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ABSTRACT. In this article, we investigate the notion of a Galois object for a
locally compact quantum group G. Such an object consists of a von Neumann
algebra N, together with an ergodic integrable action of G on N for which the
crossed product is a type I factor. We show how to construct from this data
a possibly different locally compact quantum group. By way of application,
we prove the following statement: any twisting of a locally compact quantum
group by a unitary 2-cocycle is again a locally compact quantum group.
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INTRODUCTION

In commutative geometry, the importance of principal fiber bundles can
hardly be overestimated. When passing to non-commutative geometry, they be-
come even more intriguing: one can have interesting principal bundles over a
point! In this article, we investigate this phenomenon in the framework of locally
compact quantum groups.

In Hopf algebra theory, “non-commutative principal bundles” are known
under the name “faithfully flat Hopf-Galois extensions”. A Hopf-Galois extension
consists of the following data: a Hopf algebra (H, Ap) (say over a field k), a unital
k-algebra A, and a coaction &« : A — A ® H. These have to satisfy the following

k
property: with B the fixed point algebra of «, the map
(0.1) G:A%A%A%H:x@y%a(x)(y@l),
called the Galois map, must be a bijection. Here the surjectivity corresponds ge-

ometrically to the freeness of the action, while the injectivity corresponds to the
action being proper (actually, “to the action being Cartan” is the more accurate
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analogy). Saying that the Hopf Galois extension is faithfully flat, means that A
is faithfully flat as a right B-module (in which case the injectivity of the map G
comes for free). This corresponds to the local triviality of the bundle. Finally,
if we want to have a fiber bundle over a point, we should ask that B = k-1,
(the condition of being “faithfully flat” becoming obsolete). The couple (A, ) is
then called a (right) Galois object for (H, Apy). See [20] for a nice overview of these
concepts.

We now briefly indicate how the above definitions have to be adapted in
the setting of locally compact quantum groups. We will work only in the von
Neumann algebra framework. While this is certainly not sufficient to study “lo-
cally compact quantum principal fiber bundles”, it turns out to be sufficient if one
considers a bundle over a point (i.e., there is automatically a C*-algebraic picture
available). So let (M, A) be a von Neumann algebraic quantum group, which is to
be interpreted as being £*(G) for some locally compact quantum group G (see
[14] and [27]). Let N be a von Neumann algebra, and « : N — N ® M a right
coaction. Denote by N* the subalgebra of fixed points. The map « is called inte-
grable, if the operator-valued weight (1 ® ¢)a from N to N* is semi-finite, where
¢ denotes the left invariant nsf weight for (M, A). This is our non-commutative
analogue of the action being proper. (In fact, one would also like to use the notion
of integrability to define properness on the level of C*-algebras, but the situation
there is much more subtle, see e.g. [19].) When this condition is satisfied, one is
able to construct an analogue of the Galois map (0.1) on the level of £?-spaces.
It will automatically be isometric. When it is actually a unitary, then we call « a
Galois coaction. Finally, when also N* = C, i.e. when « is ergodic, we call (N, a)
a Galois object. This turns out to be equivalent with the condition given in the
abstract.

One reason which makes Galois objects so interesting, is that in general they
carry with them not one, but two Hopf algebras: if (4, «) is a (right) Galois object
for a Hopf algebra (H, Ap), then one can construct from this a second “reflected”
Hopf algebra (L, A1) and a (left) coaction <y of L on A, such that (A, ) becomes
a left Galois object, and such that v and « commute. This turns out to be a (part
of a) non-commutative generalization of the Ehresmann construction, where one
lets a locally compact group act freely and properly on a locally compact space,
and constructs from this a locally compact groupoid with an action on this same
space, commuting with the group action (see e.g. [16], Example 1.1.5).

We show in this article that such a reflected quantum group also exists when
dealing with Galois objects for locally compact quantum groups. While the new
locally compact quantum group can be constructed more or less as on the algebraic
level, there is one technical point which is much less straightforward to establish:
namely, the construction gives a priori only a Hopf~von Neumann algebra, and
one still has to see if there are invariant weights available. The existence of these
weights is the main theorem of this paper (Theorem 5.10). In fact, we prefer an
approach dual to the one in Hopf algebra theory, so we rather construct a von
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Neumann algebraic quantum group (P, A 5), whose dual then plays the role of
(L/ AL ) .

An important corollary of our results, is that any cocycle twist of a locally
compact quantum group is again a locally compact quantum group. lLe.: if O
is a unitary 2-cocycle for a von Neumann algebraic quantum group (]\71, AA) (so
QeM@Mand (Q®1)(A21)(Q) = (12 Q)(t® A)(Q)), then one can show
that the cocycle twisted convolution algebra M g C together with its dual coac-

tion constitutes a Galois object for (M, A), and the new von Neumann algebraic
quantum group (P, A p) which we obtain is precisely M itself with the new co-
product A := QA(-)Q*. We want to note that in [8], a special type of such cocy-
cle deformations is discussed: a cocycle on a classical subobject, satisfying certain
conditions, is lifted to the whole locally compact quantum group. In this case,
more concrete formulas are available for describing the weights on the twisted
locally compact quantum group.

As mentioned already, the theory of Galois objects is well-developed for
Hopf algebras. It was also investigated for compact quantum groups in [2], which
was in turn based on the work of Wassermann on ergodic actions of compact
groups on von Neumann algebras ([29],[30]). We then investigated this notion for
algebraic quantum groups in [3]. It can be shown that the x-Galois objects of [3]
can be completed to analytic objects of the kind discussed in this paper (similar
to the completion of *-algebraic quantum groups to locally compact quantum
groups, as is done in [11]), although we have not included a detailed exposition
of this fact in this paper.

The specific content of this paper is as follows: in the first two sections, we
establish notation and preliminaries concerning operator valued weights. Our
general references for this part are the first four chapters of [21] for the theory of
non-commutative integration, Section 10 of [5] for some results about inclusions
of von Neumann algebras.

In the third section, we treat the notion of a (right) Galois coaction for a von
Neumann algebraic quantum group, as briefly explained above. This notion al-
ready appeared implicitly at various places in the literature, for it turns out to be
equivalent with the following property: with « denoting the coaction of a locally
compact quantum group (M, A) on a von Neumann algebra N, being Galois is
the same as saying that N x M can be represented faithfully on £?(N) by a certain
canonical map p. Our general references for this part are [14] and [27] for the the-
ory of locally compact quantum groups in the von Neumann algebraic setting,
and [22] for the theory of coactions for locally compact quantum groups (which
are there just termed "actions”).

In the fourth section, we study Galois objects, i.e. Galois coactions (N, a) for
which « is ergodic. We show that a Galois object has as rich a structure as a lo-
cally compact quantum group: we can associate with N certain invariant weights,
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related by a modular element, and also a one-parameter scaling group. The ref-
erences for this part are [14], [27] and [22].

In the fifth section, we use these results to construct a (possibly new) von
Neumann algebraic quantum group (P, A p) from such a Galois object. The refer-
ence for this part is Section IX.3 of [21].

In the sixth section, we consider the special case of cocycle twisted locally
compact quantum groups.

In the seventh section, we define the notion of a projective corepresentation
for a locally compact quantum group, and we show the connection with coactions
on type I-factors.

1. PRELIMINARIES AND NOTATION

The scalar product of a Hilbert space will be anti-linear in the second argu-
ment. If H, K are Hilbert spaces, we denote by B(H, K) the Banach space of all
bounded operators between H and /C, by B(H) the algebra of all bounded oper-
ators on #, and by By(#) the algebra of all compact operators. If {,7 € H, we
write

wgy i B(H) = Cix — (xg,1).
If u is a unitary on H, we will denote
Ad(u) : B(H) = B(H) : x — uxu™.
If Hq, H, are two Hilbert spaces, we will denote by X the flip map
Hi1@Hy > Ha@H1: @0 =R

We will also frequently use leg numbering notation: if #; are Hilbert spaces
and

u:Hi @ Hy = Hz @ Hy

is an operator, we denote for example by u1; the operator
UR1: H1 QHr, @ Hs — Hz @ Hy @ Hs,
and by u;3 the operator
Sosu1nXo3 i H1 @ Hs @ Ho — Hz @ Hs @ Hay.

If u is already indexed, say u = u7, then we write uj 13 for uy3.

If N is a von Neumann algebra, we denote by Nj its predual. We denote by
L2(N) the universal Hilbert space for GNS-constructions. We denote the spatial
tensor product of two von Neumann algebras by .

Let gn be a fixed normal semi-finite faithful (nsf) weight on N. We will
then sometimes index the modular structure by N instead of ¢y (so the mod-
ular automorphism group for example is written as o). We will then write
the modular operator as Vy (since the symbol A will be used for the comul-

tiplication of a quantum group). When we work with another weight ¥y, we
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will then always use ¥ as an index. We will always write Ny, = {n € N :
pn(n*n) < oo} for the space of square integrable elements for ¢y, we write
M, = {n € N* : gn(n) < oo} for the space of positive integrable elements,
and Mgy = span{ M } = Nj Ny, for the space of integrable elements. The
GNS map Ny, — L2(N) for ¢y is denoted by Ay. We denote by 7, the canon-
ical Tomita algebra for ¢y (inside N):

Ton = {x € N : x analytic for of¥ and 0N (x) € N, forall z € C}.

We then also call Ay(7y, ) the Tomita algebra for ¢ (inside £2(N)).

The opposite weight of ¢ will be denoted by qo?\},). We see it as a weight
on the commutant N’ C B(£2(N)). It has a natural GNS-construction in £2(N):
with Jy denoting the modular conjugation of ¢y, we have a GNS map

AR Ny = L2(N) = Iy Iy = InAn ().

Sometimes however, we will also allow elements of N as input of A?\?: then in
fact we first identify N with the opposite von Neumann algebra N°P as a linear
space (an operation we will write as n — n°P), and then we identify N°P with
N’ as a x-algebra by sending n°P to Jyn*Jy. So forn € N, (;,‘N, we will also write
A (n) = JnAn(n*). This notation is consistent, since [yn*Jy = n for elements
in the center.

When N; and N, are two von Neumann algebras, and ¢y, an nsf weight on
N;, we denote by ¢y, ® @y, their tensor product (Definition 4.2 in [21]), which
is an nsf weight on Ny ® N>. We denote its GNS-map with Ay, ® Ap,. One can
show that

PNy @ PN, = PN, © (l & (PNZ)’
where (1 ® @y, ) is an nsf operator valued weight from N; ® N, to Nj, defined as

w((t® ¢2)(x)) = @2((w @ 1)(x))

forx € (N; ® No)* and w € (N7 ® Np);. By symmetry, this gives us a Fubini
theorem.

We recall the definition of the Connes—-Sauvageot tensor product.

If H is a left N-module, by which we mean a Hilbert space carrying a unital
normal representation 71 of N, and ¢y is a nsf weight on N, a vector § € H is
called right bounded with respect to ¢y if the map

AN(Ngy) = H 1 An(x) = m(x)¢

is bounded, in which case we denote its closure by R™?N (&) (or R if 711 and ¢y
are fixed). We denote by ,, H the space of right bounded vectors for 77;. Similarly,
if H is a right N-module, by which we mean a Hilbert space carrying a unital
normal anti-representation 7, of N, a vector { € H is called left bounded with
respect to ¢y if the map

AP (NG = M INAN (") = 70(2)E
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is bounded, in which case we denote its closure by L™ N (&) (or L¢ if 7r and ¢n
are fixed). We denote by H,,, the space of left bounded vectors for 7r;. Remark
that when we regard H as a left N°P-module in the natural way, then the right
bounded vectors with respect to ¢y; are exactly the left bounded vectors with
respect to ¢y.

If (H", ;) is a faithful right N-module, (!, ) a faithful left N-module,
and ¢y a nsf weight on N, we denote by H' @, H' (or simply H* g@ H! when

N

PN
m, 7ty are clear) their Connes—-Sauvageot tensor product with respect to 71, 77, and

@n- Itis the Hilbert space closure of the algebraic tensor product of H, and H!
with respect to the scalar product

(61 ®82,m ®@12) = (m(Ly, Le; )62, 112),

modulo vectors of norm zero. In fact, we could as well start with the algebraic
tensor product of #,, and onH!, since the image of this tensor product in the
previous Hilbert space will be dense. On elementary tensors of the last space, we
can give a different form of the scalar product, namely

(61 ® 82, m ®@1m2) = (T (Ry,Re, )61, 11)-

The image of such an elementary tensor in H* ® H! will then be denoted by the
PN
same symbol, with ® replaced by ,®, or simply ®.
PN PN
Note that these spaces carry faithful normal left representations 7 and 71

of respectively 71,(N)" and 71;(N)’, determined by

()7t (n2) (&1 ® &2) = (m1&1) @ (m282),
¢N ¢N
where n1 € 7:(N)',n2 € m(N)', &1 € H,, 60 € onHL If Ny C B(HT) is a von
Neumann algebra containing 77, (N), and N, C B(Hl) is a von Neumann algebra
containing 711(N), the von Neumann algebra

Ni % Np i= ((N) Ut (N))f
N

is called the fiber product of Ny and Np. As an abstract von Neumann algebra, it
only depends on N, Nj, N; and the maps 77, : N — Nj and r;; : N — Nj. For
further properties of the fiber product, see [7].

