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ABSTRACT. In this paper we study the relation between different spaces of
vector measures (Ω1, Σ1, m1) and (Ω2, Σ2, m2); where (Ω1, Σ1) and (Ω2, Σ2)
are measurable spaces and m1 and m2 are countably additive vector measures
taking values in real Banach spaces X and Y, respectively, when the corre-
sponding spaces of integrable functions L1(m1) and L1(m2) are lattice isomor-
phic. As a consequence, we give a description of the lattice isomorphisms
between spaces of integrable functions with respect to a vector measure.

KEYWORDS: Vector measure, integrable function, lattice isomorphism, multiplica-
tion operator, composition operator, Boolean algebra.

MSC (2000): Primary 46G10, 46E30; Secondary 47B65, 47H07.

INTRODUCTION

The representation of Banach lattices as function spaces is a useful technique
in Functional Analysis, since it allows to study abstract problems using tools and
specific properties coming from the particular properties of the function spaces.
For instance, when the reference spaces for this representation are Banach func-
tion spaces, Banach ideals of Lebesgue integrable function spaces, it is possible to
use powerful tools that comes from measure theory and integration theory. Re-
cently, and using important results that go back to the work of Bartle, Dunford
and Schwartz in the fifties and Lewis in the early seventies, it has been established
representation theorems of Banach lattices by means of spaces of integrable scalar
functions with respect to vector measures; see for example Theorem 8 of [2], The-
orem 2.5 of [3], Theorem 4 of [4] or Theorem 2.4 of [8]. Let us show this by means
of the following, in a sense canonical, result.

THEOREM 0.1 ([2], Theorem 8). Let E be an order continuous Banach lattice
with weak order unit. Then there exists an E-valued positive vector measure m defined
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on a measurable space (Ω, Σ) such that E is lattice isomorphic to the space L1(m) of
integrable scalar functions with respect to m.

Some of these representations have been already applied in the context of
the operator theory for obtaining Maurey–Rosenthal type factorization theorems
and also to analyze the optimal domain of relevant operators defined on Banach
function spaces (see for instance [3], [5], [7], [9]). In the case of the factorization
theorems obtained with this technique, the factorization depends strongly on the
vector measure that is used for the representation (see [7], [9]). The same hap-
pens when these arguments are applied for obtaining concrete representations of
Banach lattices. However, the same Banach lattice E can be represented using
different vector measures, as the next example shows.

EXAMPLE 0.2. Let us consider the following three vector measures defined
on B, the Borel σ-algebra of the interval [0, 1]:

m1 : A ∈ B → m1(A) := λ(A) ∈ R,

m2 : A ∈ B → m2(A) :=
( ∫

A
rn(t)dt

)
n
∈ c0,

m3 : A ∈ B → m3(A) := χA ∈ L1[0, 1],

where λ denotes the Lebesgue measure and (rn)n is the sequence of Rademacher
functions. They all generate the same space, namely,

L1(m1) = L1(m2) = L1(m3) = L1[0, 1].

The aim of this paper is to analyze the relation between different spaces of
vector measures (Ω1, Σ1, m1) and (Ω2, Σ2, m2); (Ω1, Σ1) and (Ω2, Σ2) being two
measurable spaces, and m1 : Σ1 → X and m2 : Σ2 → Y being two vector mea-
sures with values in two Banach spaces X and Y, respectively, under the assump-
tion that the spaces L1(m1) and L1(m2) are lattice isomorphic.

A quick look at the Example 0.2 above reveals that there are no clear links
between the spaces X and Y where the vector measures are defined related to the
existence of a lattice isomorphism T : L1(m1)→ L1(m2).

On the other hand, it seems that it is not possible to relax the condition of
T being a lattice isomorphism if we want to obtain relevant relationships between
the corresponding measurable spaces. For instance, it is well-known that the
Fourier transform F : L2[0, 1] → `2(N) is an isometry onto. The corresponding
measurable spaces are in this case ([0, 1],B) and (N,P(N)), respectively, where B
denotes the σ-algebra of Borel sets of the interval [0, 1] and P(N) is the σ-algebra
of the subsets of the set of natural numbers N. From the lattice point of view the
spaces L2[0, 1] and `2(N) are really different; likewise their related measurable
spaces are too. However, both spaces can be represented as L1(m) spaces for
suitable vector measures m, but the first one has no atoms and the second one is
purely atomic.
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The structure of the paper is as follows. First, we begin by analyzing the
relation, from the Boolean algebras point of view, between the σ-algebras Σ1
and Σ2. The starting point is the case of a lattice isomorphism between spaces
of bounded functions, which forces to the corresponding σ-algebras to be iso-
morphic as Boolean algebras. In Section 2 we extend this study to the case of
a lattice isomorphism T : L1(m1) → L1(m2), assuming that the measures m1
and m2 are positive. In Section 3 we analyze which ones of the results obtained
in the previous section can be carried out to the general case of non necessar-
ily positive vector measures; actually, we shall show that positivity of the vector
measure is a fundamental property in order to obtaining complete characteriza-
tions of the relations that hold between the measurable spaces. In Section 4 we
show, using results of Sikorski [18], [19] and Kuratowski [12], that for the isomor-
phic results obtained in previous sections to be true in the case of Borel spaces Ω1
and Ω2 they must be essentially equal, that is, it must be possible to define (almost
everywhere) a one-to-one measurable map from Ω1 onto Ω2 with measurable
inverse. As a consequence, we obtain the structure of any lattice isomorphism
T : L1(m1) → L1(m2) for positive measures. Essentially, T must be the compo-
sition of a multiplication operator with a composition operator. Similar results were
obtained by Lamperti for scalar measures and isometries between Lp spaces, see
[13] or XV Section 5 of [16]. Finally, we would like to mention that the description
and study of a certain order relation between measures that represent the same
space of integrable functions have been done in [10].

1. PREMIMINARIES

Let m : Σ → X be a vector measure defined on a σ-algebra Σ of subsets of
a nonempty set Ω; this will always mean that m is countably additive on Σ with
values in a real Banach space X. We denote by X′ its dual space. The semivaria-
tion of the measure m is the set function ‖m‖ : Σ→ [0, ∞) defined by

‖m‖(A) := sup{|〈m, x′〉|(A) : ‖x′‖ 6 1}, A ∈ Σ,

where |〈m, x′〉| is the total variation measure of the scalar measure 〈m, x′〉 given
by 〈m, x′〉(A) := 〈m(A), x′〉, for all A ∈ Σ. A set A ∈ Σ is called m-null if
‖m‖(A) = 0.

