following general result: If N ⊂ M is
an amenable inclusion of finite von Neumann algebras in the sense of Popa [12]
and N has Haagerup’s approximation property, then M also has Haagerup’s
approximation property.

1. PRELIMINARIES

1.1. THE HAAGERUP PROPERTY FOR GROUPS. Recall that a locally compact group
G has the Haagerup property if there is a sequence of continuous normalized pos-
itive definite functions vanishing at infinity on G that converges to 1 uniformly
on compact subsets of G. In [9], Haagerup established the seminal result that
free groups have the Haagerup property. Now we know that the class of groups
having the Haagerup property is quite large (see [4]. Choda proved in [5] that a
discrete group has the Haagerup property if and only if its associated group von
Neumann algebra has Haagerup’s approximation property.

1.2. EXTENSION OF COMPLETELY POSITIVE MAPS TO HILBERT SPACE OPERATORS.
LetM be a finite von Neumann algebra with a faithful normal trace τ, and ΩM
be the standard trace vector in L2(M, τ) corresponding to 1 ∈ M. For x, y ∈ M,
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〈xΩM, yΩM〉τ is defined to be τ(y∗x) and ‖x‖2,τ = τ(x∗x)1/2. When no confu-
sion arises, we simply write Ω instead of ΩM, and ‖x‖2 instead of ‖x‖2,τ .

Suppose ϕ is a normal completely positive map fromM toM. Recall that if
there is a c > 0 such that ‖ϕ(x)‖2 6 c‖x‖2 for all x ∈ M, then there is a (unique)
bounded operator Tϕ on L2(M, τ) such that

Tϕ(xΩ) = ϕ(x)Ω ∀x ∈ M,

where Tϕ is called the extension operator of ϕ. If τ ◦ ϕ 6 c0τ for some c0 > 0, then
‖ϕ(x)‖2 6 c0‖ϕ(1)‖1/2 ‖x‖2 (see Lemma 1.2.1 of [13]) and so there is a bounded
operator Tϕ on L2(M, τ) such that Tϕ(xΩ) = ϕ(x)Ω for all x ∈ M.

1.3. THE BASIC CONSTRUCTION AND ITS COMPACT IDEAL SPACE. LetM be a fi-
nite von Neumann algebra with a faithful normal trace τ, andN a von Neumann
subalgebra ofM. The basic construction 〈M, eN 〉 is the von Neumann algebra on
L2(M, τ) generated byM and the orthogonal projection eN from L2(M, τ) onto
L2(N , τ). The basic construction 〈M, eN 〉 is a semi-finite von Neumann algebra
with a faithful normal semi-finite tracial weight Tr such that

Tr(xeN y) = τ(xy), ∀x, y ∈ M.

Recall that 〈M, eN 〉 = JN ′ J, where J is the conjugate linear isometry defined
by J(xΩ) = x∗Ω, ∀x ∈ M. The compact ideal space of 〈M, eN 〉, denoted
by J (〈M, eN 〉), is the norm-closed two-sided ideal generated by finite projec-
tions of 〈M, eN 〉. Since eN is a finite projection in 〈M, eN 〉, it follows that eN ∈
J (〈M, eN 〉). We refer the reader to [10], [13] for more details on the basic con-
struction and its compact ideal space.

1.4. CORRESPONDENCES. Let N and M be von Neumann algebras. A corre-
spondence between N and M is a Hilbert space H with a pair of commuting
normal representations πN and πM◦ of N andM◦ (the opposite algebra ofM)
on H, respectively. Usually, the triple (H, πN , πM◦) will be denoted by H. For
x ∈ N , y ∈ M and ξ ∈ H, we shall write xξy instead of πN (x)πM◦(y)ξ. For two
vectors ξ, η ∈ H, we denote by 〈ξ, η〉H the inner product of vectors ξ and η. If
N =M, then we simply sayH is a correspondence ofM.

Two correspondences H,K between N and M are equivalent, denoted by
H ∼= K, if they are unitarily equivalent as N −M bimodules (see [12]).

1.5. CORRESPONDENCES ASSOCIATED TO COMPLETELY POSITIVE MAPS. LetM
be a finite von Neumann algebra with a faithful normal trace τ, and ϕ be a normal
completely positive map fromM toM. Define on the linear spaceH0 =M⊗M
the sesquilinear form

〈x1 ⊗ y1, x2 ⊗ y2〉ϕ = τ(ϕ(x∗2 x1)y1y∗2), ∀x1, x2, y1, y2 ∈ M.