We will also need the notion of intertwiners and a linking algebra. Suppose
we are given two right N-modules (H3, 7t;2) and (H1, 71,1 ). Denote

Qij = {X S B(?’[]’, 7‘[1) : xrrr,j(n) = nr,i(n)x foralln € N}

We call Q1; the space of intertwiners between the right N-modules (H», 7t;») and
(H1, 7tc1). In fact, it is a self-dual Qq1-Qnp-Hilbert W*-bimodule (see [18]). The
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linking algebra between (Hjy, 7,2) and (#H1, 7,1 ) is the von Neumann algebra

_( Qn Qn
Q= ( Q1 Q2 )’
Hy

acting on (Hz) = H; ® H, in the obvious way. It is the commutant of the direct
sum right representation 7,1 @ 71;,5. Most of the time, we will identify the Qjj as
subspaces of Q, indexing the units of the Q;; then to emphasize that we consider
them as projections in Q. If 0; is a weight on Q11 and 6, a weight on Q5y, the
balanced weight 61 ® 0, is the weight QT — [0, +o0] : (1 7)) — 01(x) + 62(w).

We now briefly recall the definition of a locally compact quantum group,
mainly to fix notation.

Let M be a von Neumann algebra, A a faithful normal unital *-homomor-
phism M — M ® M which satisfies coassociativity:

(A®1)oA=(1®A)0A,

where ¢ denotes the identity map. Then the pair (M, A) is called a Hopf~von Neu-
mann algebra. A Hoph—von Neumann algebra is called coinvolutive if there exists
an anti-multiplicative *-involution R : M — M such that

AoR = (R®R)oAP,

where A°P = Ad(X) o A. A Hopf-von Neumann algebra is called a von Neumann
algebraic quantum group if there exist nsf weights ¢ and ¢ on M such that

(t@p)oA=¢, (P@1)oA=71.

These identities should be interpreted as follows: for any w € M, the weight
P o (1 ® w)A should equal the weight w(1)y, and similarly for ¢. (These are in
fact the strong forms of invariance, and they follow from weaker ones (see Propo-
sition 3.1 of [14]).) A von Neumann algebraic quantum group will automatically
be a coinvolutive Hopf-von Neumann algebra for a canonical map R. As we
mentioned already in the introduction, the terminology “locally compact quan-
tum group” is a formal one used to guide intuition: one sometimes writes (M, A)
as (L*(G),A) and refers to the symbol G as the locally compact quantum group
associated to (M, A).

We refer to [14] and [27] for further definitions and formulas. We shall also
use notations as in those papers. Specifically, we denote by ¢ a (fixed) left invari-
ant nsf weight, by S the antipode, by T; the one-parameter scaling group and by
R the unitary antipode (so that S = R o T_; /,). We scale the right invariant weight
1 such that i = ¢ o R. We establish the GNS-constructions for ¢ in the standard
form £2(M), writing just A for the GNS-map associated with ¢. We follow the
convention of [14] by taking a GNS-construction A for ¢ in £2(N) by defining
As(x) := A(x61/2) for x € M a left multiplier of the square root of the modular
element 0 such that x61/2 € N, ¢, and then closing A;. If v is the scaling constant of
(M, A), then A5 and Ay are related by A5 = v/ 8 Ay. The modular one-parameter
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group for ¢ is denoted simply by ¢}, and its corresponding modular operator by
V. The modular one-parameter group for ¢ is denoted by ¢/ = Ad(5") o oy, its
modular operator by V. The canonical (self-dual) one-parameter group of uni-
taries implementing the scaling group will be denoted by P.

We denote the dual von Neumann algebraic quantum group by (M, A),and
also all its other structures are denoted as for (M, A), but with a ~ on top. By
W and W = TW*Z we denote the left regular corepresentation of respectively
(M, A) and (M, A). We write V and V for the right regular corepresentation of
respectively (M, A) and (M, A). We will also from time to time work with the
commutant von Neumann algebraic quantum groups (M’, 4') and (M’,4'). For
the relationship between all these quantum groups, we refer again to [14].

For most of the paper, we will work with a fixed von Neumann algebraic
quantum group (M, A). When (P, Ap) is the von Neumann algebraic realization
of another locally compact quantum group, we will use the same notations but
with a subscript P. Note that we also use the symbol P for the scaling operator,
since this is standard notation, but in any case, there should not arise any occasion
where a von Neumann algebra could get mixed up with an operator!

2. FURTHER PRELIMINARIES ON OPERATOR VALUED WEIGHTS

We collect in this preliminary section some results about operator valued
weights. While they are well-known to specialists, we have chosen to present
them here in considerable detail, as we do not know a convenient reference for
the specific results we need.

Let Ny € N be a unital inclusion of von Neumann algebras, and T a nor-
mal semi-finite faithful operator valued weight from N to the positive extended
cone (Np) ™ of Ny. Let u be a fixed nsf weight on Ny, and denote by ¢y the
nsf weight y o T. Denote the semi-cyclic representation associated with ¢y by
(Ez(N ), AN, 1), realized in the standard form. Most of the time, we will write
n instead of rm(n) for n € N. Denote by 71, (or 7 for emphasis) the anti-
representation n — [yn*Jn of N, where [y is the modular conjugation. Denote
Ny, = ﬂr(No)/, then

NoCNCN,

is called the basic construction. We will also use 71j for the natural representation
of N> on EZ(N ), and 6; for the natural anti-representation

6:: Ny — B(L2(N)) : 0(x) = Jnx*]n.

Note that this will of course not turn £2(N) into a N;-N,-bimodule in general.
Consider x € Ny = {n € N : T(n*n) is bounded}. Then xn € N, when
n € Ny, and Ay (n) — An(xn) extends from A, (N,,) to a bounded operator

Ar(x) : £L2(Ng) — L2*(N),
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following the notations of Theorem 10.6 of [5]. Its adjoint is then determined
by Ar(x)*An(y) = Au(T(x*y)) for y € Npy N Nt. The operators of the form
Ar(x)Ar(y)*, with x,y € N7, will generate a o-weakly-dense sub-x-algebra of
N>, and if we denote by T, the canonical operator valued weight from N, onto N
associated with T, then we have, as follows from Theorem 10.7 of [5],

Ar(x)Ar(y)* € Mr, == N, N,
with
T (Ar(x)AT(y)*) = xy™.

Consider now £2(N) as an N,-Np-bimodule, and denote by £2(N) the con-
jugate bimodule. Then it is well-known that there is a unitary N>-N>-bimodule
map

L*(N) @ L2(N) = L2(Np) : A (x) %@A%)(y) — Agy (Ar(x)Ar(y)")

for x,y € Npy N N(;N NN, where ¢, = ¢y o To. As said, since we will need
some more information about this statement, of which we know no appropriate
reference in the literature, we will give a proof of it.

We first prove a lemma about interchanging the analytic continuation of a
modular one-parameter group with an operator valued weight.

LEMMA 2.1. Let Q be the linking algebra between the right No-modules L£?(N)
and L2(Ny), and consider the balanced weight ¢ & p on Q. Let x € N be such that x
is analytic for o\ and o (x) € Nt forall z € C. Then At (x) is analytic for (7'tQ, with
02(Ar(x)) = Ar(oN(x)) forall z € C.

Recall that the notion of a linking algebra between two right von Neumann
modules, and the notion of balanced weight, were given in the section on prelim-
inaries, of which we also use the notation.

Proof. First remark that Ar(x) € Qi by Lemma 10.6.(i) of [5]. Choose y €
N, pand u,v € N, ¢y With v in the Tomita algebra 7, C N for ¢y. Denote

f(z) = (Ar(a] (x))Au(y), INoD)o (0) INANn(u)), forz € C.
Then
£(2) = (Inof, () INAN (02 (2)y), An (1)) = (02 (x)An (y0), An (1)),
and so f is analytic. Moreover, if z = r 4+ is with 7, s € R, then since (Tf = ((TtN ). No-
(@ () V" An(yo), Vi An ()|
(ANl ()™, (1)), Inoi), (07 (0)) InAn (0N, (1)) |

= [(Ar(e (0))V, " Au(y), V"INl (0) INAN (1)),
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and so we can conclude, by the Phragmén-Lindelo6f principle, that the modulus
of f is bounded on every horizontal strip by My||w||, where

) € BIL(No), L(N).,

W= Wy, W) INe) (0) INAN (u

and M, is a number depending only on x and the chosen strip. The same is of
course true for linear combinations of such w, and since these span a dense sub-
space of B(L2(Np), L2(N))., we get that z — Ar(cN(x)) is bounded on compact

sets. But then this function is analytic (for example by condition A.1.(iii) in the
appendix of [21]). Since O'tQ is implemented by V¥, & Vg and since we have that

ViAr(x)V, 1 = Ar(eN (x)), the result follows. 1

We can now provide a convenient Tomita algebra for ¢,. Let 7y, C N be
the Tomita algebra for ¢y, and denote

¢N’ {xG%NﬂNTﬂNT ( )ENTﬁ/\/'ffforallze(C}.

(This space is called the Tomita algebra for ¢ and T in Proposition 2.2.1 of [4].)
Denote the linear span of {Ar(x)Ar(y)* : x,y € Tyy,1} by 2, and further denote

by (L%(Ny), An,, 711 2) the natural semi-cyclic representation for ¢,.

PROPOSITION 2.2. We have 2, C D(Ay,), and Ay is a Tomita algebra for
(N2, ¢2)-

By the second statement, we mean that Ay, (2,) is a sub-Tomita algebra of
the natural Tomita algebra A, (7Ty,) for ¢z, closed in £2(N5), which still has N,
as its left von Neumann algebra, and also with the corresponding weight on N,
coinciding with ¢,.

Proof. For x,y € Ty, 1, we know that Ar(x)Ar(y)* € Mr,, with

Ta(Ar(x)Ar(y)") = xy*.

Since x,y € Tyy, also xy* € M,y,. Hence 2, C M,,, and so certainly 4, C
D(An,)-

It is clear that 2, is closed under the *-involution. Now choose x,y,u,v €
Ty, - Then

(Ar(u)Ar(0)*)(Ar(x)Ar(y)*) = Ar(uT(v"x))Ar(y)".
We want to show that uT(v*x) € Ty, 1. Itis clear that
uT(v*x) € Ng, NNt N N7,

By the previous lemma, we have, using notation as there, that Ar(v) and Ar(x)
are analytic for O'tQ , with

02(Ar(a)) = Ar(eN(a)) forallz € C,a € {u,0}.
But then also Ar(v)*Ar(x) = T(v*x) analytic for O’tQ, with
o2(T(v*x)) = T(eN (v)*cN(x)) forallz e C.
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Since O'tQ restricts to o/ on Np, and also oN

uT(v*x) is analytic for o}¥, with

restricts to o/ on Ny, we get that

oNuT(v*x)) = oN(u)T(eN (v)*eN(x)) forallz € C.
Since Ty, is invariant under all oN with z € C, we get that
oN(uT(v*x)) € Ny NNTNN7  forallz € C.
Hence uT(v*x) € Ty, 1, and thus
(Ar(u)Ar(0)*)(Ar(x)A1(y)") € 2.
We have shown so far that Ay, (22) C An, (Ng, N N,) is a sub-left Hilbert

algebra. But by the previous lemma, 2l, consists of analytic elements for atQ,

which restricts to (TtN 2 on N. Soin fact Ap,(2p) is a sub-Tomita algebra of Ap;,(7,).

Now we show that 2, is c-weakly dense in Nj. For this, it is enough to show
that Ar(7y,,r) is strongly dense in Q1. Note that Ar(7,, 1) is closed under
right multiplication with elements from 7, C Ny, which are o-weakly dense in
Np. Then by a similar argument as in the proof of Theorem 10.6.(ii) of [5], it is
sufficient to prove that if z € Q1 and z*Ar(x) = 0 for all x € 7,1, then z = 0.
So suppose z satisfies this condition. Choose y € N, analytic for (Tf . Then

0 (0, (1) 2" An (x) = 2 (01, (1)) AN (%) = 2°An(xy) = 2°Ar(x) Auly) = 0.

Letting 7700 (052(]/)) tend to 1, we see that z* vanishes on Ay (7y,, 7). Now
choose x € My, N M. Then

—+00
/n a2
Xn =) /e "EoN(x)dt
—0o0

is in Ty, r by Lemma 10.12 of [5], and An(x,) converges to Ay(x). Hence z*
vanishes also on Ay (Mg, N Mr). Since Ny, NNt is weakly dense in N and
AN(Npy NNT) is normdense in £2(N), we get that z* = 0, and the density claim
follows.

Now let G be the closure of A, (). Then for x € N, we get that 7'(1Nz (x)
will restrict to an operator 7'(1%[ 2(x) : G — G, since 2, is dense in Np. Then the
left von Neumann algebra associated with An, () is nlgl 2(N,). If we denote by

¢1(1/2) the weight on nlg‘ 2(N,) associated with Ap, (%), then it is clear that ¢,

the weight (¢;(1/2) © lelz) and 2, satisfy the conditions of Proposition VIIL.3.15
of [21], hence ¢ = ¢y(1/7) © nlglz, which finishes the proof. 1

REMARK 2.3. It also follows easily from Lemma 10.12 of [5] that 7, T itself
is o-weakly dense in N.
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Let £2(N) ® £?(N) denote the Connes-Sauvageot tensor product, with its
H

natural Np-N,-bimodule structure. Denote by K the natural image of the alge-
braic tensor product Ay (T, 1) © AN(Tgy, 1) inside £2(N) @ L2(N).
4

THEOREM 2.4. The space K is dense in L2(N) ® L2(N), and the map
14

K = L2(N2) : An(x) 2 AN(Y) = An(AT(X)AT(7))

extends to a unitary equivalence of Ny-Np-bimodules.