A measurable function f : Ω→ R is called integrable with respect to m if:

(i) f ∈ L1(|〈m, x′〉|) for all x′ ∈ X′, and
(ii) for each A ∈ Σ there exists an element

∫
A

f dm ∈ X (called the integral of f

over A) such that
〈 ∫

A
f dm, x′

〉
=
∫
A

f d〈m, x′〉 for all x′ ∈ X′.

Two measurable functions f and g defined on Ω are identified if they are
equal m-a.e., that is, if {w ∈ Ω : f (w) 6= g(w)} is a m-null set. The space L1(m)
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of all (equivalence classes of) integrable functions (modulo m-a.e.) becomes an
order continuous Banach lattice (with weak order unit) when it is endowed with
the pointwise order m-a.e. and the norm

‖ f ‖L1(m) := sup
{ ∫

Ω

| f |d|〈m, x′〉| : ‖x′‖ 6 1
}

, f ∈ L1(m).

See [11], [14] and [15] for details. In particular, it is known that every bounded
function is integrable ([11], II. Section 3). We denote by L∞(m) the space of (equiv-
alence classes of) essentially bounded functions (modulo m-a.e.) equipped with
the supremum norm ‖ · ‖L∞(m). Moreover, the inclusion L∞(m) ⊆ L1(m) is con-
tinuous.

The following lemmas will be useful in the sequel. Their proofs are straight-
forward. For a function f ∈ L1(m) we denote by

supp( f ) := {w ∈ Ω : f (w) 6= 0}.

LEMMA 1.1. Let f , g ∈ L1(m). If ‖m‖(supp( f ) ∩ supp(g)) = 0, then

supp( f + g) = supp( f ) ∪ supp(g),

modulo m-a.e. If f and g are non-negative functions, we have

supp(inf{ f , g}) = supp( f ) ∩ supp(g),

modulo m-a.e.

Our basic reference for Banach lattices is the book by Aliprantis and Burkin-
shaw [1]. All the not explained terminology of this paper can be found there.

LEMMA 1.2. Let E and F be Banach lattices and let T : E → F be a lattice
isomorphism.

(i) If 0 < e ∈ E is a (weak) order unit in E, then Te ∈ F is a (weak) order unit in F.
(ii) If 0 < e ∈ E, then T(C(e)) = C(Te), where C(x) is the collection of all compo-

nents of the element 0 < x ∈ E.

LEMMA 1.3. Given a vector measure space (Ω, Σ, m), the following statements
hold:

(i) A function h ∈ L1(m) is a weak order unit in L1(m) if and only if h > 0. In
particular, χΩ is a weak order unit in L1(m).

(ii) A function 0 < h ∈ L∞(m) is an order unit if and only if inf h > 0. In particular,
χΩ is an order unit in L∞(m).

(iii) If 0 < h ∈ L1(m), then C(h) = {h · χA : A ∈ Σ}. In particular,

C(χΩ) = {χA : A ∈ Σ}.
Given a vector measure space, (Ω, Σ, m) we consider the σ-ideal N of the

m-null sets, that is, N := {N ∈ Σ : ‖m‖(N) = 0}. For a set A ∈ Σ, denote by [A]
the class of all sets B ∈ Σ for which χA = χB in L1(m) holds and set Σ[m] :=
{[A] : A ∈ Σ}. Then Σ[m] is a σ-complete Boolean algebra with respect to the
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usual operations of union, intersection and difference, and the corresponding or-
der [A] 6 [B] if and only if χA 6 χB in L1(m), where A, B ∈ Σ. Observe that
Σ[m] is the quotient-algebra Σ modulo the σ-ideal of m-null sets. For the termi-
nology on Boolean algebras we refer to Sikorski [18], [19]. Note also that Σ[m] is
a complete metric space under the metric d given by

d([A], [B]) := ‖χA − χB‖L1(m), A, B ∈ Σ.

Given a mapping Φ : Σ[m1]→ Σ[m2] and a set A ∈ Σ1, observe that Φ([A])
is a class of sets. As usual we write χΦ(A), for the characteristic function of any
element of this class, that must be understood as an element of L1(m2). Thus
Φ(A) is a representative of the class Φ([A]).

The lattice structure of spaces of bounded functions is completely deter-
mined by the corresponding structure of their associated Boolean algebras. More
precisely, if (Ω1, Σ1, m1) and (Ω2, Σ2, m2) are vector measure spaces and we con-
sider the associated Boolean algebras Σ1[m1] and Σ2[m2], then the following re-
sults are true.

PROPOSITION 1.4. If Φ : Σ1[m1] → Σ2[m2] is an isomorphism of Boolean alge-
bras, then there is a unique isometric multiplicative lattice isomorphism

T : L∞(m1)→ L∞(m2)

such that T(χA) = χΦ(A) for all A ∈ Σ1. In particular, T(χΩ1) = χΩ2 .

Proof. For each simple function ϕ =
N
∑

k=1
akχAk of L∞(m1) we define

T(ϕ) :=
N

∑
k=1

akχΦ(Ak)
.

It is not difficult to see that it can be extended from L∞(m1) to L∞(m2).

Reciprocally we have the following

PROPOSITION 1.5. If T : L∞(m1) → L∞(m2) is a lattice isomorphism, then
Φ : [A] ∈ Σ1[m1] → Φ([A]) := [supp(TχA)] ∈ Σ2[m2] is an isomorphism of
Boolean algebras such that T(χA) = T(χΩ1) · χΦ(A) for all A ∈ Σ1. If moreover T is
multiplicative, then T(χΩ1) = χΩ2 and T(χA) = χΦ(A) for all A ∈ Σ1.

Proof. It is straightforward to show that Φ is an isomorphism of Boolean
algebras by using Lemma 1.1, Lemma 1.2 and Lemma 1.3.

