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ABSTRACT. This work is devoted to finding Weyl sequences for some Jacobi
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1. INTRODUCTION

The approximative spectrum method and its particular variant, Weyl se-
quences method, are elementary and, we can say, classical tools of spectral anal-
ysis. They can help in describing the spectrum and, respectively, the essential
spectrum of operators. The price paid for the formal simplicity of those methods
is that one can give no direct answer on some more delicate spectral questions,
e.g., on absolute or singular continuity of the spectrum. Also “input information”
on the operator sufficient to construct an approximative eigenvector is not so of-
ten accessible in practice. However, there are various examples of operators for
which Weyl sequences can be constructed and the spectral information obtained
in this way seems not to be easy to gain with the use of some “more advanced”
methods. For Jacobi operators case we can mention for instance the results of
[10], [11], [15].

This work is devoted to the problem of finding Weyl sequences for some
special classes of Jacobi operators and, consequently, describing some subsets of
their essential spectra.

We proceed here with the following idea. The construction of a Weyl se-
quence can be relatively simple, when we know something about the asymptotics
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of a generalized eigenvector of the operator. Thus, as the first step, we consider
such an operator J0 and λ ∈ R for which such asymptotics is known. Then we
construct a possibly large family of various Weyl sequences for J0 and λ. In the
second step we try to perturb J0 by a Jacobi operator P — we formulate some suf-
ficient conditions for P guaranteeing that one of Weyl sequences just constructed
for J0 is also a Weyl sequence for the perturbation J of J0 by P. Such method
allows us to find Weyl sequences for quite “complicated” J, for which no asymp-
totic information on generalized eigenvectors is usually known. As we shall see,
this method can often occur much more fruitful than the classical Weyl compact
perturbation method for the essential spectrum.

This general idea is realized here for a class of Jacobi operators described in
Theorem 5.8, the main result of this paper. It seems to work, in particular, in many
cases where the various currently known spectral methods (e.g., subordination
theory methods) cannot be used.

A special attention is devoted here to two particular cases. The first — when
the weights w0k of the unperturbed operator J0 are given by w0k = kα, and the
second — more general, when w0k = kα + bk, where α ∈ (0; 1) and {bk} is a 2-
periodic sequence (see Corollaries 5.10 and 5.11). Note that some examples of the
first case were studied in [10], and a construction of Weyl sequence similar to our
construction was shown there.

The paper is organized as follows.
In Section 1 we give some more detailed description of the idea presented

above, and we make an estimate for the Weyl sequences construction for J0 (from
the first step). We also find “the optimal construction” from the point of view of
the chosen estimate (see Lemma 2.3 and Remarks 2.4).

The main results of Section 2 are Proposition 3.1 and Theorem 3.2. The first
concerns asymptotics of generalized eigenvectors for such J0 and λ, for which the
transfer matrix sequence is in the so-called class H. The second result describes a
certain family of Weyl sequences for the above J0 and λ, this way closing the first
step.

In Section 3 we check the H class assumptions for the two examples of J0
with the weights mentioned earlier.

Finally, Section 4 deals with the second step and it contains the main spectral
results of the paper, the general, as well as some more particular ones.

Let us explain now some notation and terminology used in this paper. Se-
quences are denoted here in two ways: {xn}n>n0 or {x(n)}n>n0 . This second,
„functional”, way is used mostly for sequences which we treat as elements of
some vector space, e.g. of l(N) — the vector space of all complex sequences on
N (0 6∈ N here) or l2(N) — our fundamental Hilbert space of square-summable
complex sequences on N. When the starting subscript n0 equals 1 and the choice
of the letter used to denote the variable (index) is clear, then we often simplify the
notation and write {xn} or {x(n)}. The symbol ∆ denotes the discrete derivative
of sequences, (∆x)(n) = x(n + 1)− x(n) for x = {x(n)}n>n0 and n > n0. By→
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we denote the convergence of sequences in the usual sense, and by w→ we denote
the weak convergence of a sequence in a Hilbert space.

For a given real weight sequence {wk} and a real diagonal sequence {qk}
we consider the Jacobi matrix

q1 w1
w1 q2 w2

w2 q3 w3

w3 q4
. . .

