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ABSTRACT. LetH1 andH2 be separable Hilbert spaces. For given A ∈ B(H1)
and C ∈ B(H2,H1), M(X,Y) denotes an operator acting on H1 ⊕ H2 of the
form M(X,Y) =

( A C
X Y

)
, where X ∈ B(H1,H2) and Y ∈ B(H2). In this paper,

a necessary and sufficient condition is given for M(X,Y) to be right invertible
for some X ∈ B(H1,H2) and Y ∈ B(H2). In addition, it is shown that if
dimH2 = ∞ then M(X,Y) is left invertible for some X ∈ B(H1,H2) and Y ∈
B(H2); if dimH2 < ∞ then M(X,Y) is left invertible for some X ∈ B(H1,H2)
and Y ∈ B(H2) if and only ifR(A) is closed and dimN (A, C) 6 dimH2.
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INTRODUCTION

The study of operator matrices arises naturally from the following fact: ifH
is a Hilbert space and we decomposeH as a direct sum of two subspacesH1 and
H2, then each bounded operator T : H → H can be expressed as the operator
matrix form

T =
(

T11 T12
T21 T22

)
with respect to the space decomposition, where Tij is an operator from Hj into
Hi, i, j = 1, 2. One way to study operators is to see them as entries of simpler
operators. The operator matrices have been studied by numerous authors (see
[1], [2], [3], [4], [5], [6], [7], [8], [11] and the references therein). This paper is
concerned with the right and left spectra of 2× 2 operator matrices.

In this paper,H1 andH2 are separable Hilbert spaces. Let B(H1,H2) denote
the set of all bounded linear operators from H1 into H2. When H1 = H2 we
write B(H1,H1) = B(H1). If T ∈ B(H1,H2), we use R(T), N (T) and T∗ to
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denote the range space, the null space and the adjoint of T, respectively. For a
linear subspace M ⊂ H1, its closure and orthogonal complement are denoted
by M and M⊥. Write PM for the orthogonal projection onto M along M⊥.
If T ∈ B(H1), the right spectrum, σr(T), and the left spectrum, σl(T), of T are
defined by

σr(T) = {λ ∈ C : T − λI is not right invertible};
σl(T) = {λ ∈ C : T − λI is not left invertible}.

For operators A ∈ B(H1) and C ∈ B(H2,H1), we denote by N (A, C) the null
space of (A, C) : H1 ⊕H2 → H1.

When A ∈ B(H1) and C ∈ B(H2,H1) are given, we denote by M(X,Y) an
operator onH1 ⊕H2 of the form (

A C
X Y

)
for X ∈ B(H1,H2) and Y ∈ B(H2). In [2], a necessary and sufficient condition
is given for M(X,Y) to be a square-zero operator for some X ∈ B(H1,H2) and
Y ∈ B(H2), and a necessary and sufficient condition is obtained for M(X,Y) to be
an idempotent operator for some X ∈ B(H1,H2) and Y ∈ B(H2) in [8]. In this
paper, we investigate the right and left spectra of M(X,Y).

1. THE RIGHT SPECTRUM OF M(X,Y)

The main result of this section follows.

THEOREM 1.1. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators. Then
M(X,Y) is a right invertible operator for some X ∈ B(H1,H2) and Y ∈ B(H2) if and
only ifR(A) +R(C) = H1 and dimN (A, C) > dimH2.

Proof. Necessity: Suppose that M(X,Y) is a right invertible operator for some
X ∈ B(H1,H2) and Y ∈ B(H2). Then there exists a bounded linear operator(

E G
H F

)
: H1 ⊕H2 → H1 ⊕H2

such that

(1.1)
(

A C
X Y

)(
E G
H F

)
=
(

IH1 0
0 IH2

)
.

It follows that AE + CH = IH1 , which implies that R(A) +R(C) = H1. On the
other hand, from (1.1) we have

XG + YF = IH2 , AG + CF = 0.
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Therefore

dimR(
(

G
F

)
) > dimH2 andR(

(
G
F

)
) ⊆ N (A, C).

Hence dimN (A, C) > dimH2.
Sufficiency: Since R(A) +R(C) = H1, let (E

H) : H1 → H1 ⊕ H2 be the
Moore–Penrose generalized inverse of (A, C) : H1 ⊕H2 → H1. Then

(1.2) AE + CH = IH1 ,N (A, C)⊥ = R(
(

E
H

)
).

Since dimN (A, C) > dimH2, there exists a left invertible operator (G
F) : H2 →

H1 ⊕H2 such thatR((G
F)) ⊆ N (A, C), which implies that

AG + CF = 0.

Let (X, Y) : H1 ⊕ H2 → H2 denote the Moore–Penrose generalized inverse of
(G

F). Then

(1.3) XG + YF = IH2 ,N (X, Y) = R(
(

G
F

)
)⊥.