REMARK 1.6. If T : L∞(m1) → L∞(m2) is a multiplicative lattice isomor-
phism, we have that (T(χA))

2 = T(χA) for all A ∈ Σ1. Therefore, for all A ∈ Σ1
there exists B ∈ Σ2 such that T(χA) = χB. Note that

B := {w ∈ Ω2 : T(χA)(w) = 1} = supp(T(χA)),

that justifies the definition of the isomorphism of Boolean algebras Φ.
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2. LATTICE ISOMORPHISMS BETWEEN SPACES OF INTEGRABLE FUNCTIONS
WITH RESPECT TO POSITIVE VECTOR MEASURES

In this section we consider a couple of positive vector measure spaces, de-
noted by (Ω1, Σ1, m1) and (Ω2, Σ2, m2), where the measure m1 takes values in
the Banach lattice X and that the measure m2 takes values in the Banach lat-
tice Y. It is obvious that the existence of an isomorphism of Boolean algebras
Φ : Σ1[m1] → Σ2[m2] does not imply that the spaces L1(m1) and L1(m2) are lat-
tice isomorphic. In order to obtain a lattice isomorphism between L1(m1) and
L1(m2) coming from a Boolean algebra isomorphism Φ : Σ1[m1] → Σ2[m2] we
need to impose some more extra conditions on Φ. Namely,

(C1) There is a constant K1 > 0 such that for each 0 6 y′ ∈ BY′ and each
π ∈ Π(Ω1) there exists 0 6 x′ ∈ BX′ satisfying that

〈m2(Φ(A)), y′〉 6 K1〈m1(A), x′〉, A ∈ π.

(C2) There is a constant K2 > 0 such that for each 0 6 x′ ∈ BX′ and each
π ∈ Π(Ω1) there exists 0 6 y′ ∈ BY′ satisfying that

〈m1(A), x′〉 6 K2〈m2(Φ(A)), y′〉, A ∈ π.

As usual, Π(Ω1) denotes the set of all finite Σ1-partitions of the set Π(Ω1). With

these conditions in hands we can prove the following result holds.

THEOREM 2.1. Let Φ : Σ1[m1] → Σ2[m2] be an isomorphism of Boolean al-
gebras such that the conditions (C1) and (C2) hold. Then there exists a unique lattice
isomorphism T : L1(m1) → L1(m2) such that T(L∞(m1)) = L∞(m2). Moreover, the
restriction T : L∞(m1) → L∞(m2) is an isometric multiplicative lattice isomorphism
satisfying T(χA) = χΦ(A) for all A ∈ Σ1. In particular, T(χΩ1) = χΩ2 .

Proof. Suppose that Φ : Σ1[m1] → Σ2[m2] is an isomorphism of Boolean

algebras. For each simple function ϕ =
N
∑

k=1
akχAk of L1(m1) we define

T(ϕ) :=
N

∑
k=1

akχΦ(Ak)
,

which is a simple function in L1(m2). As in the L∞ case we have defined a map
T : S(m1) → S(m2) from the set of simple functions of L1(m1) into the set of
simple functions of L1(m2) that is a multiplicative and lattice preserving linear
bijection. Moreover, it satisfies ‖T(ϕ)‖L∞(m2)

= ‖ϕ‖L∞(m1)
for all ϕ ∈ S(m1).

Let us prove now that the requirements (C1) and (C2) in the statement of the
theorem imply continuity of the operator T : S(m1)→ S(m2) and its inverse with
respect to the norms ‖ · ‖L1(m1)

and ‖ · ‖L1(m2)
, respectively. Since the measure m2
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is positive, for each simple function ϕ =
N
∑

k=1
akχAk an application of the Hahn–

Banach Theorem gives:

‖T(ϕ)‖L1(m2)
=
∥∥∥∫
Ω2

|T(ϕ)|dm2

∥∥∥
Y
=
∥∥∥ N

∑
k=1
|ak|m2(Φ(Ak))

∥∥∥
Y

(2.1)

=
〈 N

∑
k=1
|ak|m2(Φ(Ak)), y′

〉
=

N

∑
k=1
|ak|〈m2(Φ(Ak)), y′〉,

for a certain 0 6 y′ ∈ BY′ . From (C1) we obtain that there exists 0 6 x′ ∈ BX′

such that 〈m2(Φ(Ak)), y′〉 6 K1〈m1(Ak), x′〉 for every k = 1, 2, . . . , N. Thus, (2.1)
implies

‖T(ϕ)‖L1(m2)
=

N

∑
k=1
|ak|〈m2(Φ([Ak])), y′〉 6 K1

N

∑
k=1
|ak|〈m1(Ak), x′〉

6 K1

∥∥∥ N

∑
k=1
|ak|m1(Ak)

∥∥∥
X
6 K1‖ϕ‖L1(m1)

.

A similar argument proves that ‖ϕ‖L1(m1)
6 K2‖T(ϕ)‖L1(m2)

for every ϕ ∈
S(m1). Therefore, T can be extended from L1(m1) to L1(m2) and the extension
satisfies the conditions in the statement of the theorem, since S(m2) is dense in
L1(m2).

The uniqueness and properties of T : L∞(m1) → L∞(m2) are clearly seen
from Proposition 1.4.

On the opposite way, we have the one that follows, that is the analogous
result to Proposition 1.5.

THEOREM 2.2. Let T : L1(m1) → L1(m2) be a lattice isomorphism such that
T(L∞(m1)) = L∞(m2). Then

Φ : [A] ∈ Σ1[m1]→ Φ([A]) := [supp(TχA)] ∈ Σ2[m2]

is a Boolean algebra isomorphism that satisfies the conditions (C1) and (C2). Moreover,
T(χA) = T(χΩ1) · χΦ(A) for all A ∈ Σ1 and if T is multiplicative in L∞(m1), then
T(χΩ1) = χΩ2 and so T(χA) = χΦ(A) for all A ∈ Σ1.

Proof. As we mentioned in the proof of Proposition 1.5 it is not difficult to
see that Φ is a Boolean algebra isomorphism. The same holds for the last part
of the statement of the theorem. Thus we only prove that (C1) and (C2) hold
for the isomorphism Φ. Continuity of T implies that there is a constant K > 0
such that ‖T( f )‖L1(m2)

6 K‖ f ‖L1(m1)
for all f ∈ L1(m1). On the other hand, since

T(L∞(m1)) = L∞(m2), we get that T : L∞(m1) → L∞(m2) is a lattice isomor-
phism and therefore the fact that h := T(χΩ1) is an order unit in L∞(m2) im-
plies, according to Lemma 1.3 (ii), that 0 < inf h. Moreover, it is easy to see that
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T(ϕ) = h ·
n
∑

k=1
akχΦ(Bk)

for each simple function ϕ =
n
∑

k=1
akχBk ∈ S(m1). Consider

the constant K1 := K/inf h. Now, take an element 0 6 y′ ∈ BY′ and a Σ1-partition
A1, A2, . . . , AN of Ω1. In what follows we fix y′ and the partition. For each posi-
tive element 0 6 a := (a1, a2, . . . , aN) ∈ RN we define the function Ψa : B+

X′→R as

Ψa(x′) :=
N

∑
k=1

ak(〈m2(Φ(Ak)), y′〉 − K1〈m1(Ak), x′〉).

