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ABSTRACT. We show that for a quantum Lp-martingale (X(t)), p > 2, there
exists a Doob–Meyer decomposition of the submartingale (|X(t)|2). A non-
commutative counterpart of a classical process continuous with probability
one is introduced, and a quantum stochastic integral of such a process with
respect to an Lp-martingale, p > 2, is constructed. Using this construction,
the uniqueness of the Doob–Meyer decomposition for a quantum martingale
“continuous with probability one” is proved, and explicit forms of this de-
composition and the quadratic variation process for such a martingale are ob-
tained.
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INTRODUCTION

In the existing theories of quantum stochastic integration we face a prob-
lem which is similar to that described on page 148 of [17] as follows: “We know
all too well that it is one thing to develop a theory of integration in some rea-
sonable generality and a completely different task to compute the integral in any
specific case of interest”. In quantum stochastic integration we are concerned not
so much with computing the integral but rather with numerous important ex-
amples which do not fit into the nice theory that we have at our disposal. The
origin of this problem lies in rather narrow classes of “theoretically admissible”
integrands. Indeed, if for example (X(t)) is an L2-martingale then the integral∫

f (t)dX(t) is in general defined for adapted processes f satisfying pretty strong
conditions such as e.g. being norm limits of simple processes. On the other hand
it looks quite reasonable to define a stochastic integral in some natural way in
many concrete situations making it possible to integrate a broader class of pro-
cesses. This approach has already been taken in [10], [11] in several cases, where
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in particular it is shown how integration with respect to a quantum random time
can be performed, or how one can integrate predictable processes. In the first
part of the paper we follow the same idea and construct a stochastic integral of
“continuous with probability one” noncommutative stochastic process with re-
spect to an Lp-martingale for p > 2. The second part is devoted to the problem of
a Doob–Meyer decomposition of the submartingale (|X(t)|2), where (X(t)) is an
Lp-martingale for p > 2. This problem has a long history, see for example [2], [4],
[5], [7], [8], [9], [10], [11], where this decomposition has been obtained in several
concrete situations. However, the existence of such a decomposition in general
remained an open question. We show that for p > 2 a Doob–Meyer decomposi-
tion always exists, and is unique for a martingale “continuous with probability
one”. In this case we give also explicit forms of the quadratic variation process of
the martingale and the Doob–Meyer decomposition, using the construction of the
integral given in the first part of the paper. As seen from the above, the notion of
“continuity with probability one” for a noncommutative stochastic process plays
an important role in our considerations, and we explain how it can be generalised
from the classical context to the noncommutative one.

1. PRELIMINARIES AND NOTATION

A noncommutative stochastic base which is a basic object of our considerations
consists of the following elements: a von Neumann algebraA acting on a Hilbert
space H, a normal faithful unital trace τ on A, a filtration (At : t ∈ [0,+∞)),
which is an increasing (s 6 t implies As ⊂ At) family of von Neumann subal-

gebras of A such that A = A∞ =
( ⋃

t>0
At

)′′
and As =

⋂
t>s
At (right-continuity).

Moreover, for each t, there exists a normal conditional expectation Et fromA onto
At such that τ ◦Et = τ.

For each t ∈ [0,+∞] we write Lp(At) for the non-commutative Lebesgue
space associated with At and τ. The theory of such spaces is described e.g. in
[22]; for our purposes we only recall that Lp(A) (respectively Lp(At)) consists of
densely defined operators on H, affiliated with A, and that Lp(A) is the comple-
tion of A with respect to the norm

‖X‖p = [τ(|X|p)]1/p;

moreover, for a ∈ A, X ∈ Lp(A) the operators aX and Xa belong to Lp(A). For
each t the conditional expectation Et extends to a projection of norm one from
Lp(A) onto Lp(At), for which we use the same notation. Notice that the con-
ditional expectation, being a bounded operator on Lp(A), is weakly continuous.
Since the conditional expectation is completely positive we have

Et|x|2 = Et(x∗x) > Etx∗Etx = |Etx|2.
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The following simple property is often useful. Let x ∈ Lp(A), y ∈ Lq(A), p, q ∈
[0,+∞], 1/p + 1/q = 1. Then

(1.1) τ((Etx)y) = τ(Et((Etx)y)) = τ((Etx)(Ety)) = τ(xEty).

By anA- (respectively Lp-) valued process we mean a map from [0,+∞) into
A (respectively Lp(A)). A-valued processes will be usually denoted by f , g or
( f (t)) , (g(t)), while for Lp-processes we shall use symbols (X(t)), (Y(t)). An A-
(respectively Lp-) valued process f (respectively X) is called adapted if f (t) ∈ At
(respectively X(t) ∈ Lp(At)).

An Lp-process (X(t) : t ∈ [0,+∞)) is called a martingale if for each s, t ∈
[0, ∞), s 6 t, we have EsX(t) = X(s). It follows that a martingale is an adapted
process. If the inequality X(s) 6 EsX(t) (respectively EsX(t) 6 X(s)) holds for
s 6 t, then the process is called a submartingale (respectively supermartingale). Let
us notice that according to [1] the martingale (X(t)) is right-continuous in ‖ · ‖p-
norm. Moreover, for each p ∈ [0,+∞] and s 6 t we have

‖X(s)‖p = ‖EsX(t)‖p 6 ‖X(t)‖p.

If (X(t) : t ∈ [0,+∞)) is an Lp-martingale, for p > 2, then (|X(t)|2 : t ∈ [0,+∞))
is an Lp/2-submartingale since for any s 6 t the above-mentioned property of
conditional expectation yields

Es|X(t)|2 > |EsX(t)|2 = |X(s)|2.

The submartingale (|X(t)|2 : t ∈ [0,+∞)) is right-continuous in ‖ · ‖p/2-norm.
Indeed, we have

|X(t)|2 − |X(s)|2 = X(t)∗[X(t)− X(s)] + [X(t)− X(s)]∗X(s),

so using Hölder’s inequality we get

‖|X(t)|2 − |X(s)|2‖p/2 6 ‖X(t)∗[X(t)− X(s)]‖p/2 + ‖[X(t)− X(s)]∗X(s)‖p/2

6 ‖X(t)‖p‖X(t)− X(s)‖p + ‖X(t)− X(s)‖p‖X(s)‖p,

which on account of the right-continuity of (X(t)) in ‖ · ‖p-norm shows that for
t↘ s, |X(t)|2 → |X(s)|2 in ‖ · ‖p/2-norm.

Let (X(t) : t ∈ [0,+∞)) be a process, and let 0 6 t0 6 t1 6 · · · 6 tm < +∞
be a sequence of points. To simplify the notation we put

∆X(tk) = X(tk)− X(tk−1), k = 1, . . . , m.

Let (X(t) : t ∈ [0,+∞)), (Y(t) : t ∈ [0,+∞)) be arbitrary processes, and let
[a, b] be a subinterval of [0,+∞). For a partition θ = {a = t0 < t1 < · · · < tm = b}
of [a, b] we form left and right integral sums

Sl
θ =

m

∑
k=1

∆X(tk)Y(tk−1), Sr
θ =

m

∑
k=1

Y(tk−1)∆X(tk).
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If there exist limits (in any sense) of the above sums as θ refines, we call them
respectively the left and right stochastic integrals of (Y(t)) with respect to (X(t)),
and denote

lim
θ

Sl
θ =

b∫
a

dX(t)Y(t), lim
θ

Sr
θ =

b∫
a

Y(t)dX(t).

This notion of integral is a weaker one. Indeed, we could define the integrals as
the limits

b∫
a

dX(t)Y(t) = lim
‖θ‖→0

Sl
θ ,

b∫
a

Y(t)dX(t) = lim
‖θ‖→0

Sr
θ ,

where ‖θ‖ stands for the mesh of the partition θ. A definition of this kind is stan-
dard in the classical theories of Riemann–Stieltjes as well as stochastic integral;
it is worth noticing that in noncommutative integration theory, whenever this
Riemann–Stieltjes type integral is considered, its definition refers to the weaker
form of the limit with the refining net of partitions (cf. [3], [10], [11]). However, in
our case we shall be able to obtain the integral in the stronger sense thus making
it similar to the classical stochastic integral.

Let (X(k) : k = 0, 1, . . . , n) be a finite martingale. We have

Ek−1|∆X(k)|2

=Ek−1(|X(k)|2 − X(k)∗X(k− 1)− X(k− 1)∗X(k) + |X(k− 1)|2)
=Ek−1(|X(k)|2)−(Ek−1X(k)∗)X(k−1)(1.2)

−X(k−1)∗(Ek−1X(k))+|X(k−1)|2

=Ek−1|X(k)|2 − |X(k− 1)|2 = Ek−1(|X(k)|2 − |X(k− 1)|2),

by martingale property. From the above we obtain on account of the Ek-invarian-
ce of τ

n

∑
k=1
‖|∆X(k)|2‖1 =

n

∑
k=1

τ(|∆X(k)|2)

=
n

∑
k=1

τ(Ek−1(|X(k)|2)) =
n

∑
k=1

τ(Ek−1(|X(k)|2 − |X(k− 1)|))(1.3)

=
n

∑
k=1

τ(|X(k)|2 − |X(k− 1)|2) = τ(|X(n)|2)− τ(|X(0)|2).

The equality above gives the obvious estimation∥∥∥( n

∑
k=1
|∆X(k)|2

)1/2∥∥∥
2
=
( n

∑
k=1

τ(|∆X(k)|)2
)1/2

=
( n

∑
k=1
‖|∆X(k)|2‖1

)1/2
6‖X(n)‖2.

