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ABSTRACT. We study s-functions of elementary operators acting on C*-alge-
bras. The main results are the following: If T is any tensor norm and A, B €
B(#) are such that the sequences s(A), s(B) of their singular numbers belong
to a tensor stable Calkin space i then the sequence of approximation num-
bers of A ®¢ B belongs to i. If A is a C*-algebra, i is a tensor stable Calkin
space, s is an s-number function, and a;,b; € A, i = 1,2,...,m are such that
s(mt(a;)),s(rt(b;)) € 1,i =1,2,...,m for some faithful representation 7 of A

m
then s( ‘21 Mﬂi:bi> € i. The converse implication holds if and only if the ideal
i=

of compact elements of A has finite spectrum. We also prove a quantitative
version of a result of Ylinen.
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INTRODUCTION

Let Abea C*-algebra. If a,b € A we denote by M, j, the operator on .A given

by M, (x) = axb. An operator @ : A — A is called elementary if & = Z M, b,
i=1
forsomea;,b; € A,i=1,...,m.

Let # be a separable Hilbert space and B(7) the C*-algebra of all bounded
linear operators on H. A theorem of Fong and Sourour [11] asserts that an ele-
mentary operator ¢ on B(H) is compact if and only if there exists a representation

E My, p; of @ such that the symbols A;, B;, i = 1,...,m, of @ are compact opera-

tors If, instead of B(# ), one has a C*-algebra A, the role of the compact operators
is played by the compact elements: recall that an element a of A is called compact
if the operator M;, : A — A is compact. Ylinen [27] showed that an element
a € Ais compact if and only if there exists a faithful *-representation 7 of A such
that the operator 71(a) is compact.
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The result of Fong and Sourour was extended by Mathieu [19] who showed
that if A is a prime C*-algebra, then an elementary operator ¢ on A is compact
if and only if there exist compact elements a;,b; € A, i = 1,...,m, such that
P = f M,, »,- Recently Timoney [25] extended this result to general C*-algebras.

lIr3 this paper we investigate quantitative aspects of the above results. It is
well-known that a bounded operator on a Banach space is compact if and only if
its Kolmogorov numbers form a null sequence. In our approach we use the more
general notion of an s-function introduced by Pietsch and the theory of ideals
of B(#) developed by von Neumann, Schatten, Calkin and others. A detailed
study of these notions is presented in the monographs [21], [5], [12] and [23].
Our analysis rests on the classical description of the ideals of B(#) in terms of
subspaces of cy satisfying a certain closure property [4], a result that has inspired
many of the developments in the area thereafter. Recently, advances in the study
of ideals of B(?) were made in [9], [13], [14], [15], [16].

In Section 1 of the paper we recall the definitions of Calkin spaces and the
basic properties of s-functions.

Weiss considered in [26] a property for ideals of B(# ), called “tensor prod-
uct closure property”, or “tensor stability”. In Section 2 we study the analogous
property for Calkin spaces. We give a necessary and sufficient condition for the
tensor stability of a singly generated Calkin space. We also provide a sufficient
condition for the tensor stability of a Lorentz sequence space.

Ifa,b € Aand C is a C*-subalgebra of A such that M, ;,(C) C C, we let Mgb
be the operator on C given by Mg,b (x) = axb. In Section 3 we prove inequalities

relating the s-number functions of the operators M, ;, and Mucb. These results are
used subsequently in Section 5.

In Section 4 we study elementary operators acting on B(#). Some of our
results can be presented in a more general setting. Namely, we show that if T
is any tensor norm and A, B € B(#H) are such that s(A),s(B) belong to a tensor
stable Calkin space i then the sequence of approximation numbers of the operator
A ®¢ B acting on the Banach space tensor product H ®. H belongs to i. A result
of this type for i = /£, was proved by Konig in [17] who used it to establish
results concerning tensor stability of s-number ideals in Banach spaces. We also
show that if @ is an elementary operator on B(7), i is a tensor stable Calkin
space and s is an s-function then s(®) € iif and only if there exist A;, B; € B(H),
i =1,...,m suchthat® = ¥ M p and s(A;),s(B;) € i. It is well known that

i=1
all s-functions coincide for operators acting on Hilbert spaces. It follows from

our result that if @ is an elementary operator on B(#), i is a tensor stable Calkin
space and s, s’ are s-number functions, then the sequence s(®) belongs to i if and
only if the sequence s’ () belongs to i.
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In Section 5 we study elementary operators acting on C*-algebras. We show
that if A is a C*-algebra, i is a tensor stable Calkin space, s is an s-number func-
tion, and a;,b; € A,i=1,...,m, are such that s(7t(a;)),s(7t(b;)) €1,i=1,...,m

m
for some faithful representation 7 of A, then s( )y Mﬂi/bi> € i. The converse im-
i=1

plication holds if and only if the ideal of compact elements of A has finite spec-
trum. Finally, we prove that if 4 € A and the sequence d(M,,) of Kolmogorov
numbers of M, ,, belongs to i for some Calkin space i then s(p(a))? € i, where p
is the reduced atomic representation of A. This result may be viewed as a quan-
titative version of the aforementioned result of Ylinen.

1. CALKIN SPACES AND s-FUNCTIONS

In this section we recall some notions and results concerning the ideal struc-
ture of the algebra of all bounded linear operators acting on a separable Hilbert
space. We also recall the definition of an s-function.

We will denote by B the class of all bounded linear operators between Ba-
nach spaces. If X and ) are Banach spaces, we will denote by B(X,)) the space
of all bounded linear operators from X' into V. If ¥ = Y we set B(X') = B(X, X).
Ideals of B(X') or, more generally, of a normed algebra A, will be proper, two-
sided and not necessarily norm closed. By K(X') (respectively F(X')) we denote
the ideal of all compact (respectively finite rank) operators on X. By || T|| we de-
note the operator norm of a bounded linear operator T. We denote by /. the
space of all bounded complex sequences, by cg the space of all sequences in /o,
converging to 0 and by cq the space of all sequences in ¢ that are eventually zero.
The space of all p-summable complex sequences is denoted by ;. For a subspace
7 of Lo, we let ;1 be the subset of j consisting of all sequences with non-negative
terms. We denote by ¢} the subset of ¢j consisting of all decreasing sequences.

If o = (an)57 4 and B = (Bn);; are sequences of real numbers, we write
a < Bif oy < By for each n € N. For every & = ()0 € co, we let a* =
(aj)s>; € cf be the decreasing rearrangement of the sequence (|a,|)5; includ-
ing multiplicities, that is, the sequence given by

o] = max{|a,| : n € N},

af + -+ ag, :max{2|0¢i| :TCN,|I| :n}.
i€l
A Calkin space [23] is a subspace i of ¢y possessing the following property:
Ifa €i,fecopand p* <a*thenpf € i.

Let H be a separable Hilbert space. If ¢, f € H we denote by f* @ e the rank
one operator on H given by f* ®e(x) = (x, fe,x € H. If T € K(H), there exist
orthonormal sequences (f,)5°; € H and (e,);’ ; € H and a unique sequence
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(sn(T))5q € cf such that

[ee]
T= Z sn(T)fy @ en,
n=1

where the series converges in norm. Such a decomposition of T is called a Schmicdt
expansion. The elements of the sequence s(T) = (s,(T));>_; are called the singular
numbers of T.