We are going to use a separation argument based on Ky Fan’s Lemma (see Lem-
ma 9.10 of [6]).

(i) Each function Ψa is convex because it is an affine map. Indeed,

Ψa(x′) =
〈 N

∑
k=1

akm2(Φ(Ak)), y′
〉
−
〈

K1

N

∑
k=1

akm1(Ak), x′
〉

.

(ii) The class of functions {Ψa : 0 6 a ∈ RN} is convex; that is, if 0 6 t 6 1,
0 6 x′ ∈ BX′ , 0 6 a ∈ RN and 0 6 b ∈ RN , then

tΨa(x′) + (1− t)Ψb(x′) = Ψta+(1−t)b(x′).

(iii) Each function Ψa is clearly continuous with respect to the weak∗ topol-
ogy of B+

X′ .
(iv) Let us see now that for each function Ψa, a := (a1, a2, . . . , aN), there

exists an element 0 6 x′ ∈ B+
X′ such that Ψa(x′) 6 0. Let us write ϕ for the function

ϕ :=
N
∑

k=1
akχAk . Note that ϕ takes non-negative values. From the continuity of T

together with the Hahn–Banach Theorem, we find an element 0 6 x′ ∈ BX′ such
that

‖T(ϕ)‖L1(m2)
6 K‖ϕ‖L1(m1)

= K
∥∥∥∫
Ω1

ϕ dm1

∥∥∥
X

= K
〈∫

Ω1

ϕdm1, x′
〉
= K

N

∑
k=1

ak〈m1(Ak), x′〉 =
N

∑
k=1

akK〈m1(Ak), x′〉.

Note that for the element 0 6 y′ ∈ BY′ we obtain

inf h ·
( N

∑
k=1

ak〈m2(Φ(Ak)), y′〉
)
6
〈∫

Ω2

(h
N

∑
k=1

akχΦ(Ak)
)dm2, y′

〉
=
〈∫

Ω2

T(ϕ)dm2, y′
〉

6
∥∥∥∫
Ω2

T(ϕ)dm2

∥∥∥
Y
= ‖T(ϕ)‖L1(m2)

.
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Thus, inf h ·
( N

∑
k=1

ak〈m2(Φ(Ak)), y′〉
)
6

N
∑

k=1
akK〈m1(Ak), x′〉. So,

N

∑
k=1

ak(〈m2(Φ(Ak)), y′〉 − K
inf h
〈m1(Ak), x′〉) 6 0

and then Ψa(x′) 6 0.

Now we can apply Ky Fan’s Lemma, since B+
X′ is weak∗ compact. Then

there is an element 0 6 x′0 ∈ B+
X′ such that Ψa(x′0) 6 0 for all

0 6 a := (a1, a2, . . . , aN) ∈ RN .

In particular, taking the elements a = ek := (0, . . . , 1k, . . . , 0) ∈ RN we get

〈m2(Φ(Ak)), y′〉 6 K1〈m1(Ak), x′0〉

for each k = 1, 2, . . . , N.
The proof of the condition (C2) can be obtained just by using the same ar-

gument and the continuity of the inverse operator T−1.

REMARK 2.3 (See Section 4 of [9]). If the Banach lattice X is a generalized
AL-space, namely, the topology of X can be defined by a lattice norm ‖ · ‖ that is
additive on the positive cone, that is, ‖x + y‖ = ‖x‖+ ‖y‖ for all 0 6 x, y ∈ X,
then the condition (C1) is equivalent to each one of the following two (equivalent)
conditions:

(i) There is a constant K1 > 0 such that for each 0 6 y′ ∈ BY′ and each A ∈ Σ1
there is 0 6 x′ ∈ BX′ satisfying 〈m2(Φ(A)), y′〉 6 K1〈m1(A), x′〉.

(ii) There exists a constant K1 > 0 such that

‖m2‖(Φ(A)) 6 K1‖m1‖(A), A ∈ Σ1.

Analogously if the Banach lattice Y is a generalized AL-space, similar equiva-
lences are true for the condition (C2). Summing up all this comments, if the mea-
sures m1 and m2 take values on generalized AL-spaces, the conditions (C1) and
(C2) can be rewritten in the following way: there is a constant K > 0 such that

(2.2)
1
K
‖m1‖(A) 6 ‖m2‖(Φ(A)) 6 K‖m1‖(A), A ∈ Σ1.

Note that (2.2) is equivalent to say that Φ : Σ[m1] → Σ[m2] and its inverse Φ−1

are Lipschitz maps.

In the rest of this section we study the case when the lattice isomorphism

T : L1(m1)→ L1(m2)

does not necessarily satisfy the equality T(L∞(m1)) = L∞(m2) that is required in
Theorem 2.2. To do that consider a positive vector measure space (Ω, Σ, m),
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where m takes values in the Banach lattice X. If 0 < h ∈ L1(m), we can define
another positive vector measure as

mh : A ∈ Σ→ mh(A) :=
∫
A

h dm ∈ X.

It is well-known that the equality ‖mh‖(A) = ‖hχA‖L1(m) holds for each A ∈ Σ.
Therefore ‖mh‖(A) = 0 if and only if ‖m‖(A) = 0, and the classes of null sets are
the same for both measures. Moreover, for each x′ ∈ X′ and each A ∈ Σ, we have
|〈mh, x′〉|(A) =

∫
A

h d|〈m, x′〉|. Actually, it can be easily seen that the following

result holds.

LEMMA 2.4. L1(mh) = { f : Ω→ R measurable : h · f ∈ L1(m)}.
On the other hand, we have the following result for the multiplication op-

erator defined by the function h.