It is easy to check that the complete positivity of ϕ is equivalent to the positivity
of 〈·, ·〉ϕ. Let Hϕ be the completion of H0/ ∼, where ∼ is the equivalence mod-
ulo the null space of 〈·, ·〉ϕ in H0. Then Hϕ is a correspondence of M and the
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bimodule structure is given by x(x1 ⊗ y1)y = xx1 ⊗ y1y (see [12]). We callHϕ the
correspondence ofM associated to ϕ.

The correspondence Hid associated to the identity operator onM is called
the identity correspondence ofM. It is easy to see thatHid and L2(M, τ) are equiv-
alent as correspondences ofM. The correspondence Hco associated to the rank
one normal completely positive map ϕ(x) = τ(x)1 is called the coarse correspon-
dence of M. If N is a von Neumann subalgebra of M and EN is the unique τ
-preserving normal conditional expectation from M to N , then the correspon-
dence ofM associated to EN is denoted byHN instead ofHEN .

1.6. LEFT τ-BOUNDED VECTORS. LetN ,M be finite von Neumann algebras with
faithful normal traces τN and τM, respectively, and H be a correspondence be-
tween N and M. Let ξ ∈ H be a vector. Recall that ξ is a left (or right) τ-
bounded vector if there is a positive number K such that 〈ξ, ξx〉H 6 KτM(x) (or
〈xξ, ξ〉H 6 KτN (x), respectively) for all x ∈ N+ (or x ∈ M+, respectively).
A vector ξ is called a τ-bounded vector if it is both left τ-bounded and right τ-
bounded. The set of τ-bounded vectors is a dense vector subspace of H (see
Lemma 1.2.2 of [12]).

1.7. COEFFICIENTS. LetN ,M be finite von Neumann algebras with faithful nor-
mal traces τN and τM, respectively, and H be a correspondence between N
and M. For a left τ-bounded vector ξ, we can define a bounded operator T :
L2(M, τM) → H by T(yΩM) = ξy for every y ∈ M. Let Φξ(x) = T∗πN (x)T,
where πN (x) is the left action of x ∈ N on H. Then Φξ is a normal completely
positive map from N toM (see 1.2.1 of [12]), and Φξ is called the coefficient cor-
responding to ξ, which is uniquely determined by

(1.1) 〈Φξ(x)yΩM, zΩM〉τM = 〈xξy, ξz〉H

for all x ∈ N and y, z ∈ M. Therefore,

Φξ(x) =
d〈xξ·, ξ〉H

dτM
, i.e., τM(Φξ(x)y) = 〈xξy, ξ〉H, ∀x ∈ N , y ∈ M.

If N =M, τN = τM, and x > 0,

τM(Φξ(x)) = 〈Φξ(x)ΩM, ΩM〉τ = 〈xξ, ξ〉H 6 KτM(x).

By Lemma 1.2.1 of [13], Φξ can be extended to a bounded operator TΦξ
from

L2(M, τ) to L2(M, τ).
It follows by a maximality argument that H is a direct sum of cyclic corre-

spondences associated to coefficients as above.

1.8. COMPOSITION OF CORRESPONDENCES. Suppose thatM,N ,P are finite von
Neumann algebras, and τP is a faithful normal trace on P . LetH be a correspon-
dence between N and P and K be a correspondence between P andM. Let H′
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and K′ be vector subspaces of the τ-bounded vectors in H and K, respectively.
For ξ1, ξ2 ∈ H′ and η1, η2 ∈ K′,

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1 p, ξ2〉H = 〈qη1, η2〉K = τP (qp)

defines an inner product onH′ ⊗K′, where p and q are Radon–Nikodym deriva-
tives of normal linear forms P 3 z → 〈zη1, η2〉K and P 3 z → 〈ξ1z, ξ2〉H with
respect to the trace τP , respectively (see [12]). The composition correspondence (or
the tensor product correspondence) H⊗PK is the completion of H′ ⊗K′/ ∼, where
∼ is the equivalence modulo the null space of 〈·, ·〉 in H′ ⊗K′, and the N −M
bimodule structure is given by x(ξ ⊗ η)y = xξ ⊗ ηy. It is easy to verify that the
composition of correspondences is associative.

1.9. INDUCED CORRESPONDENCES. We recall Popa’s notion of induced corre-
spondences. LetM be a finite von Neumann algebra with a faithful normal trace
τ and N a von Neumann subalgebra. If H is a correspondence of N , then the
induced correspondence by H from N up toM is IndMN (H) = L2(M, τ)⊗NH⊗N
L2(M, τ), where the first L2(M) is regarded as a left M and right N module
and the second L2(M) is regarded as a left N and rightM module. If H is the
identity correspondence of N , then IndMN (H) is the correspondence HN of M
(see Proposition 1.3.6 of [12]).

