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ABSTRACT. Let p(z, w) be a polynomial in two variables. We call the solu-
tion of the algebraic equation p(z, w) = 0 an algebraic correspondence. We
regard it as the graph of the multivalued function z 7→ w defined implicitly by
p(z, w) = 0. Algebraic correspondences on the Riemann sphere Ĉ generalize
both Kleinian groups and rational functions. We introduce C∗-algebras asso-
ciated with algebraic correspondences on the Riemann sphere. We show that
if an algebraic correspondence is free and expansive on a closed p-invariant
subset J of Ĉ, then the associated C∗-algebra Op(J) is simple and purely infi-
nite.
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INTRODUCTION

For a branched covering π : M → M, Deaconu and Muhly [9] introduced a
C∗-algebra C∗(M, π) as the C∗-algebra of the r-discrete groupoid constructed by
Renault [27]. In order to capture information of the branched points for the com-
plex dynamical system arising from a rational function R, in [14] we introduced
slightly different C∗-algebras OR(Ĉ), OR = OR(JR) and OR(FR) associated with
a rational function R on the Riemann sphere Ĉ, the Julia set JR and the Fatou
set FR of R. We showed that the C∗-algebras OR(JR) on the Julia set are always
simple and purely infinite if the degree of R is at least two. We also studied a re-
lation between branched points and KMS states in [12]. C. Delaroche [1] and M.
Laca–J. Spielberg [20] showed that a certain boundary action of a Kleinian group
on the limit set yields a simple nuclear purely infinite C∗-algebra as a groupoid
C∗-algebra or a crossed product. Dutkay and Jorgensen study a spectral theory
on Hilbert spaces built on general finite-to-one maps ([8]).
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On the other hand, Sullivan discovered a dictionary between the theory of
complex analytic iteration and the theory of Kleinian groups in [29]. Sullivan’s
dictionary shows a strong analogy between the limit set ΛΓ of a Kleinian group
Γ and the Julia set JR of a rational function R. Therefore it is natural to gen-
eralize both Kleinian groups and rational maps. In fact there exist such objects
called algebraic correspondences or holomorphic correspondences. Many works
on algebraic correspondences have been done, for example, in Bullet [4], Bullet–
Penrose [5], [6] and Münzner–Rasch [24]. Let p(z, w) be a polynomial in two
variables. Then the solution of the algebraic equation p(z, w) = 0 is called an
algebraic correspondence. We regard it as the graph of the multivalued function
z 7→ w defined implicitly by p(z, w) = 0.

In this paper, we introduce C∗-algebras associated with algebraic corre-
spondences on the Riemann sphere. We show that if an algebraic correspon-
dence is free and expansive on a closed p-invariant subset J of Ĉ, then the associ-
ated C∗-algebra Op(J) is simple and purely infinite. We shall show some exam-
ples and compute the K-groups of the associated C∗-algebras. For example, let
p(z, w) = (w− zm1)(w− zm2) · · · (w− zmr ) such that m1, . . . , mr are all different,
where r is the number of irreducible components. Then J := T is a p-invariant
set. Let b = #B(p) be the number of the branched points. Then we have

K0(Op(T)) = Zb, and K1(Op(T)) = Z/(r− 1)Z.

If m1, m2, . . . , mr are relatively prime, then the associated C∗-algebra Op(T) is
simple and purely infinite.

Our C∗-algebras Op(J) are related with C∗-algebras of irreversible dynam-
ical systems of Exel–Vershik [10], C∗-algebras associated with subshifts of Mat-
sumoto [21], graph C∗-algebras [19] and their generalization for topological rela-
tions of Brenken [3], topological graphs of Katsura [16], and topological quivers of
Muhly and Solel [22] and of Muhly and Tomforde [23]. Some of our C∗-algebras
are isomorphic to C∗-algebras associated with self-similar sets [15] and Mauldin–
Williams graphs [13].

1. ALGEBRAIC CORRESPONDENCES

Let p(z, w) ∈ C[z, w] be a polynomial in two variables of degree m in z and
degree n in w. We shall study an algebraic function implicitly determined by the
algebraic equation p(z, w) = 0 on the Riemann sphere Ĉ. Note that there exist
two different ways to compactify the algebraic curve p(z, w) = 0. The standard
construction in algebraic geometry is to consider the zeros of a homogeneous
polynomial P(z, w, u) in the complex projective plane CP2. But we choose the
second way after [5] and introduce four variables z1, z2, w1, w2 and a polynomial

p̃(z1, z2, w1, w2) = zm
2 wn

2 p(z1/z2, w1/w2),
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which is separately homogeneous in z1, z2 and in w1, w2. We identify the Riemann
sphere Ĉ with the complex projective line CP1. We denote by [z1, z2] an element
of CP1. Then the algebraic correspondence Cp of p(z, w) on the Riemann sphere is a
closed subset of Ĉ× Ĉ defined by

Cp := {([z1, z2], [w1, w2]) ∈ Ĉ× Ĉ : p̃(z1, z2, w1, w2) = 0}.
Then Cp is compact. In fact, it is a continuous image of a compact subset

{(z1, z2, w1, w2) ∈ C4 : p̃(z1, z2, w1, w2) = 0 and |z1|2 + |z2|2 + |w1|2 + |w2|2 = 1}.
To simplify notation, we write

Cp = {(z, w) ∈ Ĉ× Ĉ : p(z, w) = 0}
for short if no confusion can arise. It is also convenient to consider change of
variables u = 1

z or v = 1
w instead.

For example, let R(z) = P(z)
Q(z) be the rational function with polynomials

P(z), Q(z). Put p(z, w) = Q(z)w− P(z). Then the algebraic correspondence Cp
of p(z, w) on the Riemann sphere is exactly the following graph, of R,

{(z, w) ∈ Ĉ× Ĉ : w = R(z), z ∈ Ĉ.}
Therefore we regard the algebraic correspondence Cp of a general polyno-

mial p(z, w) as the graph of the algebraic function z 7→ w implicitly defined by
the equation p(z, w) = 0. Then the iteration of the algebraic function is described
naturally by a sequence z1, z2, z3, . . . satisfying (zk, zk+1) ∈ Cp for k = 1, 2, 3, . . . .

Any non-zero polynomial p(z, w) ∈ C[z, w] has a unique factorization into
irreducible polynomials:

p(z, w) = g1(z, w)n1 · · · gp(z, w)np

where each gi(z, w) is irreducible and gi and gj (i 6= j) are prime to each other.
Throughout the paper, we assume that any polynomial p(z, w) we consider

is reduced, that is, the above powers ni = 1 for any i. We also assume that any
gi(z, w) is not a function only in z or w. In particular the degree m in z and the
degree n in w of p(z, w) are both greater than or equal to one.

We need to recall an elementary fact as follows:

DEFINITION 1.1. Let p(z, w) be a non-zero polynomial in two variables of
degree m in z and degree n in w. Then we sometimes rewrite p(z, w) as

p(z, w) = am(w)zm + am−1(w)zm−1 + · · ·+ a1(w)z + a0(w)

= bn(z)wn + bn−1(z)wn−1 + · · ·+ b1(z)w + b0(z).

Fix w = w0 ∈ Ĉ. Then the equation f (z) := p(z, w0) = 0 in z ∈ Ĉ has
m roots with multiplicities. Take any root z = z0. The branch index of p(z, w) at
(z0, w0), denoted by ep(z0, w0) or e(z0, w0), is defined to be the multiplicity for the

root z = z0 of f (z) = p(z, w0) = 0. For example, let R(z) = P(z)
Q(z) be the rational
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function with polynomials P(z), Q(z). Put p(z, w) = Q(z)w − P(z). Then the
branch index ep(z0, R(z0)) coincides with the usual branch index eR(z0) of R at
z = z0.