LEMMA 2.5. The multiplication operator Mh : L1(mh) → L1(m), defined as
Mh( f ) := h · f , is an isometric lattice isomorphism. Moreover, its inverse is given by
Dh : f ∈ L1(m)→ Dh( f ) := f /h ∈ L1(mh), which is an isometric lattice isomorphism
that satisfies Dh Mh = IdL1(mh)

and MhDh = IdL1(m).

Proof. As we have noted before, the operator Mh is well-defined and it is
clearly a lattice homomorphism. On the other hand, if ϕ is a Σ-simple function,
then

∫
Ω

ϕ dmh =
∫
Ω

ϕ · h dm and so we have

‖Mh(ϕ)‖L1(m) = ‖h · ϕ‖L1(m) =
∥∥∥ ∫

Ω

h · |ϕ|dm
∥∥∥

X
=
∥∥∥ ∫

Ω

|ϕ|dmh

∥∥∥
X
= ‖ϕ‖L1(mh)

.

Taking into account that the set of simple functions is dense, we obtain that Mh is
an isometry. To see that Mh is onto, recall that if g ∈ L1(m), then g/h ∈ L1(mh).
The proof of the last part is straightforward.

REMARK 2.6. Note that [supp(Mh(χA))] = [A] for each A ∈ Σ. Thus, the
isomorphism of Boolean algebras Φ : Σ[mh] → Σ[m] associated with the multi-
plication Mh (or with Dh) is just the identity map. However, Φ does not satisfy in
general the conditions (C1) or (C2) for the measures m and mh.

LEMMA 2.7. The identity map Φ : Σ[mh] → Σ[m], the isomorphism of Boolean
algebras associated with the multiplication Mh, satisfies the condition (C1) if and only if
1/h ∈ L∞(m); and it satisfies the condition (C2) if and only if h ∈ L∞(m).

Proof. We only prove the second equivalence. The proof of the first one is
similar. For the identity map Φ : Σ[mh] → Σ[m], the condition (C2) reads as:
there is a constant K2 > 0 such that for every 0 6 x′ ∈ BX′ and each π ∈ Π(Ω)
there exists 0 6 y′ ∈ BX′ such that

∫
A

h d〈m, x′〉 6 K2〈m(A), y′〉 for all A ∈ π.
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It is clear that the condition (C2) holds if h ∈ L∞(m), since for each 0 6 x′ ∈
BX′ and A ∈ Σ we have that

∫
A

h d〈m, x′〉 6 ‖h‖L∞(m)〈m(A), x′〉; it is enough to

take K2 := ‖h‖L∞(m) and y′ = x′. Reciprocally, assume now the condition (C2)
and let us prove that h ∈ L∞(m). For each N = 1, 2, . . . consider the measurable
sets AN := {ω ∈ Ω : N 6 h(ω)}. Note that the function h ∈ L∞(m) if and only if
there exists N > 1 such that ‖m‖(AN) = 0. For each natural number N consider
the partition {AN , Ω− AN} ∈ Π(Ω), and let 0 6 x′N ∈ BX′ such that

〈m(AN), x′N〉 = ‖m(AN)‖ = ‖m‖(AN).

Then by assumption there is an element 0 6 y′N ∈ BX′ such that∫
AN

h d〈m, x′N〉 6 K2〈m(AN), y′N〉

for all N = 1, 2, . . . On the other hand∫
AN

h d〈m, x′N〉 > N〈m(AN), x′N〉 = N‖m‖(AN).

Thus we have obtained that

N‖m‖(AN) 6 K2〈m(AN), y′N〉 6 K2‖m‖(AN)

for all N = 1, 2, . . . But this can only happen if there exists an N > 1 such that
‖m‖(AN) = 0. Consequently, h ∈ L∞(m).

REMARK 2.8. Observe that Mh(L∞(mh)) ⊆ L∞(m) if and only if h ∈ L∞(m).
This shows that it is possible to find examples of isometric lattice isomorphisms
between spaces L1(m) and L1(mh) such that the corresponding bounded func-
tions subspaces are not fixed by the isometry Mh; this only happens if the multi-
plication is defined by a bounded function h with bounded inverse 1/h.

Finally, we obtain the following general result.

THEOREM 2.9. Let T : L1(m1) → L1(m2) be a lattice isomorphism. Then Φ :
[A] ∈ Σ1[m1]→ Φ([A]) := [supp(TχA)] ∈ Σ2[m2] is a Boolean algebra isomorphism
that satisfies:
(C1’) There exists a constant K1 > 0 such that for each 0 6 y′ ∈ BY′ and each π ∈

Π(Ω1) there exists 0 6 x′ ∈ BX′ satisfying that∫
Φ(A)

T(χΩ1)d〈m2, y′〉 6 K1〈m1(A), x′〉, A ∈ π.

(C2’) There exists a constant K2 > 0 such that for each 0 6 x′ ∈ BX′ and each π ∈
Π(Ω1) there exists 0 6 y′ ∈ BY′ satisfying

〈m1(A), x′〉 6 K2

∫
Φ(A)

T(χΩ1)d〈m2, y′〉, A ∈ π.
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Moreover, T(χA) = T(χΩ1) · χΦ(A) for all A ∈ Σ1.

Proof. For the proof of this result we use Theorem 2.2. Let us denote by h
the function h := T(χΩ1) and observe that 0 < h ∈ L1(m2). Now consider the
measure m2h : A ∈ Σ2 → m2h(A) :=

∫
A

h dm2 ∈ Y and the corresponding space

L1(m2h). We know by Lemma 2.5 that the multiplication

Dh : f ∈ L1(m2)→ Dh( f ) :=
f
h
∈ L1(m2h)

is an isometric lattice isomorphism such that Dh(h) = χΩ2 . Thus, the composition
operator T̃ := DhT, that is,

L1(m1)
T−−−−→ L1(m2)

Dh−−−−→ L1(m2h)

is a lattice isomorphism that satisfies T̃(χΩ1) = DhT(χΩ1) = Dh(h) = χΩ2 . Thus,
T̃(L∞(m1)) = L∞(m2h). An application of Theorem 2.2 gives that

Φ : [A] ∈ Σ1[m1]→ Φ([A]) := [supp(T̃χA)] ∈ Σ2[m2]

is a Boolean algebra isomorphism that satisfies the conditions (C1) and (C2) for
the measures m1 and m2h. Moreover, for each A ∈ Σ1 it holds that

T̃(χA) = T̃(χΩ1) · χΦ(A) = χΩ2 · χΦ(A) = χΦ(A),

that is, DhT(χA) = χΦ(A). So we can conclude that

T(χA) = h · χΦ(A) = T(χΩ1) · χΦ(A)

for all A ∈ Σ1. Now let us note that for all A ∈ Σ1 we have

[supp(T̃(χA))] = [supp(DhT(χA))] =
[
supp

(1
h

T(χA)
)]

= [supp(T(χA))]

and also for each 0 6 y′ ∈ BY′ and each π ∈ Π(Ω1) it is satisfied that

〈m2h(Φ(A)), y′〉 =
〈 ∫

Φ(A)

h dm2, y′
〉
=

∫
Φ(A)

h d〈m2, y′〉 =
∫

Φ(A)

T(χΩ1)d〈m2, y′〉

for all A ∈ π. This implies the conditions (C1’) and (C2’).