Proof. First note that the expression on the left is well-defined by Theo-
rem 10.6.(v) of [5], and then by definition, we have for x,y,z, w € T@N,T that

(An(x) %/\N(y)rAN(Z)%’AN(w» =((Ar(z)"Ar(x))An(y), An(w))

=on(w T(z"x)y)
= (An, (AT () AT(Y")"), AN, (AT (2) AT (W™)")),

so that the given map extends to a well-defined partial isometry. Since An/(7y,,T)

is dense in £2(N) (which was proven in the course of the previous proposi-

tion), we have that K is dense in £?(N) ® £2(N). Since also A, (%) is dense
H

in £2(Nj), the extension is in fact a unitary.

The fact that it is a bimodule map follows from a straightforward computa-
tion (since we only have to check the bimodule property for operators in 2, and
vectors in K and An, (%)). 1

REMARK 2.5. If we identify £2(N) with £2(N) as an Ny-N,-bimodule by

the unitary Ay (y) =AY (y*), we get the isomorphism £2(N) ® £2(N) — L2(N,)
U

mentioned before. In some sense, this is a more natural unitary, but in our specific
setting, the former one is easier to work with.

In the following, we will hence identify £2(N) ® £2(N) and £?(N,) in this
M

manner.

LEMMA 2.6. Let x,y be elements of Ty, 1, and let p be an element of Ny,. Then
(An(x) ® An () Any (P)) = (An(x), pAN (@ ().
Conversely, if p € Ny and & € L?(N,) are such that
(An(x) @ Anly), &) = (An(x), pAN (e ("))

forall x,y € Tyy 1, then p € Ny, and Ay, (p) = ¢.
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Proof. Suppose p = Ar(z)Ar(w*)* for some z,w € Ty, 1. Then since

w*T(z*x) € Npy NNy, we have

(AN(x) %AN(]/)rANz(P» = (An(x) @ An(y), An(2) %’AN(ZU»

M
= (W' T(z"x)y) = n (0] (y)w*T(z*x))
= (An(w'T(z7x)), A (UNl(y*) )
= (Ar(w*)Ar(2)" An(x), AN (N(y))

= (An(x), pAN(TY (y))).

As 2y, being a left Hilbert algebra for ¢, is a strong-norm core for Ay, the result
holds true for any p € N,.

Now we prove the converse statement. So let p € N and & € £2(N,) be
such that

(An(x) %Aw(y)/ ¢) = (An(x), pAN (oD ("))

forallx,y € Tpy,1- Then, since 21,F is a strong-norm core for A?\]pz, it is enough to
prove that pA(Z)\g( a) = m02(a)Z for all a € . Now if a = Ar(x JAT(y*)*, then

A(Z)\l]:;(a) = AN, (%) = AN(‘TNi/z(x)) %’AN(‘Tﬁji/z(y»
Soifalso b € /Ay with b = Ar(z)Ar(w*)*, w,z € Tyn, T, then
(An, (D), pAY, (2)) = (An(2), pPAT(0Y /5 (1)) AT (0 5 () ) " An (0 ("))
by the first part of the lemma. On the other hand, we have
(An, (), 72 (a)8) = (702 (2)" Ay (b),§) = (An, (b0 3(a)), )
An, (Ar(2)Ar(w*)* Ar (o), (1)) AT (02 (1)), )

AN, (Ar(2) A (), () T (o) (y)w")) ), €)
AN(2), pPAN(Y, o ()T (0 5 ()oY (")),

whi;:{l equals our earlier expression, hence proving pA(;\g(a) = 7l2(a)¢ for all
ac@h. 1

(
=
=
=

We prove two further results which naturally belong in this section, but of
which only the second one will be further used in the present paper.

LEMMA 2.7. Let No C N be a unital inclusion of von Neumann algebras, let
T : N — Ny an nsf operator valued weight, u an nst weight on Ny, and let @ be the
composed nsf weight y o T. Suppose x € N and z € B(L2(Ny), L2(N)) are such, that
for any y € Ny, we have xy € Ny, and An(xy) = zAu(y). Then x € Nt with
Ar(x) =z
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Proof. Choose y,w € N, with w in the Tomita algebra of j. Then

712 () 2/ (y)=70: (W) A (xy)=An (xyo, () =22, (ye ™, 5 (w) =271 () Ay (1),

so that z is a right Np-module map. It follows that z*z € Np.
Now by Lemma 4.7 of [21], there exists a closed positive (possibly
unbounded) operator A, such that A, (y) € D(A) and

W) (T0) = (AAL(y), AA()).

Also, since for any element u € N, et one can find a sequence u, € N, T such
that u, * u pointwise on (Np); (see the proof of Proposition 4.17(ii) in [21]) we
get that wy,,(y) A, ) (T(x*x)) = u(y*T(x*x)y), using Corollary 4.9 of [21] (which
allows us to extend weights to the extended positive cone). Using the bimodular-
ity of T, we get

(AL (), AAL(Y)) = Wp, (y),a, ) (T(x7x)) = u(y T(x"x)y) = u(T(y"x"xy))
= (An(xy), An(xy)) = (zAu(y), zAu(y)),

from which we conclude that A is bounded. Hence T(x*x) is bounded, and then
of course Ar(x) = z follows. 1

Nip S Nig
LEMMA 2.8. Let Ul Ul be unital normal inclusions of von Neumann
Noo S Noi

algebras. Denote, for i € {0,1}, by Q; the linking algebra between the right Njy-modules
L%(Njy) and L*(Nyy). Suppose Ty is an nsf operator valued weight Ny — NlJB’EXt
whose restriction Ty to Ny, is an nsf operator valued weight Ny, — Ngy®". Then there
is a natural normal embedding of Qo into Q1, determined by At (x) — Ar,(x) for

X € NTO-

REMARK 2.9. The inclusion will in general not be unital. Consider for ex-
ample the case where Nj; = M,(C) and all other algebras equal to C.

Proof. By assumption, if x,y € N, thenx,y € N7, and To(x*y) = Ty (x*y).
Denote by Q; the *-algebra generated by the Ar, (x), x € N, and by Qy its o~
weak closure. Denote by Qg the *-algebra generated by the A, (x), x € N7,. We
want to show that Qg and Q; are isomorphic in the indicated way.

Now for a;,b; € N, it is easy to check that

X:AT1 a;)Ar, (b;)* =0 if and only if ZATO AT (

o (bi)" =0,

so we already have an isomorphism F at the level of 9y and Ql. Denote by ¢
the unit of Ny, seen as a projection in Qp, and denote by e; the unit of Ny as a
projection in Q;. Suppose that x; is a bounded net in Qg which converges to 0 in
the o-weak topology. Then for any 4,b € Qp, we have that epax;beg converges to
0 o-weakly. Applying F, we get that e;F(a)F(x;)F(b)e; converges o-weakly to 0,
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and then also ce1F(a)F(x;)F(b)eid, for any c,d € Q;. Since Qqe1 9 is o-weakly
dense in Qy, we get that F(x;) converges o-weakly to 0. Since the same argument
applies to F —1 we see that F extends to a x-isomorphism between Qp and Ql,
and we are done. 1

REMARK 2.10. We could also have used the results from [18] concerning
self-dual Hilbert W*-modules to prove this lemma.

3. GALOIS COACTIONS

Let (M, A) be the von Neumann algebraic realization of a locally compact
quantum group. Let N be a von Neumann algebra equipped with a right coaction
« of (M, A), by which we mean a faithful normal unital *-homomorphism

a:N—-NxM
such that the coaction property is satisfied:
(@A) =(a®1)a.
Denote by N* the von Neumann algebra of coinvariants:
N*={xeN:a(x)=x®1}.

In this paper, we will only work with integrable coactions, so the normal faithful oper-
ator valued weight
T=(®¢)a:N"— (N

where ¢ is the left invariant weight for (M, A), is assumed to be semi-finite ([22],
Proposition 1.3 and Definition 1.4). Let i be a fixed nsf weight on N*, and denote
by ¢n the nsf weight y o T. It will be d-invariant (see Definition III.1 of [6] and
Definition 2.3 of [22]). With the exception that Ny is now written N, we will use
notation as in the previous section.

Recall from Theorem 5.3 of [22] that the integrability of « is equivalent with
the existence of a canonical map

p:NxM— B(L%N)),

which we will explicitly write down later on. Here N x M denotes the crossed
product of N with respect to the coaction «, i.e.

NxM = (a«(N)U (1@ M))" C B(L*(N) @ L2(M)).
We can also consider the map

K — L2(N) ® £L2(M) : An(x) %Aw(y) = (AN ©A)(a(x)(y @ 1))



74 KENNY DE COMMER

for x,y € Ty, where K was introduced just before Theorem 2.4, and 7, r
just before Proposition 2.2. Then this is easily seen to be a well-defined isometry.
Denote its extension by

G: L*(N) ® L3(N) — L(N) ® L2(M).

The main goal of this section is to prove
THEOREM 3.1. The map p is faithful if and only if G is a unitary.

The result will follow from the following set of lemmas and propositions,
which conclude with Lemma 3.6.

Consider the dual weight ¢y m of ¢ on N x M ([22], Definition 3.1). Then
there is a natural semi-cyclic representation (£2(N) ® £2(M), Ansm, 71" M) for
@NxM, determined by

Ansm((1@ m)a(x)) = Ay(x) © A% (m)

for x € Ny, and m € Ngop. Most of the time, we will suppress the symbol 7t
Note that we use here the results of [22], adapted to the setting of right coactions.

Denote by U € B(L2(N)) ® M the unitary implementation of « (i.e., the uni-
tary implementation for «°P in the sense of [22], with its legs interchanged). By
Proposition 4.3 and Theorem 4.4 of [22], it can be defined as

NxM
1 .

-~

U= num(IN®])),

with [y« M the modular conjugation of the dual weight ¢n M, as well as by the
formula

(3.1) (1@ we,y) (U)AN(z) = An((1 @ ws12g ) (2)),

where &7 € L2(M) with ¢ € D(671/2), z € N,. The surjective normal -
homomorphism p from N x M to N, mentioned before is then given on the gen-
erators of N x M by

{ p(a(x)) = m(x) for x € N,
p(1® (t®w)(V)) =(ow)(U) forwe M,

where we recall that 7 is just the standard representation for N, that V is the
right regular multiplicative unitary for (M, A), and that N is the von Neumann
algebra in the basic construction N* C N C Nj.

In the following proposition, we also use the associated basic construction

T T
for the weight T, i.e. N* C N C N, denotes the basic construction obtained from

T
N* C N, as explained in the beginning of the previous section. We also denote
again ¢, = @y o T».
PROPOSITION 3.2. If m € Ngop and z € Ny, then p((1 @ m)a(z)) € Ny, and

G*(An(z) ® AP (m)) = An, (p((1 © m)a(z))).
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Proof. Choose m € Ngop of the form (1 ® w)(V), with w such that the
functional x — w(S(x)*) on D(S) extends to a normal functional w* on M,
and such that moreover the functional x — w*(x6~1/2) on the set of left mul-
tipliers of 512 in M extends to a normal functional wj on M. Then, since
(t®@w)(V)* = (t®w*)(V), we have, for x,y € T, r and z € N, that

(An(x),p(1@ m)zAN (X)) = (An((L® w;)(a(x))), An (20 ("))
= on (7 (92" (1® wp) (a(x)))
= ¢n(Z" (1@ wg)(a(x))y)-

But for a € N, we have (A(a), A% (m)) = wj (a), so the final expression equals

(G(AN(x) %Aw(y)),AN(Z) ® AP (m)).

Since such m form a strong-norm core for A (by standard smoothing argu-
ments), we have

(An(x),p(1 @ m)zAN (N (y"))) = (G(AN(x) %@AN(J/))/AN(Z) © AP (m)),
for all m € Ngop. By Lemma 2.6, we then get o((1 ® m)a(z)) € Ny, and

A, (p((L @ m)a(2))) = G*(An(z) © AP (m))
forallm € Ngop and z € Nyy. 1

LEMMA 3.3. The map G is a left N x M-module morphism.

Proof. Denoting agam by 7'[ 2 the natural representation of N, on £2(N), it
is easy to see that Gnl 2(x) = D(( )G for all x € T, 1, hence this is true for all

x € N. Further,if m € M, n € Ngop and z € Ny, then p((1 @ mn)a(z)) € Ny,
by the previous lemma, and we have

12 (p(1om) G* (AN (2) AP (1) = An, (p(1@mn)a(2)) = G* (An (2) @ AP (mn)),

hence GnlNz (0(1®m)) = (1®m)G forall m € M. Since N x M is generated by
1® M’ and «(N), the lemma is proven. &

REMARK 3.4. This implies that 7rlN2 (p(x)) = G*xG forx € N x M, as G is
an isometry.