A fundamental result from [19], Theorem 2.1, says that the estimation of this type
is valid for each p > 1. We shall use this for p > 2, in which case it has the form:
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there exists a constant αp depending only on p, such that for each Lp-martingale
(X(k) : k = 0, 1, . . . , n) we have

(1.4)
∥∥∥( n

∑
k=1
|∆X(k)|2

)1/2∥∥∥
p
6 αp‖X(n)‖p.

2. CONTINUITY OF A NONCOMMUTATIVE STOCHASTIC PROCESS

Let (X(t, ·) : t ∈ [a, b]) be a stochastic process over a probability space
(Ω,F , P). Consider the following condition: for each ε > 0 there is Ωε ∈ F
with P(Ωε) > 1 − ε, such that the trajectories {X(·, ω) : ω ∈ Ωε} are equally
uniformly continuous. This can be rewritten as:

(∗)
for each ε > 0 there is Ωε ∈ F with P(Ωε) > 1− ε, having the property:

for each η > 0 there is δ > 0 such that for any ω ∈ Ωε and any s, t ∈ [a, b]

with |t− s| < δ, we have |X(t, ω)−X(s, ω)| 6 η.

If the above condition is satisfied, then the trajectories of the process are uni-
formly continuous with probability one. Indeed, take ε = 1/n, and let Ωε = Ω1/n
be as above. Put

Ω0 =
∞⋃

n=1

Ω1/n.

Then P(Ω0) = 1, and for each ω ∈ Ω0 we have ω ∈ Ω1/n for some n, which
means that the trajectory X(·, ω) is uniformly continuous.

Now let us assume that the trajectories are uniformly continuous with prob-
ability one, and let Ω0 = {ω : X(·, ω) is uniformly continuous}. We have P(Ω0)
= 1, and

Ω0 =
∞⋂

r=1

∞⋃
m=1

⋂
|t−s|<1/m

s,t∈[a,b]

{
ω : |X(t, ω)−X(s, ω)| 6 1

r

}

=
∞⋂

r=1

∞⋃
m=1

⋂
|t−s|<1/m

s,t∈[a,b]

{
ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1

r

}
.

The continuity of the trajectories for ω ∈ Ω0 implies that⋂
|t−s|<1/m

s,t∈[a,b]

{
ω∈Ω0 : |X(t, ω)−X(s, ω)|61

r

}
=

⋂
|t−s|<1/m
s,t∈[a,b]∩Q

{
ω∈Ω0 : |X(t, ω)−X(s, ω)|61

r

}
,

where Q stands for the rational numbers. It follows that the set⋂
|t−s|<1/m

s,t∈[a,b]

{
ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1

r

}
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is measurable, and for each positive integer r we have

1 = P
( ∞⋃

m=1

⋂
|t−s|<1/m

s,t∈[a,b]

{
ω : |X(t, ω)−X(s, ω)| 6 1

r

})

= lim
m→∞

P
( ⋂
|t−s|<1/m

s,t∈[a,b]

{
ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1

r

})
.

For any ε > 0 and positive integer r choose mr such that

P
( ⋂
|t−s|<1/mr

s,t∈[a,b]

{
ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1

r

})
> 1− ε

2r ,

and put

Ωε =
∞⋂

r=1

⋂
|t−s|<1/mr

s,t∈[a,b]

{
ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1

r

}
.

Then P(Ωε) > 1− ε. For arbitrary fixed η > 0 let r0 be such that 1/r0 6 η. Put
δ = 1/mr0 . For each ω0 ∈ Ωε we have, in particular, that

ω0 ∈
{

ω ∈ Ω0 : |X(t, ω)−X(s, ω)| 6 1
r0

}
for any s, t ∈ [a, b] with |t− s| < 1/mr0 = δ, which means that

|X(t, ω0)− X(s, ω0)| 6
1
r0
6 η,

showing that condition (∗) holds.
We have thus shown the equivalence of uniform continuity of trajectories of

the process with probability one and condition (∗). Since in our case the uniform
continuity of trajectories is equivalent to ordinary continuity, condition (∗) can
be treated simply as another definition of the classical notion of a continuous
stochastic process.

Let us observe that condition (∗) can be given the following form. Denote
by χE the indicator function of the set E. Then condition (∗) becomes:

For each ε > 0 there is Ωε ∈ F with P(Ωε) > 1− ε, having the property: for
each η > 0 there is δ > 0 such that for any s, t ∈ [a, b] with |t− s| < δ, we have

sup
ω∈Ωε

|X(t, ω)−X(s, ω)| = sup
ω∈Ω

[|X(t, ω)−X(s, ω)|χΩε
(ω)]

= ‖[X(t, ·)− X(s, ·)]χΩε
‖∞ 6 η.

The above form is essentially algebraic, referring only to the algebra L∞(Ω),
which becomes clear if we replace the inequality P(Ωε) > 1− ε by the equivalent
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inequality ∫
Ω

χΩε
dP > 1− ε.

Thus for a noncommutative process (X(t) : t ∈ [a, b]) it can be given either of the
following two forms: “right” and “left”, denoted respectively by (R) and (L).

For each ε > 0 there is a projection e in A with τ(e) > 1 − ε, having the
property: for each η > 0 there is δ > 0 such that for any s, t ∈ [a, b] with |t− s| <
δ, we have

(R) [X(t)− X(s)]e ∈ A and ‖[X(t)− X(s)]e‖∞ 6 η,

or

(L) e[X(t)− X(s)] ∈ A and ‖e[X(t)− X(s)]‖∞ 6 η,

where ‖ · ‖∞ denotes the norm in the algebra A. This form of “noncommutative
continuity of trajectories with probability one”, in its right version, has already
been considered before in [14], [15], where it was given the name of “Segal’s uni-
form continuity”, and some theorems on this continuity were obtained. However,
it is easily seen that the “right Segal’s uniform continuity” which appears in the
conclusions of those theorems can be changed to the “left Segal’s uniform conti-
nuity”, so the results in [14], [15] give in fact both forms of this continuity. We
shall call a process uniformly continuous in Segal’s sense if it satisfies both (R) and
(L) conditions. It is obvious that for a selfadjoint process conditions (R) and (L)
are equivalent. Let now ε, e and δ be as above. For arbitrary s, t ∈ [a, b], s < t
choose points s = t0 < t1 < · · · < tm = t such that max

16k6m
(tk − tk−1) < δ. Then

[X(t)− X(s)]e = [X(t)− X(tm−1)]e + · · ·+ [X(t1)− X(s)]e,

and since all the summands on the right hand side belong to A we get that
[X(t) − X(s)]e ∈ A. In particular, if X(s0) ∈ A for some s0 ∈ [a, b] then right
Segal’s uniform continuity means that for each ε > 0 there is a projection e ∈
A with τ(e) > 1− ε such that the process (X(t)e : t ∈ [a, b]) ⊂ A is uniformly
continuous in ‖ · ‖∞-norm. The same holds of course for left Segal’s uniform
continuity.

It seems worthwhile to say a few words about the terminology. The term
“Segal’s convergence” was introduced by E.C. Lance in [18] in honour of I. Segal
who first considered this mode of convergence in his celebrated paper [21]. This
notion consists in the following: xn → x in Segal’s sense if for each ε > 0 there is
a projection e ∈ A with τ(e⊥) < ε such that (xn − x)e ∈ A for sufficiently large
n, and ‖(xn − x)e‖∞ → 0. In the definition above it is assumed that τ is a faithful
normal semifinite trace onA. If τ is finite (as in our case) then Segal’s convergence
becomes the so-called almost uniform convergence (which in the commutative case
is via Egorov’s theorem equivalent to convergence almost everywhere). Now the
similarity between Segal’s (or in other words: almost uniform) convergence and
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Segal’s continuity is obvious and goes (essentially) like this: in Segal’s conver-
gence we can find an “arbitrarily large” projection e such that xne→ xe in ‖ · ‖∞-
norm, while in Segal’s continuity we can find an “arbitrarily large” projection e
such that the process (X(t)e : t ∈ [a, b]) is uniformly continuous in ‖ · ‖∞-norm.
Accordingly, Segal’s continuity might also be called almost uniform continuity.

REMARK 2.1. It takes little effort to show that Segal’s uniform continuity
can be given the following, equivalent but technically simpler, form:

(S-cont)

For each ε > 0 there are a projection e ∈ A with τ(e) > 1− ε,

and δ > 0, such that for any s, t ∈ [a, b] with |t− s| < δ, we have

[X(t)− X(s)]e ∈ A, e[X(t)− X(s)] ∈ A,

and

‖[X(t)− X(s)]e‖∞ 6 ε, ‖e[X(t)− X(s)]‖∞ 6 ε.

Consider now a process (X(t) : t ∈ [0,+∞)). It is easily seen that the tra-
jectories of this process are continuous with probability one if and only if for
each bounded interval [a, b] contained in [0,+∞) the trajectories of the process
(X(t) : t ∈ [a, b]) are uniformly continuous. In accordance with the above obser-
vation we adopt the following definition.

DEFINITION 2.2. Let (X(t) : t ∈ [0,+∞)) be a noncommutative stochastic
process. We say that it is continuous in Segal’s sense if for any subinterval [a, b]
of the interval [0,+∞) the process (X(t) : t ∈ [a, b]) is uniformly continuous in
Segal’s sense, i.e., condition (S-cont) is satisfied.

The considerations above lead to one more notion of continuity. Namely,
the projection e occurring in the definitions of left and right Segal’s continuity
can be put on both sides. Accordingly, we have

DEFINITION 2.3. Let (X(t) : t ∈ [0,+∞)) be a noncommutative stochas-
tic process. We say that it is weakly continuous in Segal’s sense if for any subin-
teval [a, b] of the interval [0,+∞) the process (X(t) : t ∈ [a, b]) is weakly uni-
formly continuous in Segal’s sense, i.e., for each ε > 0 there is a projection e in
A with τ(e) > 1− ε, having the property: for each η > 0 there is δ > 0 such that
for any s, t ∈ [a, b] with |t− s| < δ, we have

e[X(t)− X(s)]e ∈ A and ‖e[X(t)− X(s)]e‖∞ 6 η,

or equivalently, for each ε > 0 there are a projection e ∈ A with τ(e) > 1 −
ε, and δ > 0, such that for any s, t ∈ [a, b] with |t− s| < δ, we have

e[X(t)− X(s)]e ∈ A and ‖e[X(t)− X(s)]e‖∞ 6 ε.