1.10. RELATIVE AMENABILITY. LetH,K be two correspondences betweenN and
M. We say that H is weakly contained in K, if for every ε > 0, and finite subsets
E ⊆ N , F ⊆M, {ξ1, . . . , ξn} ⊆ H, there exists {η1, . . . , ηn} ⊆ K such that

|〈xξiy, ξ j〉H − 〈xηiy, ηj〉K| < ε,

for all x ∈ E, y ∈ F and 1 6 i, j 6 n. If H is weakly contained in K, we will
denote this by H ≺ K. We refer the reader to [7], [12] for more details on weak
containment and topology on correspondences.

Let M be a finite von Neumann algebra with a faithful normal trace τ,
and N a von Neumann subalgebra. Recall that M is relative amenable to N if
Hid ≺ HN . The algebraM is relative amenable to N if and only if there exists a
conditional expectation from the basic construction 〈M, eN 〉 ontoM (see [12]).

2. REMOVAL OF THE SUBTRACIAL CONDITION

The following definition is given by Popa in [13].

DEFINITION 2.1. LetM be a finite von Neumann algebra andN a von Neu-
mann subalgebra. M has Haagerup’s approximation property relative to N if there
exists a normal faithful trace τ on M and a net of normal completely positive
N -bimodular maps {ϕα}α∈Λ fromM toM satisfying the following conditions:

(i) τ ◦ ϕα 6 τ, ∀α ∈ Λ;
(ii) Tϕα ∈ J (〈M, eN 〉), ∀α ∈ Λ;
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(iii) lim
α
‖ϕα(x)− x‖2 = 0, ∀x ∈ M.

In this section we will prove the following theorem.

THEOREM 2.2. Let M be a finite von Neumann algebra with a faithful normal
trace τ and N a von Neumann subalgebra. Suppose {ϕα}α∈Λ is a net of normal com-
pletely positive N -bimodular maps from M to M satisfying the conditions (ii) and
(iii) as in Definition 2.1, i.e. lim

α
‖ϕα(x) − x‖2 = 0 for all x ∈ M and the map

xΩ → ϕα(x)Ω extends to a bounded operator Tϕα in J (〈M, eN 〉) for every α ∈ Λ.
Then there exists a net {ψβ}β∈Γ of normal completely positive N -bimodular maps from
M toM satisfying:

(i) ψβ(1) = 1 and τ ◦ ψβ = τ , ∀β ∈ Γ;
(ii) Tψβ

∈ J (〈M, eN 〉), ∀β ∈ Γ;
(iii) lim

β
‖ψβ(x)− x‖2 = 0, ∀x ∈ M.

In particular,M has Haagerup’s approximation property relative to N .

The proof of Theorem 2.2 uses Lemma 1.1.2 in [13], Day’s trick and Propo-
sition 2.1 of [11]. We begin by recalling 2◦ and 3◦ of Lemma 1.1.2 in [13], here
labelled Lemma 2.3 and Lemma 2.4, for the sake of completeness.

LEMMA 2.3. Let ϕ be a normal completely positive N -bimodular map fromM to
M. Let a = 1 ∨ ϕ(1) and ϕ′(·) = a−1/2 ϕ(·)a−1/2. Then ϕ′ is a normal completely
positive N -bimodular map fromM toM and satisfies ϕ′(1) 6 1, τ ◦ ϕ′ 6 τ ◦ ϕ and
the estimate:

‖ϕ′(x)− x‖2 6 ‖ϕ(x)− x‖2 + 2‖ϕ(1)− 1‖1/2
2 · ‖x‖, ∀x ∈ M.

LEMMA 2.4. Let ϕ be a normal completely positive N -bimodular map from M
toM such that ϕ(1) 6 1. Let b = 1 ∨ (dτ ◦ ϕ/dτ) and ϕ′(·) = ϕ(b−1/2 · b−1/2).
Then ϕ′ is a normal completely positive N -bimodular map fromM toM and satisfies
ϕ′(1) 6 ϕ(1) 6 1, τ ◦ ϕ′ 6 τ and the estimate:

‖ϕ′(x)− x‖2
2 6 2‖ϕ(x)− x‖2 + 5‖τ ◦ ϕ− τ‖1/2 · ‖x‖, ∀x ∈ M.

LEMMA 2.5. Let ϕ be a normal completely positive N -bimodular map from M
to M such that ϕ(1) 6 1 and τ ◦ ϕ 6 τ. Let h = ϕ(1) and k = dτ ◦ ϕ/dτ. Then
0 6 h, k 6 1, h, k ∈ N ′ ∩M, and EN (h) = EN (k).

Proof. It is easy to see that 0 6 h, k 6 1 and h, k ∈ M. Since ϕ is N -
bimodular,

bh = bϕ(1) = ϕ(b) = ϕ(1)b = hb, ∀b ∈ N .