LEMMA 3.5. The following commutation relations hold:
(1) VNNMG = GV}{,Z;
(ii) INumG = G]N,-

Here VM denotes the modular operator for @ m-
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Proof. By the earlier identification of £2(N) with £2(N) ® £L2(N), it's easy
H
to see that

V%@Q(AN(X)%’AN(W) ZAN(VtN(x))%)AN(thZV(y))

forx,y € T(PN,T, so for the first commutation relation, we must show that for all
x,y € Tyy,1, we have

Vi (A @ A)(a(x)(y 1)) = (Ay @ A) (a(e (x)) (07 (y) @ 1))

Define the one-parameter group x; on M by x;(a) = §~i7_;(a)s" fora € M.
As in the proof of Proposition 4.3 in [22], one can show that

K]NM = VKI ® qit/
where g*A(a) = A(x¢(a)) for a € N,. Since /"™ oa = a o0} by Proposi-
tion 3.7.2 of [22], we have for x,y € Ty, T and & € L£?(M) that
Vivam (@(x) (An(y) ® §)) = a(of (x)) (An (07 () ® 479).
Now leta € N,  be analytic for o;. Since 0; commutes with «;, we have that e (a)

is then also analytic for oy, with 03 (x;(a)) = «¢(0z(a)) for t € R,z € C. Hence for
such a, and x,y € Ty, 1, We get

Vium (1@ Jai/2(a)* ) (AN © A) (a(x) (y ©1)))
= Vium(AN ©@ A) (a(x)(y @ a))
= (An @ A)(a (o] (1)) (o] (y) @ Ke(a)))
= (1® Jxe(032(a)) ") (An @ A) (a(0f (x)) (0 (y) © 1)),
and letting 0/, (a) tend to 1, we see that
Viam((AN ®@ A)(@(x)(y @ 1)) = (A ® A) (a (o] (x)) (] (y) ©1)),

which proves the first commutation relation.
It follows that G*V}\{i M €quals the restriction of V}\,/fG* to D(V}\{i m)- De-

note tNwMm = ]NxMV}\]/iM and ty, = ]NZV}\,/ZZ. Then
tN,G* = IN,G*V2, on D(VI2,)-
So to prove that G* [y M = n,G*, we only have to find a subset
K C D(VZ) = D(tnwm)

whose image under V}\]/N 1 (0r t4m) is dense in £2(N x M), and on which ¢y, G*
and G*tn M agree. But take

K = span{a(x) Anxm((1 @ ma(y)) : x,y € Tyy,1,m € Ngop N Nop }.
Then clearly K C D(tnwnm) and tn.m(K) = K, since
INsem (2 (X) Ansem (1 @ m)a(y))) = a(y™) Anxm (1@ m™)a(x")).
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Furthermore, if x,y € Ty, 7 and m € Ngop NN, $Op, we get from Proposition 3.2
and Lemma 3.3 that p(a(x)(1 ®@ m)(a(y))) and p(a(y*)(1 ® m*)(a(x*))) are both

in D(Ap, ), and that G*a(x) Anxm (1 @ m)a(y)) € D(tn,), with
N, G () Ansam (1 @ m)a(y)) = tny An, (0(a(x) (1@ m)a(y)))
= ANy (p(a(y*) (1@ m™)a(x%)))
= G a(y" ) Ansm((1 @ m*)a(x"))
= G tnuma(X)Ansm (1 @ m)a(y)).

Since K is dense in £2(N x M), the second commutation relation is proven. &

Denote by p the central projection in N x M such that ker(p) = (1 — p)(N x
M). Denote by p, the restriction of p : N x M — N to p(N x M), and by ¢, the
nsf weight ¢n.p 0 0, on Ny

LEMMA 3.6. The projection GG* equals p.

Proof. By Lemma 3.3, G is a left N x M-module morphism, hence GG* €
(N x M)’, and GG* < p since G*pG = p(p) = 1. By the previous lemma, GG*
commutes with ., hence GG* is in the center Z(N x M). Since p(GG*) =
G*(GG*)G =1, we must have GG* = p. 1

As mentioned, Theorem 3.1 follows immediately from this, since G is uni-
tary if and only if p = 1 if and only if p is faithful.

PROPOSITION 3.7. The weight ¢, equals ¢.

Proof. If m € Ngop and z € Ny, then p((1 @ m)a(z)) € N5, and we can
make a GNS-map Ag, for ¢, in p(L3(N) ® £L2(M)) by

Ag, (p(1@m)a(2))) = p(Anxm((1 @ m)a(z))) = p(An(z) © AP (m)),

since by the results of [22], the linear span of the (1 ® m)a(z) forms a o-strongs-
norm core for Ay, . By Proposition 3.2 and the previous lemma,

Ag, (0((T@m)a(z))) = G(Ag, (p((1®@ m)a(z)))).

Since G is a left N x M-module map, we obtain that also (£2(N,), G* o Ag,, nlN 2)
is a GNS-construction for ¢, and that (G* 0 Ag,) C Ay,.

By the first commutation relation of Lemma 3.5, it also follows that the mod-
ular operators for the GNS-constructions Ay, and G* o Ag, are the same. Hence
@2 = @2 by Proposition VIIL.3.16 of [21]. 1

REMARK 3.8. This implies that T, equals Txp © p;l with Ty the canon-
ical operator valued weight N x M — N, by Theorem IX.4.18 of [21]. Note that
this result was obtained in Proposition 5.7 of [22] under the hypothesis that p was
faithful.
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It follows from Proposition 3.7 that G* coincides with the map
Z: L2(N x M) = L2(N2) : Ansam(z) = Ag, (0(2)), 2 € Noyoours

cf. the proof of Theorem 5.3 in [22]. So we can summarize our results by saying
that the following square of N x M-bimodules and bimodule morphisms com-
mutes:

(3.2) L2(Ny) —— 2 [2(N % M)

|- -

2 2
L%(N) %E (N) —> L2(N) ® L2(M)
DEFINITION 3.9. Let a be an integrable coaction of (M, A) on a von Neu-
mann algebra N. We call the associated map

o: NxM— N,
the Galois homomorphism for a. We call the operator

G = XG: L*(N) ® L2(N) — L2(M) ® L2(N)

the Galois map or the Galois isometry for (N,a). We call the coaction a Galois if
the Galois homomorphism is bijective, or equivalently, if the Galois isometry is a
unitary (in which case we call it of course the Galois unitary).

REMARK 3.10. The reason for putting a flip map in front of G, is to make it
right N-linear in such a way that this is just right N-linearity on the second factors
of the domain and range, so that “the second leg” of G is in N. See the section on
Galois objects for more information.

Note that the notion of a Galois coaction already appeared, as far as we
know, nameless at various places in the literature. The property of G being sur-
jective is the motivation for the terminology, as the bijectivity of the above map
N % N — N ® M (in the algebraic context of Hopf algebras) is precisely the con-

dition to have a Galois coaction of a Hopf algebra. Also note that as these are
the non-commutative generalizations of principal fiber bundles, we could call
the space pertaining to a Galois coaction a measured quantum principal fiber bundle
(with (M, A) as the principal fiber), an object which is quite trivial in the commu-
tative setting! (There probably is no need to account for the “local triviality”, as
the functor £2(N) ® — is automatically an equivalence between the categories of

respectively left N* and left Np-modules (so the “faithful flatness” condition in
the algebraic setup is automatically fulfilled).) Further note that the above square
was essentially constructed in the setting of algebraic quantum groups in [28].
We give a further characterization of Galois coactions in the following corol-
lary. Given an integrable coaction « of (M, A) on N, write Nyg = N* ® C, Ny =
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a(N), Njg = N® C and Nj; = N ® M. Write T; for the operator valued weight
(1® @) from (N ® M)t to (N ® C)™t. Then Tj restricts to the canonical oper-
ator valued weight Ty = Toa™! from a(N)* to (N* ® C) T, so we are in the
situation of Lemma 2.8. Then also denote again by Qp and Q; the correspond-
ing linking algebras. We regard £2(N) and £?(N) ® £2(M) = L2(NxM) as
right NxM-modules in the natural way, using the Galois homomorphism for the
first one.

COROLLARY 3.11. The following statements are equivalent:
(i) the coaction w is Galois;
(ii) the inclusion Qo C Qq is unital;
(iii) the image of (Qo)12 in (Q1)12 is exactly the space of N X M-intertwiners.

Proof. We will write Q for the linking algebra between the right N x M-
modules £2(N) and £2(N x M). Denote explicitly the inclusion Qy C Qi by
F. We first show that F(Qg) C Q. Take x € Np. Then a(x) € N, and it is
easily seen that Ar, (a(x))An(y) = (Ax ® A)(a(x)(y ® 1)) for y € Ny,. Hence
Ar, (a(x)) = Goly, where we denote by I, the map £2(N) — L3(N) (%) L2(N)

which sends & € L£2(N) to Ay(x) ® & But I is a right N x M-intertwiner,
K

and we know that G is a right N % M-intertwiner by the diagram (3.2). Hence
A (a(x)) € Q1, and then it follows that F(Qp) C Q.

Next, we show that p o Fj; o F = 1, where Fy;; denotes the restriction of F to
(Qo)11, and F is the isomorphism N, — (Qp)1; determined by At (x)Ar(y)* —
Aty (a(x)) A1, (a(y))* for x,y € Nt. Namely: for x,y € N7, we have

(p 0 Fin) (A, (a(x)) Ay (a(1))") = (m*) " (G (GLlyGT)G) = (%)~ ()
= Ar(0)Ar(y)",
again by using the diagram (3.2).
By these observations, the equivalence of the first and third statement is

immediate. Since we have also shown that in fact Fj; o F = G(7TlN 2(:))G*, the
equivalence of the first and second statement follows. 1

We now present some natural examples of Galois coactions.

First, every dual coaction is Galois. More generally, recall that a coaction
is called semi-dual if there exists a unitary v € B(£?(M)) ® N with (1 ® &) (v) =
W13012. Then such a semidual coaction is Galois, by Proposition 5.12 of [22].

Also, whenever « is an integrable coaction with N x M a factor, then « is
Galois since the Galois homomorphism p is necessarily faithful. A special case
concerns the integrable outer coactions, i.e. the coactions for which

N x Mna(N)' =C1.

Next, suppose (M1,41) and (M, A) are von Neumann algebraic quantum
groups, with (Mj,A;) a von Neumann algebraic quantum subgroup of (M, A).



80 KENNY DE COMMER

We mean by this that M1 is a unital sub-von Neumann algebra of M, such that
the restriction of A to M coincides with A1 ([26], Definition 2.9).
Associated to (Mj, A1) and (M, A), there is a canonical right coaction

Ii:M— M® M;

by right translation, and likewise a left coaction Ij by left translation. See for
example the first paragraphs of Section 4 in [26] for the left setting.

PROPOSITION 3.12. If (M3, A1) and (M, A) are von Neumann algebraic quan-
tum groups, with (Mj, A1) a von Neumann algebraic quantum subgroup of (M, A), the
associated coaction Iy is Galois. Conversely, if (M, A) and (M, A1) are von Neumann
algebraic quantum groups for which there is a right Galois coaction I’ of (M1,A1) on M
such that (1@ I;)A = (A® 1)I}, then (My,Ay) can be identified with a von Neumann
algebraic quantum subgroup of (M, A) in such a way that Ty is precisely the coaction by
right translations.

Proof. First suppose that (M;, A1) is a von Neumann algebraic quantum
subgroup of (M,A). Then we can also embed ]\711 into M’ by a normal map
F which respects the comultiplications. Denote Vi = (F ®1)(V;), where Vj €
A7Ii ® M is the right regular corepresentation of (Mj,A1). The aforementioned
coaction I} is then explicitely given as I3 (x) = Vr(x ® 1)V} for x € M. We can
make the following sequence of isomorphisms:

MxM;=(L(M)U (1o M) = (M®1)UVE(1e M)Vr)"

=((M®1)U(Fo0) (4} (M})))" = ((M1)UA' (F(M})))" = (MUE (M),

where we have used that V; is also the left regular corepresentation for (1\711, AA’l )-
Since it’s easy to see that the resulting isomorphism satisfies the requirements for
the Galois homomorphism (using that Vr is actually the corepresentation imple-
menting I7), the coaction is Galois.

Now suppose that we have a Galois coaction I such that t®[)A=(A®
1)I;. Denote by (Al, Al the universal C*-algebraic quantum group associated
with (M, 4"), and similarly for (M}, A') (cf. [12]). By the results in Section 12
of [12] (in the setting of right coactions) we get that there is a canonical non-
degenerate *-homomorphism F, : A}, — M (A!,) which intertwines the comul-
tiplications. Since I} is Galois, we also have a faithful normal homomorphism
F: M, — B(L*(M)). Denote by U the corepresentation associated with I;. By
the results of [12], it is an element of M @ M;. Denote by 7, and 7y, respec-
tively the canonical homomorphisms M(A/,) — M’ and M(A’lu) — M, from
the multiplier C*-algebras to the von Neumann algebras. Identify M, and (M)«
with their images in respectively A/, and A’Lu (noting that the dual of (M’, A')
is (M, A°P)). Then we can deduce again from [12] that for w € (M), we have
7y (Fy(w)) = (1 ® w)(U). Since the 71, also commute with the comultiplications,
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we deduce that F(M,) C M’, and that this embedding respects the comultiplica-
tions. Hence (M}, A'}) is a von Neumann algebraic quantum subgroup of (M’, A')
(and then of course also (M, A1) is a von Neumann algebraic quantum subgroup
of (M, A)).

Finally, we should show that I is just the coaction naturally associated with
this von Neumann algebraic quantum subgroup. But this is clear, as I} is im-
plemented by the corepresentation U, which equals Vr since also 71, (F,(w)) =
(t©w)(Vr). o

4. GALOIS OBJECTS

We will now treat in detail the case of ergodic Galois coactions, i.e. N* = C.

DEFINITION 4.1. If N is a von Neumann algebra, (M, A) a von Neumann
algebraic quantum group and « an ergodic Galois coaction of (M, A) on N, we call
(N, ) a (right) Galois object for (M, A).