. . . . . .

 ,

which we identify with the formal Jacobi operator J acting in l(N). So, for any
complex sequence x = {x(k)}
(1.1) (J x)(k) := wk−1x(k− 1) + qkx(k) + wkx(k + 1), k ∈ N,

with the convention that wk = x(k) = 0, if k < 1. As usual, the Jacobi operator
J is the appropriate maximal operator acting in l2(N), i.e., the restriction of the
formal operator J to the maximal domain D(J) := {x ∈ l2(N) : J x ∈ l2(N)}.

As it has just been announced, we shall usually denote by J0 a Jacobi opera-
tor treated as „unperturbed” operator, and by J, a perturbation of J0. The weight
and diagonal sequences for J0 will be denoted by {w0k} and {q0k}, respectively,
and the appropriate formal Jacobi operator, by J0.

We use the symbol� to express the possibility of the global mutual estimate
between two functions, i.e., for some set Y and f , g : Y → C we write f � g if
and only if there exist two constants 0 < c < C < +∞ such that for any y ∈ Y

c <
∣∣∣ f (y)

g(y)

∣∣∣ < C.

We shall use also “ f (y) � g(y), y . . . ” to express the above condition for the func-
tions restricted to the set of y satisfying the condition “. . . ”, or simply “ f (y) �
g(y)”, when the choice of Y is clear (e.g., sometimes we shall write ak � bk, omit-
ting “k ∈ N”).

2. INITIAL IDEAS AND ESTIMATES FOR J0

We present here a general idea how to find Weyl sequences for some Jacobi
operators, and we show some preliminary estimates, which could help in practi-
cal use of this idea.

Let us start with recalling the main definitions and abstract spectral results.
Let A be a linear operator acting in Banach space X with the domain D(A), let
λ ∈ C, and let { fn}n>n0 be a sequence of non-zero vectors from D(A). We call
{ fn}n>n0 approximative eigenvector for A and λ if and only if ‖(A− λ) fn‖/‖ fn‖ →
0. By a Weyl sequence for A and λ we call an approximative eigenvector { fn}n>n0 ,
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such that fn/‖ fn‖
w→ 0. We shall use the following classical results (for (ii) see,

e.g., Chapter IX of [2]).

PROPOSITION 2.1. Let X be a Hilbert space and A a self-adjoint operator in X.
Then:

(i) λ ∈ σ(A) if and only if there exists an approximative eigenvector for A and λ;
(ii) λ ∈ σess(A) if and only if there exists a Weyl sequence for A and λ.

Our general idea is the following. We consider an “unperturbed” Jacobi
operator J0 and its generalized eigenvector u for some λ ∈ R, i.e., u = {u(k)}k>1 ∈
l(N) satisfying

(2.1) ((J0 − λ)u)(k) = 0, k > 2.

The assumption that J0 is „unperturbed” means also that it is „not very com-
plicated”, so that we can find some asymptotic information on the sequence u.
Having the above, we make two steps.

Step 1. We construct a wide family of Weyl sequences for J0 and λ by modi-
fying the generalized eigenvector u.

Step 2. We find some conditions on a perturbing Jacobi operator P guar-
anteeing that there exists such an element of the family constructed in Step 1,
which is a Weyl sequence also for the Jacobi operator J formally equal to „J0 + P”.
Roughly speaking, such an operator P has to be „small” on one of Weyl sequences
from the above family.

To make Step 1, we shall search first for an approximative eigenvector
{ fn}n>n0 of the form fn = ϕn · u, where {ϕn}n>n0 is an appropriately chosen
„modifying function sequence” with terms in l(N). Let us omit for a moment
the dependence on the subscript n, and consider only one modifying function
ϕ = {ϕ(k)}k>1 ∈ l(N). It can be easily calculated that

(2.2) (J0 − λ)(ϕ · u) = ϕ · [(J0 − λ)u] + Mϕu,

where Mϕ : l(N)→ l(N) is the linear operator given by the matrix

0 α(1)
−α(1) 0 α(2)

−α(2) 0 α(3)

−α(3) 0
. . .

. . . . . .

 ,

with α = {α(k)} defined by

α(k) := (∆ϕ)(k)w0k, k ∈ N.