Note that for all x ∈ M and b ∈ N ,

τ(x(bk− kb)) = τ(xbk)− τ(bxk) = τ(ϕ(xb))− τ(ϕ(bx))

= τ(ϕ(x)b)− τ(bϕ(x)) = 0;
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τ(EN (h)x) = τ(hEN (x)) = τ(ϕ(1)EN (x)) = τ(ϕ(EN (x)))

= τ(EN (x)k) = τ(xEN (k)) = τ(EN (k)x).

Hence, bk = kb and EN (h) = EN (k).

LEMMA 2.6. Let ϕ be a normal completely positive N -bimodular map from M
to M such that ϕ(1) 6 1 − ε for some ε > 0 and τ ◦ ϕ 6 τ. Let h = ϕ(1) and
k = dτ ◦ ϕ/dτ. Then there exist positive operators a, b ∈ N ′ ∩M such that

1− h = aEN (b) and 1− k = EN (a)b.

Proof. Let b = 1− k. By Lemma 2.5, b is a positive operator in N ′ ∩M and

EN (b) = 1− EN (k) = 1− EN (h) = EN (1− h).

Since h 6 1− ε, 1− h > ε and therefore EN (1− h) > ε. Hence (EN (1− h))−1

exists. For all b ∈ N , by Lemma 2.5,

bEN (1− h) = EN (b(1− h)) = EN ((1− h)b) = EN (1− h)b.

Hence, EN (1 − h) ∈ N ∩ N ′ and (EN (1 − h))−1 ∈ N ∩ N ′. So a = (1 −
h)(EN (1− h))−1 is a positive operator in N ′ ∩M. Since EN (b) = EN (1− h),
it is routine to check that 1− h = aEN (b) and 1− k = EN (a)b.

Proof of Theorem 2.2. Let aα = 1 ∨ ϕα(1) and ϕ′α(·) = a−1/2
α ϕα(·)a−1/2

α . By
Lemma 2.3, {ϕ′α}α satisfy the condition (iii) in Theorem 2.2 and ϕ′α(1) 6 1 for
every α ∈ Λ. By Lemma 2.5, Tϕ′α = a−1/2

α Ja−1/2
α JTϕα ∈ 〈M, eN 〉. Since Tϕα ∈

J (〈M, eN 〉), Tϕ′α ∈ J (〈M, eN 〉) for every α ∈ Λ (see Lemma 1.2.1 of [13]).
Let fα = τ ◦ ϕ′α. Then { fα}α∈Λ ⊆ M∗. Since lim

α
‖ϕ′α(x) − x‖2,τ = 0 for

every x inM, lim
α

fα(x) = τ(x) for every x ∈ M. SinceM is the dual space of

M∗ , this implies that lim
α

fα = τ in the weak topology onM∗. Since the weak

closure and the strong closure of a convex set inM∗ are the same, τ is in the norm

closure of the convex hull of { fα}α∈Λ. Note that τ ◦
( n

∑
i=1

λαi ϕ
′
αi

)
=

n
∑

i=1
λαi fαi .

By taking finitely many convex combinations of {ϕ′α}α∈Λ, we can see that there
exists a net {ψ′β}β∈Γ of completely positive N -bimodular maps from M to M
satisfying the conditions (ii) and (iii) in Theorem 2.2, ψ′β(1) 6 1 for all β ∈ Γ and
the following condition: lim

β
‖g′β − τ‖1 = 0 for g′β = τ ◦ ψ′β.

Let b′β = 1 ∨ (dg′β/dτ) and ψ′′β(·) = ψ′β((b
′
β)
−1/2 · (b′β)−1/2). By Lemma 2.4,

{ψ′′β}β∈Γ is a net of completely positive N -bimodular maps fromM toM, and
satisfies (iii) in Theorem 2.2, ψ′′β(1) 6 1 and τ ◦ ψ′′β 6 τ for all β ∈ Γ. By

Lemma 2.5, Tϕ′′β
= Tψ′β

b′β
−1/2 Jb′β

−1/2 J ∈ 〈M, eN 〉. Since Tψ′β
∈ J (〈M, eN 〉),

Tψ′′β
∈ J (〈M, eN 〉) for every β ∈ Γ.
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We may further assume that ψ′′β(1) 6 1 − εβ, εβ > 0. Otherwise we can
choose a net of positive numbers λβ with 0 < λβ < 1 and lim

β
λβ = 1 and consider

λβ · ψ′′β . Let hβ = ψ′′β(1) and kβ = dτ ◦ ψ′′β /dτ. By Lemma 2.6, there exist positive
operators aβ, bβ inN ′ ∩M such that 1− hβ = aβEN (bβ) and 1− kβ = EN (aβ)bβ.