In this case, the constructions of the previous sections greatly simplify. First
ofall, T = (1 ® ¢)u itself will already be an nsf weight on N (identifying C with
C - 1n), so we denote it by ¢n. Then N7 = Ny,. There is a slight ambiguity
of notation then, as Ax(x) denotes either an element of # or a linear operator
C — #H, but this ambiguity disappears if we identify the Hilbert spaces B(C, H)

P
and H by sending x to x - 1. Next, N x M = N, becomes the whole of B(£L?(N)),
and ¢ = Tr(-Vy). Further, £2(N,) will be identified with £2(N) ® £L2(N) by
the map

ANZ(AN(X)AN(]/*)*) — AN(X) ®AN(y) forx,y € N(PN ﬂ./\/'(;;N.

For x € B(L2(N)), we have m?(x) = x® 1, 1,2 (x) = 1 @ 7 (x) (where 71,(x) =
Inx*In), Vilffz = Vilf, ® Vilf, and Jy, = X(JN ® Jn). In the following, we will
now also use the symbol 7] to denote the left representation of M’ on £2(N) (so
m(m) = p(1®@m) for m € M'), and we will write 8;(m) for 6;(o(1 ® m)) =
InTt(m)* ]y when m € M'. In fact, it's not difficult to see that for any integrable
coaction, we have then 6;(m) = 7 (R’ (m)): just use that (Jy @ NU(Jy ® ]) = U*
and (J@ )V(J&]) = V*.

The aim of this section is to show that there is much extra structure on a
Galois object (N, a), closely resembling the one of (M, A) itself. In particular, we
are able to show that there exists an nsf invariant weight on N. To find it, we will
search a 1-cocycle to deform ¢y.
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Let (N, a) be a fixed Galois object, with Galois unitary G : £2(N) @ £L2(N)
— L2(M) ® L?(N). To begin with, we will write down some commutation rela-
tions. In the following, a°P (x) = Xa(x)X for x € N, and IT(m) for m € M will
denote the operator Jm*] on £2(M).

LEMMA 4.2. Forall x € N and m € M’, we have:
() G(x®1) = a°P(x)G;
(i) G(m(m) @1) = (m®1)G;
(iii) G(1 ® m1:(x)) = (1® e (x))G;
(iv) G(1®6:(m)) = (IT; @ ;) ((4)°P (m))G.

Proof. These equalities follow directly from the fact that G is a N x M-
bimodule map. For the fourth one, we remark that the right representation 7r}N*M
of N x M on £L2(N) ® £L2(M) is given by

aNM(y(x)) = m(x) ®1, x €N,
A M1 @m) = U1 @ [L,(m)U*, me M,

-~

a fact which is easy to recover using that U = Jyxm(Jy ® J). Now use that also
U = (7, ®1)(V), that V is the left multiplicative unitary for (M’, A'), and that
Ve =Je)Vv:.
Note that £2(N) is a natural right M-module, by an anti-representation
e :m — m(Jm*]), me M.

Denote by Q the linking von Neumann algebra between the right M-modules
£2(M) and £%(N). We will write

G- S Q :<If 5’)
Q1 Q2 O M
COROLLARY 43. (i) G € O® N.
(ii) GioUy3 = Vi3G1o.

Proof. The first statement follows by the second and third commutation
relation in the previous lemma. Since for w € M,, we have (1 ® w)(U) =
((t®w)(V)), the second statement also follows from the second commutation
relation of the previous lemma. 1

The following is just a restatement of Lemma 3.5.
LEMMA 4.4. The map G satisfies the identity G(Jy ® Jn)Z = ZUZ(] ® Jn)G.
Now we prove a kind of pentagon equation:
PROPOSITION 4.5. We have:
W12G13Gos = Gp3G1a.
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Proof. For x € Ny and w € B(L?(N))., we have (w ® 1) (a(x)) € Ny, and
(1® w)(G)AN(x) = A((w ® 1) (a(x))).

This follows by first considering w of the form wa () Ay (z) Withy, z € Ny, and
then using the closedness of the map A to conclude that it holds in general. Now
forx € N(pN, w € M, and ' € N,, we have, using W= SW*X,
(19 @) (W) (1@ w')(G)AN(x) = A((w' ® w 1) ((1® A) (a(x))
= AW @wa)((a@)(a(x)))
= A((we ') ea) @ 1)(a(x)))
= (1® (0@ w') 0 aP))(C)An(),

from which we conclude Wy,Gi3 = (1®a°P)(G). Since (1 ® a%P)(G) = G23G12G33,
the result follows. 1

)
)
)

REMARK 4.6. (i) Note thatif N and M have separable preduals, then, choos-
ing a unitary u : £2(M) — L2(N), the unitary v = G(u ® 1) in B(L3(M)) ® N
will satisfy (1 ® a)(v) = Wi3v12. So in this case there is a one-to-one correspon-
dence between Galois objects and ergodic semi-dual coactions.
(ii) Note that for the trivial right Galois object (M, A) for (M, A), the map G is
exactly W, while the map U becomes the right regular representation V.

We have the following density results:
PROPOSITION 4.7. (i) The following space L is o-weakly dense in N:
L={(w®)(G):w e B(LX(N),L*(M)).}.
(ii) The space K = {(1 ® w)(G) : w € B(L2(N))4} is o-weakly dense in O.

Proof. By the pentagon equation, the linear span of the (w ® ¢)(G) will be
an algebra. Further, for any x € Ny, and m € N, we have (1® m*)a(x) €
Mgy and (Way (x),A(m) @ )(G) = (1® ¢)((1® m*)a(x)). From this, we can
conclude that the o-weak closure of L also is the o-weak closure of the span of
{t®w)(a(x)) : w € My, x € N}, so that this o-weak closure will be a unital
sub-von Neumann algebra of N (see also the proof of Proposition 1.21 of [27]).
Now suppose w € N is orthogonal to L. By the bi-duality theorem (see [6],
and also Theorem 2.6 of [22]), we have that («(N) U (1 ® B(£L2(M))))" equals
N ® B(L?(M)). So for any x € N ® B(L?(N)) and w’ € B(L%(N))., (1 ® ') (x)
can be o-weakly approximated by elements of the form (1 ® w')(x,) with x, in
the algebra generated by «(N) and 1 ® B(#), and any such element can in turn
be approximated by an element in the algebra generated by elements of the form
(t® ") (a(xnm)), @" € B(L?(M)), and xuy € N, by using an orthogonal basis
argument. It follows that w vanishes on the whole of N, and hence L is o-weakly
dense in N.
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For the second statement, note that, by the pentagon equation, K is closed
under left multiplication with elements of the form (1 ® w)(W) for w € M,.
Hence, as in the proof of Proposition 2.2, it is enough to show that if z € N satis-
fies K-z = 0, then z = 0. But take x,y € 7,7 (Which is now just the Tomita

algebra Ty for ¢n), and m € Ngop. Then (: ®wAN(x),AN(y))((§*)//{°P(m) =
7t1(m)xAn(c_i(y*)) by Lemma 2.6 and Proposition 3.2. Hence K* - £L2(M) is
dense in £?(N), and necessarily z = 0. &
PROPOSITION 4.8. For any m € M/, the operator G*(m ©1)G lies in N' @ N.
Proof. Clearly, the second leg lies in N. Since G(y ® 1)G* = a®P(y) for y €
N, the first leg of G*(m ® 1)G must be inside N’".

Recall from the proof of Lemma 3.5 that Vi, ,; = Vil @ g, where we can
also write gt = 57V~ Then x; = g'*xg ! defines a one-parameter group of
automorphisms on M, and 7¢(x) = g''xqg~ defines a one-parameter group of
automorphisms on M.

LEMMA 4.9. (i) For x € N, we have a(c]¥ (x)) = (o] @ x¢) (a(x)).
(ii) For m € M, we have (TtNZ(rAq(m)) = (7t (m)).
(iii) For m € M', we have 0;(m) = (R’ (m)).

Proof. The first two statements follow straightforwardly from Lemma 3.5
and Lemma 4.2. The final statement was noted at the beginning of this section. 1

In particular, O'tN z(ﬁl(fgii ) )A: 7(J8%7) for each s,t € R, since an easy
computation shows that each 6] is invariant under ;.
COROLLARY 4.10. The one-parameter groups Vi, and 7, (J61]) commute.
We denote the resulting one-parameter group of unitaries by
Py = VAT ).
PROPOSITION 4.11. N is invariant under Ad(P).

Proof. We only have to show that N is invariant under Ad (7 (J6*])). But
for any group-like element u € M’, we have, denoting by @ the dual coaction,
that

((p@0)ap™") (7o ()7 (u)*) = (R () @u) (x @ 1) (7 (u)* @u*) = 721 (u)x 7 (u)* @1
for x € N, and so, by the bi-duality theorem of [6], we get 7T (u)x7(u)* € N. 1
DEFINITION 4.12. We call the resulting one-parameter group
TtN:N—>N:x—>P}\t,xPI\_]”

the scaling group of (N, a).
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PROPOSITION 4.13. The following identities hold for x € N:
o(7¥(x)) = (' @) (a(x), a((x) = (0 @ o)) (a(x)),
a(eY(x)) = (1 ® 1) (a(x)).

Recall that 7; denotes the scaling group of (M, A), while o] denotes the mod-
ular one-parameter group of the right invariant weight .

Proof. By Lemma 4.9, we have
wool = (N @ Ad(67 )T 4) o a.
Further, since G is a left N x M-module map, we have
a(Ad(7(J6])) (x)) = G(Ad(m (T3 ) (x)) @ 1)G*
= (1@ Ad(7(Jo ")) (G(x ©1)G")
= (1@ Ad(m(JoT))) ((x)).
Now by the first formula of Theorem 4.17 in [27], we have (J6 #])P~1 = Vi,
where P! denotes the standard unitary implementation of the scaling group of
(M, A), so Ad(671)t_;Ad(J6]) reduces to ¢’ , on M. This proves the second
formula.
As for the first identity, we have, using the second identity, the coaction
property of « and the identity Ao’ , = (¢!, ® T;) 0 A, that
(a@)o(Nom)on=(N®@c,;,@1)o(1®@A) oca=(1®A)o(N@d ) on
=(a®)oaot].

Thus the first identity follows by the injectivity of «.
The third identity now easily follows from the first identity and, for x € N,

a(Ad(R(JO1]))(x)) = (1@ o) (w(x))
For the next result, recall that v > 0 denotes the scaling constant of (M, A).

LEMMA 4.14. The one-parameter group T satisfies oy o T = v oy, and if
x € Ny, then
Pl AN(x) = v 2 AN (TN (x)).
Proof. The first statement easily follows since

onot = ((t@g)oa)or =1 o (1@ gom)oa) =v 'y,

By the first statement, Ad(7(J6*])) (x) € Ny, for x € Ny, and the second
statement is equivalent with

V2R (JET) An(x) = An(Ad(7(TT)) (x)).
Taking an arbitrary y € Ny, we have

G2 a(J8 ) An(x) ® An(y)) = v'/2 (1 & JE'])(Ay © A)(a(x)(y ©1)).
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Since 61T = ViP~i and a(Ad (7 (J61]))(x)) = (:® Ad(J6!]))(a(x)), the re-
sult follows. &
COROLLARY 4.15. We have the following commutation relations:
i) GV @ Vi) = (67'V e V)G
@ G o ) = (70 )G
(iii) G(PY @ P¥) = (P' @ P¥)G.
Proof. The first identity follows immediately from Lemma 3.5, while the

other two follow by using the definition of G, the implementation of Lemma 4.14
and the identities in Lemma 4.13. 1

Now consider H* = G*(J6!] ®1)G in N’ @ N.

PROPOSITION 4.16. There exist non-singular h, k > 0 affiliated with respectively
N’ and N such that H* = hi* @ k' for all t € R. Moreover, a (k') = ki @ 6! for t € R.

Proof. We show that
H*(B(L2(N)) ® 1)H ! = B(L*(N)) ® 1.
Since B(£L2(N)) = p(N x M), we only have to show that
HYN®1)H = (N®1), HY(mM)o1)H " = (7(M)a1).
Now the first equality is clear as the first leg of H! lies in N'. As for the second
equality, applying Ad(G), this is equivalent with Ad(J&*])(M’) = M’, which is
easily seen to be true.

Denote by h a positive (possibly unbounded) operator which implements

the automorphism group Ad(H") on B(£?(N)), so
Ad(HY)(x®1) = (Ad(h)(x))®1 forall x € B(L%(N)).
Then & is non-singular, with & affiliated with N’, and H = hif ® kif for a positive
non-singular k affiliated with N.

Note now that W*(J§*] ® 1)W = Jé"] @ 6, which can be computed for
example by Lemma 4.14 and the formulas in Proposition 4.17 of [27]. Then using
the pentagon equation for G, we have

(1@ aP)(H) = Go3Hi,G33 = Go3Gih (J6'T ® 1® 1)G12Gys
= Gi3WihGn(J6"'] ©1©1)G33WiaGis
= Gi3(J0" T ® 8" ®1)Gys = I @ 6 @ k¥,
so that a (k') = kif @ 51,
The operator k which appears in the proposition is determined up to a pos-

itive scalar. We will now fix some k, and call it dp.

DEFINITION 4.17. We call dy the modular element of (N, ).
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LEMMA 4.18. With the notation of the previous proposition, we have:
(i) 1 = Inoy' I,
(i) oV (8%)) = vista,
(iii) N (o) = 4.
Proof. Denoting again H = G*(Jé!] ® 1)G, we first prove that
Z(n @ v H (Jn @ Jn)E = H.