2. ASSOCIATED C∗-ALGEBRAS

We recall Cuntz–Pimsner algebras [25]. Let A be a C∗-algebra and X be
a Hilbert right A-module. We denote by L(X) the algebra of the adjointable
bounded operators on X. For ξ, η ∈ X, the "rank one" operator θξ,η is defined by
θξ,η(ζ) = ξ(η|ζ) for ζ ∈ X. The closure of the linear span of rank one operators is
denoted by K(X). We say that X is a Hilbert C∗-bimodule (or C∗-correspondence)
over A if X is a Hilbert right A-module with a homomorphism φ : A→ L(X). In
this note, we assume that X is full and φ is injective.

Let F(X) =
∞⊕

n=0
X⊗n be the Fock module of X with the convention X⊗0 = A.

For ξ ∈ X, the creation operator Tξ ∈ L(F(X)) is defined by

Tξ(a) = ξa and Tξ(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

We define iF(X) : A→ L(F(X)) by

iF(X)(a)(b) = ab and iF(X)(a)(ξ1 ⊗ · · · ⊗ ξn) = φ(a)ξ1 ⊗ · · · ⊗ ξn

for a, b ∈ A. The Cuntz–Toeplitz algebra TX is the C∗-subalgebra of L(F(X)) gen-
erated by iF(X)(a) with a ∈ A and Tξ with ξ ∈ X. Let jK : K(X) → TX be the ho-
momorphism defined by jK(θξ,η) = Tξ T∗η . We consider the ideal IX := φ−1(K(X))

of A. Let JX be the ideal of TX generated by {iF(X)(a)− (jK ◦ φ)(a); a ∈ IX}. Then
the Cuntz–Pimsner algebra OX is the quotient TX/JX . Let π : TX → OX be the
quotient map. Put Sξ = π(Tξ) and i(a) = π(iF(X)(a)). Let iK : K(X)→ OX be the
homomorphism defined by iK(θξ,η) = SξS∗η . Then π((jK ◦φ)(a)) = (iK ◦φ)(a) for
a ∈ IX . We note that the Cuntz–Pimsner algebra OX is the universal C∗-algebra
generated by i(a) with a ∈ A and Sξ with ξ ∈ X satisfying that i(a)Sξ = Sφ(a)ξ ,
Sξ i(a) = Sξa, S∗ξ Sη = i((ξ|η)A) for a ∈ A, ξ, η ∈ X and i(a) = (iK ◦ φ)(a) for a ∈
IX . We usually identify i(a) with a in A. We denote by Oalg

X the ∗-algebra gener-
ated algebraically by A and Sξ with ξ ∈ X. There exists an action γ : R→ AutOX
with γt(Sξ) = eitSξ , which is called the gauge action. Since we assume that
φ : A→ L(X) is isometric, there is an embedding φn : L(X⊗n)→ L(X⊗n+1) with
φn(T) = T⊗ idX for T ∈ L(X⊗n) with the convention φ0 = φ : A→ L(X). We de-
note by FX the C∗-algebra generated by all K(X⊗n), n > 0 in the inductive limit
algebra lim−→ L(X⊗n). Let Fn be the C∗-subalgebra of FX generated by K(X⊗k),
k = 0, 1, . . . , n, with the convention F0 = A = K(X⊗0). Then FX = lim−→Fn.

Let p(z, w) be a non-zero polynomial in two variables and Cp the alge-
braic correspondence of p(z, w) on the Riemann sphere. Consider the C∗-algebra
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A = C(Ĉ) of continuous functions on Ĉ. Let X = C(Cp). Then X is an A-A
bimodule by

(a · f · b)(z, w) = a(z) f (z, w)b(w)

for a, b ∈ A and f ∈ X. We introduce an A-valued inner product (·|·)A on X by

( f |g)A(w) = ∑
{z∈Ĉ:(z,w)∈Cp}

ep(z, w) f (z, w)g(z, w)

for f , g ∈ X and w ∈ Ĉ. We need the branch index ep(z, w) in the formula of the
inner product above. Put ‖ f ‖2 = ‖( f | f )A‖1/2

∞ .

LEMMA 2.1. The above A-valued inner product is well defined, that is, Ĉ 3 w 7→
( f |g)A(w) ∈ C is continuous.

Proof. If we consider p(z, w) = am(w)zm + am−1(w)zm−1 + · · ·+ a1(w)z +
a0(w), as a polynomial in z, then each coefficient (ak(w))k is continuous in w.
Then the continuity of the map Ĉ 3 w 7→ ( f |g)A(w) ∈ C follows from the defi-
nition of the branch index and the continuity of the roots with multiplicities of a
polynomial on the Riemann sphere. See, for example, [7].

The left multiplication of A on X gives the left action φ : A → L(X) such
that (φ(a) f )(z, w) = a(z) f (z, w) for a ∈ A and f ∈ X.

PROPOSITION 2.2. Let p(z, w) be a non-zero polynomial in two variables. Then
X = C(Cp) is a full Hilbert C∗-bimodule over A = C(Ĉ) without completion. The left
action φ : A→ L(X) is unital and faithful.

Proof. Let m be the degree of p(z, w) in z. For any f ∈ X = C(Cp), we have

‖ f ‖∞ 6 ‖ f ‖2 :=
(

sup
w

∑
{z∈Ĉ:(z,w)∈Cp}

ep(z, w)| f (z, w)|2
)1/2

6
√

m‖ f ‖∞.

Therefore the two norms ‖ · ‖2 and ‖ · ‖∞ are equivalent. Since C(Cp) is complete
with respect to ‖ · ‖∞, it is also complete with respect to ‖ · ‖2.

Since (1|1)A(w) = ∑
{z∈Ĉ:(z,w)∈Cp}

ep(z, w)1 = m, (X|X)A contains the iden-

tity IA of A. Therefore X is full. If a ∈ A is not zero, then there exists x0 ∈ Ĉ
with a(x0) 6= 0. Since the degree m in z of p(z, w) is greater than or equal to one,
there exists w0 ∈ Ĉ with (x0, w0) ∈ Cp. Choose f ∈ X with f (x0, w0) 6= 0. Then
φ(a) f 6= 0. Thus φ is faithful.

DEFINITION 2.3. We introduce the C∗-algebra Op(Ĉ) associated with an al-
gebraic correspondence Cp = {(z, w) ∈ Ĉ × Ĉ : p(z, w) = 0} as the Cuntz–
Pimsner algebra [25] of the Hilbert C∗-bimodule Xp = C(Cp) over A = C(Ĉ).

A closed subset J in Ĉ is said to be p-invariant if the following conditions are
satisfied: For z, w ∈ Ĉ,
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(i) z ∈ J and p(z, w) = 0 implies w ∈ J,
(ii) w ∈ J and p(z, w) = 0 implies z ∈ J.

Under the condition, we can define Cp(J) = {(z, w) ∈ J × J : p(z, w) = 0},
A = C(J), Xp(J) = C(Cp(J)) similarly. Then Xp(J) is a full Hilbert C∗-bimodule
(C∗-correspondence) over A = C(J) and the left action is unital and faithful.

We also introduce the C∗-algebra Op(J) as the Cuntz–Pimsner algebra of
the Hilbert C∗-bimodule Xp(J) = C(Cp(J)) over A = C(J).

We define the set B(p) of "branched points" and the set C(p) of "branched
values":

B(p) := {z ∈ Ĉ : there exists w ∈ Ĉ such that p(z, w) = 0 and e(z, w) > 2};

C(p) := {w ∈ Ĉ : there exists z ∈ Ĉ such that p(z, w) = 0 and e(z, w) > 2}.

In the above definitions, we may replace e(z, w) > 2 by ∂p
∂z (z, w) = 0 after appro-

priate change of variables. Symmetrically we define:

B̃(p) :=
{

w ∈ Ĉ : there exists z ∈ Ĉ such that p(z, w) = 0 and
∂p
∂w

(z, w) = 0
}

;

C̃(p) :=
{

z ∈ Ĉ : there exists w ∈ Ĉ such that p(z, w) = 0 and
∂p
∂w

(z, w) = 0
}

.