It is clear that both left and right Segal’s uniform continuity imply weak Se-
gal’s uniform continuity; moreover, if (X(t)) is left and (Y(t)) is right uniformly
continuous in Segal’s sense then (X(t) +Y(t)) is weakly uniformly continuous in
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Segal’s sense. Obviously, in the commutative case all three modes of continuity
are equivalent.

3. STOCHASTIC INTEGRAL

In this section we shall prove the following

THEOREM 3.1. Let (X(t) : t ∈ [0,+∞)) be an Lp-valued martingale, p > 2, and
let ( f (t) : t ∈ [0,+∞)) be an A-valued adapted norm-bounded on each interval [a, b]
continuous in Segal’s sense process. Then for each t > 0 there exist stochastic integrals

Y(t) =
t∫

0

dX(u) f (u) and Z(t) =
t∫

0

f (u)dX(u)

as elements of L2(A). Moreover, (Y(t)) and (Z(t)) are martingales, and if (X(t))
is continuous either in Segal’s sense or in ‖ · ‖2-norm then these martingales are L2-
continuous.

Proof. Restrict attention to the left integral. Let θ(t) = {0 = t0 < t1 < · · · <
tm = t} be a partition of [0, t], and let

Sl
θ(t)(t) =

m

∑
k=1

∆X(tk) f (tk−1).

We shall show that for each a > 0

lim
‖θ(t)‖→0

Sl
θ(t)(t) = Y(t) uniformly in t ∈ [0, a],

that is, for each ε > 0 there is δ > 0 such that for any t ∈ [0, a] and any θ(t) with
‖θ(t)‖ < δ we have

‖Sl
θ(t)(t)−Y(t)‖2 6 ε.

Put

M = sup
06u6a

‖ f (u)‖∞,(3.1)

K = τ(|X(a)|2)− τ(|X(0)|2),(3.2)

q =
p

p− 2
so that

1
q
+

2
p
= 1,(3.3)

and let αp be as in (1.4). Take an arbitrary t ∈ [0, a], and let ε > 0 be given. On
account of Segal’s continuity of f we can find a projection e in A with

τ(e)>1−
[ ε2

32M2(αp‖X(a)‖p)2

]q
i.e., τ(e⊥)<

[ ε2

32M2(αp‖X(a)‖p)2

]q
,(3.4)



170 ANDRZEJ ŁUCZAK

and δ > 0 such that for any t′, t′′ ∈ [0, t] with |t′ − t′′| < δ, we have

‖e[ f (t′)− f (t′′)]‖∞ = ‖[ f (t′)− f (t′′)]∗e‖∞ 6
ε2

32MK
,(3.5)

‖[ f (t′)− f (t′′)]e‖∞ 6
ε2

32MK
.

Let θ′(t) = {0 = t0 < t1 < · · · < tm = t} be an arbitrary partition of [0, t]
with ‖θ′(t)‖ < δ, and let θ′′(t) be a partition of [0, t] finer than θ′(t) . Denote
by t(k)0 , t(k)1 , . . . , t(k)lk

the points of θ′′(t) lying between tk−1 and tk, such that tk−1 =

t(k)0 < t(k)1 < · · · < t(k)lk
= tk. We then have

Sl
θ′′(t)=

m

∑
k=1

lk

∑
i=1

∆X(t(k)i ) f (t(k)i−1), Sl
θ′(t)=

m

∑
k=1

∆X(tk) f (tk−1)=
m

∑
k=1

lk

∑
i=1

∆X(t(k)i ) f (tk−1),

so that

Sl
θ′′(t) − Sl

θ′(t) =
m

∑
k=1

lk

∑
i=1

∆X(t(k)i )[ f (t(k)i−1)− f (tk−1)].

Consequently,

‖Sl
θ′′(t) − Sl

θ′(t)‖
2
2

=τ
( m

∑
r=1

lr

∑
j=1

[ f (t(r)j−1)− f (tr−1)]
∗∆X(t(r)j )∗

m

∑
k=1

lk

∑
i=1

∆X(t(k)i )[ f (t(k)i−1)− f (tk−1)]
)

=τ
( m

∑
r=1

lr

∑
j=1

m

∑
k=1

lk

∑
i=1

[ f (t(r)j−1)− f (tr−1)]
∗∆X(t(r)j )∗∆X(t(k)i )[ f (t(k)i−1)− f (tk−1)]

)

=
m

∑
r=1

lr

∑
j=1

m

∑
k=1

lk

∑
i=1

τ([ f (t(k)i−1)− f (tk−1)][ f (t(r)j−1)− f (tr−1)]
∗∆X(t(r)j )∗∆X(t(k)i )).

For k < r we have tk−1 6 t(k)i−1 < t(k)i 6 tr−1 6 t(r)j−1 < t(r)j , and the Et-invariance of

τ together with the fact that f (t(k)i−1)− f (tk−1), [ f (t(r)j−1)− f (tr−1)]
∗ and ∆X(t(k)i )

belong to Lp(A
t(r)j−1

) yield

τ([ f (t(k)i−1)− f (tk−1)][ f (t(r)j−1)− f (tr−1)]
∗∆X(t(r)j )∗∆X(t(k)i ))

= τ(E
t(r)j−1

[ f (t(k)i−1)− f (tk−1)][ f (t(r)j−1)− f (tr−1)]
∗∆X(t(r)j )∗∆X(t(k)i ))

= τ([ f (t(k)i−1)− f (tk−1)][ f (t(r)j−1)− f (tr−1)]
∗[E

t(r)j−1
∆X(t(r)j )]∗∆X(t(k)i ))=0,

since

E
t(r)j−1

∆X(t(r)j ) = E
t(r)j−1

(X(t(r)j )− X(t(r)j−1)) = E
t(r)j−1

X(t(r)j )− X(t(r)j−1) = 0
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by martingale property. Analogously for k > r, thus we are left only with the case
k = r. For i < j we have tk−1 6 t(k)i−1 < t(k)i 6 t(k)j−1 < t(k)j , and in a similar fashion
as above we obtain

τ([ f (t(k)i−1)− f (tk−1)][ f (t(k)j−1)− f (tk−1)]
∗∆X(t(k)j )∗∆X(t(k)i ))

=τ(E
t(k)j−1

[ f (t(k)i−1)− f (tk−1)][ f (t(k)j−1)− f (tk−1)]
∗∆X(t(k)j )∗∆X(t(k)i ))

=τ([ f (t(k)i−1)− f (tk−1)][ f (t(k)j−1)− f (tk−1)]
∗[E

t(k)j−1
∆X(t(k)j )]∗∆X(t(k)i ))=0.

The same goes for i > j, so finally we get

‖Sl
θ′′(t) − Sl

θ′(t)‖
2
2

= τ
( m

∑
k=1

lk

∑
i=1

[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]
∗∆X(t(k)i )∗∆X(t(k)i )

)
= I1 + I2,

where

I1 = τ
( m

∑
k=1

lk

∑
i=1

e[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]
∗|∆X(t(k)i |

2
)

,

I2 = τ
( m

∑
k=1

lk

∑
i=1

e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]
∗|∆X(t(k)i |

2
)

.

For I1 we have using (3.1), (3.2) and (3.5) together with (1.3)

|I1| 6
m

∑
k=1

lk

∑
i=1
|τ(e[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗|∆X(t(k)i )|2)|

6
m

∑
k=1

lk

∑
i=1
‖e[ f (t(k)i−1)− f (tk−1)]‖∞‖[ f (t(k)i−1)− f (tk−1)]

∗‖∞

· ‖|∆X(t(k)i )|2‖1 6
ε2

32MK
2M

m

∑
k=1

lk

∑
i=1
‖|∆X(t(k)i )|2‖1

6
ε2

16K
τ(|X(t)|2 − |X(0)|2) 6 ε2

16
.

Divide I2 into two parts: I2 = I′2 + I′′2 , where

I′2 = τ
( m

∑
k=1

lk

∑
i=1

e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]
∗e⊥|∆X(t(k)i )|2

)
,

I′′2 = τ
( m

∑
k=1

lk

∑
i=1

e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]
∗e|∆X(t(k)i )|2

)
.
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Then we have by (3.1)

|I′2| 6
m

∑
k=1

lk

∑
i=1
|τ(e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗e⊥|∆X(t(k)i )|2)|

=
m

∑
k=1

lk

∑
i=1
|τ([ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗e⊥|∆X(t(k)i )|2e⊥)|

6
m

∑
k=1

lk

∑
i=1
‖([ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗‖∞‖e⊥|∆X(t(k)i )|2e⊥)‖1

6 4M2
m

∑
k=1

lk

∑
i=1

τ(e⊥|∆X(t(k)i )|2e⊥) = 4M2τ
(

e⊥
m

∑
k=1

lk

∑
i=1
|∆X(t(k)i )|2

)
6 4M2

∥∥∥e⊥
m

∑
k=1

lk

∑
i=1
|∆X(t(k)i )|2)

∥∥∥
1
.