For every ideal Z C B(H), we set

{(Z) = {« € ¢q : there exists T € Z such that a* = s(T)};
conversely, for every Calkin space i we set
Z(i) ={T € B(H) :s(T) € i}.

The following classical result of Calkin [4] describes the ideal structure of
B(#) in terms of Calkin spaces (for a proof of the formulation given here see
Theorem 2.5 of [23]).

THEOREM 1.1 ([4]). Let H be a separable infinite dimensional Hilbert space. The
mapping L +— i(Z) is an isomorphism from the lattice of all ideals of B(H) onto the
lattice of all Calkin spaces with inverse i — Z(i).

There are several equivalent ways of working with ideals of B(#) (ideals,
characteristic sets and Calkin spaces are some of them). We have chosen to work
with Calkin spaces since in Section 5 we consider operators acting on a general
C*-algebra and Calkin’s classification of ideals is not valid in this context.

We now recall Pietsch’s definition of s-functions. A map s which assigns to
every operator T € B a sequence of non-negative real numbers s(T) = (s1(T),
$2(T), ...) is called an s-function if the following are satisfied:

@) IT|| =s1(T) = 8(T) > ---,for T € B.
(i) sn(S+T) <su(S)+ ||T||, for S, T € B(X,)).
(iii) s, (RST) < ||R]| ||T||sn(S), for T € B(X,Y),S € B(), Z),R € B(Z,W).
(iv) If rank(T) < n thens,(T) = 0.
(v) su(In)=1, where I, is the identity operator on /5. (Here ¢} is the n-dimen-
sional complex Hilbert space.)

An s-function s is said to be additive if s;;1,1(S + T) < sm(S) + su(T) for
allm,n € Nand all S, T € B(X,)).

We give below the definition of some s-functions which will be used in the
sequel. Let X and ) be Banach spaces and T € B(X,)).

(a) The sequence a(T) = (ax(T))$_; of approximation numbers of T is given by
an(T) =inf{||T — Al| : A € B(X,)), rank(A) < n}.
(b) The sequence d(T) = (dx(T))5_, of Kolmogorov numbers of T is given by

d,(T) =inf sup inf [|[Tx —y|,
' Vol Y€V
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where the infimum is taken over all subspaces V of ) with dim V' < n.
(c) The sequence h(T) of Hilbert numbers of T is given by

h,(T) = sups,(ATB)

where the supremum is taken over all contractions A € B(),H), B € B(K, X)
and Hilbert spaces H and K.

The approximation, the Kolmogorov and the Hilbert s-functions are addi-
tive [21]. Moreover, for every s-function s, every operator T € B and every n we
have h, (T) < s,(T) < a,(T) [21].

A well-known result of Pietsch ([21], Theorem 11.3.4) implies that if s is an
s-function, H is a separable Hilbert space and T € K(#) then s,(T) is equal to
the n-singular number s, (T) of T.

2. TENSOR STABLE CALKIN SPACES

In this section we present some results concerning tensor stable Calkin spa-
ces. We characterize the tensor stable principal Calkin spaces and show that cer-
tain Lorentz sequence spaces are tensor stable.

Ifa = (0,)5 1, B=(Bn)i_, € co, wedefine the sequence a ® B = (7,)$_; €
b

0Py

71 = max{|a;B;| : (i,j) € Nx N},

71+~~~+'yn:max{ Y. |wifjl : IS NxN, |I|:n}.
(i,j)el
The sequence a ® B is the rearrangement of the double sequence
(lanBm!)ym=1 in decreasing order including multiplicities.

DEFINITION 2.1. Let i and j be Calkin spaces. We let i ® j be the smallest
Calkin space containing the sequences a« ® B, where &« € iand B € j. A Calkin
space i is said to be tensor stable if i ® i = i.

Let H be a separable infinite dimensional Hilbert space. Weiss [26] defined
the tensor product closure property for ideals of B(#). An ideal Z of B(# ) has this
property if S® T € Z whenever S,T € Z. Here, the Hilbert space H ® H is
identified with # in a natural way. It is easy to see that an ideal Z C B(7#) has
the tensor product closure property if and only if i(Z) is a tensor stable Calkin
space.

We would like to note that tensor stability may be considered in the more
general context of the study of ideals of B(7{) as it appears in [9]. More specif-
ically, a related property called arithmetic mean stability is studied there and
several applications are obtained in the papers of Kaftal and Weiss [13], [14],
[15], [16].

We will need the following lemma.
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LEMMA 2.2. Ifa, &/, B, B € ¢ are such that & < o and B < B then a @ B <
o' ®p.

Proof. Clearly ayfy < ), p), for every m, n. So to prove the lemma it suffices
to prove that if & < B then a* < /3*. Consider an injection 77 : N — N such that
&y = ty(y). Clearly af < By. Suppose thatay < prfori=1,...,n—1.Ifaj > B,
then af > B, forevery i =1,...,n and hence B (1), ..., Br(n) are strictly greater
than B}, so the number of all i € N such that ; > B} is greater than n — 1, a
contradiction. 1

ki

NOTATION 2.3. (i) If &), = (a?) iL1, 1 € N, are finite sequences, we set

(an)peq = (zx%,...,oc,%l,a%,...,ociz,uc%,...,tx,‘;,. o)

(i) Ifo € Candr € Nweset (8), = (9,...,9).
h\/d

r times

(i) Ifr e Nweletr=(1,1,...,1,0,0,...).
———r

r times
(iv) If &, B are sequences of real numbers we write & < B if there exists a con-

stant C > 0 such that « < CB.

Observe that if (My,)5",, (Nu)5, are sequences of non negative integers then

(2.1) ()M, )nzo © ()N, )izo = ((0") & M) uo-

k+I=n
LEMMA 2.4. Let ibea Calkin space. If & € iand B € cop thena ® B € i.
Proof. Let a* = (a},)%_,. Clearly, if r € N then
r@a = ((a])r, (a3)r, oo, (@y)r, .. 0).

It follows easily from the definition of a Calkin space that r @ & € i. Since B* € ¢,
there exists r € Nsuch that B* < r. By Lemma 22, fQa = B ®a < r®a. Hence,
BRaci 1

The following notation will be used in the sequel.

NOTATION 2.5. Let a=(ay)5_; € cj and 9€(0,1). For every n=0,1, ..., set
K@) = {m: 9" < ap < 0"}, K(a) = 1K (),

n
K@) =Y K@), M @)=Y K@k (),
i=0 i+j=n

K/an)(vc) _ EMi(ﬁ) (), K(_ﬂl) () = E(_ﬂl) () = M(ﬁl) (a) = 1\71(_191) (x) =0.
i=0

LEMMA 2.6. Let ¢ € (0,1), &« = (an)5_, € ¢§, and B = (Bm)5i_, € c§-
Assume that aq, B1 < 1. Then o < B if and only if there exists a positive integer v such
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that for every n € NU {0},
K (@) < K1, (B).