We need some known estimates of the above sets.

LEMMA 2.4. Let p(z, w) be a non-zero polynomial in two variables of degree m in
z and degree n in w. Then B(p), C(p), B̃(p) and C̃(p) are finite sets. More precisely we
have #B(p) 6 2m(m− 1)n, #C(p) 6 2(m− 1)n, #B̃(p) 6 2n(n− 1)m and #C̃(p) 6
2(n− 1)m.

Proof. It follows from Proposition 2 in [5] that #C(p) 6 2(m − 1)n. Since
p(z, w) has degree m in z, we also have #B(p) 6 2m(m− 1)n. The rest is symmet-
rically obtained.

Let IX = IXp(J) = φ−1(φ(C(J)) ∩ K(Xp(J))).

PROPOSITION 2.5. IXp(J) = {a ∈ C(J) : a|B(p)} = 0.

The proof is a direct consequence of Proposition 4.4 in [12] or [23].
We consider Hilbert C∗-bimodules of iteration of the "algebraic function".

Put X⊗2
A = X⊗A X, X⊗n

A = X⊗n−1 ⊗A X.
We define the path space Pn = Pn(J) of length n in J by

Pn = {(z1, z2, . . . , zn+1) ∈ Jn+1 : (zi, zi+1) ∈ Cp(J), i = 1, . . . , n}.

ThenPn is compact, since it is a continuous image of a compact subset. We extend
the branched index for paths of length n as

e(z1, z2, . . . , zn+1) = e(z1, z2)e(z2, z3) · · · e(zn, zn+1).
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Then C(Pn) is a Hilbert bimodule over A by

(a · f · b)(z1, z2, . . . , zn+1) = a(z1) f (z1, z2, . . . , zn)b(zn+1),

( f |g)A(w) = ∑
{(z1,...,zn):(z1,...,zn ,w)∈Pn}

e(z1, . . . , zn, w) f (z1, . . . , zn, w)g(z1, . . . , zn, w),

for a, b ∈ A, f , g ∈ C(Pn).

LEMMA 2.6. The above A-valued inner product is well defined, that is, Ĉ 3 w 7→
( f |g)A(w) ∈ C is continuous, for any f , g ∈ C(Pn).

Proof. It is enough to assume that J = Ĉ. We may and do assume that n = 2,
because a similar argument holds for general n. We already know that X ⊗A X
has an A = C(Ĉ)-valued inner product. Therefore for f1 ⊗ f2, g1 ⊗ g2 ∈ X ⊗A X,
Ĉ 3 w 7→ ( f1 ⊗ f2|g1 ⊗ g2)A(w) ∈ C is continuous. Define f , g ∈ C(P2) by

f (z1, z2, w) = f1(z1, z2) f2(z2, w), g(z1, z2, w) = g1(z1, z2)g2(z2, w).

Then

( f |g)A(w)= ∑
{(z1,z2)∈P1 :(z1,z2,w)∈P2}

e(z1, z2, w) f (z1, z2, w)g(z1, z2, w)

= ∑
{(z1,z2)∈P1 :(z1,z2,w)∈P2}

e(z1, z2)e(z2, w) f1(z1, z2) f2(z2, w)g1(z1, z2)g2(z2, w)

= ∑
{z2∈Ĉ:p(z2,w)=0}

e(z2, w) f2(z2, w)
(

∑
{z1∈Ĉ:p(z1,z2)=0}

e(z1, z2) f1(z1, z2)g1(z1, z2)g2(z2, w)
)

= ∑
{z2∈Ĉ:p(z2,w)=0}

e(z2, w) f2(z2, w)( f1|g1)A(z2)g2(z2, w)

=( f2|( f1|g1)Ag2)A(w) = ( f1 ⊗ f2|g1 ⊗ g2)A(w).

Hence w 7→ ( f |g)A(w) is continuous. Then for finite sums

f (z1, z2, w) = ∑
i

f1,i(z1, z2) f2,i(z2, w), g(z1, z2, w) = ∑
i

g1,i(z1, z2)g2,i(z2, w),

w 7→ ( f |g)A(w) is also continuous. Put

C(P2)
0 =

{
f ∈ C(P2) : f (z1, z2, w) = ∑

finite i
f1,i(z1, z2) f2,i(z2, w) for f1,i, f2,i ∈ X

}
.

Since C(P2)
0 is a ∗-subalgebra of C(P2) and separates points, C(P2)

0 is uni-
formly dense in C(P2). Note that the uniform norm ‖ · ‖∞ and ‖ · ‖2 are equiv-
alent, because ‖ · ‖∞ 6 ‖ · ‖2 6 mn/2‖ · ‖∞. For any f , g ∈ C(P2), there exist
sequences ( fn)n and (gn)n in C(P2)

0 such that fn → f and gn → g uniformly.
Since

|( f |g)A(w)− ( fn|gn)A(w)|

6 ∑
{(z1,z2):(z1,z2,w)∈P2}

e(z1, z2, w)| f (z1, z2, w)g(z1, z2, w)− fn(z1, z2, w)gn(z1, z2, w)|,
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we see that ( fn|gn)A(w) converges to ( f |g)A(w) uniformly in w. Since a uniform
limit of continuous functions is continuous, ( f |g)A(w) is continuous in w.

Now it is easy to check the following proposition.

PROPOSITION 2.7. Let p(z, w) be a non-zero polynomial in two variables. Then
X = C(Pn) is a full Hilbert bimodule over A = C(J) without completion. The left
action φ : A→ L(X) is unital and faithful.

PROPOSITION 2.8. There exists an isometric A-A bimodule homomorphism ϕ :
X⊗n

A → C(Pn) such that, for f1, . . . , fn ∈ X,

ϕ( f1 ⊗ f2 ⊗ · · · ⊗ fn)(z1, z2, . . . , zn+1) = f1(z1, z2) f2(z2, z3) · · · fn(zn, zn+1).

Proof. It is easy to check that ϕ is a well defined A-A bimodule map. The
proof of Lemma 2.6 shows that ϕ is isometric. Since ‖ · ‖∞ and ‖ · ‖2 are equiva-
lent, ϕ is onto.

We need to define another compact space Gn = Gn(J) by

Gn = {(z1, zn+1) ∈ J2 : there exists (z1, z2, . . . , zn+1) ∈ Pn}.

Then C(Gn) is a Hilbert C∗-bimodule over A by:

(a · f · b)(z1, zn+1) = a(z1) f (z1, zn)b(zn+1),

( f |g)A(w) = ∑
{(z1,z2,...,zn):(z1,z2,...,zn ,w)∈Pn}

e(z1, z2, . . . , zn, w) f (z1, w)g(z1, w),

for a, b ∈ A, f , g ∈ C(Gn). Define a continuous onto map ρ : Pn → Gn by
ρ((z1, z2, . . . , zn+1)) = (z1, zn+1) for (z1, z2, . . . , zn+1) ∈ Pn. Then it is clear that
the induced map ρ∗ : C(Gn) → C(Pn) defined by ρ∗( f ) = f ◦ ρ is an isometric
Hilbert bimodule embedding.

3. SIMPLICITY AND PURE INFINITENESS

In this section we consider a sufficient condition for a polynomial so that
the associated Op(J) is simple and purely infinite.

Let J be a p-invariant subset of Ĉ. For any subset U of J and a natural
number n, we define a subset U(n) of J by

U(n) = {w ∈ J : (z1, z2, . . . , zn, w) ∈ Pn for some z1 ∈ U, z2, . . . , zn ∈ J}.