From Hölder’s inequality applied to the last term above we get, with q given
by (3.3),

|I′2|64M2‖e⊥‖q

∥∥∥ m

∑
k=1

lk

∑
i=1
|∆X(t(k)i )|2

∥∥∥
p/2

=4M2[τ(e⊥)]1/q
∥∥∥( m

∑
k=1

lk

∑
i=1
|∆X(t(k)i )|2

)1/2∥∥∥2

p
,

and taking into account inequalities (1.4), (3.4) we finally obtain

|I′2| 6 4M2 ε2

32M2(αp‖X(a)‖p)2 (αp‖X(t)‖p)
2 6

ε2

8
.

For I′′2 we have using again (3.1), (3.5) and (3.2) together with (1.3)

|I′′2 | 6
m

∑
k=1

lk

∑
i=1
|τ(e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗e|∆X(t(k)i )|2)|

6
m

∑
k=1

lk

∑
i=1
‖e⊥[ f (t(k)i−1)− f (tk−1)][ f (t(k)i−1)− f (tk−1)]

∗e‖∞‖|∆X(t(k)i )|2‖1

6
m

∑
k=1

lk

∑
i=1

2M
ε2

32MK
‖|∆X(t(k)i )|2‖1 =

ε2

16K

m

∑
k=1

lk

∑
i=1
‖∆X(t(k)i )|2‖1

=
ε2

16K
τ(|X(t)|2 − |X(0)|2) 6 ε2

16
.

Thus

|I2| 6 |I′2|+ |I′′2 | 6
ε2

8
+

ε2

16
,

and consequently,

(3.6) ‖Sl
θ′′(t) − Sl

θ′(t)‖
2
2 = I1 + I2 6

ε2

16
+

ε2

8
+

ε2

16
=

ε2

4
.
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Let now θ1(t) and θ2(t) be arbitrary partitions of [0, t] such that ‖θ1(t)‖<δ, ‖θ2(t)‖
< δ, and let θ′′(t) = θ1(t) ∪ θ2(t). Then we have by (3.6)

‖Sl
θ′′(t)(t)− Sl

θ1(t)
(t)‖2 6

ε

2
and ‖Sl

θ′′(t)(t)− Sl
θ2(t)

(t)‖2 6
ε

2
,

so

‖Sl
θ1(t)

(t)− Sl
θ2(t)

(t)‖2 6 ε,

which means that the net {Sl
θ(t)(t)} satisfies the Cauchy condition as ‖θ(t)‖ → 0

uniformly in t ∈ [0, a], proving the existence of the left integral Y(t)=
t∫

0
dX(t) f (t),

together with the uniform convergence of Sθ(t)(t) to Y(t) in ‖ · ‖2-norm. The ex-

istence of the right integral Z(t) =
t∫

0
f (t)dX(t) is proved in virtually the same

way.
Now we shall show that (Y(t) : t ∈ [0,+∞)) is a martingale. Fix t > 0

and take an arbitrary s < t (t being fixed, so we suppress in our notation the
dependence of θ and Sl

θ on t). We have

t∫
0

dX(u) f (u) = lim
‖θ‖→0

Sl
θ .

We may assume that s is one of the points of each partition θ = {0 = t0 < t1 <
· · · < tm = t}, say s = tk. Then we have

EsSl
θ = Es

( k

∑
i=1

[X(ti)− X(ti−1)] f (ti−1) +
m

∑
i=k+1

[X(ti)− X(ti−1)] f (ti−1)
)

=
k

∑
i=1

Es[X(ti)− X(ti−1)] f (ti−1) +
m

∑
i=k+1

Es[X(ti)− X(ti−1)] f (ti−1).

For i 6 k we have ti 6 s, and thus

Es[X(ti)− X(ti−1)] f (ti−1) = [X(ti)− X(ti−1)] f (ti−1),

while for i > k we have ti−1 > s, and thus

Es[X(ti)− X(ti−1)] f (ti−1) = EsEti−1 [X(ti)− X(ti−1)] f (ti−1)

= Es(Eti−1 [X(ti)− X(ti−1)]) f (ti−1) = 0

by martingale property. Consequently,

(3.7) EsSl
θ =

k

∑
i=1

[X(ti)− X(ti−1)] f (ti−1).
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But the sum on the right hand side of (3.7) is an integral sum for the integral
s∫

0
dX(u) f (u), and passing to the limit in (3.7) yields

Es

t∫
0

dX(u) f (u) =
s∫

0

dX(u) f (u),

which shows that (Y(t)) is a martingale. Analogously for (Z(t)).
Now we shall prove the ‖ · ‖2-continuity of (Y(t)) in an arbitrary interval

[0, a]. Let θn = {0 = t(n)1 < t(n)2 < · · · < t(n)mn = a} be a sequence of partitions of
[0, a] such that θn ⊂ θn+1 and ‖θn‖ → 0. For an arbitrary t ∈ [0, a] put θn(t) =
(θn ∩ [0, t]) ∪ {t}, and

Sn(t) = ∑
06t(n)k−1<t(n)k 6t

∆X(t(n)k ) f (t(n)k−1) + [X(t)− X(t′n)] f (t′n),

where t′n = max{t(n)k : t(n)k 6 t}. Then

Sn(t) = Sl
θn(t)(t)

in the notation from the first part of the proof, and

lim
n→∞

Sn(t) = Y(t) uniformly in t ∈ [0, a].

First we show the ‖ · ‖2-continuity of Sn. Take arbitrary s, t ∈ [0, a], s < t,
such that |t− s| < ‖θn‖. We have three possibilities:

(i) s ∈ θn, t /∈ θn.
Then t′n = s, and

Sn(t)− Sn(s) = [X(t)− X(s)] f (s).

(ii) s /∈ θn, t ∈ θn.
Then t′n = t, and

Sn(t)−Sn(s)= [X(t)−X(s′n)] f (s′n)−[X(s)−X(s′n)] f (s′n)= [X(t)−X(s)] f (s′n),

where s′n = max{t(n)k : t(n)k 6 s}.
(iii) s /∈ θn, t /∈ θn.

Then s′n < s < t′n < t, and

Sn(t)−Sn(s)= [X(t)−X(t′n)] f (t′n)+[X(t′n)−X(s′n)] f (s′n)−[X(s)− X(s′n)] f (s′n)

= [X(t)− X(t′n)] f (t′n) + [X(t′n)− X(s)] f (s′n).(3.8)

Note that case (iii) contains the other two, so we have in general

(3.9) ‖Sn(t)− Sn(s)‖2 6 M‖X(t)− X(t′n)‖2 + M‖X(t′n)− X(s)‖2.

Consequently, we only need to estimate the expression ‖X(u)− X(v)‖2 for s 6
v < u 6 t.
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If (X(t)) is ‖ · ‖2-continuous then obviously this can be made arbitrarily
small for s, t sufficiently close to each other.

If (X(t)) is continuous in Segal’s sense then for each ε > 0 we can find a
projection e in A with

τ(e⊥) <
[ ε

8M‖X(a)‖p

]q′
, where

1
q′

+
1
p
=

1
2

,

and δ > 0 such that for |t′ − t′′| < δ we have

‖e[X(t′)− X(t′′)]‖∞ <
ε

4M
.

If |t− s| < δ then also |u− v| < δ, and

‖X(u)− X(v)‖2 6 ‖e[X(u)− X(v)]‖2 + ‖e⊥[X(u)− X(v)]‖2

6 ‖e[X(u)− X(v)]‖∞ + ‖e⊥[X(u)− X(v)]‖2

6
ε

4M
+ ‖e⊥[X(u)− X(v)]‖2.

From Hölder’s inequality we obtain

‖e⊥[X(u)− X(v)]‖2 6 ‖e⊥‖q′‖X(u)− X(v)‖p 6 2‖X(a)‖p[τ(e⊥)]1/q′ <
ε

4M
,

thus finally

‖X(u)− X(v)‖2 <
ε

2M
.

This estimation shows that for |t− s| < δ ∧ ‖θn‖ the inequality in (3.9) takes the
form

‖Sn(t)− Sn(s)‖2 < M
ε

2M
+ M

ε

2M
= ε,

showing the uniform ‖ · ‖2-continuity of Sn. Since Sn ⇒ Y in [0, a] we obtain the
‖ · ‖2-continuity of Y.

REMARK 3.2. It is seen from the above proof that for the existence of the left
integral it suffices that f be “left Segal’s continuous” while for the existence of the
right integral it suffices that f be “right Segal’s continuous”.

Our next aim is to show a noncommutative counterpart of the known clas-
sical result saying that a stochastic integral with the integrator being a contin-
uous martingale is continuous. To this end, we begin with a result which may
be looked upon as a noncommutative generalisation of one of the classical mar-
tingale inequalities. Our attention will be restricted to its simplest version for
a finite martingale, which suffices for the purposes of this paper; however, it is
worth mentioning that a result of this type can be obtained also in a more general
setting. The idea of the proof is an adaptation of the classical method to the non-
commutative setup, and has already been used by C.J.K. Batty in a slightly differ-
ent context for proving “noncommutative Kolmogorov’s inequality” for sums of
“independent noncommutative random variables” (cf. Proposition 5.1 in [12]).
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PROPOSITION 3.3. Let (X1, . . . , Xm) be an L2-martingale. Then for each ε > 0
there is a projection e ∈ A such that

τ(e⊥) <
‖Xm‖2

2
ε2 , and ‖eXn‖∞ 6 ε for each n = 1, . . . , m.

The same conclusion holds also in the “right version” with the projection e put to the
right of Xn.

Proof. We shall prove the “left version”, the proof of the other one being
mutatis mutandis the same. Let us start with some simple remarks. Let x ∈ L1(A)
be a positive operator with its spectral decomposition

x =

∞∫
0

λ e(dλ).

For each η > 0 we have

x =
∫

[0,η)

λ e(dλ) +
∫

[η,+∞)

λ e(dλ) >
∫

[η,+∞)

λ e(dλ) > ηe([η,+∞)),(3.10)

and

e([0, η))xe([0, η)) =
∫

[0,η)

λ e(dλ).