3. LATTICE ISOMORPHISMS BETWEEN SPACES OF INTEGRABLE FUNCTIONS
WITH RESPECT TO GENERAL VECTOR MEASURES

In this section we shall consider any couple of spaces of vector measures
(Ω1, Σ1, m1) and (Ω2, Σ2, m2). Assume that the measure m1 takes values in the
Banach space X and m2 takes values in the Banach space Y. With the appropriate
changes in the conditions (C1) and (C2) we can prove an analogous to Theo-
rem 2.1 for a general couple of vector measures. It is the following result.
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THEOREM 3.1. Let Φ : Σ1[m1]→ Σ2[m2] be an isomorphism of Boolean algebras
such that:

(i) There exists a constant K1 > 0 such that for each y′ ∈ BY′ and each π ∈ Π(Ω1)
there exists an element x′ ∈ BX′ satisfying that

|〈m2, y′〉|(Φ(A)) 6 K1|〈m1, x′〉|(A), A ∈ π.

(ii) There exists a constant K2 > 0 such that for each x′ ∈ BX′ and each π ∈ Π(Ω1)
there exists an element y′ ∈ BY′ satisfying that

|〈m1, x′〉|(A) 6 K2|〈m2, y′〉|(Φ(A)), A ∈ π.

Then there is a unique lattice isomorphism T : L1(m1)→ L1(m2) such that

T(L∞(m1)) = L∞(m2).

Moreover, the restriction T : L∞(m1) → L∞(m2) is an isometric multiplicative lattice
isomorphism that satisfies T(χA)=χΦ(A) for all A∈Σ1. In particular, T(χΩ1)=χΩ2 .

The proof is similar to that of Theorem 2.1.
Now we study if it is possible to obtain a sort of converse of Theorem 3.1;

this would provide an analogous result to Theorem 2.2 for any vector measure,
without the restriction of being positive. The following proposition is probably
well-known but we include here a simple proof for the sake of completeness.

PROPOSITION 3.2. Suppose that (Ω, Σ, m) is any vector measure space with the
measure m taking values in the Banach space X. Then L1(m) is lattice isometric to L1(m̂),
where m̂ is the positive vector measure given by m̂ : A ∈ Σ→ m̂(A) := χA ∈ L1(m).

Proof. Observe that we obtain

‖m̂‖(A) = ‖m̂(A)‖L1(m) = ‖χA‖L1(m) = ‖m‖(A), A ∈ Σ,

since the measure m̂ is positive. Thus, null sets coincide for both measures. On

the other hand, for each simple function ϕ :=
n
∑

k=1
αkχAk ,

‖ϕ‖L1(m̂)=
∥∥∥ n

∑
k=1

αkχAk

∥∥∥
L1(m̂)

=
∥∥∥∫

Ω

( n

∑
k=1
|αk|χAk

)
dm̂
∥∥∥

L1(m)
=
∥∥∥ n

∑
k=1
|αk|m̂(Ak)

∥∥∥
L1(m)

=
∥∥∥ n

∑
k=1
|αk|χAk

∥∥∥
L1(m)

=
∥∥∥ n

∑
k=1

αkχAk

∥∥∥
L1(m)

= ‖ϕ‖L1(m).

This means that the integration map

I : f ∈ L1(m̂)→ I( f ) :=
∫
Ω

f dm̂ ∈ L1(m),

which is always linear and continuous, is, in fact, an isometry from L1(m̂) onto
L1(m). Moreover, I( f ) =

∫
Ω

f dm̂ = f for all f ∈ L1(m̂), and then L1(m̂) and L1(m)

are lattice isometric.
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THEOREM 3.3. Let T : L1(m1) → L1(m2) be a lattice isomorphism. Then
Φ : [A] ∈ Σ1[m1] → Φ([A]) := [supp(TχA)] ∈ Σ2[m2] is a Boolean algebra iso-
morphism. Moreover, T(χA) = T(χΩ1) · χΦ(A) for all A ∈ Σ1.

Proof. Consider the corresponding positive measures m̂1 and m̂2 and the
corresponding spaces L1(m̂1) and L1(m̂2). After Proposition 3.2 we know that
the following diagram commutes:

L1(m1)
T−−−−→ L1(m2)

I1

x xI2

L1(m̂1)
T̂−−−−→ L1(m̂2),

where T̂ : L1(m̂1)→ L1(m̂2) is the lattice isomorphism that coincides with T, that
is, T̂( f ) = T( f ) for all f ∈ L1(m̂1) = L1(m1). Then, since the measures m̂1 and
m̂2 are both positive, we obtain as a consequence of Theorem 2.9 that

Φ : [A] ∈ Σ1[m1]→ Φ([A]) := [supp(TχA)] ∈ Σ2[m2]

is a Boolean algebra isomorphism satisfying T(χA) = T(χΩ1) · χΦ(A) for all A ∈
Σ1.

REMARK 3.4. It seems that it is not possible to obtain more accurate results
on the Boolean algebra isomorphism

Φ : [A] ∈ Σ1[m1]→ Φ([A]) := [supp(TχA)] ∈ Σ2[m2].