DEFINITION 3.1. Let p(z, w) be a non-zero polynomial in two variables and
J a p-invariant subset of Ĉ. Then p is said to be expansive on J if for any nonempty
open set U ⊂ J in J with the relative topology there exists a natural number n
such that U(n) = J.
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EXAMPLE 3.2. Let R(z) = P(z)
Q(z) be the rational function with polynomials

P(z), Q(z) and deg R > 2. Put p(z, w) = Q(z)w − P(z). Then U(n) is exactly
Rn(U). Therefore p is expansive on the Julia set JR by Theorem 4.2.5 of [2].

EXAMPLE 3.3. Let p(z, w) = z2 + w2 − 1. Then J := {0, 1,−1} is a p-
invariant set and p is not expansive on J. In fact, let U = {0}, then U(2n) = {0}
and U(2n+1) = {1,−1}. p is not expansive on Ĉ, because an open set U :=
Ĉ\{0, 1,−1} is p-invariant and U(n)=U 6= Ĉ for any n. In general, for any poly-
nomial, if p has a finite p-invariant set, then p is not expansive on Ĉ similarly.

EXAMPLE 3.4. Let p(z, w) = zm −w, m > 2. Then J := T is a p-invariant set
and p is expansive on J, because T is a Julia set of w = R(z) = zm.

Let p(z, w) = z− wn, n > 2. Then J := T is a p-invariant set but p is not
expansive on J. In fact, let U := T̂ \ {1}. Then U(k) = U 6= T̂ for any k.

More generally we have the following criterion.

PROPOSITION 3.5. Let p(z, w) = zm − wn for natural numbers m and n. Then
J := T is a p-invariant set, and p is expansive on T if and only if n is not divisible by m.

Proof. Suppose that n is divisible by m, so that n = mj for some j ∈ N. Let
U = {z ∈ T : zm 6= 1}. Then for any k ∈ N, 1 is not in U(k). In fact, if 1 were
in U(k), then there exists (z1, z2, . . . , zk, 1) ∈ Pk such that z1 ∈ U. Hence zm

k = 1

and zm
k−1 = zn

k = zmj
k = 1. We continue this argument to obtain zm

1 = 1. This
contradicts the fact that z1 ∈ U. Therefore p is not expansive on T.

Next, suppose that n is not divisible by m. Let d be the greatest common
divisor of m and n. Then m = m0d and n = n0d for some natural numbers m0
and n0. Since n is not divisible by m, m0 is greater than or equal to 2. We identify
T with R (mod Z) by z = e2πiα and w = e2πiβ. Then zm − wn = 0 means that
mα = nβ− k for some integer k. Hence

Cp(J) ∼=
{
([α], [β]) ∈ R/Z×R/Z : β =

m
n

α +
k
n

for some integer k
}

.

Then Cp(J) has d connected components, because mZ = dZ (mod n).
For ([α], [β]) ∈ G2(J), there exist k1, k2 ∈ Z such that

β =
m
n

(m
n

α +
k1

n

)
+

k2

n
=

m2

n2 α +
mk1 + nk2

n2 .

Since mZ+ nZ = dZ, ([α], [β]) ∈ G2(J) if and only if there exists k ∈ Z such that
β = m2

n2 α + dk
n2 . We continue in this way to get that ([α], [β]) ∈ Gr(J) if and only if

there exists k ∈ Z such that β = mr

nr α + dr−1k
nr . Since mrZ+ nrZ = drZ, Gr(J) has

dn

dn−1 = d connected components. To avoid overlapping, we consider only one

connected component. Hence we need to cover an interval [0, dr−1

nr d] = [0, dr

nr ].
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Take an open interval I = (0, 1
mr

0
+ ε). Since mr

nr
1

m0
= dr

nr , I(r) contains

(0,
dr

nr ] ∪ (
dr

nr ,
2dr

nr ] ∪ · · · ∪ (
(nr

0 − 1)dr

nr ,
nr

0dr

nr ] ∪ {0} = [0, 1] (mod Z).

It is also true if we replace I by a translation of I. Now for any open set U ⊂ J,
there exists an open interval (a, b) with (a, b) ⊂ U. Choose a natural number r
such that |b− a| > 1

mr
0
. Then by the preceding argument we see that (a, b)(r) =

[0, 1]. Hence U(r) = [0, 1](mod Z) = J. This shows that p is expansive on T.

DEFINITION 3.6. Let N be a natural number. We define the set GP(N) of
N-generalized periodic points by

GP(N) ={w ∈ J : ∃z ∈ J ∃m, n 0 6 m 6= n 6 N, ∃(z, z2, z3, . . . , zn, w) ∈ Pn,

∃(z, u2, u3, . . . , um, w) ∈ Pm}.

Let R(z) = P(z)
Q(z) be the rational function with polynomials P(z), Q(z). Put p(z, w)

= Q(z)w− P(z). Then

GP(N) =
N⋃

n=1

{w ∈ Ĉ : Rn(w) = w}.

In fact, if Rn(w) = w for some n 6 N, then it is clear that w ∈ GP(N). Conversely,
let w ∈ GP(N). Then there exists z such that w = Rn(z) = Rm(z) for some
0 6 m < n 6 N. Then Rn−m(w) = w.

DEFINITION 3.7. A polynomial p in two variables is said to be free on J if for
any natural number N, GP(N) is a finite set.

For example, let R(z) = P(z)
Q(z) be the rational function with polynomials P(z),

Q(z). Put p(z, w) = Q(z)w−P(z). If deg R > 2, then p is free on any p-invariant
set J.

LEMMA 3.8. Let p(z, w) = zm − wn. Then p is free on J = T if and only if
m 6= n.

Proof. Assume that m 6= n. We identify T with R/Z by z = e2πiα and
w = e2πiβ. For any natural number N, [β] ∈ GP(N) if and only if there exist [α] ∈
R/Z and r, s 0 6 r 6= s 6 N such that ([α], [β]) ∈ Gr(J) and ([α], [β]) ∈ Gs(J).
Therefore there exist k1, k2 ∈ Z with 0 6 k1 6 nr − 1 and 0 6 k2 6 ns − 1 such
that

β =
mr

nr α +
dr−1k1

nr =
ms

ns α +
ds−1k2

ns .

Since two lines with different slopes meet at at most one point, #GP(N) 6 n3N .
Hence p is free on T.

Conversely assume that m = n. Then any (z, z, . . . , z) ∈ Jk+1 is in Pk(J).
Hence for any natural number N, GP(N) = T is an infinite set. Thus p is not free
on T.
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REMARK 3.9. The above example is related with an example of Katsura in
Section 4 of [17] . If m and n are relatively prime, then his example coincides with
our example. If m and n are not relatively prime, then his example is different
from ours. In fact our Pn(T) is not connected if m and n are not relatively prime.
But they are isomorphic as bimodules.

PROPOSITION 3.10. Let Ri(z) = Pi(z)/Qi(z) i = 1, . . . , r be rational func-
tions with polynomials Pi(z), Qi(z). Put p(z, w) = (Q1(z)w− P1(z)) · · · (Qr(z)w−
Pr(z)). Let J ⊂ Ĉ be a p-invariant closed subset. Assume that each deg Ri > 2 and
deg R1, . . . , deg Rr are relatively prime. Then p is free on J. Furthermore, if J is the Julia
set for some Ri, then p is expansive on J.

Proof. Let N be a natural number and m, n integers with 0 6 n < m 6 N.
For i1, . . . , im, j1, . . . , jn = 1, 2, . . . , r, we shall show that

M :=# {z ∈ Ĉ : Rim ◦ · · · ◦ Ri1(z) = Rjn ◦ · · · ◦ Rj1(z)} < ∞.