Using Lemma 4.4, the left hand side equals
G*(Jo v U x(js'] @ )ZU(J© In)G

As U € B(£2(N)) ® M, this reduces to G*(JJ6]] © 1)G. Since | commutes with
] up to a scalar of modulus 1, and since 6 commutes with ], we find that this
expression reduces to G*(J6'] ® 1)G = Hi*. So

InORIN @ Ik Iy = 1 @ oY,
which implies that there exists a positive scalar r such that hif = rif] N(S}\t, Jn- But
plugging this back into the above equality, we find that % = 1 for all ¢, hence
r=1

For the second statement, we easily get, using the first commutation relation
of Corollary 4.15, that

(Vi @ VI (INOR N ®@ 05) (V' @ VAT = (Inoy TN @ 03).

This implies that there exists a positive number 7 such that o}V (6¥) = 7515, We
must show that v = v.

But we know now that 6 is analytic with respect to o. So if x € M,
then also x5 and 4ix are integrable. We have for such x that, choosing some
state w € N*,

on(03%) = p((w ® 1) (a(0§x))) = (8" (w(0)) ® 1) ((x)))
= p((w (o) ® 1)(a(x))o")
= p((w(0y - 0y") @ 1) (a(x0R))) = v* o (x5Y).

This shows o™, (6) = v°6%, which implies v = v.
As for the last statement, this follows from

a(tNoN(65%)) = (1@ o )a(d¥) = 0% @ To—(6") = v (6E).
This ends the proof. 1
By Connes’ cocycle derivative theorem, we can now construct the nsf weight
pn = on (0 0%,

which is the deformation of ¢y by the cocycle w; = yit?/ 251
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THEOREM 4.19. The weight ¢y is invariant with respect to a: if x € MJJ'N and
w € M, then
Pn (@ w)a(x)) = Pn(x)w(l).
Proof. Let x € N be a left multiplier of (511\]/2 such that the closure of xéll\]/z
is an element of Ny,. Then x € Ny, and Ay, (x) := AN(W) determines a

GNS-construction for ¢y (see the remark before Proposition 1.15 in [13]). Choose
& € D(671/2). Then for any 5 € £L2(M), we have (1 ® we e (x) a left multiplier

of 63/2, and the closure of ((1® w¢/,7)o¢(x))(511\]/2 equals (1 ® wJ_l/zg,ﬂ)a(M}\I/z). By
the formula (3.1) for U (after the statement of Theorem 3.1), we conclude that this
last operator is in D(Ay ), and that

AN((® w172z, )a(x0]?)) = (1@ wg ) (U) Ay ().

Then by the closedness of Ay s,, we can conclude that for x of the above form,
(t®w)(a(x)) € D(An;y) for every w € My, with

An sy (@ w)(a(x))) = (1© w)(U)An,sy (%)
Since such x form a o-strong-norm core for Ay s, the same statement holds for
a general x € Ntl’N' >From this, it is standard to conclude the invariance: take
w=wgs € M and x = y*y € MJLI}FN. Let {; denote an orthonormal basis for

L£2(M). Then by the lower-semi-continuity of ¥y, we find

N ((@wee) (a(yy))) =¢n ( ;(i @ wez, ) (@(y) (L@ wgg,)(a(y))))
Z;lPN((l ® wee,) (@) (L@ wee,)(a(y))))
:; 1AN 5 (1 ® weg, ) ()2

=Y @ wgg,)(U)Ans (W)

= (Ana ), (D, ) (U (0w, (WD) A (1))

= (Anay (1), (1@wg ) (U L) An sy (V) =N (1" y)w g (1),
hence Y ((1® w)(a(x))) = yn(x)w(1). 1
REMARK 4.20. It is natural to ask if there is a corresponding result for gen-
eral Galois coactions. We briefly show that one can not expect too much: for

general Galois coactions, there does not have to exist an invariant nsf operator
valued weight Ty, i.e. an operator valued weight N* — (N®) ™! such that

Tyn (1@ w)a(x)) = w(1)Tyy(x) forallw € M, x € M]TIPN.

To give an explicit example, suppose « is an integrable outer left coaction of a von
Neumann algebraic quantum group (M, A) on a factor N. Then by outerness,
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there is a unique nsf operator valued weight (N x M)* — a(N)™*t (up to a
scalar), namely (1 ® §)&, where @ is the dual right coaction. But if (M, A) is not
unimodular, then this operator valued weight is not invariant. On the other hand,
this does not rule out the possibility that there exists an invariant nsf weight: for if
the original coaction has an invariant nsf weight ¥ (for example, the coactions
occurring in [23]), then one checks that x € (N x M)" — ¢, ((pn @ 1)(x)) €
[0, +00] is a well-defined @-invariant nsf weight on N x M. We do not know of
any example of a Galois coaction without invariant weights.

PROPOSITION 4.21. Denote Vi, = Pl Jn6t . Then
Vi m(m) VY = ﬁl(afop(m)) form e M.

Proof. First note that @‘I{] is well-defined, since P} is easily seen to commute
with Jy and 5}{,. Then also

@%@AwN(x) = A¢N(TtN(x)5K[“) for x € Ny,,
by an easy adjustment of Lemma 4.14 and using the relative invariance property

of 61 If we apply (1 ® w)(U) to this with w € M,, then, using the commutation
rules between uc,"rf\’ and (5}{], we get

(1© @) () Vi Ay (x) = Ay (T (1@ w(n(-)6))a(x))oy").
This shows

VIR ® @) (V)T = Al @e(n()6)(1V).

But this is exactly 7?1((7?0 p(([ ® w)(V))). Then of course the same holds with

1 ® w)(V) replaced by a general element of M’ , thus proving the proposition.
P yag p g prop

PROPOSITION 4.22. The following commutation relations hold:
() (Ve V)G = G(VE e Vi);
(i) (Vi ® PG = G(V, @ Pitgit).
Proof. The first formula follows by the second formula in Corollary 4.15,
and the fact that the second leg of G lies in N. The second formula follows from

the fact that also Vif = JSU TP, then using the third formula of Corollary 4.15 and
the first formula in Lemma 4.18 together with the definition of dy. I

THEOREM 4.23. Up to a positive constant, Py is the only invariant, and @y the
only é-invariant weight on N.

Proof. The claim about ¢y follows immediately by Lemma 3.9 of [22] and
the fact that « is ergodic. The second statement can be proven in the same fash-
ion. 1

Before going over to the next section, we remark that of course all results
hold as well in the context of left Galois coactions: if (P,Ap) is a von Neumann
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algebraic quantum group, N a von Neumann algebra, and < an integrable ergodic
left coaction of (P,Ap) on N, we call (N, ) a left Galois object if, with i = (P ®
1)y, the Galois map

H:L%(N)® L3(N) = L2(N) ® L2(P),
Apy (2) @ Ay (y) = (A ® Ay ) (1(x)(1®Y)), %,y € Nyy,

is a unitary. We will therefore use the proper analogous statements of this section
in the left context without further proof.

5. REFLECTING ACROSS A GALOIS OBJECT

In this section, we will construct another von Neumann algebraic quantum
group given a Galois object (N, «) for a von Neumann algebraic quantum group
(M, A). In fact, the new quantum group will be a corner of a special kind of
quantum groupoid, with (M, A) in the other corner. This quantum groupoid pic-
ture turns out to be very useful, providing one with the right intuition on how
to proceed. We use notation as in the previous section. For convenience, we will
now treat also £?(M) ® £L2(N) as an N x M-bimodule (by applying Ad(X) to the
previous representations), so that we can call G a bimodule map.

Denote as before by Q = (g“ glz ) = ( g AIS/’I) the linking algebra between
21 K22

the right M-modules £2(M) and £2(N) (see the remark before Corollary 4.3). We

will sometimes denote the natural inclusion Q C B (522 (<1\I\/[1)) ) by 702 = (771.2].)1'4 for
emphasis. We will identify the @ij with their parts in Q (so for example if x € le,
we identify it with (§3)), except that we will write the unit 1 of O = Mas 1
when we see it as a projection in Q (likewise for (jn = 13). As before, we denote
the right M-module structure on £2(N) by 7, i.e. &:(m) = 7(Jm*]) = p((1®
Jm*])) for m € M, where p is the Galois homomorphism for a. By 7, we also
denote the map 77, with respect to the Galois object (M, A), i.e. the standard right
representation 7t (n) = Jm*], and by 8, also the right representation m — R(m)
of M on £2(M). This will not lead to any ambiguities, as we will in fact only use
this double notation 77, in the proof of the following lemma.

LEMMA 5.1. We have G*(1© N)W C N @ N.

REMARK 5.2. By N ® N, we mean the o-weak closure of the algebraic tensor
product of N with itself inside Q ® Q. By the commutation theorem for tensor
products of von Neumann algebras, this coincides with the space of intertwiners
for the right M ® M-modules £2(M) ® £2(M) and £L2(N) ® L2(N).
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_Proof. Let x be an element of N. As the first leg of W lies in M, and G is a
left M’-module morphism, it is clear that for any m € M, we have
G*1@x)W(F:(m) ®1) = (&:(m) ®1)G*(1 @ x)W.
On the other hand, we have to prove that for all m € ]\71,
(5.1) G*1@x)W(1® f(m) = (10 7:(m))G*(1 @ x)W.

Now as G is a right N x M-map, we have

~ o~

(1® 72 (m))G* = G*((B: @ 72r) A(m)),

using the fourth commutation relation of Lemma 4.2 in a slightly adapted form.
Since also

W(1® 7ie(m)) = ((6; @ 7&e) (A(m))W,
the stated commutation follows from the intertwining property of x, as x7; (m) =
Tie(m)x. 1
Denote the corresponding map by
AN:I/\\I—>K]®N:3{—>(§*(1®X)W.
Then we can also define
A5:5—> O®0:x—Ag(x*)*, and A;:P—P®P:x— G'(1®x)G,

since (521 = (Qu)* and the span of leém is o-weakly dense in D. Finally, we
denote by A 5 the map

Q- 0®Q: Xjj — AAij(xij)r Xjj € Qijr

where we denote AAH = Ap,... (in the following, we will use both notations
without further comment). Then A5 is easily seen to be a *-homomorphism.

However, it is not unital: Aé(lé) = 15 ® 15+ 15 ® 15 does not equal (15 +
113) (%9 (11\71 + 113) = l@®@
LEMMA 5.3. The map A o s coassociative.

The proof follows trivially by Proposition 4.5.

Since [yt (m)* ]y = m(Jm*]) for m € M, we can define an anti-x-isomor-
phism R5:Q—Q by sending x € Qq; to (Jyx])*, and then extending it in the
natural way.

LEMMA 5.4. We have A5(R5(x)) = (R5 ® RQ)A(g(x)for xeQ.
Proof. We only have to check whether
G (1@ Inx)W = (Jy ® N)EG (1@ x)WE( @ )
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for x € @12. But using Lemma 4.4 twice, once for N and once for M itself, the
right hand side simplifies as follows:

(IN®INEG 1ex)WE(J ) =G (Jo y)ZUE(1 @ x) WE(J ® ])
=G (Jo/N)(1ex)ZVINE(Jo])
=G (1@ Jnx))W. 1

This (Q, AQ) could be called a coinvolutive Hopf-von Neumann algebraic

quantum groupoid, and in particular (P, A p) is a coinvolutive Hopf-von Neu-
mann algebra. We proceed to show that (Q,A Q) is a measured quantum groupoid
([15]), and in particular that (P, A p) is a von Neumann algebraic quantum group.
However, we first briefly return to the situation of a general Galois coaction: it is
not difficult to see that up to this point, everything in this section could be done
without assuming & ergodic. Of course, P will then not be a quantum group, but
a quantum groupoid. More precisely: we will have that (P, N%, 71}, 77y, A p)isa
Hopf bimodule (in the sense of Definition 3.1 of [4]), with A5(x) = G*(1®x)G €
P % Pforx € P. We can even equip it with a “scaling group” and a unitary
N«

antipode. However, we do not know if P can actually be made into a measured
quantum groupoid in general.

We have shown in Proposition 4.21 that the modular automorphism group
of °P on M’ can be implemented on £2(N) by the one-parameter group @}{,
Then by Theorem IX.3.11 in [21], we can construct an nsf weight ¢ on P which
has Vy as spatial derivative with respect to $°P. Then we can also consider the

balanced weight 95 = ¢5 © @ on Q. Its modular automorphism group O'tQ is

then implemented by @‘Ifl @ Vit if we use the faithful representation Q2 of Qon
L%(N) & L*(M).
We make the identification

(£2(Q), 78, Ag) = (( = ),nQ, <Aij>>

of the natural semi-cyclic representations of Q with respect to ¢5, as in Lem-
£2(P) L*(N)
L2(N) L2(M)
sum Hilbert space of its entries, written as a matrix to emphasize its left Q-module
structure. Further, /Tn and Kzz are the GNS-constructions for the weights ¢5
and ¢. The map A : Op NN, o L2(N) is determined by //\\12(L§) = ¢ for
¢ € L2(N) left-bounded, i.e. those & for which the closure L; of the map

ma IX.3.5 of [21] and the remark above it. Here ( ) is just the direct

AP (m) = AP (JTm*]) — "c(m)é = m(Jm*])E form e ./\/'5
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is bounded. The map Ay is determined by /’X\21(LE) = @}\,/26 for & € L?(N)
left-bounded and in the domain of V}\]/Z. Then the restriction J; of the modular
conjugation | o of ¢g toamap

AQ(N% NQy) — AQ(N% NQOmn)

is simply the natural anti-unitary map £2(N) — £2(N) : & — & We will denote
the inverse of this map by Jj,. Finally, we note that R decomposes as nQl &
7TQ’2, with 7Q/ acting on the i-th column, and we will then also write 7l —
(7t})i -

We will now provide another formula for G*.