In particular, we obtain “noncommutative Chebyshev’s inequality”

τ(e([η,+∞))) 6
τ(x)

η
,

and the estimation

‖e([0, η))xe([0, η))‖∞ 6 η.

Now let f be an arbitrary projection inA. Write the spectral decomposition of f x f

f x f =

∞∫
0

λ h(dλ).

Since f commutes with f x f it follows that f commutes with the spectral measure
h of f x f , consequently

(3.11) ‖ f h([0, η))xh([0, η)) f ‖∞ = ‖h([0, η)) f x f h([0, η))‖∞ 6 η.

To facilitate notation, we agree to denote the value of the spectral measure of the
operator x > 0 on a Borel set Z ⊂ R by eZ(x). Let an arbitrary ε > 0 be given.
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Define inductively projections en, fn for n = 1, . . . , m, by

e1 = e[0,ε2)(|X∗1 |2), f1 = e1;

e2 = e[0,ε2)( f1|X∗2 |2 f1), f2 = e1 ∧ e2;

...

en = e[0,ε2)( fn−1|X∗n|2 fn−1), fn = e1 ∧ · · · ∧ en.

We have en ∈ An, and for i < j

(3.12) e⊥j 6 f j−1 6 fi 6 ei,

thus, in particular, e⊥i e⊥j = 0 for i 6= j. Put e = fm = e1 ∧ · · · ∧ em. Then

e⊥ =
m∨

n=1

e⊥n =
m

∑
n=1

e⊥n .

Inequality (3.10) yields ε2e⊥n = ε2e[ε2,+∞)( fn−1|X∗n|2 fn−1) 6 fn−1|X∗n|2 fn−1, and
thus multiplying both sides of the above inequality by e⊥n we obtain from (3.12)
and the fact that (|X∗n|2 : n = 1, . . . , m) is a submartingale

ε2e⊥n 6 e⊥n |X∗n|2e⊥n 6 e⊥n En|X∗m|2e⊥n = En(e⊥n |X∗m|2e⊥n ).

Consequently, ε2τ(e⊥n ) 6 τ(En(e⊥n |X∗m|2e⊥n )) = τ(e⊥n |X∗m|2e⊥n ) = τ(e⊥n |X∗m|2).
Thus

ε2τ(e⊥) = ε2τ
( m∨

n=1

e⊥n
)
= ε2

m

∑
n=1

τ(e⊥n ) 6 τ
(( m

∑
n=1

e⊥n
)
|X∗m|2

)
= τ(e⊥|X∗m|2) 6 τ(|X∗m|2) = ‖X∗m‖2

2 = ‖Xm‖2
2,

which gives the desired estimation of τ(e⊥). For the norm we have on account
of (3.11)

‖eXn‖2
∞ =‖X∗ne‖2

∞ =‖e|X∗n|2e‖2
∞ =‖ fn−1e|X∗n|2e fn−1‖2

∞6‖ fn−1en|X∗n|2en fn−1‖2
∞

=‖ fn−1e[0,ε2)( fn−1|X∗n|2 fn−1)|X∗n|2e[0,ε2)( fn−1|X∗n|2 fn−1) fn−1‖2
∞ 6 ε2,

which proves the claim.

THEOREM 3.4. Let (X(t)) and ( f (t)) be as in Theorem 3.1. If (X(t)) is left con-
tinuous in Segal’s sense then (Y(t)) is left continuous in Segal’s sense. If (X(t)) is right
continuous in Segal’s sense then (Z(t)) is right continuous in Segal’s sense.

Proof. Again we restrict attention to the “left” case. We shall prove the left
uniform Segal’s continuity of (Y(t)) in an arbitrary interval [0, a].

Fix a positive integer n. It is easily seen that (Sn(t) : t ∈ [0, a]) is a mar-
tingale; moreover, equality (3.8) shows that if (X(t) : t ∈ [0, a]) is uniformly left
continuous in Segal’s sense then (Sn(t) : t ∈ [0, a]) is also uniformly left continu-
ous in Segal’s sense.
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Let now m, n be arbitrary fixed positive integers. The process (Sn(t) −
Sm(t) : t ∈ [0, a]) is a uniformly left continuous in Segal’s sense martingale. For
any given εn,m > 0 let fn,m be a projection in A such that τ( f⊥n,m) < εn,m, and the
processes ( fn,m[Sn(t)− Sm(t)] : t ∈ [0, a]), ( fn,mSn(t) : t ∈ [0, a]), ( fn,mSm(t) : t ∈
[0, a]) ⊂ A are uniformly continuous in ‖ · ‖∞-norm. In particular, there is δn,m >
0 such that for all t′, t′′ ∈ [0, a] with |t′ − t′′| < δn,m we have

(3.13) ‖ fn,m([Sn(t′)− Sm(t′)]− [Sn(t′′)− Sm(t′′)])‖∞ 6
εn,m

2
.

Choose points 0 = t0 < t1 < · · · < tr = a such that max
16i6r

(ti− ti−1) < δn,m. For the

martingale (Sn(ti)− Sm(ti) : i = 0, 1, . . . , r) we infer on account of Proposition 3.3
that there exists a projection qn,m ∈ A with

τ(q⊥n,m) <
4‖Sn(a)− Sm(a)‖2

2
ε2

n,m

such that

(3.14) ‖qn,m[Sn(ti)− Sm(ti)]‖∞ 6
εn,m

2
, for i = 0, 1, . . . , r.

Put en,m = fn,m ∧ qn,m. Then

τ(en,m) < εn,m +
4‖Sn(a)− Sm(a)‖2

2
ε2

n,m
,

and for each t ∈ [0, a] there is ti such that |t− ti| < δn,m, so from (3.13) and (3.14)
we get

‖en,m[Sn(t)− Sm(t)]‖∞

6 ‖en,m([Sn(t)− Sm(t)]− [Sn(ti)− Sm(ti)])‖∞ + ‖en,m[Sn(ti)− Sm(ti)]‖∞

6 ‖ fn,m([Sn(t)− Sm(t)]

− [Sn(ti)− Sm(ti)])‖∞+‖qn,m[Sn(ti)−Sm(ti)]‖∞ 6
εn,m

2
+

εn,m

2
= εn,m.

Moreover, the processes (en,mSn(t) : t ∈ [0, a]) and (en,mSm(t) : t ∈ [0, a]) are uni-
formly continuous in ‖ · ‖∞-norm.

Let an arbitrary ε > 0 be given. We have Sn(a)→ Y(a) in ‖ · ‖2-norm, so we
can find a subsequence {nk} such that

‖Snk+1(a)− Snk (a)‖2 <
ε3

23k+5 , k = 1, 2, . . . .

Apply our previous considerations to the martingale (Snk+1(t)− Snk (t) : t ∈ [0, a])
(i.e., we take n = nk+1, m = nk). For (εn,m =) εk = ε/2k+1 there is a projection
ek ∈ A with

τ(e⊥k ) <
ε

2k+1 +
4(2k+1)2‖Snk+1(a)− Snk (a)‖2

2
ε2 <

ε

2k+1 +
ε

2k+1 =
ε

2k ,
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such that for each t ∈ [0, a]

‖ek[Snk+1(t)− Snk (t)]‖∞ 6
ε

2k+1 .

Put

e =
∞∧

k=1

ek.

Then τ(e⊥) < ε, and for each t ∈ [0, a]

(3.15) ‖e[Snk+1(t)− Snk (t)]‖∞ 6
ε

2k+1 .

Since the processes (ekSnk (t) : t ∈ [0, a]), k = 1, 2, . . . , are uniformly continuous in
‖ · ‖∞-norm it follows that the processes (eSnk (t) : t ∈ [0, a]), k = 1, 2, . . . , are also
uniformly continuous in ‖ · ‖∞-norm. Condition (3.15) says that the sequence of
processes (eSnk (t) : t ∈ [0, a]), k = 1, 2, . . . , is Cauchy in ‖ · ‖∞-norm uniformly
for t ∈ [0, a]. Since

eSnk (t)→ eY(t) in ‖ · ‖2 -norm

it follows that

eSnk (t)→ eY(t) in ‖ · ‖∞ -norm uniformly for t ∈ [0, a],

and the ‖ · ‖∞-norm continuity of (eSnk (t) : t ∈ [0, a]) yields the norm continuity
of (eY(t) : t ∈ [0, a]) which proves the claim.

4. QUANTUM DOOB–MEYER DECOMPOSITION

Let (X(t) : t ∈ [0,+∞)) be an L2-martingale. Then the process (|X(t)|2 : t ∈
[0,+∞)) is a submartingale, and a Doob–Meyer decomposition is given by the
representation

(4.1) |X(t)|2 = M(t) + A(t), t ∈ [0,+∞),

where (M(t)) is a martingale, and (A(t)) is an increasing positive process, i.e.,
0 6 A(s) 6 A(t) for 0 6 s 6 t. This decomposition has been obtained in many
concrete situations (cf. [2], [4], [5], [7], [8], [9], [10], [11]); in general, a sufficient
condition for the existence of a Doob–Meyer decomposition was given in [4] in
the following form.

An L1-process (Y(t) : t ∈ [0,+∞)) is said to be of class D if the set{ m

∑
k=1

Etk−1(Y(tk)−Y(tk−1)) : 0 6 t0 < t1 < · · · < tm, m = 1, 2, . . .
}

is weakly relatively compact. If (|X(t)|2) is of class D then it has a Doob–Meyer
decomposition.

We shall refer to this condition in a slightly modified form; however, since
in the proof some specific features of the construction of the decomposition will
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be exploited, it seems preferable to present it in full detail. First we shall show
the crucial property of the submartingale (|X(t)|2), namely that it is of class D (in
our case even with a stronger compactness requirement) on each finite interval.