On the contrary, assume that M = ∞. Then covering degrees of both sides coin-
cide. Count the covering degrees and rearrange them. Then we have

(deg R1)
s1 · · · (deg Rr)

sr = (deg R1)
t1 · · · (deg Rr)

tr

with s1 + · · · + sr = m and t1 + · · · + tr = n. Since deg R1, . . . , deg Rr are rel-
atively prime, si = ti for i = 1, . . . , r. Then m = n. This contradicts the fact
that n < m. Hence M < ∞. Therefore Q(m, n) := {z ∈ Ĉ : there exists w ∈
Ĉ such that (z, w) ∈ Gm, (z, w) ∈ Gn} is a finite set. Hence

GP(N) = {w ∈ J : ∃z ∈ J ∃m, n 0 6 n < m 6 N, ∃(z, w) ∈ Gm, ∃(z, w) ∈ Gn}
is also a finite set. This shows that p is free on J.

It is evident that, if J is a Julia set for some Ri, then p is expansive on J.

EXAMPLE 3.11. Let m and n be natural numbers and relatively prime. Con-
sider p(z, w) = (w− zm)(w− zn). We note that J = T is the common Julia set of
w = zm and w = zn. Then p is free on J and expansive on J. We note that there
appears a new branched point (1, 1) in Cp.

EXAMPLE 3.12. Let R1(z) =
(z2+1)2

4z(z2−1) be the rational function given by Lat-

tes. Then the Julia set JR1 = Ĉ. Let R2(z) = P2(z)
Q2(z)

be any rational function with

odd degree. Put p(z, w) = ((4z(z2 − 1))w − (z2 + 1)2)(Q2(z)w − P2(z)). Let
J = Ĉ. Then p is expansive on J and free on J.

EXAMPLE 3.13. Let i1, . . . , in, j1, . . . , jn be natural numbers. Assume that
ik 6= 1 or jk 6= 1 for each k. Suppose that those which are not equal to 1 are
relatively prime. Put J = T. Let

p(z, w) = (zi1 − wj1)(zi2 − wj2) · · · (zin − wjn).

Then p is free on J.
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EXAMPLE 3.14. Let m be a natural number with m > 2. Put p(z, w) =
(w − zm)(wm − z). Then p is not free on T. In fact, there exist different paths
(z, zm, z, zm, z) ∈ P4(T) and (z, zm, z) ∈ P2(T). Hence GP(4) = T.

EXAMPLE 3.15. Let p(z, w) = z2 + w2 − 1. Then p is not free on J = Ĉ.
In fact, choose any (z, w) ∈ Cp. Then there exist different paths (z, w, z, w, z) ∈
P4(Ĉ) and (z, w, z) ∈ P2(Ĉ). Hence GP(4) = Ĉ.

LEMMA 3.16. Suppose that p is expansive on a p-invariant subset J. Then for any
non-zero positive element a ∈ A and for any ε > 0 there exist n ∈ N and f ∈ X⊗n with
( f | f )A = I such that

‖a‖ − ε 6 S∗f aS f 6 ‖a‖.

Proof. Let x0 be a point in J with |a(x0)| = ‖a‖. For any ε > 0 there exist
an open neighbourhood U of x0 in J such that for any x ∈ U we have ‖a‖ − ε 6
a(x) 6 ‖a‖. Choose another open neighbourhood V of x0 in J and a compact
subset K ⊂ J satisfying V ⊂ K ⊂ U. Since p is expansive on J, there exists n ∈ N
such that V(n) = J. We identify X⊗n with C(Pn) ⊃ ρ∗(C(Gn)) as in the paragraph
after Proposition 2.8. Define closed subsets F1 and F2 of J × J by

F1 = {(z, w) ∈ J × J : (z, w) ∈ Gn, z ∈ K},
F2 = {(z, w) ∈ J × J : (z, w) ∈ Gn, z ∈ Uc}.

Since F1 ∩ F2 = φ, there exists g ∈ C(Gn) such that 0 6 g(z, w) 6 1 and

g(z, w) =

{
1 (z, w) ∈ F1,
0 (z, w) ∈ F2.

Since V(n) = J, for any w ∈ J there exists z1 ∈ V such that (z1, w) ∈ Gn.
Then (z1, w) ∈ F1 and g(z1, w) = 1. Therefore

(ρ∗(g)|ρ∗(g))A(w) = ∑
{(z1,...,zn)∈Pn−1 :(z1,...,zn ,w)∈Pn}

e(z1, . . . , zn, w)|g(z1, w)|2

> |g(z1, w)|2 = 1.

Let b := (ρ∗(g)|ρ∗(g))A. Then b(y) = (ρ∗(g)|ρ∗(g))A(y) > 1. Thus b ∈ A is
positive and invertible. We put f := ρ∗(g)b−1/2 ∈ X⊗n. Then

( f | f )A = b−1/2(g|g)Ab−1/2 = I.

For any w ∈ J and (z1, w) ∈ Gn, if z ∈ U, then ‖a‖ − ε 6 a(z), and if z ∈ Uc,
then f (z1, . . . , zn, w) = g(x, y)b−1/2(w) = 0. Therefore

‖a‖ − ε = (‖a‖ − ε)( f | f )A(y)

= (‖a‖ − ε) ∑
{(z1,...,zn)∈Pn−1 :(z1,...,zn ,w)∈Pn}

e(z1, . . . , zn, w)| f (z1, . . . , zn, w)|2
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6 ∑
{(z1,...,zn)∈Pn−1 :(z1,...,zn ,w)∈Pn}

e(z1, . . . , zn, w)a(z1)| f (z1, . . . , zn, w)|2

= ( f |a f )A(w) = S∗f aS f (w).

It is clear that S∗f aS f = ( f |a f )A 6 ‖a‖( f | f )A = ‖a‖.

LEMMA 3.17. Suppose that p is expansive on a p-invariant subset J. Then for any
non-zero positive element a ∈ A and for any ε > 0 with 0 < ε < ‖a‖, there exist n ∈ N
and u ∈ X⊗n such that

‖u‖2 6 (‖a‖ − ε)−1/2 and S∗uaSu = I.

The proof is exactly as same as Lemma 3.5 of [14].
A step in the proof of the main theorem is to show that a certain element

S in a Cuntz–Pimsner algebra is 0. It is enough to show that the corresponding
element T in the Toeplitz algebra is 0. Since the Toeplitz algebra acts on the Fock
module and the Fock module is realized as a function space, we can calculate
Tx = 0 concretely.

We write A = X⊗0. If a ∈ A, then Ta means φ(a)⊗ In on X⊗n. The following
lemma is a key of the proof of our main theorem.

LEMMA 3.18. Let i and j be integers with i, j > 0 and i 6= j. Take x ∈ X⊗i

and y ∈ X⊗j. Suppose that a ∈ A = C(J) satisfies the following condition: For any
(z1, z2, . . . , zi, w) ∈ Pi, (u1, u2, . . . , uj, w) ∈ Pj, we have a(z1)a(u1) = 0. Then we
have aTxT∗y a∗ = 0.

Proof. It is enough to show TaxT∗ay f = 0 for any f ∈ X⊗r, r = 0, 1, 2, . . . . If
r < j, then TaxT∗ay f = Tax0 = 0. Hence we may assume that r > j and f = f1 ⊗ f2

for f1 ∈ X⊗j, f2 ∈ X⊗(r−j).

(TaxT∗ay)( f1 ⊗ f2)(z1, z2, . . . , zi, zi+1, . . . , zi+r−j+1)

= (Tax(ay| f1)A f2)(z1, z2, . . . , zi, zi+1, . . . , zi+r−j+1)

= (ax⊗ (ay| f1)A f2)(z1, z2, . . . , zi, zi+1, . . . , zi+r−j+1)

= a(z1)x(z1, . . . , zi+1)(ay| f1)A(zi+1) f2(zi+1, . . . , zi+r−j+1)

= a(z1)x(z1, . . . , zi+1)·(
∑

(u1,...,uj ,zi+1)∈Pj

e(u1, . . . , uj, zi+1)a(u1)y(u1, . . . , uj, zi+1) f1(u1, . . . , uj, zi+1)
)
·

f2(zi+1, . . . , zi+r−j+1)

= a(z1)a(u1)x(z1, . . . , zi+1)·(
∑

(u1,...,uj ,zi+1)∈Pj

e(u1, . . . , uj, zi+1)y(u1, . . . , uj, zi+1) f1(u1, . . . , uj, zi+1)
)
·

f2(zi+1, . . . , zi+r−j+1) = 0.
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We need to prepare the following elementary fact:

LEMMA 3.19. Suppose that p(z0, w0) = 0 , ∂p
∂z (z0, w0) 6= 0 and ∂p

∂w (z0, w0) 6= 0.
Then there exist an open neighbourhood U of z0, an open neighbourhood V of w0 and a
homeomorphism ϕ : U → V such that for any z ∈ U, w ∈ V, p(z, w) = 0 if and only if
w = ϕ(z).