LEMMA 5.5. Ifm € N(ﬁ andx € N ﬁj\/'q,é, then
Ag(x)(m@1)ED(Ag@Ag) and  (Ag®Ag)(Ag(x)m@1) =G (A(m)@Ag(x)).

Proof. Since

(1@ @) ((m* @ 1)A1a(x)*Ara(x)(m @ 1)) = (1® §)((m* @ DA(x*x)(m @ 1))
= goé(x*x)m*m
for x € Qpp and m € M, it is clear that le(x)(m ®1) e D(Klz ®//\\12) form € ./\/'@
and x € Qpp NN, o and that the map
A(m) @ Arp(x) — (A1 ® A) (Arp(x) (m @ 1))

extends to a well-defined isometry. We now show that it coincides with G*.
Let z be an element of V., op- Then it is sufficient to prove that

Ao (x)(A(m) ® A% (2)) = (1@ 71(2))G* (A(m) © Apa(x)).

But A1y (x) = G*(1® x)W, and bringing G to the other side, G(1 ® 7 (z))G*
can be written as XU (1 ® JR/(z)*])U* X. Taking a scalar product in the first factor,
it is then sufficient to prove that for w € M/, we have

x(w @ 1) (W)A®(z) = (1© @) (U1 @ JR'(2))U) Ara ().
But now using again that (77 ® 1) (V) = U, it is sufficient to show that
(t©w)(VI® TR (2)])V*) € Ngor

and that applying AP to it gives (w @ ¢) (W) A°P(z). We could check this directly,
but we can just as easily backtrack our arguments: we only have to see if for
y € N, we have

y(w®)(W)AP(2) = (1@ w)(V(1@ JR'(2)])V)A(y)
for any z € Ngop. This is then seen to be the same as saying that

(A A)(A(y)(m 1)) = W (A(m) @ A(y)),
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which is of course true by definition. 1

LEMMA 5.6. Let x be in Ny NN

o and a € Ty, the Tomita algebra for ¢. Then
(@Way(x),A(0(0)) @ D(G) = (Waga) Ay (x) @ 1)(GY).

Proof. Choose w € Ny. Then we have the following which ends the proof:

W((Way(x),A@ei(a)) @ D(G)) = @(ai(a)((w @ ) (a(x)"))) = ¢(((w @ 1) (a(x)"))a)
= (Ala), A(@®0a(x)))= (Aa), (10@)(G)An(x))
= w((Wa@) Ay @D(G)).
LEMMA 5.7. Let x € Ny, and y € Ty, Then writing w = xo™,(y*), we have
that An(w) is left-bounded, and
Lan(w) = (1@ Way(,a() (G-
Proof. We have to prove that for m € Ngop, we have
(1@ Wy (x),an () (GAP (m) = 71 (m) An (xa ().
But using the square (3.2) at the end of Section 1 and Lemma 2.6, we get for any
z € Ny, the following which ends the proof:

(19w Ay (), () (CTIAP (), An(2)) = (G (AP (m) @ AN (x)), An (2) ©AN (y))
= (AN, (T (m)x), An(2) @ An(y))
= (F(m)xAn (N (y")), An(2)). B
PROPOSITION 58. If x € N NNy, and y € O NNy, then As(y)(x 1) in
D(A® Ag), and
(A A (AW (x@1)) = (J©T12) Gy & 1) (Ag (%) @ Ap())-
REMARK 5.9. Compare this formula with the identity (J@])W(J®])=W*.
R Proof. This statement is equivaler}:c with proving for sufficiently many y in
Qo1 NN, gand w € Q. that (w®)(An(y)) € N, o-and
An((w®)(dn(y))) = (@@ ) ((J © 12)G(In © 1) An (1),
which can be written as
(52) JorAz ((w @ 0)(An () = @J () In) @ 1)(C)IaAn (v).
Lety € Qu N Nq,@ be in the Tomita algebra of 95 Letw be of the form

WAy (x),A(a) With x, a in the Tomita algebra of respectively ¢y and ¢. Then by the
first formula of Lemma 4.22 (used both in the general case and the case where

N = M), we have that (w ® ¢)(A5; (y)) will also be analytic for U'té, with

‘791/2((“)/\1\](3(),/&({1) ®1) (A\Zl (v)) = (wV}\J/zAN(x),V—l/ZA(a) ® L)(312<091/2(y)))-



GALOIS OBJECTS FOR LOCALLY COMPACT QUANTUM GROUPS 95

Further, (w ® ¢)(Ax (y))* = (@ ® 1)(A12(y*)), which will be in D(A;,) by Lem-
ma 5.5, with
Ap(([@@1)(81(y")) = (@@ )(CT)An(y).
This shows that (w ® 1) (A21(y)) € D(Ay).
Now by Lemma 5.6, we have then also

A (@ 10)(A12(y"))) = (Way (), A (a) @ D(C)Ar(y),

and by Lemma 4.22, we have that (W, (x+),A(c_;(a*)) @ 1)(G) is analytic for x; =
Ad(Vi), with

X-i/2((@Way(x),A(0 5(a7)) @ D(G)) = (W) an(x),)A@) @ D(G).
So combining all this, we get
Jo1An ((w ® 1) (A (y))) = Vl@/zﬁlz((w ® 1) (An ()"
= (ng(wAN(x*),A(a,i(a*)) ® l)(é)vél/z)vgmu(y*)
= (WiyAy(x)jAd) @ 1) (G) 21421 (y)
= (@(J(-)"In) @ )(G)J21A21(y)-
Now by closedness of Ag this equality remains true for w arbitrary. Since
S/l\lCh y’s form a o-strongx-norm core for Ay, the equality is true for any y €
QN N‘PQ' |
THEOREM 5.10. The weight ¢p is left invariant.

Proof. It follows from the last proposition that
(1® ¢5)(Ap(LeLs)) = @p(LeLs)

for ¢ right-bounded and in the domain of @}\,/2 From Lemma IX.3.9 of [21], it
follows that also (1 ® ¢5)(Ap(b)) = @p(b) for b € M;ﬁﬁ Indeed: that lemma

n
implies that b can be approximated from below by elements of the form } L Lz
i=1
with & right-bounded, and since b is integrable, every & must be in D(V}/?). So
we can conclude by lower-semi-continuity.

i

This proves that (I/’\, Aj) is a von Neumann algebraic quantum group, since
@p is a left invariant weight, and by Lemma 5.4, 5 := ¢p o R5 will be a right
invariant weight.

DEFINITION 5.11. If (N, «) is a Galois object for a von Neumann algebraic
quantum group (M, A), and (P, A 5) the von Neumann algebraic quantum group
constructed from it in the foregoing manner, then we call (P, A p) the reflected von
Neumann algebraic quantum group (or just the reflection) of (M, A 1) across (N, a).
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To end this section, we show that (Q, A g) is a measured quantum groupoid.
In fact, our set-up is closer in spirit to the formulation of the generalized Kac
algebras of [32], but this theory has no full generalization to the “locally compact”
world. It is however well known that these approaches are equivalent in the
finite-dimensional Kac case (cf. [17]).

Let d be the natural imbedding of C2 in Q:

2N w 0
d:C2—>Q:(w,z)—><O z)‘

Let & denote the map
e:C*? > C:(w,z2) - w4z

Then we have natural identifications
52(Q)d®d £3(Q (@ﬁ (@) >d®d (@£2<Qlk))
€ Lk

2
= P(L(Qy) ® L2(Qu)) = B5(1)(L2(Q) ® £2(Q)),

ijk
since ;®, is just the ordinary balanced tensor product of two C2-modules. (Note
€

that C2 acts on the left on both the £2(Q) spaces, so we don’t get ordinary “matrix
multiplication compatibility” on the summands!) Under this identification we
have

ngdQ = As(1 )(Q®Q)A o),

where the expression left is the fibred product. Thus A can be seen as a map
Ag: Q—Qu# Q.
C2
Note now that the expressions 1 d®d d(x) and d(x) d®d 1 coincide with respec-

Q

is just the restriction of (1 ® AQ) to AQ( )(Q® Q) Q( ), it is easy to see that A
satisfies the coassociativity conditions for a Hopf bimodule as in Definition 3.1 of
[4]. Now the octuple

~ 5 0 Ps 0
(eeanse (% 5) (T §5))

will form a measured quantum groupoid as in Definition 3.7 of [5]. First of all,

¢p
O(P

tively (1@ d(x))A5(1) and (d(x) ® 1) 5(1) for x € (C2 Using also that 1 ;x; A5
c?

after the proper identifications, it is easy to see that T5 = ( ) is a left invariant

¥p 0
0P
nsf operator valued weight onto d(C?). So we only have to check whether ¢ is

nsf operator valued weight onto d(C?), and that T(’2 = ( ) is a right invariant
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relatively invariant with respect to TQ and Té. Now since 95 ©® = (pp@ @) o
RQ, we have
YpoP P59
g P = RQ o P o RQ'
If we look at the faithful representation 792 of Q on L2(N) @ L2(M), then:
(Vi © ViY@ (x) (Vi & V) = m02(ofP™ (x),
(v @ Nr () (v & ]) = m9*(Rg (),

for x € Q, so that o, ? ] is implemented on £2(N) @ £2(M) by fVA}t ® /Y\Vﬁ where
§7N =] NV N it Jn. Using the definition of v n and the Commutatlon rules between

sEP (P.

ON, INONJN and Py, it is then easy to see that indeed O't commutes with 0'5

6. TWISTING BY 2-COCYCLES

We now treat a specific method to create non-trivial Galois objects, namely
the twisting by cocycles Let (M, A) be a von Neumann algebraic quantum group,
and let 2 € M ® M be a unitary 2-cocycle, i.e. a unitary element satisfying

120)(®A)(Q)=(Q21)(Ax)(Q).

Denote by i the trivial coaction C — M ® C of M. The following definitions and
propositions will refer to [24]. So (&, 2) is a cocycle action in the terminology of
Definition 1.1 in that paper. Let

N=MxC:=[(w®)(WQ):we M, Weak
0

be the cocycle crossed product as in Definition 1.3 (actually, one should take the
von Neumann algebra generated by elements of this last set, in stead of just the
o-weak closure, but it will follow from our Proposition 4.7 and the following
proposition that this is the same). Then, by Proposition 1.4 of [24], there is a
canonical right coaction « of M on N, determined by

a((w @) (WD) = (0@ 1@ 1) (WisWipQfy)  for w € M.

By Theorem 1.11.1 of [24] it is ergodic. By the remark after Lemma 1.12 of [24] it
is integrable, and by Proposition 1.15 of [24] we can take the GNS-construction
for gy in £L2(M), by defining Ay ((w @ 1)(WQ*)) = A((w ® 1)(W)) for w € M,
well-behaved. Finally, (N, «) is a Galois object, since the unitary

WQ* € B(L*(M)) @ N

satisfies
(L (4 DC)(WQ*) = W13W1ZQT2,
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so that « is semi-dual (see Proposition 5.12 of [22] in the setting of left coactions).
In fact, not surprisingly, we have the following proposition.

PROPOSITION 6.1. The Galois map G of (N, a) equals WQ*.

Proof. Choose &, 7,{ € £L2(M), and an orthonormal basis ¢; of £2(M). Fur-
ther, let m € M be a Tomita element for @, and denote w' = We A(m)" Then by
Proposition 1.15 of [24], (' ® 1)(WQ*) € Ny, (' @ 1)(W) € N, and

Ay (@' @) (WD) = A(w' @ ) (W)
So
(1© wey ) (G)A((W @) (W) = (1® wey) (GC)An((w' @ 1) (WQY))
= A(wgy @ 1) (a((«' @ )(WQ))))
= A(((/J/ ® CU@’,W ® l) (WBWUQIZ))
= A(Z(w' ® we g @ W,y @ l)(W14W13QT2)),
i
where the sum is taken in the o-strong-topology.

On the other hand, using Result 8.6 of [13], adapted to the von Neumann
algebra setting, we get
(1® we ) (W) A((w'@1) (W) =) (180we,p) (W) (189w ) () A((w' @1) (W)

1

=) Al(wg,y @) A((' (-(10we ) (Q7)) 1) (W)
=) AW ® we g ® we,y @ 1) (WisWi0i)),

so that the result follows by the closedness of A and the density of elements of
the form A((«' ®1)(W)) in £2(M). &

THEOREM 6.2. The Q-twisted Hopf-von Neumann algebra (M,Aq) is a von
Neumann algebraic quantum group.

Proof. Recall that the (2-twisted Hopf-von Neumann algebra is the algebra
M with the comultiplication A (m)=0QA(m)Q*. But the representation of M’ on
L£2(N) equals the ordinary representation on £2(M) (since it’s easy to see that the
unitary implementation of the coaction equals the right regular representation V),
so we can identify the underlying algebra of the reflected quantum group (P, A 5)
with M, and then we have the following which proves the theorem:

As(m) =G*(1om)G = QW* (1@ m)WQ* = Aq(m).

We will keep notation as in the previous sections, so we keep writing (P, A )
for (M, Aqp).
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Denote by u; = @%@@*” € M the cocycle derivative of ¢p with respect to
@, so that usyy = us0s(us). Denote vy = V}QV’”. Then also v; € M, since VKI
and V' implement the same automorphism on M’. Finally, denote X = JyJ, then
X € M for the same reason.