Proof. Set K, = E,(lﬂ) («) and L, = 12,519)(/3). Suppose that « < B and let
C > 0 be such that a; < CByy, for every m € N. Let r € N be such that 9"C < 1.
Then By > Clag > C 16" > "4 Thus, Ky < Lyt

Conversely, suppose that there exists r € N such that K, < ZnH, for every
ne NU{O} Fixm € Nand letnand kbesuchthatm = K,_; +kand1 < k < K,
Since Kn 1<m< K, < Ln+, we have

m < 9" = l9—r—119n+r+1 < ﬁ_r_lﬁzwrr < ﬁ_r_lﬁm‘
Thus, &« < B. 1

If & € ¢y we let («) denote the smallest Calkin space containing «. A Calkin
space of the form (a) will be called principal. Note that a Calkin space is principal
precisely when it is the Calkin space of a principal ideal of B(#).

The proof of the following lemma is straightforward.

LEMMA 2.7. Ifa € cq then
(&) = {B € cq : there exists r € N such that B* Sr®@a}.

THEOREM 2.8. Let o = (ay)5 1 € cj withay < 1and & € (0,1). The following
are equivalent:
(i) The principal Calkin space («) is tensor stable.
(i) e @ € ().
(iii) There exists r € N and C > 0 such that ]\71,(119)(&) < Cky(ﬁr(oc),for every n €
NuU{0}.
Proof. (i) = (ii) is trivial.

(i) = (i) Let B,y € («). By Lemma 2.7, there exist positive integers m, n
suchthat B Sm®wa and ¥ < n® a. By Lemma 2.2,

BRYyS(M®a)®(n®a) = (mn) ® (6 @w).
Since « ® & € (&), using Lemma 2.7 again we conclude that B ® v € («) and so
() is tensor stable.
(i) < (iii) Set K, = K\ (a) and & = ((8")k,)>_; clearly, (a) = (&). By the
previous paragraph, («) is tensor stable if and only if ¥ ® & € (¥). By Lemma 2.7,
a @& € (w) if and only if there exists a positive integer m such that e @ & < m ® w.

Since K\’ )( Q) = M )( ) (see equation (2.1)) and kY )(m Q) = mk.’ (tx)
the conclusion follows from Lemma 2.6. 1

COROLLARY 29. Let & = ()54 € c§ withay < 1and ¢ € (0,1). Suppose
that C > 0 is a constant such that

(2.2) K% () > C(RY (a))?
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forall j € Nand n € NU {0}. Then («) is a tensor stable Calkin space.

Proof. Set K,, = K,(f) (x), Ky = IZ,(f?) (&) and M, = M,gﬂ)(oc). Let r be a
positive integer such that #C > 1. Since (K,)? > My, it follows that

Kutr > Kys1+ -+ Kygr 27CMy, > My, n €N,
and hence condition (iii) of Theorem 2.8 holds. 1

We next give some examples.

EXAMPLE 2.10. (i) It follows from Theorem 2.8(iii) that for every ¢ € (0,1),
the principal Calkin space ((8")$_) is not tensor stable. This example was first
given in [26].

(i) Let A > O and « = (n=*)%_,. Then the principal Calkin space (&) is not
tensor stable. To show this, let 4 = A land 8 = e~ 1. Let Kn,Mn,Kn,Mn be
the positive integers associated with the sequence (n’)‘)f:1 and ¢ (Notation 2.5).

Since

1. . ) . )
E[e(]'*‘l)ﬂ — M <K < [eUt 1K — it

there exist constants C;, Co > 0 such that, for every j, we have

Czej” < K] < C]Ejﬂ.

It follows that M, = ¥ KiKj > (n+1)CJe"™. Let r be a positive integer. Then

i+j=n
» n+r (et 1 - n
Knir <Cr )_(e")'= e T ) and Mn>C§/(t+1)e”tdt>C3ne”V
i=0 e 0
for some C3 > 0. Thus,
lim EVI” = 400
n—-+o00 Kn+r

for each r € N. By Theorem 2.8, («) is not tensor stable.
It follows from the characterization of the symmetrically normable principal
ideals due to Allen and Shen [1] that the principal ideal (T) of B(H) generated by
an operator T with s(T) = (n™*)®_;, A € (0,1), is symmetrically normed. How-
ever, as we have shown, the principal Calkin space ((n=*)®_,), for A € (0,1), is
not tensor stable.
(iii) Let « = (@) > _,- Then the Calkin space («) is tensor stable. To see this,
consider the integers K, forn =0, 1, ..., associated with the sequence (

and ¢ = % (Notation 2.5). We have that K, = 22" _ 22" Since

1 )00
log, m/m=2

(KO+ . +Kn)2 — (22n+1 _2)2

it follows from Corollary 2.9 that («) is tensor stable.
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In the sequel we examine the tensor stability of a class of Calkin spaces,
namely, the Lorentz sequence spaces. We recall their definition [18]. Let1 < p <
co and let w = (w,)$’_; be a decreasing sequence of positive numbers such that
w =1, hm w, = 0and Z wy, = oo. We shall call such a w a weight sequence.

n=1
The 11near space ly,p of all sequences & = ()5, of complex numbers such that

|| w,p —sup{(an |0 (1 ) p}<oo,

where 7t ranges over all the permutations of N, is a Banach space under the norm
|| - lw,p, called a Lorentz sequence space.
Ifa € Bw,p then one easily sees that

o] . 1/P
el = (3 walas)?) "
n=1

If w, = nP/7~1 with 0 < p < q we obtain the classical £4,p spaces of Lorentz.

THEOREM 2.11. Let w = (wy )5, be a weight sequence such that there exists a
constant C > 0 with Wy, < Cwywy for every m,n € N. Then for every p > 1 and
«, B € lw,p we have that

loc® Bllw,p < /P llallw,p [|Bllw,p-
In particular, U,y is a tensor stable Calkin space.

Proof. We may assume that &« = ()5, and B = (B,);; are positive de-
creasing sequences with a1, B1 < 1. Fix 9 with 0 < ¢ < 1. For every n € NU {0},

let Ky = K\ (&), L, = K\ (), My = ¥ KiLjandK ;=L ;=M 1 =0.
0<i+j<n

&= ((9")x)nm0 B =((8")1,)50-

Let

Then
@B = (") _x . )n=o-
For every n,i,k,1€ NU{0} such that 0<i<n, 1<k<K;and 1<I<L, ; we set

i—1
=0

Also, foreveryi,1 <k < Kjand1 <[ < L; weset
i—1 , i—1
k):ZKj+k, lP(Z,Z)IZL]'+l.
=0 =0

We observe that for every positive integer r, (& ® B) = ¢" if and only if r =

M,_1+swithl1<s< Y K; L; and therefore (& ® ﬁ), = 9" if and only if there
i+j=n



244 M. ANoussis, V. FELOUZIS AND I.G. TODOROV

exist n,i,k,] € NU{0} suchthat0 < i <n 1< k<K;,1<I<L,;and
r:¢n(i,k,l).so,

1

~ ) n K
4 @Bk, = X (L Z

[ Mi

¢n(zk1>l9 .