LEMMA 3.20. Assume that p is free on J. Suppose that J has no isolated points.
Let N be a natural number. Then for any non-empty open set U in J, there exist points
w0 ∈ U, zi ∈ J (i = 1, . . . , mN), an open neighbourhood V of w0 with V ⊂ U, open
neighbourhoods Wi of zi in J and homeomorphisms Φi : Wi → V for i = 1, . . . , mN

satisfying the following:
(i) Wi ∩Wj = for i 6= j.

(ii) For any z ∈ Wi, w ∈ V, we have (z, w) ∈ GN if and only if w = Φi(z), in
particular w0 = Φi(zi).

(iii) For any s ∈ J with (zi, s) ∈ Gk for some k (1 6 k 6 N), there exist an open
neighbourhood Wi,s of s and homeomorphisms Φi,s : Wi →Wi,s satisfying the following:
for any z ∈Wi, w ∈Wi,s, we have (z, w) ∈ Gk if and only if w = Φi,s(z).

(iv) These open neighbourhoods Wi and Wi,s for i, s have empty intersection each other.

Proof. Let D1 be the set of w ∈ J satisfying that there exist u ∈ J, z ∈ GP(N)
such that (u, w) ∈ GN , (u, z) ∈ Gk for some k = 0, 1, . . . , N.

Since p is free on J, GP(N) is a finite set. Hence D1 is also a finite set. Con-
sider the set D2 of w ∈ J satisfying that there exist u, z ∈ J such that (u, w) ∈
GN , (u, z) ∈ Gk for some k = 0, 1, . . . , N and z is in B(p), C(p), B̃(p) or C̃(p).
Then D2 is a finite set. Since D1 ∪ D2 is a finite set and J has no isolated points,
there exist a non-empty open set V0 ⊂ U such that V0 ⊂ U \ (D1 ∪ D2). Choose
w0 ∈ V0 ⊂ U \ (D1 ∪ D2). There exist distinct zi ∈ J for i = 1, . . . , mN such that
(zi, w0) ∈ GN . By the Lemma 3.19 , we can choose a sufficiently small non-empty
open set V ⊂ V0, non-empty open neighbourhoods Wi of zi and homeomor-
phisms Φi : Wi → V for i = 1, . . . , mN satisfying all the above requirements.

PROPOSITION 3.21. Let J be a p-invariant set with no isolated points. Suppose
that p is expansive and free on J. For N ∈ N, for any T ∈ L(X⊗N), for any ε > 0, there
exists a ∈ A+ = C(J)+ with ‖a‖ = 1 such that

‖φ(a)T‖2 > ‖T‖2 − ε,

aSxS∗y a = 0 for any x ∈ X⊗i, for any y ∈ X⊗j, 0 6 i, j 6 N, i 6= j.

Proof. For N ∈ N, for any T ∈ L(X⊗N), for any ε > 0, there exists f ∈ X⊗N

with ‖ f ‖2 = 1 such that ‖T‖2 > ‖T f ‖2
2 > ‖T‖2 − ε. Hence there exists w1 ∈ J

such that

‖T f ‖2
2 = ∑

{(z1,...,zN):(z1,...,zN ,w1)∈PN}
e(z1, . . . , zN , w1)|(T f )(z1, . . . , zN , w1)|2.
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Since the function

w 7→ ∑
{(z1,z2,...,zN):(z1,z2,...,zN ,w)∈PN}

e(z1, z2, . . . , zN , w)|(T f )(z1, . . . , w)|2

is continuous, there exists an open neighbourhood U of w1 such that for any
w ∈ U

∑
{(z1,...,zN):(z1,...,zN ,w)∈PN}

e(z1, . . . , zN , w)|(T f )(z1, . . . , zN , w)|2 > ‖T‖2 − ε.

By Propostion 3.21, there exist points w0 ∈ U, zi ∈ J (i = 1, . . . , mN), an open
neighbourhood V of w0 with V ⊂ U, open neighbourhoods Wi of zi in J and
homeomorphisms Φi : Wi → V for i = 1, . . . , mN satisfying the conditions in the
lemma. Choose b ∈ A = C(J) satisfying

b(w0) = 1, 0 6 b(w) 6 1, suppb ⊂ V.

Define a ∈ C(J) by

a(z) =

{
b(Φi(z)) z ∈Wi,
0 otherwise.

Then this function a satisfies the condition in Lemma 3.18. Therefore for any
x ∈ X⊗i, y ∈ X⊗j, 0 6 i, j 6 N, i 6= j we have aSxS∗y a∗ = 0.

Moreover we have

‖φ(a)T f ‖2
2 = sup

w
∑

{(z1,...,zN):(z1,...,zN ,w)∈PN}
e(z1, . . . , zN , w)|a(z)(T f )(z1, . . . , w)|2

> sup
w

∑
{(z1,...,zN):(z1,...,zN ,w)∈PN}

e(z1, . . . , zN , w)|(T f )(z1, . . . , w)b(w)|2

> ∑
{(z1,...,zN):(z1,...,zN ,w0)∈PN}

e(z1, . . . , zN , w0)|(T f )(z1, . . . , w0)b(w0)|2

> ‖T‖2 − ε.

It is important to recall the fact that there exists an isometric ∗-homomorhism

ϕ : L(X⊗N) ⊃ A⊗ IN + K(X)⊗ IN−1 + · · ·+ K(X⊗N)→ Op(J)T

as in Pimsner ([25], Proposition 3.11) and Fowler–Muhly–Raeburn ([11], Proposi-
tion 4.6) such that

ϕ(a + θx1⊗···⊗xk ,y1⊗···⊗yk ) = a + Sx1 · · · Sxk S∗yk
· · · S∗y1

.

To simplify notation, we put Sx = Sx1 · · · Sxk for x = x1 ⊗ · · · ⊗ xk ∈ X⊗k .

LEMMA 3.22. Let J be a p-invariant set with no isolated points. Suppose that p
is expansive and free on J. Let b = c∗c for some c ∈ Oalg

X . We decompose b = ∑
j

bj

with γt(bj) = eijtbj. For any ε > 0 there exists P ∈ A with 0 6 P 6 I satisfying the
following:

(i) PbjP = 0 (j 6= 0);
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(ii) ‖Pb0P‖ > ‖b0‖ − ε.

Proof. For x ∈ X⊗n, we define length(x) = n with the convention length(a)
= 0 for a ∈ A. We write c as a finite sum c = a + ∑

i
Sxi S

∗
yi

. Put

n = 2 max{length(xi), length(yi); i}.

For j > 0, each bj is a finite sum of terms in the form such that

SxS∗y x ∈ X⊗(k+j), y ∈ X⊗k 0 6 k + j 6 n.

In the case when j < 0, bj is a finite sum of terms in the form such that

SxS∗y x ∈ X⊗k, y ∈ X⊗(k+|j|) 0 6 k + |j| 6 n.

We shall identify b0 with an element in L(X⊗n). Apply Proposition 3.21 for
T = (b0)

1/2. Then there exists a ∈ A+ = C(J)+ with ‖a‖ = 1 such that

‖φ(a)T‖2 > ‖T‖2 − ε,

aSxS∗y a = 0 for any x ∈ X⊗i, for any y ∈ X⊗j, 0 6 i, j 6 N, i 6= j.