The rest is essentially Jolissaint’s trick from the proof of Proposition 2.1
in [11]. For every β ∈ Γ, define ψβ : M→M by

ψβ(x) = ψ′′β(x) + aβEN (b
1/2
β xb1/2

β ).

Clearly, every ψβ is a normal completely positive N -bimodular map. We have

ψβ(1) = ψ′′β(1) + aβEN (bβ) = hβ + 1− hβ = 1;

τ(ψβ(x)) = τ(ψ′′β(x)) + τ(aβEN (b
1/2
β xb1/2

β ))

= τ(xkβ) + τ(EN (aβ)b
1/2
β xb1/2

β )

= τ(xkβ) + τ(EN (aβ)bβx) = τ(kβx) + τ((1− kβ)x) = τ(x).

This proves that {ψβ}β∈Γ satisfies the condition (i) of Theorem 2.2.
Note that Tψβ

= Tψ′′β
+ aβeN b1/2

β Jb1/2
β J. Since eN ∈ J (〈M, eN 〉), Tψβ

∈
J (〈M, eN 〉) for every β ∈ Γ. This proves that {ψβ}β∈Γ satisfies the condition (ii)
of Theorem 2.2.

Finally, for every positive operator x inM,

ψβ(x)− ψ′′β(x) = aβEN (b
1/2
β xb1/2

β ) 6 ‖x‖aβEN (bβ)

= ‖x‖(1− hβ) = ‖x‖(1− ψ′′β(1)),

which shows that {ψβ}β∈Γ satisfies the condition (iii) of Theorem 2.2.

Paul Jolissaint has pointed out that a modification of the proof of Proposi-
tion 2.4 of [11] using Proposition 2.4.2 of [13] yields that the relative Haagerup
property considered by Popa in Definition 2.1 of [13] is independent of the choice
of faithful normal trace on M. This observation and the proof of the argument
above establish that the notion of “relative Haagerup property" considered by
Boca in [3] is equivalent to the notion of relative Haagerup property considered
by Popa in Definition 2.1 of [13].

3. C0-CORRESPONDENCES

We now show that Theorem 2.2 enables us to interpret Haagerup’s ap-
proximation property in the framework of Connes’s theory of correspondences.
Throughout this sectionM is a finite von Neumann algebra with a faithful nor-
mal trace τ andH is a correspondence ofM.
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DEFINITION 3.1. We say that H is a C0-correspondence ofM with respect
to τ if H ∼=

⊕
α∈Λ
Hϕα , where each Hϕα is the correspondence ofM associated to a

completely positive map ϕα : M → M such that the extension operator Tϕα of
ϕα is a compact operator in B(L2(M, τ)).

REMARK 3.2. Paul Jolissaint has pointed out that C0-correspondences in-
deed depend on the choice of trace. In particular, given a c.p. map ϕ such that
Tϕ,τ : xΩτ → ϕ(x)Ωτ is bounded, the map Tϕ,τ′ taken with respect to another
trace τ′ may not be bounded. For instance, let φ ∈ M∗ be a normal state, and de-
fine ϕ(x) = φ(x)1. Then it is straightforward to show that Tϕ,τ is bounded if and
only if τ((dφ/dτ)2) < ∞. For this reason, only if the trace in question is clear we
will write “H is a C0-correspondence of M” instead of “H is a C0-correspondence
of M with respect to τ”.

Note that with a given trace τ, the coarse correspondence Hco of M is an
example of a C0-correspondence with respect to τ.

REMARK 3.3. Let G be a discrete group, and π be a unitary representation
of G on a Hilbert space H. Then π is unitarily equivalent to a direct sum of
cyclic representations π fα

of G, where each π fα
is the representation associated

to a positive definite function fα on G. Recall that the representation π is a C0-
representation if all matrix coefficients ωξ,η(g) = 〈π(g)ξ, η〉 belong to C0(G). It
is easy to check that π is a C0-representation if and only if every fα ∈ C0(G).
By [9], [5], for every fα, there is a unique normal completely positive map ϕ fα

from the group von Neumann algebra L(G) to itself satisfying ϕ fα
(Lg) = fα(g)Lg,

where Lg is the unitary operator associated to g. By Lemma 1 and Lemma 2
of [5], fα is in C0(G) if and only if the extension operator Tϕ fα

of ϕ fα
is a compact

operator in B(L2(G)). Hence, the correspondenceHϕ fα
of L(G) associated to ϕ fα

is a C0-correspondence of M. So our definition of C0-correspondences of finite
von Neumann algebras is a natural analogue of the notion of C0-representations
of groups.

The following theorem is the main result of this section.

THEOREM 3.4. A finite von Neumann algebraM has Haagerup’s approximation
property if and only if the identity correspondence of M is weakly contained in some
C0-correspondence ofM with respect to some trace τ.