PROPOSITION 4.1. Let (X(t) : t ∈ [0,+∞)) be an Lp-martingale, p > 2. Then
for each a > 0 the following set is weakly relatively compact:

S =
{ m

∑
k=1

Etk−1(|X(tk)|2 − |X(tk−1)|2) : 0 6 t0 < t1 < · · · < tm = a,

m = 1, 2, . . .
}
⊂ Lp/2(A).

Proof. Take arbitrary 06 t0< t1< · · ·< tm = a. On account of (1.2) we have

m

∑
k=1

Etk−1(|X(tk)|2 − |X(tk−1)|2) =
m

∑
k=1

Etk−1 |∆X(tk)|2.

The main result of [16], Theorem 0.1, says that there exists a constant cp/2 de-
pending only on p such that∥∥∥ m

∑
k=1

Etk−1∆|X(tk)|2
∥∥∥

p/2
6 cp/2

∥∥∥ m

∑
k=1
|∆X(tk)|2

∥∥∥
p/2

,

consequently we obtain by (1.4)∥∥∥ m

∑
k=1

Etk−1(|X(tk)|2 − |X(tk−1)|2)
∥∥∥

p/2

=
∥∥∥ m

∑
k=1

Etk−1 |∆X(tk)|2
∥∥∥

p/2
6 cp/2

∥∥∥ m

∑
k=1
|∆X(tk)|2

∥∥∥
p/2

= cp/2

[
τ
(( m

∑
k=1
|∆X(tk)|2

)p/2)]2/p
= cp/2

∥∥∥( m

∑
k=1
|∆X(tk)|2

)1/2∥∥∥2

p
6 cp/2 α2

p‖X(a)‖2
p,

which means that S is norm-bounded. Since Lp/2(A) is the dual space to Lq(A)
with q given by (3.3), and vice versa, the conclusion follows.

Now we are ready to prove the existence of a Doob–Meyer decomposition.
The main idea of the proof is the same as in the classical Rao’s proof (cf. Theo-
rem 4.10 in [17] or [20]), however some additional refinements will be needed.

THEOREM 4.2 (Doob–Meyer decomposition). Let (X(t) : t ∈ [0,+∞)) be an
Lp-martingale, p > 2. Then there exists a Doob–Meyer decomposition for (|X(t)|2 : t ∈
[0,+∞)).

Proof. Let D = {t(n)k = k/2n : k, n = 1, 2, . . . } be the set of dyadic numbers.

In the remaining part of the proof, whenever the symbol t(n)k is used, it will always

be assumed that t(n)k ∈ D. Fix an arbitrary positive integer m. For each n =
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1, 2, . . . , and each dyadic number u in [m− 1, m] put

S(m)
n (u) = ∑

m−16t(n)k−1<u

E
t(n)k−1

(|X(t(n)k )|2 − |X(t(n)k−1)|
2),

in particular

S(m)
n (m) =

m2n

∑
k=(m−1)2n+1

E
t(n)k−1

(|X(t(n)k )|2 − |X(t(n)k−1)|
2).

By Proposition 4.1 the sequence {S(m)
n (m) : n = 1, 2, . . . } is weakly relatively com-

pact. Let Am ∈ Lp/2(Am) be a limit point of this sequence. By the Eberlein-
S̆mulian theorem there is a subsequence {nr} (depending on m) such that

lim
r→∞

S(m)
nr (m) = Am weakly.

From the weak continuity of conditional expectation we obtain

Em−1 Am = lim
r→∞

Em−1

m2nr

∑
k=(m−1)2nr+1

E
t(nr)
k−1

(|X(t(nr)
k )|2 − |X(t(nr)

k−1)|
2)

= lim
r→∞

Em−1(|X(m)|2 − |X(m− 1)|2) = Em−1|X(m)|2 − |X(m− 1)|2.(4.2)

Define a process (A(t) : t ∈ [0,+∞)) as follows. For m = 1, 2, . . . , and
t ∈ [0,+∞) put

(4.3) A(t) = |X(t)|2 −Et|X(m)|2 +Et(A1 + · · ·+ Am), t ∈ [m− 1, m].

Verify first the correctness of this definition. Computing A(m) in the interval
[m− 1, m], we obtain

A(m) = |X(m)|2 −Em|X(m)|2 +Em(A1 + · · ·+ Am) = A1 + · · ·+ Am.

For the interval [m, m + 1] we have

A(m)= |X(m)|2 −Em|X(m + 1)|2 +Em(A1 + · · ·+ Am+1)

= |X(m)|2−Em|X(m + 1)|2+Em Am+1+(A1+· · ·+Am)=A1+· · ·+ Am,

because
|X(m)|2 −Em|X(m + 1)|2 +Em Am+1 = 0

by (4.2). Thus (A(t)) is well defined. Moreover, (A(t)) is right-continuous in
‖ · ‖p/2-norm as a sum of the submartingale (|X(t)|2) and two martingales, all
being ‖ · ‖p/2-right-continuous as noted in Section 1. Putting m = 1, t = 0 in (4.3)
gives

A(0) = |X(0)|2 −E0|X(1)|2 +E0 A1,
and putting m = 1 in (4.2) gives

E0 A1 = E0|X(1)|2 − |X(0)|2,

which shows that A(0) = 0.



182 ANDRZEJ ŁUCZAK

Let u be an arbitrary dyadic number in [m− 1, m]. For sufficiently large n (so
large that u ∈ {t(n)k : k = (m− 1)2n + 1, . . . , m2n}) the following equality holds

EuS(m)
n (m)= ∑

m−16t(n)k−1<u

E
t(n)k−1

(|X(t(n)k )|2−|X(t(n)k−1)|
2)+ ∑

u6t(n)k−1<m

Eu(|X(t(n)k )|2−|X(t(n)k−1)|
2)

= ∑
m−16t(n)k−1<u

E
t(n)k−1

(|X(t(n)k )|2 − |X(t(n)k−1)|
2) + Eu(|X(m)|2 − |X(u)|2)

=S(m)
n (u) +Eu|X(m)|2 − |X(u)|2.

Passing to the limit along the sequence {nr} in the above equality, we get

Eu Am = lim
r→∞

S(m)
nr (u) +Eu|X(m)|2 − |X(u)|2,

and thus

lim
r→∞

S(m)
nr (u) = |X(u)|2 −Eu|X(m)|2 +Eu Am

= A(u)−Eu(A1 + · · ·+ Am−1) = A(u)− (A1 + · · ·+ Am−1).(4.4)

Let now u, v be arbitrary dyadic numbers such that m − 1 6 u 6 v 6 m.
Since

E
t(n)k−1

(|X(t(n)k )|2 − |X(t(n)k−1)|
2) = E

t(n)k−1
(|X(t(n)k )− X(t(n)k−1)|

2) > 0,

we obtain that for sufficiently large n (again so large that u, v ∈ {t(n)k : k = (m−
1)2n + 1, . . . , m2n})

S(m)
n (u) 6 S(m)

n (v),

and passing to the limit in the above inequality along the sequence {nr} yields
on account of (4.4)

A(u)− (A1 + · · ·+ Am−1) 6 A(v)− (A1 + · · ·+ Am−1),

so
A(u) 6 A(v).

The right continuity of the process (A(t)) implies that it is increasing in [m− 1, m],
thus from the arbitrariness of m, (A(t)) is increasing on the whole of [0,+∞).
Moreover, (A(t)) is positive since A(0) = 0. The equality (4.3) gives

|X(t)|2 = Et(|X(m)|2 − (A1 + · · ·+ Am)) + A(t) = M(t) + A(t),

for t ∈ [m− 1, m], where

M(t) = Et(|X(m)|2 − (A1 + · · ·+ Am)).

Take an arbitrary t ∈ [0,+∞), and let m be a positive integer such that t ∈ [m−
1, m]. For m − 1 6 s 6 t we obviously have Es M(t) = M(s). Assume that
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s ∈ [m− 2, m− 1]. Then

Es M(t)=Es(|X(m)|2−(A1+· · ·+Am))=Es|X(m)|2−Es Am−Es(A1+· · ·+Am−1),

M(s)=Es(|X(m− 1)|2 − (A1 + · · ·+ Am−1))

=Es|X(m− 1)|2 −Es(A1 + · · ·+ Am−1),

so we obtain

Es M(t)−M(s) = Es|X(m)|2 −Es Am −Es|X(m− 1)|2.

Applying Es to both sides of (4.2) yields

Es Am = Es|X(m)|2 −Es|X(m− 1)|2,

which shows that

Es M(t)−M(s) = 0, i.e., Es M(t) = M(s).

Now for an arbitrary s < t choose s1 < · · · < sl between s and t lying in neigh-
bouring intervals with the ends being positive integers. Then

Es M(t) = EsEs1 · · ·Esl M(t) = EsEs1 · · ·Esl−1 M(sl) = · · · = Es M(s1) = M(s),

proving that (M(t) : t ∈ [0,+∞)) is a martingale.

Let us now consider an important question concerning the uniqueness of a
Doob–Meyer decomposition. Recall the following definition from Definition 2.2
of [7].

DEFINITION 4.3. An L1(A) process (A(t) : t ∈ [0,+∞)) is natural if for each
t > 0 and any sequence {θn} of partitions of [0, t], θn = {0 = t(n)0 < t(n)1 · · · <
t(n)mn = t} with ‖θn‖ → 0 we have, for all y ∈ A,

(4.5) lim
n→∞

τ
( mn

∑
k=1

E
t(n)k−1

(y)(A(t(n)k )− A(t(n)k−1))
)
= τ(yA(t)).