‘ i1 _ .
Also, &, = ¢ ifand only if r = ‘ Z K]- +kforsome kwith1 < k < K; and B, = ¢

if and only if r = Z L + Il for some [ with 1 < I < Ly So,
=1

Ky

i (Zw¢(n,k))l9np/ 1BlI%

oo Ly

and
" ) n K; Ly
(2~5) H&H‘If]v,p ||ﬂH€V,p = Z (Z wtp ik wzp’(n 1l))l9np'
n=0 "i=0k=1 =1
But
i—1 n—i—1
(k) g =iy = (LK +k) (L L+1)
j=0 j=0
i—1ln—i—1 n—i—1 i—1
:Z Z K]'L]'/-i-k Z Lj+lZKj+kl
j=0 j'=0 j=0 j=0
i—1n—i—1 n—i—1 i—1
gz Z KiLy + K; Z L]‘-i-Ln,iZK]'—l-kl
j=0 j'=0 j=0 j=0

< My + kL < gu(i k1)
By the monotonicity of the weight sequence w we have
2.6) Wi il) S Cplik) g (n=if) S COy(ik) Oy (ni))-
Finally, by (2.4), (2.5) and (2.6),

lee @ Bllw,p < [1& ® Bllw,p < Cl/p”“HWpHﬁ”wP

Cl/”f 6 Cl/”f lecllw,p [1Bllw,p-

Letting ¢ — 1 we obtain

lae @ Bllpww < CV7 la

wp I8l

wp- 1
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3. s-NUMBERS OF RESTRICTIONS

Let Abea C*-algebra. If a,b € A we denote by M, j, the operator on A given
m
by M, ;(x) = axb. An operator @ : A — A is called elementary if & = Y M,
i=1
forsomea;,b; € A,i=1,...,m.
If C is a C*-subalgebra of A such that M, ,(C) C C we will denote by Mgb
the operator C — C defined by Mﬁb(x) = axb. In this section we prove inequali-

ties concerning the s-number functions of the operators M, ;, and Mgb.

It is well-known that every closed two-sided ideal J of A is ‘an M-ideal,
that is, that there exists a projection 77 : A* — J+, where 7+ is the annihilator of
J in A*, such that for every ¢ € A%,

loll = (@)l +ll¢ =n(e)ll
(see e.g. Theorem 11.4 of [7]). A functional ¢ € A* is called a Hahn—Banach ex-
tension of ¢ € J* if it is an extension of ¢ and || ¢|| = ||¢||. If J is an M-ideal of
A then every ¢ € J* has a unique Hahn-Banach extension in A* denoted by ¢.
Thus, if we identify [7* with the subspace {¢ : ¢ € J*} of A* then

A =T @, T

hence ||¢ + || = [|¢]| + [|[¢| forall ¢ € T*, v € J*+. Given T € B(J) let
T: A* — A* be given by

T(g+y) =T(9),
where ¢ € J* and ¢ € J+. We identify A with a subspace of A** via the
canonical embedding and denote by T : A — A** the restriction of T* to .A.

LEMMA 3.1. (i) If T € B(J) then T extends T and ||T|| = ||T||.
(if) The map T — T is linear.

Proof. The second assertion is easily verified. We show (i). Let x € J and
fe A" Then f = ¢+ ¢p withg € J*and p € J+. We have

~

T(x)(f) = T*(0)(f) = T(H)(x) = T*(¢)(x) = T*(9) (x)
= ¢(Tx) = ¢(Tx) = f(Tx) = T(x)(f)-

Hence, T is an extension of T and so || T|| < ||T||.
We show that ||T|| < |T||. Letx € Aand f € A*. Then f = ¢ + ¢ with
¢ € J*and p € J+. We have

—_—~—

ITx) (O] = T () ()] = 1T )] = T(@) (x)] < [T*(@) ]«
= IT* @)l < IT* Wil ]l = NT* Il < NT{HLA ]
Hence, | T|| < ||T*|| = || T|| and the proof is complete. &
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Let & be a reflexive Banach space and ¢ : J* — A* be the map defined by
(p) =¢, ¢ € T*. Clearly, ||i|| = 1.
LetT:J — X. Write T? : A — X for the restriction of (1o T*)* to A.

LEMMA 3.2. The operator T* extends T and || T*|| = || T||.
Proof. Leta € J and g € X'*. We have that

—_~—

THa)(g) = (1o T*)*(a)(g) = a(U(T*(g))) = «(T*())(a) = T*(g)(a)
=T"(g)(a) = g(Ta) = T(a)(g)-

Hence T*¥ extends T and so || T|| < ||T#||. On the other hand,
ITHE < o T = leo T < T = I u

LEMMA 3.3. Let A be a C*-algebra, J C A be a closed two sided ideal and
@ : A — A be a bounded operator which leaves J invariant. Let Oy : J — J be the
operator given by Oy(x) = D(x). Then hy (Py) < hy(P), for each n € N.

Proof. Write 1y : J — A for the inclusion map. In the supremum below, H
and K are arbitrary Hilbert spaces. Using Lemma 3.2 we have that
hy(®g) = sup{sn(APyB) : B€ B(H,TJ), A € B(J,K) contractions}
= sup{s,(A*®(1yB)) : B € B(H,J), A € B(J,K) contractions}
< sup{sy(A19PBq) : By € B(H, A), A1 € B(A,K) contractions }
=hu(P). 1
If X is a Banach space, c € X and ¢ € X* we denote by ¢ ® ¢ the operator
on X given by ¢ ® c(x) = ¢(x)c. We denote by F,(X') the set of all operators F
n
on X of rank less than or equal to n. It is well-known that F,,(X) = { Y ¢i®c:
i=1

¢ € X e X,i= 1,2,...,n}.

LEMMA 3.4. Let A be a C*-algebra and J be a closed two-sided ideal of A.
(i) Assume that a,b € J. Then Mgb(x) = M, ,(x) for every x € A.
(ii) Let ¢; € J*,c; € J,i =1,...,n,and F be the operator on J given by F =

) ¢; @ c;. Then F(x) = ( i ¢ ® ci) (x) for every x € A.
=1 i=1

1
Proof. (i) Let S = M,;, T = M;Zb, and ¢ € J*. First note that S*(¢) is an
extension of T*(¢). Indeed, for every x € J we have that
S*(9)(x) = §(Sx) = ¢(Tx) = T*(¢)(x).