Now we prove that M(X,Y) is a right invertible operator. Since R((G
F)) ⊆

N (A, C), it follows from (1.2) and (1.3) that N (X, Y) ⊇ R((E
H)). Therefore

XE + YH = 0,

and so (
A C
X Y

)(
E G
H F

)
=
(

IH1 0
0 IH2

)
.

The proof is completed.

From Theorem 1.1, we get the following results.

COROLLARY 1.2. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators. As-
sume that dimH1 = dimH2 = ∞. Then M(X,Y) is a right invertible operator for some
X ∈ B(H1,H2) and Y ∈ B(H2) if and only if R(A) +R(C) = H1 and one of the
following conditions holds:

(i) N (A) is infinite dimensional;
(ii) N (C) is infinite dimensional;

(iii)R(A) ∩R(C) is infinite dimensional.

Proof. The proof follows from Theorem 1.1 and

N (A, C) =
(
N (A)

0

)
⊕
(

0
N (C)

)
⊕
{(

x
y

)
: Ax + Cy = 0, x ∈ N (A)⊥, y ∈ N (C)⊥

}
.(1.4)
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COROLLARY 1.3. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators. As-
sume that dimH1 < ∞. Then M(X,Y) is a right invertible operator for some X ∈
B(H1,H2) and Y ∈ B(H2) if and only ifR(A) +R(C) = H1.

Proof. If dimH2 < ∞, it is easy to show that R(A) +R(C) = H1 implies
dimN (A, C) = dimH2. If dimH2 = ∞, it follows from dimH1 < ∞ that
dimN (C) = ∞ = dimH2 and therefore dimN (A, C) = dimH2. The proof
of Corollary 1.3 is immediate from the discussion above and Theorem 1.1.

COROLLARY 1.4. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators. As-
sume that dimH2 < dimH1 = ∞. Then M(X,Y) is a right invertible operator for
some X ∈ B(H1,H2) and Y ∈ B(H2) if and only if R(A) + R(C) = H1 and
dimN (A) > dimR(A)⊥.

For the proof of Corollary 1.4, we need a lemma.

LEMMA 1.5 (See [9]). Let X and Y be Banach spaces, T ∈ B(X ,Y) and let
F ⊂ Y be a finite dimensional subspace. If R(T) + F is closed, then R(T) is closed.
Conversely, ifR(T) is closed, thenR(T) +F is closed too.

Proof of Corollary 1.4. Suppose that M(X,Y) is a right invertible operator for
some X ∈ B(H1,H2) and Y ∈ B(H2). By Theorem 1.1, R(A) +R(C) = H1
and dimN (A, C) > dimH2. From dimH2 < ∞ it follows that R(A) is closed
(by Lemma 1.5). On the other hand, it is not difficult to check that dimR(A)⊥ +
dimR(A) ∩R(C) = dimR(C). Therefore

(1.5) dimN (C) + dimR(A)⊥ + dimR(A) ∩R(C) = dimH2.

This, together with (1.4) and dimN (A, C) > dimH2, shows that dimN (A) >
dimR(A)⊥.

Conversely, assume thatR(A)+R(C) = H1 and dimN (A) > dimR(A)⊥.
Then, from (1.5) we have dimN (A, C) > dimH2. By Theorem 1.1, M(X,Y) is a
right invertible operator for some X ∈ B(H1,H2) and Y ∈ B(H2).

Immediately, from Theorem 1.1, Corollaries 1.2, 1.3 and 1.4 we get the fol-
lowing corollary, concerning perturbations of the right spectrum.

COROLLARY 1.6. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators.
(i) If dimH1 < ∞ or dimN (C) = ∞, then⋂

X,Y
σr(M(X,Y)) = {λ ∈ C : R(A− λI) +R(C) 6= H1}.

(ii) If dimH2 < dimH1 = ∞, then⋂
X,Y

σr(M(X,Y)) ={λ ∈ C : R(A− λI) +R(C) 6= H1}

∪ {λ ∈ C : dimN (A− λI) < dimR(A− λI)⊥}.



PERTURBATIONS OF THE RIGHT AND LEFT SPECTRA FOR OPERATOR MATRICES 211

(iii) If dimN (C) < dimH1 = dimH2 = ∞, then⋂
X,Y

σr(M(X,Y)) ={λ ∈ C : R(A− λI) +R(C) 6= H1}

∪ {λ ∈ C : dimN (A− λI) < ∞, dimR(A− λI) ∩R(C) < ∞}.

2. THE LEFT SPECTRUM OF M(X,Y)

In this section, our main result is the following theorem.

THEOREM 2.1. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators.
(i) If dimH2 = ∞, then M(X,Y) is a left invertible operator for some X ∈ B(H1,H2)

and Y ∈ B(H2).
(ii) If dimH2 < ∞, then M(X,Y) is a left invertible operator for some X ∈ B(H1,H2)

and Y ∈ B(H2) if and only ifR(A) is closed and dimN (A, C) 6 dimH2.

For the proof of Theorem 2.1, we need the following lemma.