PROPOSITION 6.3. (i) The one-parameter group vy is a cocycle with respect to T;.
(ii) The 2-cocycles Q2 and (T; ® T;) (Q) are cohomologous by the coboundary v;.
(iii) The 2-cocycles Q2 and Q=(R2R) (ZQ*E) are cohomologous by the coboundary X.

REMARK 6.4. The third statement of this proposition was noted for 2-co-
cycles in the group von Neumann algebra of a compact group in [30].

Proof. By Lemma 4.22, we have
(Vi @ u VI (WQ*) = (W) (V@ u V).
Since VI ® Vit commutes wi/t\h W and Vit implemegts 7 on M, the left hanii side
can be rewritten as (1 ® u)W(% ® 01)(Q*) (V¥ ® Vi), and so, bringing W and
(Vit @ Vit) to the other side, we obtain
Aup) (T @ 51) (Q*) = QF (v @ uy).
Hence
Vst @ ths it = QM ts ) (Tot @ Ts) () = QA usTs (1)) (Tot ® Ts ) (Q)
= QA1) (% ® ) (Q) - (7 ® ) (QAur) (7 ® 1) (7))
= 05T (vt) @ us0s (1),

from which the cocycle property of v; follows.
Now note that v; also equals Pif P~ (by definition of Py). So using the third
equality of Corollary 4.15,

WQ* (v @ o) (P* @ P) = (P @ v, PHYWQ*.
Using that P! = pit, taking W and Pif @ P! to the other side, we arrive at
QO (v @ vp) = Awy) (T @ ) (%),

which proves the second statement.

Finally, as mentioned already, the unitary implementation of « is just V it-
self. So by Lemma 4.4, we have WQ*(Jy ® Jn)E = ZVE(J ® Jy)WQ*. Multi-
plying to the right with (] ® J)X, we get

WO (X@X)=XVE(1eX)(Je WO (Jo]) E=2VE(1eX)(Je)W(Je]) £0*
—sVE(leX)(Jo V(e )WO*
=XVE(1® X)ZV' EWQ" = (10 X)WQF,

from which *(X ® X) = A(X)Q* immediately follows. @

We have the next formula for the multiplicative unitary Wq, for (M, Aq):
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PROPOSITION 6.5. Wy = (Jy ® J)QW*(] ® )Q*.

REMARK 6.6. This is to be compared with the formula for the multiplicative
unitary in [8].

Proof. We will use notation as in the previous section. As already noted,
the unitary implementation of & is the multiplicative unitary V, and the iden-
tification of £2(N) with £2(M) is an identification of left M’-modules. Hence

% %) on (m ﬁzgﬁ; ) is explicitly known: if we

identify £2(M) with £2(M) by the map JJ»1, then the module structure is just
ordinary matrix multiplication, the module structure on all summands being the
standard one. Also, Ku becomes A, and K21 becomes Ags- Then from Lemma
5.8, and the fact that Ay (x) = A(x)Q*, it is easy to conclude that W = GF =

(In® T) (QW*) (J® T) The proposition follows.

the left module structure of (

7. GALOIS OBJECTS AND COACTIONS ON TYPE I FACTORS

We now look at another possible way to create examples. One of the major
motivations for the present paper was the article [2]. There the authors consider
examples of Galois objects (which they call “ergodic coactions of full quantum
multiplicity”) which were not induced by a 2-cocycle. This was surprising, as
Wassermann had shown in [30] that for compact groups, any Galois object for
the function algebra must come from a 2-cocycle of the dual (a result which was
in turn based on the work in [29], and ultimately on the fundamental results of
[10]). In fact, in [2] all Galois objects for the compact quantum groups SU,(2) are
classified. There is a whole family of them, parametrized by orthogonal matrices
which satisfy some relation with respect to g, even though there are no non-trivial
cocycles for the dual of SU,(2).

To obtain examples in our wider setting, the following construction would
seem to be very helpful. It is a generalization of the fact that any action (and
by the work of A. Wassermann, any coaction ([30], Theorem 3)) of a compact
group on a type I-factor comes from a cocycle representation. We need some
terminology.

DEFINITION 7.1. Let (N, ) be a (right) Galois object for a von Neumann

algebraic quantum group (M, A). Denote again by N the space of intertwiners
between £?(M) ;; and L2(N) 5. Let H be a Hilbert space. A (unitary) left (N, «)-
corepresentation for (M, A) is a unitary G € N @ B(#) such that

(Ag®1)(G) = G13G2s.

By a projective corepresentation for (M, AA), we mean a left (N, a)-corepresentation
for (M, A) and some Galois object (N, ).
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For any Galois object (N, «), there is a regular left (N, «)-corepresentation,
namely the unitary (Jy ® J12)G*(J ® J21). In case (M, A) = (L£(®), A) is the group
von Neumann algebra of an ordinary locally compact group &, and (N, «) is the
twisted convolution algebra by a cocycle 2 € L®(&) ® L®(®8), we just get back
the ordinary notion of a cocycle representation. Of course, one can also easily
adapt the definition to find the notion of a right (N, a)-corepresentation.

THEOREM 7.2. Let (M, A) be a von Neumann algebraic quantum group. If (N, a)
is a Galois object for (M, A), then any left (N, a)-corepresentation of (M, A) gives rise to
aleft coaction of (M, A) on a type-I-factor. Conversely, any left coaction on a type-I-factor
is induced by a projective corepresentation.

Proof. The first statement is easy: if G is such a corepresentation, define
Y:B(H) - M®B(H) : x = G*(12x)G,
then this is a coaction by the defining property of G.
Now let H be a Hilbert space, and Y : B(#) — M ® B(H) be a coaction of
(M, A). Denote by N the relative commutant of Y (B(#H)) inside M x B(#). Then
we have a canonical isomorphism ¢ : M x B(H) — N ® B(H). We claim that
the dual (right) coaction Y : M x B(H) — (M x B(H)) ® M restricts to a coaction

of M on N. Indeed: choose an orthonormal basis &; of H, with respective matrix
unit system {e;;}. Then for x € N, we have x = }_Y(ex1)xY(eqx) o-strongly.
k

Applying Y, we get Y (x) = Y(Y(ex1) ®1)Y (x) (Y (e1x) © 1), whose first leg clearly
k

commutes with Y(B(#H)).

We now show that (N, ) is a Galois object. Ergodicity is clear, since 1 ®
B(H) is the fixed point algebra of Ad(Z)y(a @) = (P @)Y o &1 Also in-
tegrability follows easily by this, Y being integrable. Since we have a canoni-
cal isomorphism (M x B(H)) x M 2 (N x M) ® B(#), and the first space is
=~ B(H) ® B(L%(M)), also N x M must be a type I factor, from which it follows
that the Galois homomorphism for « is necessarily an isomorphism.

We now show that the original coaction is implemented by an (N, a)-co-
representation. Denote by Tr the ordinary trace on B(#), by Tr the dual weight
on M x B(#) with respect to Tr, and by ¢y the weight (: ® ¢)a on N. Then we
have

'f'I'I ((pN®T1‘) od.
Hence we obtain a unitary

u: L2(M)® L*(B(H)) = L2(N) @ L2(B(H))

which sends A(m) @ A (x) to (Ay ® A)(P(m @ 1)(1® x)) for m € Ny and x
Hilbert-Schmidt. But identifying £2(B(H), Tr) with H ® H, and observing that
u is right B(#)-linear, we must have that u = G ® 1 for some unitary

G:LX(M)®H — L2 (N) @ H.
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We proceed to show that G is indeed an (N, a)-corepresentation implement-
ing Y. First of all, it is not difficult to see that G € Q1o ® B(H), since for m € N,
and x Hilbert-Schmidt, and &4 € £2(M) with & € D(671/2), we have, putting
w = wg,y and ws = W;-1/2¢ ,, denoting by U the unitary corepresentation belong-
ing to « and by V the right regular representation for (M, A),
u((1@w)(V)@1)(A(m) @A (x)) = u(A((1® ws) (A(m))) © Are(x))
(AN @A) (@(((1® ws)(A(m))) ©@ 1) (1 © x))
(AN@AT) (P((((1@ws) (A(m)))@1)Y (x)))
(AN@AT) (P((1@ws) (Y ((m©@1)Y(x)))))
(AN@AT) ((1©ws@1) (@) P((m©1)Y (x)))
((1@w)(U)@1)(AN@AT) (@((m@1)Y(x)))
(@ w)U) @) u(A(m) @ Ar(x)),
sothat G((t@w)(V)®1) = ((t®w)(U) ® 1)G, which is sufficient to conclude
that the first leg of G is in Q1.

Since uY(x) = (1® x)u on L2(M) ® L2(B(H)), we have GY (x) = (1®x)G
on £2(M) ® H, so that G implements Y.

The only thing left to show is that G satisfies

(A2 ©1)(G) = G1302s.
Writing out A1 and tensoring by 157 to the right, this translates into proving that

O
GiouzWip = uq3uns,

with G the Galois unitary for (N, a). Moving G to the other side, and multiplying
to the left with X5, this becomes
3 WihZ1 = Z1pGrattiaiizs.
This can again be proven using a simple matrix algebra argument: we can write
P(m®1) = L &;(m) @ ej; with &;(m) = LY (ex;) (m ®1)Y(ejx) € N, where the
i,j k

sums are in the o-strong topology. Then for m,n € N, and x Hilbert-Schmidt,
we have

u1WZ12(A(m) @A) @ A1y (1) = 113 (A @ A® A ) (A(m) (n ® 1) @ x)
= (An@ AN A L(@500) (B0) (n21)) @ey),
L]
while

Z12Gatiazins (A(m) ® A(n) @ Ax(x))

= 2126121113(/\ R AN ® A1y) ( Zm & @ij(n) & e,']»x)
ij
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= Z15G1o(AN ® Ay ® Ary) ( Z.JZ.;(@”'(’”) © ®;i(n) ® er]-x))
= (An ® Ay @ Agy) E((a(@n(m) @ (@1 21 @ e,ix)) )
= (An® A ) (@40 0(4(m) ©1)(@50) 81 9)
= (An ® Au @ Ar) (L (0 @) (A(m) (19 1) @ ex)),
where we have used Xi‘,@,i(m)];ij(n) = @,j(mn) for m,n € M in the last step. So

we are done. 1

REMARK 7.3. Starting from an (Nj, a1)-corepresentation G; and consider-
ing its associated coaction on B(£2?(Ny)), one thus obtains a Galois object (N, a3)
and an (N, ap)-corepresentation G. As is to be expected, these Galois objects are
isomorphic, in such a way that the corepresentations correspond to each other.
Indeed: it's easy to see that G1G; = v ® 1 for some unitary v : L3(Ny) —
L2(Ny). Since v is a right M-module map, we can extend the (well-defined) map
Qz,lz — QMZ : z — vz to an isomorphism ¥ of the linking algebras @2 and
Q;. From the fact that G; and G, are corepresentations, it is easy to deduce that
AAl,lz(vz) = (v® U)AAz,lz(z) forz € Qz,12~ Hence ¥ preserves the comultiplica-
tion structure, and thus (Nj,a1) and (Np,as) are isomorphic by a map ¥, and
moreover (¥ ®1)(G2) = Gi.

Recall that two coactions Y; and Y, of (M, A) on a von Neumann algebra
Y are called outer equivalent if there exists a unitary element v € M ® Y which
satisfies
(B®1)(v) = v5(1® Y1) (0),
(i-e., vis an Yi-cocycle) and such that Y,(x) = vY7(x)o* for x € Y. Then it is easy
to see that also the following classical result still holds true.

THEOREM 7.4. Suppose (M, A) is a von Neumann algebraic quantum group for
which M has a separable predual. Then there is a natural one-to-one correspondence
between outer equivalence classes of coactions of (M,A) on B(H), with H a separable
infinite-dimensional Hilbert space, and isomorphism classes of right Galois objects (with
separable predual) for (M, A).

Proof. First suppose that Y7 and Y, are two coactions on B(?) which are
outer equivalent by a unitary v. Then we get an isomorphism

®:MxB(H) = MxB(H):z — vzo¥,
Y, Y,

which obviously sends Y1 (B(H)) to Y2(B(H)). Hence if (N;, «;) denotes the Ga-
lois object constructed from Y; as in the previous theorem, Nj gets sent to N, by
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@. But @ also preserves the dual right coaction, since Vi3v12 = v12Vi3. So PN,
gives an (M, A)-equivariant isomorphism from (Nj, a1) to (Np, a3).

Conversely, suppose that Y; and Y, are two coactions on B(# ), which are
induced by respective (N, a)-corepresentations G; and G, for some Galois object
(N, a) for (M, A). Putv = G5G; € M ® B(#). Then v is an Y;-cocycle:

(A®1)(v) = G3230313G113G1,03 = 02307 2301301 23 = v23(1 ® Y1) (0),

and obviously Y, (x) = vY;(x)v* for x € B(H). Hence Y7 and Y; are outer equiv-
alent.

Now for any right Galois object (N, «) with separable predual, there exists
a coaction on B(#) which has (N, «) as its associated Galois object: for example,
one can take % = £2(N) ® H and equip it with the coaction

Y:B(L2(N)®@H) - M@ L2(N)QH :

Y(x) = (In© )G @ Ti2)) © 1) (1@ x)(In © 12)G*(J ® 1)) @ 1),

i.e., take an amplification of the coaction coming from the regular left projective
corepresentation of a Galois object. This observation then ends the proof of the
proposition. 1
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