It was pointed out in [7] that, in full analogy with the classical case, if
the process (A(t)) in decomposition (4.1) is natural then this decomposition is
unique. Note that equality (4.5) may be, on account of (1.1), rewritten in the fol-
lowing form (this was also observed in Definition 5.3 in [9])

lim
n→∞

τ
( mn

∑
k=1

E
t(n)k−1

(y)(A(t(n)k )− A(t(n)k−1))
)

= lim
n→∞

mn

∑
k=1

τ(E
t(n)k−1

(y)(A(t(n)k )−A(t(n)k−1)))= lim
n→∞

mn

∑
k=1

τ(yE
t(n)k−1

((A(t(n)k )−A(t(n)k−1))))

= lim
n→∞

τ
(

y
mn

∑
k=1

E
t(n)k−1

(A(t(n)k )− A(t(n)k−1))
)
= τ(yA(t)),
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which simply means that

(4.6)
mn

∑
k=1

E
t(n)k−1

(A(t(n)k )− A(t(n)k−1))→ A(t) weakly.

From decomposition (4.1) it follows that for any 0 6 s 6 t we have

Es(A(t)−A(s))=Es(|X(t)|2−|X(s)|2)−Es(M(t)−M(s))=Es(|X(t)|2−|X(s)|2),

by martingale property, so condition (4.6) becomes

(4.7)
mn

∑
k=1

E
t(n)k−1

(|X(t(n)k )|2 − |X(t(n)k−1)|
2)→ A(t) weakly.

In the next section we shall show that this condition is satisfied for a certain class
of martingales, thus obtaining the uniqueness of a Doob–Meyer decomposition.
Moreover, an explicit form of this decomposition will be given.

5. QUADRATIC VARIATION PROCESS

In this section we assume that (X(t) : t ∈ [0,+∞)) is an A-valued martin-
gale continuous in Segal’s sense. The following theorem is a noncommutative
counterpart of Theorem 4.1 from [13].

THEOREM 5.1. Let t > 0, and denote by θ = {0 = t0 < t1 < · · · < tm = t} a
partition of [0, t]. Put

Sθ(t) =
m

∑
k=1
|∆X(tk)|2.

Then {Sθ(t)} converges in ‖ · ‖2-norm as ‖θ‖ → 0 to 〈X〉(t) defined as

〈X〉(t) = |X(t)|2 − |X(0)|2 −
( t∫

0

dX∗(u) X(u) +
t∫

0

X∗(u)dX(u)
)

.(5.1)

Proof. We have, analogously as in the classical case,

Sθ(t) =
m

∑
k=1

[X(tk)− X(tk−1)]
∗[X(tk)− X(tk−1)]

=
m

∑
k=1

(|X(tk)|2 − |X(tk−1)|2)−
m

∑
k=1

[X∗(tk)− X∗(tk−1)]X(tk−1)

−
m

∑
k=1

X∗(tk−1)[X(tk)− X(tk−1)]
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= |X(t)|2 − |X(0)|2 −
m

∑
k=1

[X∗(tk)− X∗(tk−1)]X(tk−1)

−
m

∑
k=1

X∗(tk−1)[X(tk)− X(tk−1)].

Now observe that the martingales (X(t)) and (X∗(t)) satisfy the assumption of
Theorem 3.1 both as the integrators and the integrands, thus the two sums in the
equation above, being respectively the left and right integral sum, tend to the

integrals
t∫

0
dX∗(u) X(u) and

t∫
0

X∗(u)dX(u), which proves the theorem.

For any 0 6 s 6 t we clearly have 0 6 Sθ(s) 6 Sθ(t), so the process
(〈X〉(t) : t ∈ [0,+∞)) defined by equation (5.1), being the limit of Sθ(t), is pos-
itive and increasing; obviously 〈X〉(0) = 0. This process is called the quadratic
variation process for the martingale (X(t) : t ∈ [0,+∞)). Denote

M(t) = |X(0)|2 +
t∫

0

dX∗(u) X(u) +
t∫

0

X∗(u)dX(u).

By virtue of Theorem 3.1 we obtain that (M(t)) is a martingale, thus (5.1) gives a
Doob–Meyer decomposition

(5.2) |X(t)|2 = M(t) + 〈X〉(t).

From Theorem 3.4 it follows that (M(t)) is weakly continuous in Segal’s sense.
We shall show that the quadratic variation process (〈X〉(t)) is natural. The fol-
lowing lemma is a noncommutative version of Lemma 5.10 from [17].

LEMMA 5.2. Let t > 0, and denote by θ = {0 = t0 < t1 < · · · < tm = t} a
partition of [0, t]. Then

lim
‖θ‖→0

τ
( m

∑
k=1
|∆X(tk)|4

)
= 0.

Proof. The estimations in the proof are similar to those in Theorem 3.1. Put

M = ‖X(t)‖∞ = sup
06s6t

‖X(s)‖∞,(5.3)

K = τ(|X(t)|2 − |X(0)|2),(5.4)

and let α4 be as in (1.4) with p = 4. Let ε > 0 be given. From Segal’s continuity of
the martingale (X(u)) there exist a projection e in A with

(5.5) τ(e⊥) <
ε2

64M4α4
4‖X(t)‖4

4
,

and δ > 0 such that for any t′, t′′ ∈ [0, t] with |t′ − t′′| < δ, we have

(5.6) ‖[X(t′)− X(t′′)]e‖∞ <
ε

4MK
.
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Let θ = {0 = t0 < t1 < · · · < tm = t} be a partition of [0, t] such that ‖θ‖ < δ. We
have

τ
( m

∑
k=1
|∆X(tk)|4

)
= τ

( m

∑
k=1

e|∆X(tk)|4
)
+ τ

( m

∑
k=1

e⊥|∆X(tk)|4
)
= I1 + I2,

where

I1 = τ
( m

∑
k=1

e|∆X(tk)|4
)

, I2 = τ
( m

∑
k=1

e⊥|∆X(tk)|4
)

.

For I1 we have using (5.3), (5.4) and (5.6) together with (1.3)

|I1| =
m

∑
k=1
|τ(e|∆X(tk)|4)| 6

m

∑
k=1
‖e|∆X(tk)|2‖∞‖|∆X(tk)|2‖1

6
m

∑
k=1
‖e∆X(tk)‖∞‖|∆X(tk)|‖∞‖|∆X(tk)|2‖1

<
m

∑
k=1

2M
ε

4MK
‖|∆X(tk)|2‖1 =

ε

2K

m

∑
k=1
‖|∆X(tk)|2‖1 =

ε

2
.

For I2 we have

|I2| =
m

∑
k=1
|τ(e⊥|∆X(tk)|4)| =

m

∑
k=1
|τ(|∆X(tk)|e⊥|∆X(tk)||∆X(tk)|2)|

6
m

∑
k=1
‖|∆X(tk)|e⊥|∆X(tk)|‖1‖|∆X(tk)|2‖∞ =

m

∑
k=1

τ(e⊥|∆X(tk)|2)‖|∆X(tk)|2‖∞

6 4M2τ
( m

∑
k=1

e⊥|∆X(tk)|2
)
6 4M2

∥∥∥e⊥
m

∑
k=1
|∆X(tk)|2

∥∥∥
1
.

From Hölder’s inequality we get∥∥∥e⊥
m

∑
k=1
|∆X(tk)|2

∥∥∥
1
6‖e⊥‖2

∥∥∥ m

∑
k=1
|∆X(tk)|2

∥∥∥
2
=[τ(e⊥)]1/2

∥∥∥( m

∑
k=1
|∆X(tk)|2

)1/2∥∥∥2

4
,

and taking into account inequalities (1.4), (5.5) we finally obtain

|I2| 6 4M2
∥∥∥e⊥

m

∑
k=1
|∆X(tk)|2

∥∥∥
1
6 4M2[τ(e⊥)]1/2

∥∥∥( m

∑
k=1
|∆X(tk)|2

)1/2∥∥∥2

4

< 4M2 ε

8M2α2
4‖X(t)‖2

4
α2

4‖X(t)‖2
4 =

ε

2
,

and thus we have the following which finishes the proof:

τ
( m

∑
k=1
|∆X(tk)|4

)
= I1 + I2 < ε.

THEOREM 5.3. The process (〈X〉(t) : t ∈ [0,+∞)) is natural.
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Proof. Let t > 0, and denote by θ = {0 = t0 < t1 < · · · < tm = t} a partition
of [0, t]. We shall first show that

lim
‖θ‖→0

∥∥∥ m

∑
k=1

(|∆X(tk)|2 −Etk−1 |∆X(tk)|2)
∥∥∥

2
= 0.

We have∥∥∥ m

∑
k=1

(|∆X(tk)|2 −Etk−1 |∆X(tk)|2)
∥∥∥2

2

=τ
( m

∑
i,k=1

(|∆X(ti)|2−Eti−1 |∆X(ti)|2)(|∆X(tk)|2−Etk−1 |∆X(tk)|2)
)

=
m

∑
i,k=1

τ((|∆X(ti)|2−Eti−1 |∆X(ti)|2)(|∆X(tk)|2−Etk−1 |∆X(tk)|2)).

For i < k we obtain

τ((|∆X(ti)|2 −Eti−1 |∆X(ti)|2)(|∆X(tk)|2 −Etk−1 |∆X(tk)|2))
=τ(Etk−1(|∆X(ti)|2 −Eti−1 |∆X(ti)|2)(|∆X(tk)|2 −Etk−1 |∆X(tk)|2))
=τ((|∆X(ti)|2−Eti−1 |∆X(ti)|2)Etk−1(|∆X(tk)|2−Etk−1 |∆X(tk)|2))=0,

and analogously for i > k. Consequently, by Lemma 5.2∥∥∥ m

∑
k=1

(|∆X(tk)|2 −Etk−1 |∆X(tk)|2)
∥∥∥2

2

=τ
( m

∑
k=1

[|∆X(tk)|2−Etk−1 |∆X(tk)|2]2
)
6τ
( m

∑
k=1

2[|∆X(tk)|4+(Etk−1 |∆X(tk)|2)2]
)

6 2τ
( m

∑
k=1

[|∆X(tk)|4 +Etk−1 |∆X(tk)|4]
)
= 4τ

( m

∑
k=1
|∆X(tk)|4

)
→ 0,

where in the last estimation we have used the inequality (Etx)2 6 Etx2 valid for
x = x∗ because Et is positive.