Define a positive operator P = a ∈ A. Then

‖Pb0P‖ = ‖Pb1/2
0 ‖

2 > ‖b1/2
0 ‖

2 − ε = ‖b0‖ − ε.

It is evident that PbjP = 0 for j 6= 0.

Since we have prepared technical lemmas adapted to our particular situa-
tion, the rest of the proof of our main theorem is a standard one.

THEOREM 3.23. Let p(z, w) be a reduced non-zero polynomial in two variables
with a unique factorization into irreducible polynomials:

p(z, w) = g1(z, w) · · · gp(z, w),

where each gi(z, w) is irreducible and gi and gj (i 6= j) are prime to each other. We
assume that any gi(z, w) is not a function only in z or w. Let J be a p-invariant set
with no isolated points. Suppose that p is expansive and free on J. Then the associated
C∗-algebra Op(J) is simple and purely infinite.

Proof. Let w ∈ Op(J) be any non-zero positive element. We shall show that
there exist z1, z2 ∈ Op(J) such that z1wz2 = I. We may assume that ‖w‖ = 1. Let
E : Op(J)→ Op(J)α be the canonical conditional expectation onto the fixed point
algebra by the gauge action α. Since E is faithful, E(w) 6= 0. Choose ε such that

0 < ε <
‖E(w)‖

4
and ε(‖E(w)‖ − 3ε)−1 6 1.

There exists an element c ∈ Op(J)alg such that ‖w− c∗c‖ < ε and ‖c‖ 6 1.
Let b = c∗c. Then b is decomposed as a finite sum b = ∑

j
bj with γt(bj) = eijtbj.
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Since ‖b‖ 6 1, ‖b0‖ = ‖E(b)‖ 6 1. By Lemma 3.22, there exists P ∈ A with
0 6 P 6 I satisfying PbjP = 0 (j 6= 0) and ‖Pb0P‖ > ‖b0‖ − ε. Then we have

‖Pb0P‖ > ‖b0‖ − ε = ‖E(b)‖ − ε > ‖E(w)‖ − ‖E(w)− E(b)‖ − ε > ‖E(w)‖ − 2ε.

For T := Pb0P ∈ L(X⊗m), there exists f ∈ X⊗m with ‖ f ‖ = 1 such that

‖T1/2 f ‖2
2 = ‖( f |T f )A‖ > ‖T‖ − ε.

Hence we have ‖T1/2 f ‖2
2 > ‖E(w)‖ − 3ε. Define a = S∗f TS f = ( f |T f )A ∈ A.

Then ‖a‖ > ‖E(w)‖ − 3ε > ε. By Lemma 3.17, there exist n ∈ N and u ∈ X⊗n

such that
‖u‖2 6 (‖a‖ − ε)−1/2 and S∗uaSu = I.

Then ‖u‖ 6 (‖E(w)‖ − 3ε)−1/2. We have

‖S∗f PwPS f − a‖ 6 ‖S f ‖2‖P‖2‖w− b‖ < ε.

Therefore

‖S∗uS∗f PwPS f Su − I‖ < ‖u‖2ε 6 ε(‖E(w)‖ − 3ε)−1 6 1.

Hence S∗uS∗f PwPS f Su is invertible. Thus there exists v ∈ OX with

S∗uS∗f PwPS f Suv = I.

Put z1 = S∗uS∗f P and z2 = PS f Suv. Then z1wz2 = I.

REMARK 3.24. Schweizer’s theorem in [28] also implies that Op(J) is sim-
ple. Our theorem gives simplicity and pure infiniteness with a direct proof.

The C∗-algebra Op(J) is separable and nuclear, and satisfies the Univer-
sal Coefficient Theorem. Hence the isomorphism class of C∗-algebra Op(J) is
completely determined by the K-group together with the class of the unit by the
classification theorem by Kirchberg–Phillips [18], [26].

EXAMPLE 3.25. Let m and n be natural numbers. Consider p(z, w) = zm −
wn and J = T. If n is not divisible by m, then Op(J) is simple and purely infinite.

EXAMPLE 3.26. Let m and n be natural numbers and relatively prime. Con-
sider

p(z, w) = (w− zm)(w− zn).

Let J = T. Then Op(J) is simple and purely infinite.

EXAMPLE 3.27. Let R1(z) =
(z2+1)2

4z(z2−1) be the rational function given by Lat-

tes. Let R2(z) =
P2(z)
Q2(z)

be any rational function with odd degree. Consider

p(z, w) = ((4z(z2 − 1))w− (z2 + 1)2)(Q2(z)w− P2(z)).

Let J = Ĉ. Then Op(J) is simple and purely infinite.
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EXAMPLE 3.28. Let i1, . . . , in, j1, . . . , jn be natural numbers. Assume that
ik 6= 1 or jk 6= 1 for each k. Suppose that those which are not equal to 1 are
relatively prime. Put J = T. Let

p(z, w) = (zi1 − wj1)(zi2 − wj2) · · · (zin − wjn).

Then Op(J) is simple and purely infinite.

4. K-GROUPS

We shall compute K-groups for several examples.

EXAMPLE 4.1. Let p(z, w) = zm −wn. Then J := T is a p-invariant set. Con-
sider the Hilbert C∗-bimodule Xp = C(Cp) over A = C(T). Then Xp is isomor-
phic to Am as a right A-module. In fact, let ui(z, w) = 1√

m zi for i = 0, 1, . . . , m− 1.
Then (ui|uj)A = δi,j I and {u0, u1, . . . , um−1} is a basis of Xp, in the sense that

f =
m−1
∑

i=0
ui(ui| f )A for any f ∈ Xp = C(Cp). Let a1(z) = z for z ∈ T. Then

(φ(a1)ui)(z, w) =
1√
m

zi+1 = ui+1(z, w)

for i = 0, 1, . . . , m− 2. And

(φ(a1)um−1)(z, w) =
1√
m

zm =
1√
m

wn = (u0 · an
1 )(z, w).

Therefore, if we identify L(Xp) with Mn(A), then φ(a1)i,j = I for i = j + 1, j =
1, . . . , m − 2, φ(a1)0,m−1 = an

1 and φ(a1)i,j = 0 for others. Let φ∗1 : K1(A) =
Z → K1(A) = Z. Since [a1] is the generator of K1(A) = Z and φ1([a1]) = [an

1 ],
φ1(k) = nk for k ∈ Z.

Since φ(IA) = IMm(A), φ∗0 : K0(A) = Z → K0(A) = Z is given by φ∗1 (k) =
mk for k ∈ Z. By the six-term exact sequence due to Pimsner [25], we have

Z id−m·−−−−→ Z i∗−−−−→ K0(Op(T))

δ1

x yδ0

K1(Op(T)) ←−−−−
i∗

0 ←−−−−
id−n·

Z

Therefore:

(i) for n = 1 and m = 1: K0(Op(T)) ∼= Z⊕Z, K1(Op(T)) ∼= Z⊕Z;
(ii) for n = 1 and m 6= 1: K0(Op(T)) ∼= Z⊕Z/(m− 1)Z, K1(Op(T)) ∼= Z;

(iii) for n 6= 1 and m = 1: K0(Op(T)) ∼= Z, K1(Op(T)) ∼= Z⊕Z/(n− 1)Z;
(iv) for n 6= 1 and m 6= 1: K0(Op(T)) ∼= Z/(m− 1)Z, K1(Op(T)) ∼= Z/(n− 1)Z.
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EXAMPLE 4.2. Let p(z, w) = (w− zm)(w− zn) with (2 6 m < n). Then J :=
T is a p-invariant set. Since the set B(p) of branched points in Cp is non-empty,
we need to be careful to compute the K-groups K0(Op(T)) and K1(Op(T)).