We show that S*(¢) is the Hahn-Banach extension of T*(¢). To this end, let x € A
and {u) }rea € J be a contractive approximate unit for 7. Then for each x € A,
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auyxb —, axb in norm and hence ¢(au,xb) —, ¢(axb). We thus have that
[S*(@) ()] = |§(52)| = |p(axb)| = |gp(axb)| = lim |¢(au,xb)|

= lim |T%(0) (wr2)| < [T (@) 11

It follows that [|S*(¢)|| < ||T*(¢)|. Since S*(¢) extends T*(¢), we have that

S*(¢) is the Hahn-Banach extension of T*(¢), thatis, S*(¢) = T*(¢).
Letx € Aand f € A*. Then f = ¢ + Y with¢ € J*and ¢ € J*, and
T@)(f) = T*()() = T*(9)(x) = 5" (§)(x) = B(5)
= (@ +9)(5x) = S*(f)(x) = S(x)(f)-

(ii) By Lemma 3.1(ii), it suffices to show the statement in the case F = ¢ ®

—_~—

c1, where ¢1 € J* and ¢ € J. Let ¢ € J*. We have that F*(¢)(x) = ¢1(x)p(c1)
for every x € A. Indeed, the functional x — ¢;(x)¢(c1) extends F*(¢) and has
norm equal to the norm of F*(¢) since ||¢1|| = [|¢1]]- Let x € Aand f € A*. We
have f = ¢ + ¢, where ¢ € J* and p € J . Then

—_~—

F(0)(f) = F*(0)(f) = F()(x) = B(@ + ) (x) = F*(¢) ()
= ¢1(x)¢p(c1) = P1(x)P(e1) = g1 (x) f(c1) = (Pr @) (W) (f).
The following theorem is the main result of this section.

THEOREM 3.5. Let A be a C*-algebra, J be a closed two-sided ideal of A and

a,b € J. Then for every n € N we have that
hn(M,}y,b) <hy(Mgp) < an(Ma,b) < an(M,fb)-

Proof. The first inequality follows from Lemma 3.3 while the second one is
trivial. In what follows the operators F for F € F,_1(J) and M{ , are considered
as operators from A to A; this is possible by Lemma 3.4. It follows from Lem-
mas 3.1 and 3.4 that for every n € N we have

an(Myp) = inf{|[Myp = G| : G € Fy 1 (A)}
<inf{||Mp — F[| : F € Fy_1(7)}
= inf{[|My, — F[| : F € F, 1(J)}
= inf{|MJ, — F||: F€F,_1(T)} =an(MJ,). ¥
We close the section with a lemma which will be used in the proof of Theo-

rem 5.6.

—=wot

LEMMA 3.6. Let B C B(#H) be a C*-algebra, A = B
that A € B. Then d(Ma,4) < d(M5 ,).

and A € A. Assume
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Proof. Set d(Mﬁ/A) = (dn)5_,- Lete > 0 and F C B be a linear space such
that dim F < n and

inf |AXA—F| <d,+e
FeF

for each contraction X € B. It suffices to show that I_}njft |AYA — F|| < dn +e¢
€

for each contraction Y € A. Suppose this is not the case and let Y € A be a
contraction such that |AYA — F|| > d, +¢, for each F € F. By the Kaplansky
Density theorem, there exists a net (X, ), C B of contractions such that X, —, Y
in the weak operator topology. Let F, € F be such that |AX,A — F,|| < d, +e.
We have that ||F,|| < d, + ¢+ 1 for each v, and hence we may assume without
loss of generality that F, — Fy in norm. We thus have AX,A —F, — AYA—-F
weakly. It follows that

|AYA — Fy|| < liminf |AX,A — F|| < dy +¢,

a contradiction. 1

4. ELEMENTARY OPERATORS ON B(H)

In this section we obtain estimates for the s-numbers of an elementary op-
erator acting on B(#) in terms of the singular numbers of its symbols. We for-
mulate some of our results using tensor products. Recall [21] that a cross norm T
is a norm defined simultaneously on all algebraic tensor products X ® ) of Ba-
nach spaces X and ) such that T(x ® y) = ||x||/||y|| forallx € X and y € ).
By X®:) we denote the completion of the algebraic tensor product with re-
spect to T. A tensor norm is a cross norm T such that for every A € B(X,))
and B € B(X’,)’) the linear operator A® B : X @ X' — ) ® )’ given by
A®B(x®x") = Ax ® Bx' is bounded with respect to T and the norm of its exten-
sion A®:B € B(X®: X', Y®:)') satisfies the inequality || A®B|| < ||A]| ||B]|-

In Theorem 4.2 below we give an upper bound for the approximation num-
bers of the operator A®.B in terms of the sequence s(A) ® s(B). We will need
the following lemma due to Konig ([17], Lemma 2).

LEMMA 4.1. Let T be a tensor norm, X, Y be Banach spaces, A € B({y, X), B €
B(l2,Y) and (Pe)}_o (Qk)}_, be families of mutually orthogonal projections acting on
l5. Then

THEOREM 4.2. Let H be a Hilbert space, A, B € K(H) and T be a tensor norm.
Then

(4.1) a(A®.B) < 6.75 s(A) @ s(B).

< max {||AP B .
PRI \ng@,{” el [1BQkll

n
Y AP®:BQy
k=0
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Consequently, if i and j are Calkin spaces, s(A) € iand s(B) € j and s is any s-function
then s(A®B) € i®)].

Proof. If & = (&,){>_ is a bounded sequence we write D, € B(/;) for the
diagonal operator given by Dy ((x1)51) = (anxn)5_y for (x,,)5, € £2. It suffices
to prove the theorem in the case where A and B are diagonal operators in B(/;).
Indeed, suppose that (4.1) holds in this case. By polar decomposition, there exist
partial isometries U, Up : H — €5, V4, Vp : £ — H and diagonal operators
Dy, Dg ly — {lp, where &« = s(A),B = s(B), such that A = V4D, U, and
B = VBDpuB Then

A®¢B = (Va®:Vp)(Da®Dg) (Ux@<Up),
and hence
a(A®<B) < [|[Va®<Vp|| a(Da®:Dpg) |Ua®-Up| < a(Da®<Dp)
<6750 ® B =6.755(A) @s(B).

Solet A =Dy :{y — lr, B=Dg:{p — {r, where a = (ay);_1, B = (Bn);_; are
non-negative decreasing sequences. We may further assume that a1, 1 < 1. Set
ay = an(A®<.B) and fix 9 with 0 < ¢ < 1.

In what follows we use Notation 2.5. For every n € NU {0} let

Ki=KP @), L,=k"(), M,= Y KL, M,=0,

0<i+j<n
Po= ), e®e, Qu= ) Q¢
iek® (a) iek”(B)
where (e,,)>_, is the standard basis of /,.
Let Ay = APy, By, = BQuand E, = ). Ay®B,. Clearly, ||A,| < 9"
0<k+I<n

|Bx|| < 9" and rankE, < M,. Moreover,

A Z An, B — Z Bn, A®TB - Z Am®TBi’l/

n=0 n=0 n,m=0

where the series are absolutely convergent in the norm topology. Hence,

[ee]
a1 (A®B) < [A@B—El < ¥ | ¥ @B
N=n+1" k+I=N

By Lemma 4.1,
y k qN—k N
A BH:H AP®<B ,H Acll||B oFoN k=9
| 2 Avoeh] = | LAR@BOw-| < max Il Byl < max,
and so
N _ +1
(4.2) ag 11 < Z 0 —1919” .