However, using the notation above, we also obtain from Theorem 2.9 that the
conditions (C1’) and (C2’) hold for the measures m̂1 and m̂2. Let us show what
the condition (C1’) means in terms of the measures m1 and m2. If y′ ∈ BY′ , the
functional

λ : f ∈ L1(m2)→ 〈 f , λ〉 :=
∫

Ω2

f d|〈m2, y′〉| ∈ R,

satisfies 0 6 λ ∈ B(L1(m2))′
. Moreover, observe that

〈m̂2, λ〉(B) = 〈χB, λ〉 =
∫

Ω2

χB d|〈m2, y′〉| = |〈m2, y′〉|(B),

for all B ∈ Σ2, that is, the measures 〈m̂2, λ〉 and |〈m2, y′〉| coincide on Σ2. Then,
(C1’) implies in particular that for each A ∈ Σ1, there is an element 0 6 µ ∈
B(L1(m1))′

such that∫
Φ(A)

T(χΩ1)d|〈m2, y′〉|6K1〈m̂1(A), µ〉=K1〈χA, µ〉6K1‖χA‖L1(m1)
=K1‖m1‖(A).

This means that ‖T(χΩ1) · χΦ(A)‖L1(m2)
6 K1‖m1‖(A) for all A ∈ Σ1.
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Using a similar argument we can deduce from the condition (C2’) that, for
all A ∈ Σ1,

‖m1‖(A) 6 K2‖T(χΩ1) · χΦ(A)‖L1(m2)
.

Summing up the comments above we deduce from the conditions (C1’) and
(C2’) jointly that there are two constants M1 > 0 and M2 > 0 such that, for all
A ∈ Σ1,

(3.1) M2‖m1‖(A) 6 ‖T(χΩ1) · χΦ(A)‖L1(m2)
6 M1‖m1‖(A).

In the particular case that the lattice isomorphism

T : L1(m1)→ L1(m2)

also satisfies T(L∞(m1))=L∞(m2), the inequalities (3.1) are simply, for all A∈Σ1,

(3.2) M2‖m1‖(A) 6 ‖m2‖(Φ(A)) 6 M1‖m1‖(A).

However, as we show in the following example the conditions given by (3.1)
or (3.2) for the Boolean algebra isomorphism Φ do not mean at all that we can
define a lattice isomorphism between the spaces L1(m1) and L1(m2) through the
isomorphism Φ, as it has been done in Theorem 3.1. And what is more, we don’t
know if the associated Boolean algebra isomorphism Φ of a lattice isomorphism
T : L1(m1)→ L1(m2) satisfies the conditions (i) and (ii).

EXAMPLE 3.5 (See Example 16 of [9]). Let 1 6 q < p < ∞ be real numbers.
Consider the Lebesgue space Lp and the Lorentz space Lp,q, both of them over
the interval [0, 1]. Both of them are Banach lattices with order continuous norm
and weak order unit. Now consider the positive vector measures defined over
the Borel σ-algebra B on [0, 1] given by

m1 : A ∈ B → m1(A) := χA ∈ Lp,q, m2 : A ∈ B → m2(A) := χA ∈ Lp.

It is known ([2], Theorem 8) that L1(m1) = Lp,q, and L1(m2) = Lp. Then the
spaces L1(m1) and L1(m2) cannot be isomorphic if p < q. On the other hand, a
simple calculation shows that

‖m1‖(A) = ‖χA‖Lp,q =
[ p

q

]1/q
‖χA‖Lp =

[ p
q

]1/q
‖m2‖(A),

for all A ∈ B. So the measures m1 and m2 satisfy the inequalities (3.2) taking the
identity as the isomorphism of Boolean algebras.

4. THE STRUCTURE OF LATTICE ISOMORPHISMS BETWEEN
SPACES OF INTEGRABLE FUNCTIONS

In this section we consider two vector measure spaces (Ω1,B1, m1) and
(Ω2,B2, m2), where Ω1 and Ω2 are Borel spaces and B1 and B2 are the corre-
sponding σ-algebras of the Borel sets of Ω1 and Ω2, respectively. We assume that
the measure m1 takes values in the Banach space X and the measure m2 takes
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values in the Banach space Y. If we suppose that the measures m1 and m2 are
positive we assume in addition that X and Y are Banach lattices. Recall that a
topological space Ω is a Borel space if it is homeomorphic to a Borel subset of the
Hilbert cubeH := ∏

n>1
[0, 1]. It is well-known (see Section 35.III of [12] or Corollary

of Theorem II.1.1 in [17]) that any separable complete metric space Ω is a Borel
space. Observe that almost all measurable spaces that are usually considered for
defining vector (or scalar) measures are of the form (Ω,B), where Ω is a Borel
space and B is the σ-algebra of the Borel sets of Ω.

The aim here is to describe relationships between Ω1 and Ω2 starting from
a lattice isomorphism T : L1(m1) → L1(m2). Also we present a result on the
structure of the lattice isomorphisms between spaces of integrable functions. In a
sense, our result is similar to the one of Lamperti (see Theorem 3.1 of [13] or Theo-
rem 15.5.16 of [16]) on the structure of the isometries between spaces of integrable
functions with respect to scalar measures.

Sikorski study in [18] Boolean algebra isomorphisms between quotient al-
gebras. In particular, the following result holds (see 6.1 of [18] or Theorem 15.4.12
of [16] for a simple proof).

THEOREM 4.1 (Sikorski). Let (Ω1,B1, m1) and (Ω1,B1, m1) be two vector mea-
sure spaces, where Ω1 and Ω2 are Borel spaces. For each Boolean algebra isomorphism
Φ : B1[m1] → B2[m2] there are two sets N1 ∈ N1 and N2 ∈ N2 and a map α :
Ω2 r N2 → Ω1 r N1 that is a measurable bijection with measurable inverse such that

Φ([A]) := [α−1(A)], A ∈ Σ1.

In this case it is said that Φ is induced by the measurable map α. Also note
that

(4.1) χΦ(A) = χα−1(A) = χA ◦ α, A ∈ Σ1.

THEOREM 4.2. Let T : L1(m1) → L1(m2) be a lattice isomorphism. Then there
is a function 0 < h ∈ L1(m2) and a map α : Ω2 → Ω1, defined almost everywhere,
bijective, measurable with measurable inverse, such that T( f ) = h · f ◦ α for all f ∈
L1(m1). If moreover the measures m1 and m2 are positive the following holds:

(i) There exists a constant K1 > 0 such that for each 0 6 y′ ∈ BY′ and each π ∈
Π(Ω1) there is an element 0 6 x′ ∈ BX′ satisfying∫

α−1(A)

hd〈m2, y′〉 6 K1〈m1(A), x′〉, A ∈ π.