LEMMA 2.2 (See [10]). Let H be a Hilbert space. Assume that M ⊂ H and
N ⊂ H are subspaces. If dimM > dimN , thenM∩N⊥ 6= {0}.

Proof of Theorem 2.1. (i) Since dimH2 = ∞, there exists a closed infinite di-
mensional subspace M ⊂ H2 such that dimM⊥ = dimH1. Thus there exist
unitary operators J1 : H1 →M⊥ and J2 : H2 →M. Define X ∈ B(H1,H2) and
Y ∈ B(H2,H1) by

X =
(

0
J1

)
: H1 →

(
M
M⊥

)
, Y =

(
J2

0

)
: H2 →

(
M
M⊥

)
.

Then M(X,Y) is a left invertible operator. In fact, from the definition of X it follows
that X is a left invertible operator. Similarly, we can show that Y is a left invertible
operator. Let X+ be the Moore–Penrose generalized inverse of X and Y+ be the
Moore–Penrose generalized inverse of Y. Then

X+X = IH1 , Y+Y = IH2 , X+Y = 0 and Y+X = 0.

Thus (
0 X+

0 Y+

)(
A C
X Y

)
=
(

IH1 0
0 IH2

)
,

which means that M(X,Y) is a left invertible operator.
(ii) Necessity: Suppose that dimH2 < ∞ and M(X,Y) is a left invertible

operator for some X ∈ B(H1,H2) and Y ∈ B(H2). By the closeness ofR(M(X,Y)),

R(
(

A∗ X∗
C∗ Y∗

)
) = R(

( A∗ 0
C∗ 0

)
) +R(

(
0 X∗
0 Y∗

)
)

is closed. It follows from Lemma 1.5 and dimH2 < ∞ that R(
( A∗ 0

C∗ 0

)
) is closed,

which means that R(A) +R(C) is closed. Applying again Lemma 1.5 we infer
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that R(A) is closed. On the other hand, from the injectivity of M(X,Y) we have
that

(2.1) dimN (A, C) 6 dimN (X, Y)⊥.

Assume to contrary that dimN (A, C) > dimN (X, Y)⊥. Then, by Lemma 2.2 we
obtain

N (A, C) ∩N (X, Y) 6= {0},
which implies that M(X,Y) is not injective. This is in contradiction with the left
invertibility of M(X,Y). Clearly, dimN (X, Y)⊥ 6 dimH2. This, together with
(2.1), shows that

dimN (A, C) 6 dimH2.

Sufficiency: Let

K1 =
(
N (A)

0

)
, K2 =

(
0
N (C)

)
,

K3 =
{(

x
y

)
: x ∈ N (A)⊥, y ∈ N (C)⊥, Ax + Cy = 0

}
.

Then N (A, C) = K1 ⊕ K2 ⊕ K3. Since dimN (A, C) 6 dimH2 < ∞, it follows
that there exists a subspaceM⊂ H2 such that dimM = dimK1 and dimM⊥ >
dimK2 + dimK3 = dim PH2N (A, C). Thus there exist a unitary J1 : N (A)→M
and a isometry J2 : PH2N (A, C) → M⊥. We define X ∈ B(H1,H2) and Y ∈
B(H2) as

X =
(

J1 0
0 0

)
:
(
N (A)
N (A)⊥

)
→

(
M
M⊥

)
,

Y =
(

0 0
0 J2

)
:
(

(PH2N (A, C))⊥

PH2N (A, C)

)
→
(
M
M⊥

)
.

We shall prove that M(X,Y) is a left invertible operator. To see this, we will prove
thatR(M(X,Y)) is closed and M(X,Y) is injective.

From dimH2 < ∞ and Lemma 1.5, we can infer that R(M(X,Y)) is closed.
On the other hand, let (

A C
X Y

)(
x
y

)
=
(

0
0

)
,

which is equivalent to

Ax + Cy = 0 and Xx + Yy = 0.

Then clearly y ∈ PH2N (A, C). By the definition of Y, Yy ∈ M⊥. From Xx = −Yy
and the definition of X we get Xx = Yy = 0, which implies that y = 0. Thus Ax =
0, and hence x ∈ N (A). Also, from Xx = 0 and the definition of X it follows that
x = 0. This proves that M(X,Y) is injective. The proof is completed.

As a corollary of Theorem 2.1, we get the following result.
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COROLLARY 2.3. Let A ∈ B(H1) and C ∈ B(H2,H1) be given operators.
(i) If dimH2 = ∞, then ⋂

X,Y
σl(M(X,Y)) = ∅.

(ii) If dimH2 < ∞, then⋂
X,Y

σl(M(X,Y))={λ∈C : R(A−λI) is not closed}

∪{λ∈C : dimR(A−λI)∩R(C)+dimN (A−λI)>dimR(C)}.
Proof. The proof of Corollary 2.3 directly follows from Theorem 2.1, equality

(1.4) and dimR(C) + dimN (C) = dimH2.
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