N=n+1
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By the monotonicity of the approximation numbers, Lemma 2.2, (2.1) and
(4.2) we obtain

Mn+1

@) = (@) D% < (@t )iyt
< ﬁ((ﬂnﬂ)zﬁmfﬂ,ﬁ)fzq = ﬁ((ﬁn)ziﬂ-:n KiLj)n=0
= (K0 ® ("))
= =g (k)T @ ()i

1

< g g A es().

The minimal value of m for ¥ € (0,1) is 6.75, and so
a(A®:B) < 6.75s5(A)®s(B). 1

Theorems 4.2 and 2.11 yield the following corollary.

COROLLARY 4.3. Let w = (wy,)5°_; be a weight sequence with wy,, < Cwy,wy,
for all m,n and let A, B € K(H) be operators with s(A),s(B) € lw,p. Then

la(A®B)[lwp < 6.75 C'/7 [|s(A) lw,p lIs(B)]

Consider the weight sequence w = (w,,)$°_;, where w,, = (14:117%;4)7 Ifo<a<l1
and v > 0, then wy,, < wyw, for all m,n. Hence Corollary 4.3 extends results of
H. Koénig ([17], Proposition 3) and F. Cobos and L.M. Fernandez-Cabrera [6].

For the rest of the paper, we will be concerned with elementary opera-
tors. Let A, B be compact operators in B(H). We recall that My p is the oper-
ator B(#) — B(H) defined by M4 p(X) = AXB and Mg,(;{) is the operator

K(H) — K(H) defined by ME};{) (X) = AXB. Theorems 3.5 and 4.2 imply the
following corollary.

w,p-

COROLLARY 4.4. Let A, B be compact operators in B(H). Then

a(Map) < a(M§9Y) < 675 5(A) @ 5(B).

Proof. For every x € H we denote by f, the functional on H defined by
fx(y) = (y,x). The conjugate space H of H is defined to be the set {fy : x € H}
with vector space operations fx + fy = fx+y, Afx = f5, and inner product given
by (fx, fy) = (x,y). For every A € B(H) we denote by A € B(#) the operator
defined by A(fy) = fax-

Note that the map A — A is a surjective conjugate linear isometry and that
s(A) = s(A), for every compact operator A.
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Let ¢ be the injective tensor norm. The mapping F : H ® H — B(H) given
n n
by F ( Yy ® yi) = )Y xj ®y;is alinear isometry ([24], Chapter IV, Theorem 2.5)
i=1 i=1

of H ®¢ H onto K(H). B B
We define F : B(H ® H) — B(K(H)) by F(T) = FoTo F~L. Clearly Fis a
surjective linear isometry and F(T) is given by F(T)(x* @ y) = F(T(fx ®y)) for
x,y € H.
For every A € B(7), where A € B(H), and every B € B(H) we have that

(4.3) F(A®:B) = My .

Indeed, for every x,y € H,
F(A®: B)(x* ®y) = F(A®¢ B)(fr ®y) = F(Afx ® By) = F(fax ® BY)
= (Ax)* ® By = B(x* ®y)A* = My 4 (x* @ y).
Soif A, B € B(H) by (4.3) and Theorems 3.5 and 4.2 we have that
a(MYY) = a(F(B®: A*)) = a(B®: A*)
6.75s(B) @ s(A*) = 6.75s(A) @s(B). 1
PROPOSITION 4.5. Let A bea C* -subalgebra of B(H ) such that K(H) C A. Let
A,Bie A i=1,...,mand & = Z Ma, B, If the operators A; (respectively, B;),

a(Mau) <
<

i =1,...,m, are linearly mdependent then there exists r € N and a constant C > 0
such that for every n and foreveryi=1,...,m,

Srn—ri1(A;) < Chy(®) (respectively, syy—r+1(B;) < Chy(P)).
In particular, if i is a Calkin space and h(®) € i then s(A;) € i (respectively, s(B;) € 1)
foreveryi=1,...,m.

Proof. We will only consider the case where the operators B;, i = 1,...,m,
are linearly independent. The other case can be treated similarly.
By Lemma 1 of [11], there existr € Nand §;,7; € H,i=1,...,r, such that

i
Z<B77]/€]> {(1) 1 1.71/

= ifi=2,...,m
Letgy: H — A,j = 1,...,rbe the operators givenby ¢;(&) = & ©&, yj : A = X,
j=1,...,7 be the operators given by ;(B) = Byjj and

S_Z¢]°©°¢J ZE‘PJOMA B; © Pj-

i=1j=1
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For ¢ € H we have
(j 0 Ma, g, 0 9;)(8) = 9;(Aig;(5)B;) = ¢;(Ai(5] ®&)Bi)
= ;j((B/¢j)" ® Ai¢) = (1), Bi ¢j) Ai¢ = (Binj, &) AiG

and hence
,

i(}_: Binj, &j) ) Ar = Ar.

By the additivity of the singular numbers, we have that

r

Srn—r+1 (Al) < Z Sn(l/)]' oo (Pj)r neN.
j=1

LetC=r max [19;1g)- Then su(9; 0 09;) < 41411 (@) and 50 5,22 (A1)

< Chy,(®),n e N.
Finally, by the monotonicity of s-numbers, we have that

s(A1) = (sn(A1)itr = ((Sur—rr11k(A1)iZp)ia
< ((Snr—r1(A1))r)ilr < C((ha (@)1 )31

If i is a Calkin space and h(®) € i, Lemma 2.4 implies that ((h,(®)),);>, € i. It
follows that s(Ap) € i. Similarly, s(A;) €1,i =2,...,m. 1

The following theorem is the main result of this section.

THEOREM 4.6. Let @ be an elementary operator on B(H) (respectively on K(H)),
i be a tensor stable Calkin space and s be an s-function. Then s(®) € i if and only if

m
there exist m € Nand A;,B; € B(H),i = 1,...,m, such that ® = Y} M, p, and
i=1
s(A;),s(B;) €ifori=1,...,m

Proof. We prove the theorem in the case where @ is an elementary operator
on B(?). The proof in the case where @ is an elementary operator on K(#) is
similar.

m
Suppose that s(®) € i. Let ® = Y- My, p, be a representation of & where
i=1
m is minimal. Then A; (respectively B;), i = 1,...,m, are linearly independent.
Since h(®) < s(CD) we have that h(®) € i. By Proposition 4.5, s(4;),s(B;) € i for
everyi=1,...,m.
Conversely, suppose that ¢ = Z My, g, where s(A;),s(B;) € i for every

i=1

i =1,...,m. Since i is tensor stable, Corollary 4.4 implies that a(M4,p,) € i. By
the additivity of the approximation numbers, a(®) € iand sos(P) €i. 1

Theorem 4.4 provides an upper bound for the the approximation numbers
of My p in terms of the sequence s(A) ® s(B). In the following proposition we
obtain a lower bound for the Hilbert numbers of M4 g in terms of the sequence
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s(A) ®s(B). For 1 < p < co we denote by (S, || - ||») the Schatten p-class, that is,
the space of all operators A € K(H) such thats(A) € ¢7, where the norm is given

00 1/p
by ||All, = ( 21 |s(A)|7’) Ifa = (ay);7; and B = (Bn);>; are sequences of
n=
complex numbers we denote by af the sequence (a,,)5 ;-

PROPOSITION 4.7. Let A, B € K(#H). The following hold:
(i) If A and p are sequences of unit norm in £ then h(Mu g) > (As(A)) @ (us(B)).
(i) If A is a sequence of unit norm in €5 then h(Mag) > (As(A)) ® s(B) and
h(MA,B) = S(A) ® (AS(B))
In particular,

(s(A)® s(B))(n)
44 h,(Mag) > /
(4.4) n( A,B) vn
Proof. (i) Let A, B € K(#) have norm one and A* = U|A*| and B = V|B| be
the polar decompositions of A* and B, respectively. Let s(A) = ()5, s(B) =
(Bn)5q and

n e N.