To prove the above theorem, we need the following lemmas.

LEMMA 3.5. Let ϕ be a normal completely positive map fromM toM such that

the extension operator Tϕ of ϕ is a compact operator in B(L2(M, τ)). Let ξ =
n
∑

i=1
ai⊗ bi

be a vector in the correspondence Hϕ ofM associated to ϕ . Then ξ is a left τ-bounded
vector and the coefficient Φξ corresponding to ξ is a normal completely positive map from
M toM such that TΦξ

is a compact operator in B(L2(M, τ)).
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Proof. To see ξ is a left τ-bounded vector, we may assume that ξ = a ⊗ b.
Then

‖ξx‖2
ϕ = 〈ξx, ξx〉ϕ = 〈a⊗ (bx), a⊗ (bx)〉ϕ = τ(ϕ(a∗a)bxx∗b∗)

= τ(x∗(b∗ϕ(a∗a)b)x) 6 ‖b∗ϕ(a∗a)b‖τ(x∗x) = ‖b∗ϕ(a∗a)b‖‖x‖2
2.

Hence Φξ is a normal completely positive map fromM toM. For every x, y, z ∈
M, by equation (1.1) in Section 1.7,

〈Φξ(x)yΩ, zΩ〉τ = 〈xξy, ξz〉ϕ =
n

∑
i,j=1
〈xaj ⊗ bjy, ai ⊗ biz〉ϕ

=
n

∑
i,j=1

τ(ϕ(a∗i xaj)bjyz∗b∗i ) =
〈 n

∑
i,j=1

b∗i ϕ(a∗i xaj)bjyΩ, zΩ
〉

τ
.

This implies that Φξ(x) =
n
∑

i,j=1
b∗i ϕ(a∗i xaj)bj. Hence, Φξ can be extended to a

bounded operator from L2(M, τ) to L2(M, τ) such that

TΦξ
=

n

∑
i,j=1

b∗i Jb∗j JTϕa∗i Ja∗j J.

Since Tϕ is a compact operator, TΦξ
is also a compact operator.

LEMMA 3.6. SupposeH =
⊕

α∈Λ
Hϕα is a correspondence ofM such that each Tϕα

is a compact operator in B(L2(M, τ)). Let F be the convex hull of the set of coefficients{
Φξ : ξ =

n
∑

i=1
ai ⊗ bi ∈ Hϕα for some α ∈ Λ

}
. Then F is a convex cone and for every

b ∈ M and Φ ∈ F , the completely positive map b∗Φ(·)b belongs to F . Furthermore,
TΦ is a compact operator in B(L2(M, τ)) for all Φ ∈ F .

Proof. It is obvious that F is a convex cone. To prove the rest, we may
assume that Φ = Φξ is the coefficient corresponding to ξ ∈ Hϕ as in Lemma 3.5.

Let η = ξb =
n
∑

i=1
ai ⊗ bib ∈ H. By Lemma 3.5, η is a left τ-bounded vector. Let Φη

be the coefficient corresponding to η. By equation (1.1) in Section 1.7,

〈Φη(x)yΩ, zΩ〉τ = 〈xξby, ξbz〉' = 〈Φ(x)byΩ, bzΩ〉τ = 〈b∗Φ(x)byΩ, zΩ〉τ .

This implies that Φη = b∗Φb. Hence b∗Φb ∈ F . By Lemma 3.5, TΦη is compact.

LEMMA 3.7. LetM be a finite von Neumann algebra with a faithful normal trace
τ, and H, K be two correspondences of M. Suppose ξ ∈ H and η ∈ K are two left
τ-bounded vectors, and Φξ , Φη are the coefficients corresponding to ξ, η, respectively.
Then ξ ⊕ η is also a left τ-bounded vector and Φξ + Φη is the coefficient corresponding
to ξ ⊕ η ∈ H⊕K.
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Proof. It is clear that ξ ⊕ η is a left τ-bounded vector. By equation (1.1) in
Section 1.7,

〈(Φξ + Φη)(x)yΩ, zΩ〉τ = 〈xξy, ξz〉H + 〈xηy, ηz〉K = 〈x(ξ ⊕ η)y, (ξ ⊕ η)z〉H⊕K
= 〈Φξ⊕η(x)yΩ, zΩ〉τ .

Hence Φξ⊕η = Φξ + Φη .

Note that in the proof of Lemma 2.2 of [2], if we replace the arbitrary positive
normal form φ (on line 10 of page 418) by an arbitrary weak operator topology
continuous positive form, then the following lemma follows.

LEMMA 3.8. Let Ψ be a normal completely positive map fromM toM. If Ψ is in
the closure of F in the pointwise weak operator topology, then there exists a net {Φα}α∈Λ

in F such that Φα(1) 6 Ψ(1) for all α ∈ Λ which converges to Ψ in the pointwise weak
operator topology.