From Theorem 5.1 we have lim
‖θ‖→0

m
∑

k=1
|∆X(tk)|2 = 〈X〉(t), which yields

lim
‖θ‖→0

m

∑
k=1

Etk−1 |∆X(tk)|2 = 〈X〉(t) in ‖ · ‖2-norm,

and thus condition (4.7) is satisfied.

Our next aim is to show a noncommutative counterpart of the classical re-
sult saying that if the martingale in the Doob–Meyer decomposition is continuous
with probability one then this decomposition is unique.

THEOREM 5.4. Let
|X(t)|2 = M(t) + A(t)
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be a Doob–Meyer decomposition of the submartingale (|X(t)|2) such that the martingale
(M(t)) is weakly continuous in Segal’s sense and M(0) = |X(0)|2. Then this decompo-
sition is unique.

Proof. Assume that there are decompositions

|X(t)|2 = M1(t) + A1(t) = M2(t) + A2(t),

where (M1(t)), (M2(t)) are weakly continuous in Segal’s sense martingales such
that M1(0) = M2(0) = |X(0)|2, and (A1(t)), (A2(t)) are increasing positive pro-
cesses. Put

M(t) = M1(t)−M2(t).

Then (M(t)) is a weakly continuous in Segal’s sense martingale such that

M(t) = A2(t)− A1(t),

in particular, (M(t)) is selfadjoint and M(0) = 0. Fix t > 0. Take an arbitrary ε >
0. From weak uniform continuity in Segal’s sense of the martingale (M(s) : s ∈
[0, t]) it follows that there exist a projection e ∈ A with

(5.7) τ(e⊥) <
ε2

16α4
8‖M(t)‖4

8
,

where α8 is as in (1.4) for p = 8, and δ > 0 such that for any t′, t′′ ∈ [0, t] with
|t′ − t′′| < δ we have

(5.8) ‖e[M(t′)−M(t′′)]e‖∞ 6
ε

4(‖A1(t)‖1 + ‖A2(t)‖1)
.

Let 0 = t0 < t1 < · · · < tm = t be a partition of the interval [0, t] such that
max

16k6m
(tk − tk−1) < δ. We have

τ
( m

∑
k=1

[∆M(tk)]
2
)
= τ

( m

∑
k=1

e∆M(tk)e∆M(tk)
)
+ τ

( m

∑
k=1

e⊥∆M(tk)e∆M(tk)
)

+ τ
( m

∑
k=1

e∆M(tk)e⊥∆M(tk)
)
+τ
( m

∑
k=1

e⊥∆M(tk)e⊥∆M(tk)
)

= I1 + I2 + I3 + I4,

where

I1 = τ
( m

∑
k=1

e∆M(tk)e∆M(tk)
)

, I2 = τ
( m

∑
k=1

e⊥∆M(tk)e∆M(tk)
)

,

I3 = τ
( m

∑
k=1

e∆M(tk)e⊥∆M(tk)
)

, I4 = τ
( m

∑
k=1

e⊥∆M(tk)e⊥∆M(tk)
)

.
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On account of (5.8) we get

|I1| = I1 =
m

∑
k=1
|τ(e∆M(tk)e∆M(tk))| 6

m

∑
k=1
‖e∆M(tk)e‖∞‖∆M(tk)‖1

6
ε

4(‖A1(t)‖1 + ‖A2(t)‖1)

m

∑
k=1
‖∆M(tk)‖1,

and since (A1(t)) and (A2(t)) are increasing and A1(0) = A2(0) = 0,

m

∑
k=1
‖∆M(tk)‖1 =

m

∑
k=1
‖∆A2(tk)−∆A1(tk)‖1 6

m

∑
k=1
‖∆A2(tk)‖1 +

m

∑
k=1
‖∆A1(tk)‖1

=
m

∑
k=1

τ(A2(tk)− A2(tk−1)) +
m

∑
k=1

τ(A1(tk)− A1(tk−1))

= τ(A2(t)) + τ(A1(t)) = ‖A2(t)‖1 + ‖A1(t)‖1,

which gives the estimation

I1 6
ε

4
.

Furthermore on account of (5.7) we obtain

|I2| = |I3| = I2 = I3 =
∣∣∣τ( m

∑
k=1

e⊥∆M(tk)e∆M(tk)
)∣∣∣

=
∣∣∣τ(e⊥

m

∑
k=1

∆M(tk)e∆M(tk)
)∣∣∣ 6 ‖e⊥‖2

∥∥∥ m

∑
k=1

∆M(tk)e∆M(tk)
∥∥∥

2

= ‖e⊥‖2

∥∥∥ m

∑
k=1

(∆M(tk)e)(∆M(tk)e)∗
∥∥∥

2

= [τ(e⊥)]1/2
∥∥∥( m

∑
k=1

(∆M(tk)e)(∆M(tk)e)∗
)1/2∥∥∥2

4

<
ε

4α2
8‖M(t)‖2

8

∥∥∥( m

∑
k=1

(∆M(tk)e)(∆M(tk)e)∗
)1/2∥∥∥2

4
.

From Lemma 1.1 in [19] it follows that∥∥∥( m

∑
k=1

(∆M(tk)e)(∆M(tk)e)∗
)1/2∥∥∥

4
6
∥∥∥( m

∑
k=1

[∆M(tk)]
2
)1/2∥∥∥

8
‖e‖8,

and from inequality (1.4) we obtain∥∥∥( m

∑
k=1

[∆M(tk)]
2
)1/2∥∥∥

8
6 α8‖M(t)‖8.
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Consequently,

I2 = I3 <
ε

4α2
8‖M(t)‖2

8

∥∥∥( m

∑
k=1

(∆M(tk)e)(∆M(tk)e)∗
)1/2∥∥∥2

4

6
ε

4α2
8‖M(t)‖2

8

∥∥∥( m

∑
k=1

[∆M(tk)]
2
)1/2∥∥∥2

8
‖e‖2

86
ε

4α2
8‖M(t)‖2

8
α2

8‖M(t)‖2
8 =

ε

4
.

The same estimation is obtained for |I4| = I4, so finally we have

τ
( m

∑
k=1

[∆M(tk)]
2
)
6 I1 + I2 + I3 + I4 < ε.

On the other side, from equality (1.3) and martingale property we get

τ(|M(t)−M(0)|2)=τ(|M(t)|2−|M(0)|2)=
m

∑
k=1
‖|∆M(tk)|2‖1=τ

( m

∑
k=1

[∆M(tk)]
2
)
< ε,

and since ε > 0 was arbitrary this yields

τ(|M(t)−M(0)|2) = 0.

The faithfulness of τ implies the following which gives the uniqueness of the
decomposition:

M(t) = M(0) = 0.

REMARK 5.5. From the decomposition (5.2) and the uniqueness it follows
that the process (A(t)) in the above theorem is actually equal to (〈X〉(t)).

We finish with a brief discussion of the classical notion of the cross-variation
process.

DEFINITION 5.6. Let (X(t) : t ∈ [0,+∞)) and (Y(t) : t ∈ [0,+∞)) be A-
valued continuous in Segal’s sense martingales. The cross-variation process (called
also the bracket or quadratic covariation process) is defined by

〈X, Y〉(t) = 1
4
{〈X + Y〉(t)− 〈X−Y〉(t) + i[〈iX + Y〉(t)− 〈iX−Y〉(t)]}.

This is of course the polarization formula for the “sesquilinear form” (linear
in the second position) 〈X, Y〉 obtained from the “quadratic form” 〈X〉, so that

〈X, X〉(t) = 〈X〉(t).

After straightforward calculations we obtain

〈X, Y〉(t) = X(t)∗Y(t)− X(0)∗Y(0)−
( t∫

0

dX∗(u)Y(u) +
t∫

0

X∗(u)dY(u)
)

.

Our last theorem shows that the cross-variation process can be obtained in the
way entirely analogous to the classical case.
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THEOREM 5.7. Let (X(t)) and (Y(t)) be as above, and let θ = {0 = t0 < t1 <
· · · < tm = t} denote a partition of [0, t]. Then

〈X, Y〉(t) = lim
‖θ‖→0

m

∑
k=1

[X(tk)− X(tk−1)]
∗[Y(tk)−Y(tk−1)] in ‖ · ‖2-norm.

Proof. We have
m

∑
k=1

[X(tk)− X(tk−1)]
∗[Y(tk)−Y(tk−1)]

=
m

∑
k=1

X∗(tk)Y(tk)−
m

∑
k=1

X∗(tk)Y(tk−1)−
m

∑
k=1

X∗(tk−1)[Y(tk)−Y(tk−1)]

= X∗(t)Y(t)− X∗(0)Y(0) +
m

∑
k=1

X∗(tk−1)Y(tk−1)−
m

∑
k=1

X∗(tk)Y(tk−1)

−
m

∑
k=1

X(tk−1)[Y(tk)−Y(tk−1)]

= X∗(t)Y(t)− X∗(0)Y(0)−
m

∑
k=1

[X∗(tk)− X∗(tk−1)]Y(tk−1)

−
m

∑
k=1

X∗(tk−1)[Y(tk)−Y(tk−1)].

The two sums on the right hand side of the above equation tend to
t∫

0
dX∗(u)Y(u)

and
t∫

0
X∗(u)dY(u), respectively, which shows the claim.
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