\A*|:;zxie;f®ei and |B|:2ﬁjﬁ®fj
1= =

be Schmidt expansions of | A*| and |B|, respectively. Let K be the closed subspace
of S spanned by the family {f/ ®e¢;,i,j} and F : K — B(#) be the map given
by F(X) = UXV*. Clearly, || F|| < 1.

Consider sequences A = (A;),# = (pj) € £, of unit norm and let D, D, €
B(#) be the operators given by

D, = Z)\ie;‘ ®e, Dy= Zy]-fj* ® fi-
i=1 =1
Let G : B(H) — K be the operator given by G(Y) = D,YD,,. Since
IDAYDypll2 < [|Dallal[ Dylla Y[} < [IY]

the operator G is well defined and ||G|| < 1. The family {f; ®¢;,i,j} is an or-
thonormal basis of X and

(GoMupoF)(fi ®ej) = MajuiBif @e;.
It follows that
hy(Ma,g) = su(GoMppoF) = (As(A) @ pus(B))(n)

and (i) is proved. The proof of (ii) is similar.
We show inequality (4.4). Let s(A) ® s(B) = (Vn)pey and 7 : N — N x N,
m(n) = (in,jn) be a bijection such that v, = a; B;,. Weset A = ()72, p =
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()52 where

i =

%ﬁ ifie {iy,...,in}, _ %ﬁ ifi € {ji,..-,ju},
0 ifié{iy,...,ink; |0 Wi {ju... jn}

1
We have that (As(A) @ us(B)) (k) = Tl/k foreveryk =1,...,n,andsoh,,(Ma p)
n
> ﬁvn. 1
It follows from Theorem 4.6 that if the s-numbers of the symbols of an ele-
mentary operator @ belong to a tensor stable Calkin space i then the s-numbers
of @ also belong to i. In what follows we show that this is not true without the

assumption that i is tensor stable.

PROPOSITION 4.8. Let ¢ € (0,1) and i be the principal Calkin space generated
by the sequence & = (8"~ 1)®_,. Then there exists A € B(H) such that s(A) € i and
h(Ma,a) € 1.

Proof. Let A € B(#) be such thats(A) = 8. We will show thath(My 4) € i.
By Proposition 4.7 it suffices to show that the sequence & = (%(19 ® 1?)(11)):0:1
does not belong to i, or (by Lemma 2.7) that for every r € N, &« L r® 9.

Suppose that there exist rp € N and C > 0 such that « < Crp ® ¢. Let
&= (ay)5 q and rg ® & = (By)5"_. Then for every m we have that

2
— gm—1 — m—1
Brom =0 and Xm(m+1)/2 = m(m T 1)
So, if 7 is an even positive integer and 7(r) = "0 we have that

2
rro(rro+1)
which leads to a contradiction. 1

gt = W) < Chury = Corlrort1)/2=1,

5. ELEMENTARY OPERATORS ON C*-ALGEBRAS

Let A be a C*-algebra. Recall that an element 2 € A is called compact if
the operator M;, : A — A is compact. We denote by IC(A) the closed two-
sided ideal of all compact elements of 4. The spectrum of A is the set of unitary
equivalence classes of non-zero irreducible representations of 4. We will need
two lemmas which follow from Section 5.5 of [20].

LEMMA 5.1. Let (o, H) = (Bic; pi, Bics Hi) be the reduced atomic representa-
tion of A where {(p;, H;),i € 1} is a maximal family of unitarily inequivalent irreducible
representations of A. Let | = {i € I : p;(K(A)) # {0}}. Let o; be the restriction of
pi to KK(A). Then the representation o = (Djcj 0i, Dicj H;i) is the reduced atomic
representation of IC(A).
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LEMMA 5.2. Let A be a C*-algebra such that A = K(A) and ¢ = (Djcj i,
@icj Hi) be the reduced atomic representation of A. Then A has finite spectrum if and
only if | is finite. In this case, 0(A) = Y K(H;).

icJ

THEOREM 5.3. Let A be a C*-algebra, i be a tensor stable Calkin space and s be

an s-function. Let & be a compact elementary operator on A.
(i) Suppose that

m
(5.1) =Y M,y a,bicA i=1,...,m
i=1

and that 7t is a faithful representation of A such that s(m(a;)),s(m(b;)) € i,i =
1,...,m. Then s(®) € i.
(ii) Suppose that JC(A) has finite spectrum and that s(®) € i. Then there exist a

representation Z M, p,ai,b; € A, i =1,...,m, of @ and a faithful representation 7t

ofAsuchthats( (a;)),s(m(b;)) €i,i=1,..

Proof. (i) Since s,(P) < a,(P) for each n, it suffices to show that a(P) € i.
By the add1t1v1ty of the approximation numbers we have that a,,_;+1(®) <

m
Y an(M,,p). Ifa(M, ;) € iforeachi=1,...,m, Lemma 2.4 implies thata(®) €
i=1

i. Thus, we may assume that & = M, ;,, where a,b € A.

Let 7 : A — B(#) be a faithful representation such that s(7t(a)),s(7(b)) €
i. Set A = mr(a) and B = 7t(b). We denote by M, p the corresponding elementary
operator acting on 77(A). Clearly, A and B are compact operators and a(®) =
a(Myp). Let J = (A) NK(H). By Theorem 3.5,

an(Map) < an(M:Z,B), for every n € N.

Let H the closure of J#. Then there exist positive integers {m;};c; and
Hilbert spaces { H; } ;< such that:
OHo=L(Hi® - SH,).
e N———

icl
m; times

(ii) the C*-algebra J is equal to a cp-direct sum @ (CI,;, ® K(H;)) where I, is
il

1€
the the identity operator on a Hilbert space of dimension m; ([3], Section 1.4).

Let ® : J — K(Hp) be the canonical injection. Let P; be the orthogonal

projection from Hy onto (H; & --- & H;) and Ay : K(Hy) — ¥ PK(Ho)P; the
— iel
m; times

operator given by A1(X) = Y P;XP;.
iel
Anelement Y € Y P;K(Ho)P; may be written as
i€l

Y=YY

iel
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where Y € PK(Hg)P; is an m; x m; matrix Y;',’q with coefficients in K(#;). Let

Ay i Y PK(Ho)P; — J be the operator defined as follows: If Y/ € P;K(H,)P,,
il
then A»(Y?) is the diagonal m; x m; matrix with all its diagonal entries equal to

mi .
m% El Y}, - Set A = AzA;. We have that MZ,B = Ao ME,(;[O) o ® where ME,(;{O) is
p:

the corresponding elementary operator acting on K(?). Clearly, A is a contrac-
tion. Thus,

an(MF ) < 114] an (M43 6] < an(MFY).