Proof of Theorem 3.4. By [11], Haagerup’s approximation property is inde-
pendent of the choice of trace on a finite von Neumann algebraM. Suppose first
that M has Haagerup’s approximation property with respect to a trace τ. By
Theorem 2.2, there is a net (ϕα)α∈Λ of unital normal completely positive maps
satisfying conditions (i)-(iii) in Theorem 2.2. It immediately follows that the cor-
respondence H =

⊕
α∈Λ
Hϕα is a C0-correspondence ofM with respect to τ which

weakly contains the identity correspondence ofM.
Conversely, suppose that H is a C0-correspondence of M with respect to

a trace τ which weakly contains the identity correspondence of M. We may
assume H =

⊕
β∈Γ
Hϕβ

, with each ϕβ : M → M is a normal completely pos-

itive map such that the extension operator Tϕβ
of ϕβ is a compact operator in

B(L2(M, τ)). Since the identity correspondence ofM is weakly contained in H,
for every ε > 0 and every finite subset E ofM, there exists a ξ ∈ H such that

|〈xξy, ξz〉H − 〈xΩy, Ωz〉τ | < ε, ∀x, y, z ∈ E.

We may assume that ξ = ξ1 ⊕ · · · ⊕ ξn, where ξi =
ni
∑

j=1
aij ⊗ bij ∈ Hϕβi

. Let Φξ

be the coefficient corresponding to ξ. By Lemma 3.6 and Lemma 3.7, Φξ ∈ F . By
equation (1.1) in Section 1.7,

|〈Φξ(x)yΩ, zΩ〉τ − 〈xΩy, Ωz〉τ | = |〈xξy, ξz〉H − 〈xΩy, Ωz〉τ | < ε, ∀x, y, z ∈ E.

This implies that there exists a net (Φα′)α′∈Λ′ of completely positive maps in F
such that lim

α′
Φα′(x) = x in the weak operator topology for every x ∈ M.

By Lemma 3.8, there is a net {ϕα}α∈Λ in F such that lim
α

ϕα(x) = x in the

weak operator topology for every x ∈ M and ϕα(1) 6 1 for every α ∈ Λ. Now
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given x ∈ M:

‖ϕα(x)− x‖2 = τ(ϕα(x)∗ϕα(x)) + τ(x∗x)− 2Re τ(x∗ϕα(x))

6 ‖ϕα(1)‖τ(ϕα(x∗x)) + τ(x∗x)− 2Re τ(x∗ϕα(x))

6 τ(ϕα(x∗x)) + τ(x∗x)− 2Re τ(x∗ϕα(x)).

Since lim
α

ϕα(x) = x in the weak operator topology for every x ∈ M it fol-

lows that lim
α

τ(ϕα(x∗x)) = τ(x∗x) and lim
α

τ(x∗ϕα(x)) = τ(x∗x). Therefore

lim
α
‖ϕα(x) − x‖2 = 0. This proves that (ϕα)α is a net of completely positive

maps that approximate the identity pointwise in the trace-norm. Since ϕα ∈ F ,
it follows that Tϕα is a compact operator on L2(M, τ). By Theorem 2.2, M has
Haagerup’s approximation property with respect to τ.

As an application of Theorem 3.4, we prove the following result.

COROLLARY 3.9. If a finite von Neumann algebra M has Haagerup’s approxi-
mation property, then for any trace τ onM the class of C0-correspondences ofM with
respect to τ is dense in Corr(M).

Proof. By Section 2.6, it is clear that we need only to prove that every cyclic
correspondence HΦξ

of M associated to the coefficient Φξ of a left τ-bounded
vector belongs to the closure of the set of C0-correspondences of M. Let ξ be a
given left τ-bounded vector. Since M has Haagerup’s approximation property,
there is a net {ϕα}α∈Λ of normal completely positive maps ofM, such that:

(i) ϕα(1) = 1, ∀α ∈ Λ,
(ii) Tϕα is compact, ∀α ∈ Λ,

(iii) lim
α
‖ϕα(x)− x‖2 = 0, ∀x ∈ M.

Hence, each TΦξ◦ϕα = TΦξ
Tϕα is compact and lim

α
‖Φξ ◦ ϕα(x)−Φξ(x)‖2 = 0

for every x ∈ M. By Remark 2.1.4 of [12],HΦξ◦ϕα → HΦξ
.

4. RELATIVE AMENABILITY AND HAAGERUP’S APPROXIMATION PROPERTY

In this section we prove the following result:

THEOREM 4.1. If N ⊂ M is an amenable inclusion of finite von Neumann al-
gebras and N has Haagerup’s approximation property thenM also has Haagerup’s ap-
proximation property.