If z is a branched point, then w = zm = zn, so that zn−m = 1. Hence
B(p) = {1, α, α2, . . . , αn−m−1}, where α = e2πi/(n−m) is a primitive (n − m)-th
root of unity. Put

D(p) = {(z, w) ∈ Cp : e(z, w) > 2} = {(1, 1), (α, αm), . . . , (αn−m−1, αm(n−m−1))}

and any branch index e(αk, αmk) = 2. Let p1(z, w) = (w − zm) and p2(z, w) =
(w− zn). Let X = C(Cp) and

Y = C(Cp1)⊕ C(Cp2) = C({(1, z, w) : p1(z, w) = 0} ∪ {(2, z, w) : p2(z, w) = 0}).

We shall embed X = C(Cp) into Y as a bimodule over A = C(T) by identifying
the points corresponding to the branched points of p. Let

Z : = { f ∈ Y : f (1, z, w) = f (2, z, w), (z, w) ∈ D(p)}
= { f ∈ Y : f (1, αr, αmr) = f (2, αr, αmr), r = 0, 1, . . . , n−m− 1}.

Then Z is a closed submodule of Y and we can identify X with Z as bimodules.
We introduce a basis {u1, . . . , um+n} of Y as follows:

For i = 1, . . . , m,

ui(1, z, w) =
1√
m

zi−1, ui(2, z, w) = 0,

and for i = m + 1, . . . , m + n,

ui(1, z, w) = 0, ui(2, z, w) =
1√
n

zi−m−1.

Then (ui|uj)A = δi,j I. Therefore we can identify f ∈ Y with ( fi)i ∈ Am+n by

fi = (ui| f )A, f (k, z, w) =
m+n

∑
i=1

ui(k, z, w) fi(w), k = 1, 2.

We claim that f (1, αr, αmr) = f (2, αr, αmr) if and only if
m

∑
i=1

ui(1, αr, αmr) fi(α
mr) =

m+n

∑
i=m+1

ui(2, αr, αmr) fi(α
mr)

if and only if
m

∑
i=1

1√
m

αr(i−1) fi(α
mr) =

m+n

∑
i=m+1

1√
n

αr(i−m−1) fi(α
mr)

if and only if the corresponding vector ( f1(α
mr), . . . , fm+n(αmr)) ∈ Cm+n is or-

thogonal to a vector

nr :=
( 1√

m
1,

1√
m

αr, . . . ,
1√
m

αr(m−1),− 1√
n

1,− 1√
n

αr, . . . ,− 1√
n

αr(n−1)
)
∈ Cm+n.
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Let C := {αmr : r = 0, 1, . . . , n−m− 1} = {c1, c2, . . . , cv} and ci 6= cj, (i 6= j).
For k = 1, 2, . . . , v, put C(k) = {r ∈ {0, 1, . . . , n − m − 1} : αmr = ck}. If we
identify Y = Am+n = C(T)m+n, then

Z = { f = ( fi)i ∈ Am+n : ( fi(α
mr))i is orthogonal to nr, for r = 0, . . . , n−m− 1}

=
v⋂

k=1

{ f = ( fi)i ∈ Am+n : ( fi(ck))i is orthogonal to nr in Cm+n for ∀r ∈ B(k)}.

We see that for fixed k, the vectors nr (r ∈ B(k)) are linearly independent. There-
fore the subspace

H(k) := {x = (xi)i ∈ Cm+n : x is orthogonal to nr, r ∈ B(k)}
has dimension m + n− #C(k) > m + n− (n−m) = 2m > 2. Let

L(k) := span {T ∈ B(Cm+n) : T = θx,y for some x, y ∈ H(k)}.
Therefore we have an identification

K(Z) = { f ∈ C(T, Mm+n(C)) : f (ck) ∈ L(k), k = 1, . . . , v}.
We shall show that the canonical inclusion i : K(Z) → K(Y) ∼= Mm+n(C(T))
induces the isomorphism

i∗ : Kr(K(Z)) ∼= Z→ Kr(K(Y)) ∼= Z, r = 0, 1.

Let
J = { f ∈ C(T, Mm+n(C)) : f (ck) = 0, k = 1, . . . , v}

and a finite dimensional algebra Q =
v⊕

k=1
L(k). Then we have an exact sequence

0→ J → K(Z) π→ Q→ 0.

Consider the six-term exact sequence

K0(J) = 0 −−−−→ K0(K(Z)) π∗−−−−→ K0(Q) = Zv

δ1

x yδ0

K1(Q) = 0 ←−−−−
π∗

K1(K(Z)) ←−−−−
i∗

K1(J) = Zv

For k = 1, . . . , v, let qk ∈ L(k) be a minimal projection and we consider the pro-
jection rk = (0, . . . , 0, qk, 0, . . . , 0) ∈ Q. Let fk ∈ K(Z) be a lift of rk defined as a
"piecewise linear" map with fk(cj) = δk,j. Since δ0([rk]) = −[e2πi fk ], we obtain
that

δ0(n1, . . . , nv) = (nv − n1, n1 − n2, n2 − n3, . . . , nv−1 − nv).
Since Imπ∗ = Kerδ0 = {(n, . . . , n) ∈ Zr : n ∈ Z} ∼= Z and π∗ is one to one,
we see that π∗ : K0(K(Z)) ∼= Z → Zr is given by π∗(n) = (n, . . . , n). Since
Im δ0 = Ker i∗ and i∗ is onto, i∗ : K1(J) ∼= Zr → K1(K(Z)) ∼= Z is given by
i∗(n1, . . . , nv) = n1 + · · ·+ nv. Let p ∈ C(T, Mm+n(C)) be a projection such that
p(t) is a rank one projection for any t ∈ T and p(ck) ∈ L(k) for k = 1, . . . , v. Then
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[p] is a generator of K0(K(Z)) ∼= Z and also a generator of K0(K(Y)) ∼= Z. Let
ck = e2πiθk with 0 6 θ1 6 · · · 6 θv. Let u ∈ C(T, Mm+n(C)) be a unitary such
that u(e2πit) = e2πit/θ1 for 0 6 t 6 θ1 and u(e2πit) = 1 for others. Then [u] is
a generator of K1(K(Z)) ∼= Z and also a generator of K1(K(Y)). Therefore we
conclude that i∗ : Kr(K(Z)) ∼= Z→ Kr(K(Y)) ∼= Z, r = 0, 1 is an isomorphism.

Since IX = { f ∈ C(T) : f (αk) = 0 for k = 0, 1, m − n − 1}, we have
K0(IX) = 0 and K1(IX) = Zm−n.

Therefore we can identify the left action φ : IX → K(X) = K(Z) with φ1 ⊕
φ2 : IX → K(Y) = K(C(Cp1) ⊕ C(Cp2)) on the level of K-groups. Hence φ∗ :

K1(IX) = Zm−n → K1(A) = Z is given by φ∗(x1, . . . , xm−n) =
m−n
∑

i=1
2xi.

By a six-term exact sequence, we have

K0(IX) = 0
j∗−φ∗−−−−→ K0(A) = Z i∗−−−−→ K0(Op(T))

δ1

x yδ0

K1(Op(T)) ←−−−−
i∗

K1(A) = Z ←−−−−
j∗−φ∗

K1(IX) = Zm−n

The canonical inclusion map j : IX → A = C(T) induces j∗ : K1(IX) = Zm−n →

K1(A) = Z with j∗(x1, . . . , xm−n) =
m−n
∑

i=1
xi. Therefore we have

K0(Op(T)) = Zm−n, and K1(Op(T)) = 0.

EXAMPLE 4.3. Let p(z, w) = (w− zm1)(w− zm2) · · · (w− zmr ) and m1, . . . , mr
are all different, where r is the number of irreducible components. Then J := T
is a p-invariant set. Let b = #B(p) be the number of the branched points. By a
similar calculation, we have

K0(Op(T)) = Zb, and K1(Op(T)) = Z/(r− 1)Z.
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