By Corollary 4.4, a(®) € i.
(ii) We identify A with p(A) where (o, H) = (Djc1pi, Pic1 Hi) is the re-
duced atomic representation of .A. By Theorem 3.1 of [25], there exist Aoj, Boj €

K(A),j=1,...,m, such that ¢ = g Ma,, B, Since h, (®) < s,(P) for each
j=1

n, we may assume that s = h. Let &y : K(A) — K(A) be the operator defined
by @y(X) = &(X). By Lemma 3.3, h(®y) € i. Consequently, the C*-algebra
K(A) and the operator @y satisfy our assumptions. Thus we may assume that
A=K(A).

By Lemmas 5.1 and 5.2, K(A) = @ K(H;) where I is a finite subset of

i€l
I. Leti € Iy. Clearly, K(#;) is invariant by ®. Let &; : K(H;) — K(H,) be the
operator defined by ®;(X) = @(X). The operator @; is an elementary operator on
K(H ). By Theorem 3.5, h(®;) € i. By Theorem 4.6, there exists a representation
Z Ma,, B, of @; where A;;, B;j € K(H,;) and s(A;j),s(B;j) € i. Considering A;;
=
k m;

and B;; as operators on H we obtain that & = }’ Z M AijBj is a representation
i=1j=

with the required properties. 1

Part (ii) of Theorem 5.3 does not hold if we do not assume that /C(.A) has
finite spectrum. In fact, we have the following:

THEOREM 5.4. Let A be a C*-algebra. The following are equivalent:
(i) K(A) has finite spectrum.
(if) Let s be an s-function, i be a tensor stable Calkin space and @ be a compact elemen-

tary operator on A. Assume that s(®) € i. Then there exist a representation Z Mg, p,
=1

of @ and a fmthful representation 7t of A such that s(mt(a;)),s(m(b;)) € i for every
i=1,.

Proof. The implication (i) = (ii) follows from Theorem 5.3. We prove that
(ii) implies (i). Suppose that IC(A) # {0} and that C(A) does not have finite
spectrum. We will show that for every p > 2 there exists an elementary operator
@ on A such that:
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(a)a(®) € £y, and

m

(b) whenever 7 is a faithful representation of A and @ = ¥ M. 4, ¢;, d; €
i=1

KC(A), there exists i, 1 < i < m, such that s(7t(c;)) & £, ors(7t(d;)) & Lp.

Let o be the reduced atomic representation of K(.A). Then

o(K(A)) = P K(H,)).
i€l
It follows from Lemma 5.2 that | is infinite. Choose an infinite countable subfam-
ily {#;}52; of the family J. For each j € N, consider a unit vector ¢; € H;.
Let r; be the projection of K(.A) such that U(rj):e]’.‘®e]- and (/\]-)]911 be a de-
creasing sequence of positive real numbers belonging to /5, but not to £,. We set

k
rj and @ = M. € B(A).
=1

o0
Cc= Zl/\ﬂ’], Prx =
= ]

)
We will show that a(®) € .

n
Let p be the reduced atomic representation of A. Letc, = Y} A;r;. It follows
i=1
from Lemma 5.1 that
n

Mp(e)p(en) (0(a)) = ; oi(ri)pi(a)oi(r;)

and hence the operator M, ) o(c,) i an operator of rank . It also follows from
Lemma 5.1 that Mp(c),p(c) — MP(Cn),P(Cn) = MP(C—Cn)rP(C—Cn)' Hence,
an(Mee) = an(My(e) o(c)) < llo(c —cn1) I <A,

and so a(®P) € /.
Assume that there exist a faithful representation 77: A — B(H) and elements
a;,bj € K(A) fori =1,...,m, such that s(7(a;)), s(7(b;)) € £p,i=1,...,m,

m m
and @ = Y M, ;. We have ®(p;) = cprc = La;pib;. Hence mt(c)m(pr)m(c) =
i=1 i=1
f 7t(a;) t(py)7t(b;) and by continuity
i=1
m
(5.2) n(c)Pr(c) = ) m(a;)Pr(by),
i=1
where P = DZO: 7t(r;) is the sot-limit of the sequence (7t(p))i2;-

j=1
It follows from (5.2) that 7(c)P7t(c) € Sj/2. On the other hand,

nt(c)Pr(c) = i Ajz-n(rj).
j=
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It follows that (/\]2) € ¢,/ and so (A}) € £y, a contradiction. 1

We note the following corollary of Theorem 5.3.

COROLLARY 5.5. Let A be a C*-algebra such that K(.A) has finite spectrum, i be

a tensor stable Calkin space and s be an s-function. Let ® be an elementary operator on

A such that s(®) € i. Then P is a linear combination of positive elementary operators
@, j =1,2,3,4 such that, s(®;) € i for every j = 1,2,3,4.

m
Proof. By assertion (ii) of Theorem 5.3, there exist a representation }. M, p.,
i—
a, by € A, i = 1,...,m, of ® and a faithful representation 7 of A such that
m
s(r(a;)),s(m(b;)) € i,i = 1,...,m. Let ®*(x) = § ¥ (a; £ b})x(a} £b;) and
i=1

m
¥E(x) = 1 ¥ (a; £ib)x(al Fib;). Clearly, all operators =, ¥+ are positive.
i=
By assertion (i) of Theorem 5.3, s(®%),s(¥¥) € i. A straightforward verification
shows that ® = &7 — &~ + (¥ — ¥7). The proof is complete. &

We close this section by proving a result which may be viewed as a quanti-
tative version of a result of Ylinen [27].

THEOREM 5.6. Let A be a C*-algebra, a € A and i be a Calkin space. Assume
that d(M,,) € i. Then s(p(a))? € i where (p, H) is the reduced atomic representation

of A.

Proof. Since d(M,,) € i, the operator M, , is compact and it follows from
[27] that p(a) is compact.
Let (p/ ) (@zeIPIIEBzeIH ) SetC = @B( )

Let @ : C — C be the operator defmed by @(X) = p(a)Xp(a). Since
wot

p(A) = C, Lemma 3.6 implies that d(P) < d(M, ) o(a)) and so d(P) € i.
Let p(a) = UA be the polar decomposition of p(a) and A = f Axep @ e be
k=1
a Schmidt expansion of A. Define

w:leo —C bya((x)i2;) leel ® e, and
=1

p:C—le by B(X) = ((Xey )2y
Consider the map ¥ : {oo — {o defined by

F(a)iZy) = U@ ((x1)2)U7))-

Since a and B are contractions we have d(¥) < d(®) and so d(¥) € i. A direct
calculation shows that ¥ ((x;)$2,) = (A?x;)%,. It follows ([21], Theorem 11.11.3)
that d(¥) = (A?)2,. Hence, s(A)?> €i. 1
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