To prove Theorem 4.1, we need the following lemmas.

LEMMA 4.2. Let N ⊂ M be an inclusion of finite von Neumann algebras, and
EN be the normal τ-preserving conditional expectation of M onto N . If Hϕ is the
correspondence of N associated to a normal completely positive map ϕ from N to N
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andHϕ◦EN is the correspondence ofM associated to the normal completely positive map
ϕ ◦ EN fromM toM, then IndMN (Hϕ) ∼= Hϕ◦EN .

Proof. Denote by K = IndMN (H) = L2(M)⊗NHϕ⊗N L2(M), where the
first L2(M) is regarded as a leftM and right N module and the second L2(M)
is regarded as a left N and right M module. Let ξ ∈ Hϕ be the vector corre-
sponding to Ω⊗Ω, which is a cyclic vector of Hϕ. Given x1, x2, y1, y2 ∈ M, we
have

〈x1 ⊗ (ξ ⊗ y1), x2 ⊗ (ξ ⊗ y2)〉K = 〈q(ξ ⊗ y1), ξ ⊗ y2〉Hϕ⊗N L2(M),

where q ∈ N is the Radon–Nikodym derivative of N 3 z 7→ 〈x1z, x2〉L2(M) with
respect to τN . Note that

〈x1z, x2〉L2(M) = τ(zx∗2 x1) = τ(zEN (x∗2 x1)).

Hence q = EN (x∗2 x1) and

〈x1 ⊗ (ξ ⊗ y1), x2 ⊗ (ξ ⊗ y2)〉K = 〈EN (x∗2 x1)ξ ⊗ y1, ξ ⊗ y2〉Hϕ⊗N L2(M)

= 〈EN (x∗2 x1)ξ p, ξ〉Hϕ
,

where p ∈ N is the Radon–Nikodym derivative of N 3 z 7→ 〈zy1, y2〉L2(M)

with respect to τN . Note that 〈zy1, y2〉L2(M) = τ(zy1y∗2) = τ(zEN (y1y∗2)). Hence
p = EN (y1y∗2) and

〈x1 ⊗ (ξ ⊗ y1), x2 ⊗ (ξ ⊗ y2)〉K = 〈EN (x∗2 x1)ξ p, ξ〉Hϕ

= 〈EN (x∗2 x1)ξEN (y1y∗2), ξ〉Hϕ

= τ(ϕ(EN (x∗2 x1))EN (y1y∗2))

= τ(ϕ(EN (x∗2 x1))y1y∗2)

= 〈x1ξy1, x2ξy2〉Hϕ◦EN
.

Therefore the map defined on simple tensors by (x1 ⊗ ξ) ⊗ x2 7→ x1ξx2

extends to anM-linear isometry from IndMN (Hϕ) ontoHϕ◦EN .

The proof of the following lemma is an easy exercise.

LEMMA 4.3. Let N ⊂ M be an inclusion of finite von Neumann algebras, and
EN be the normal τ-preserving conditional expectation ofM onto N . Suppose for α ∈
Λ, Hϕα is the correspondence of N associated to a normal completely positive map ϕα

from N to N . Then IndMN (
⊕

α∈ΛHϕα)
∼=
⊕

α∈Λ
Hϕα◦EN .

LEMMA 4.4. If N ⊂M is an inclusion of finite von Neumann algebras andH is
a C0-correspondence of N , then IndMN (H) is a C0-correspondence ofM.

Proof. Let EN be the τ-preserving normal conditional expectation of M
ontoN . SupposeH=

⊕
α∈Λ
Hϕα such that Tϕα is a compact operator in B(L2(N , τ)).
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By Lemma 4.2 and Lemma 4.3 we have that IndMN (
⊕

α∈ΛHϕα)
∼=

⊕
α∈Λ
Hϕα◦EN .

Since Tϕα◦EN = Tϕα eN , the operator Tϕα◦EN is a compact operator inB(L2(M, τ)).
So IndMN (H) is a C0-correspondence ofM.

Proof of Theorem 4.1. Let H be a C0-correspondence of N that weakly con-
tains the identity correspondence L2(N , τ) of N . By Lemma 4.4, IndMN (H) is a
C0-correspondence ofM. Note that L2(N , τ) ≺ H. By the continuity of induc-
tion operation (see Proposition 2.2.1 of [12]), we see that

IndMN (L2(N , τ)) ≺ IndMN (H).

SinceN⊂M is an amenable inclusion, we have L2(M, τ)≺HN = IndMN (L2(N , τ)).
By the transitivity of ≺ we obtain

L2(M, τ) ≺ IndMN (H).

By Theorem 3.4,M has Haagerup’s approximation property.
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