(ii) There is a constant K2 > 0 such that for each 0 6 x′ ∈ BX′ and each π ∈ Π(Ω1)
there exists an element 0 6 y′ ∈ BY′ satisfying

〈m1(A), x′〉 6 K2

∫
α−1(A)

hd〈m2, y′〉, A ∈ π.
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Proof. Let us denote by h the function T(χΩ1). By Theorem 3.3, we know
that Φ : [A] ∈ B1[m1] → Φ([A]) := [supp(TχA)] ∈ B2[m2] is a Boolean algebra
isomorphism. Moreover it is satisfied that T(χA) = h · χΦ(A) for all A ∈ Σ1.
By Sikorski’s Theorem, there are two sets N1 ∈ N1 and N2 ∈ N2 and a map
α : Ω2 r N2 → Ω1 r N1 that is a measurable bijection with measurable inverse
such that Φ([A]) := [α−1(A)] for all A ∈ B1. From (4.1) we obtain that

T(χA) = h · χA ◦ α

for all A ∈ B1, and then T(ϕ) = h · ϕ ◦ α for every simple function ϕ ∈ S(m1).
Since the operator T is continuous and taking into account that for each function
0 < f ∈ L1(m1) there exists a sequence (ϕn)n ⊆ S(m1) such that 0 < ϕn ↑ f
pointwise and in L1(m1), we obtain T( f ) = h · f ◦ α, for all f ∈ L1(m1).

Moreover, if the measures m1 and m2 are also positive, the conditions (i) and
(ii) can be directly deduced from Theorem 2.9.

In the rest of the section we analyze the converse of the theorem above, con-
cluding the necessity of its hypothesis. We start presenting the following result,
that is relevant in our context since it provides a necessary and sufficient condi-
tion for a composition operator between spaces of integrable functions (modelled
over general vector measure spaces, not necessarily Borel spaces) to be a lattice
isomorphism (in particular continuous). Let α : Ω2 → Ω1 be a bijective map
that is defined almost everywhere, measurable with measurable inverse such that
‖m2‖(α−1(A)) = 0 if and only if ‖m1‖(A) = 0 for all A ∈ Σ1.

PROPOSITION 4.3. The composition map Cα defines a lattice isomorphism from
L1(m1) into L1(m2) if and only if the following conditions hold:

(i) There exists a constant K1 > 0 such that for each 0 6 y′ ∈ BY′ and each π ∈
Π(Ω1) there is an element 0 6 x′ ∈ BX′ satisfying that

〈m2(α
−1(A)), y′〉 6 K1〈m1(A), x′〉, A ∈ π.

(ii) There exists a constant K2 > 0 such that for each 0 6 x′ ∈ BX′ and each π ∈
Π(Ω1) there exists 0 6 y′ ∈ BY′ satisfying that

〈m1(A), x′〉 6 K2〈m2(α
−1(A)), y′〉, A ∈ π.

Proof. Under conditions we have noted before referring to the map α it is
not difficult to see that

Φ : [A] ∈ Σ1[m1]→ Φ([A]) := [α−1(A)] ∈ Σ2[m2]

is a Boolean algebra isomorphism. For this map the conditions (C1) and (C2)
are exactly (i) and (ii), respectively. So, under these conditions, we know from
Theorem 2.1 that there is a lattice isomorphism T : L1(m1) → L1(m2) such that
T(χA) = χA ◦ α for every A ∈ Σ1. This clearly implies that T( f ) = f ◦ α for all
f ∈ L1(m1), that is, T coincides with the composition operator Cα defined as the
composition with the function α.
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Reciprocally, assume that Cα : L1(m1) → L1(m2) is a lattice isomorphism.
In particular, it is a bijection. Moreover, Cα and its inverse are continuous, that is,
there are two constants K1 > 0 and K2 > 0 such that

(4.2)
1

K2
‖ f ‖L1(m1)

6 ‖ f ◦ α‖L1(m2)
6 K1‖ f ‖L1(m1)

for all f ∈ L1(m1). So, using (4.2) and following the steps of the proof of The-
orem 2.2 it can be proved that the conditions (i) and (ii) are satisfied. For in-
stance, for proving the condition (i), take an element 0 6 y′ ∈ BY′ and a partition
{A1, A2, . . . , AN} ∈ Π(Ω1). For each vector 0 6 a := (a1, a2, . . . , aN) ∈ RN we
define the function Ψa : B+

X′ → R by

Ψa(x′) :=
N

∑
k=1

ak(〈m2(α
−1(Ak)), y′〉 − K1〈m1(Ak), x′〉).

Using, as in the previous case, the separation argument based on Ky Fan’s Lemma
([6], Lemma 9.10) we find an element 0 6 x′0 ∈ B+

X′ such that Ψa(x′0) 6 0 for all
0 6 a := (a1, a2, . . . , aN) ∈ RN . In particular, if a = ek := (0, . . . , 1k, . . . , 0) ∈ RN

we obtain

〈m2(α
−1(Ak)), y′〉 6 K1〈m1(Ak), x′0〉,

for each k = 1, 2, . . . , N. That is exactly (i).

REMARK 4.4. Observe that the conditions (i) and (ii) of Theorem 4.2 are
exactly the conditions (i) and (ii) of Proposition 4.3 for the measures m1 and m2h,
where the second one, as we know, is defined by

m2h : A ∈ Σ→ m2h(A) :=
∫
A

h dm ∈ X,

where 0 < h ∈ L1(m). After Proposition 4.3, it is easy to see that Theorem 4.2
states that every lattice isomorphism T : L1(m1) → L1(m2) factorizes through a
multiplication operator Mh : L1(m2h) → L1(m2), where 0 < h ∈ L1(m2), and
a composition operator Cα : L1(m1) → L1(m2h), as the following commutative
diagram shows:

L1(m1) L1(m2)

L1(m2h)

-

Z
Z
Z
ZZ~ �

�
�
��>

T

Cα Mh

Now we get the converse result of Theorem 4.2 as a corollary of Proposi-
tion 4.3 and the commutative diagram above.
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COROLLARY 4.5. Let α : Ω2 → Ω1 be a bijective map defined almost everywhere,
measurable and with measurable inverse between two Borel spaces, and let 0 < h ∈
L1(m2) satisfying the conditions (i) and (ii) of Theorem 4.2. Then

T : f ∈ L1(m1)→ T( f ) := h · f ◦ α ∈ L1(m2)

is a lattice isomorphism.
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