We shall call α the weight sequence of Mϕ. Observe, that α is simply the product
of the weight sequence of J0 and ∆ϕ, so, in particular, it is not dependent on u, λ
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and on the diagonal sequence of J0. The formula (2.2) is very convenient for our
goal, since by (2.1) we have

(2.3) ((J0 − λ)(ϕ · u))(k) = (Mϕu)(k)

for any k > 2.
For ϕ such that 0 < ‖ϕ · u‖ < +∞ we denote

ρ(ϕ) :=
‖(J0 − λ)(ϕ · u)‖2

‖ϕ · u‖2 , ρ̃(ϕ) :=
‖Mϕu‖2

‖ϕ · u‖2 .

By (2.3)

(2.4) ρ(ϕ)− ρ̃(ϕ) =
|ϕ(1)τ + w01(∆ϕ)(1)u(2)|2 − |w01(∆ϕ)(1)u(2)|2

‖ϕ · u‖2 ,

where τ = ((J0 − λ)u)(1). By definition, to get an approximative eigenvector
{ fn}n>n0 of the form fn = ϕn · u it is enough to find {ϕn}n>n0 satisfying

(2.5) ρ(ϕn)→ 0

(note, that fn ∈ D(J0) automatically, since both fn and (J0 − λ) fn are in l2(N) in
such case). Using (2.4) we see, that under the extra assumption

(2.6) ϕn(1) = ϕn(2) = 0 for n large enough

one can replace (2.5) by

(2.7) ρ̃(ϕn)→ 0

(note that (2.5) and (2.7) are equivalent under some weaker assumptions, which
could be easily formulated using (2.4)).

Let us formulate now a lemma containing our basic estimate for ρ̃. For d ∈ N
denote by Fd the function defined as follows: Fd : Rd+1 \ {0} → R,

Fd(t) :=
t2
0 +

d
∑

k=1
(tk − tk−1)2 + t2

d

d
∑

k=0
t2
k

, t = (t0, . . . , td).

LEMMA 2.2. Let u, ϕ ∈ l(N) with ϕ being real.
(i) If a non-negative scalar sequence {ηk} and a constant 0 6 C < +∞ are such,

that

(2.8) |w0k|(|u(k)|+ |u(k + 1)|) 6 Cηk, k ∈ N,

then

‖Mϕu‖2 6 2C2
+∞

∑
k=1
|(∆ϕ)(k)|2η2

k .

(ii) If a non-negative scalar sequence {ξk}k>l0 and a constant 0 < c < +∞ are such,
that

(2.9) |u(k)| > cξk, k > l0,
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then
‖ϕ · u‖2 > c2 ∑

k>l0

|ϕ(k)|2ξ2
k .

(iii) Suppose that the assumptions of the parts (i) and (ii) hold. If moreover {ηk} is
increasing, {ξk}k>l0 is decreasing, ϕ 6= 0, and suppϕ ⊂ I, where I = [p; p + d] ∩N
for some p, d ∈ N such that p > max{2; l0}, then

(2.10) ρ̃(ϕ) 6
2C2

c2

(ηp+d

ξp+d

)2
Fd(ϕ(p), . . . , ϕ(p + d)).

Proof. To prove (i) we use |a + b|2 6 2(|a|2 + |b|2), and we obtain

‖Mϕu‖2=|(∆ϕ)(1)w01u(2)|2+
+∞

∑
k=2
|−(∆ϕ)(k−1)w0(k−1)u(k+1)+(∆ϕ)(k)w0ku(k+1)|2

62
+∞

∑
k=1
|(∆ϕ)(k)w0ku(k)|2+2

+∞

∑
k=1
|(∆ϕ)(k)w0ku(k+1)|262C2

+∞

∑
k=1
|(∆ϕ)(k)|2η2

k .

The part (ii) is obvious. To obtain the part (iii), using (i) and (ii) we estimate

ρ̃(ϕ) 6
2C2

c2

p+d
∑

k=p−1
|(∆ϕ)(k)|2η2

k

p+d
∑

k=p
|ϕ(k)|2ξ2

k

.

Now, by the monotonicity of both estimating sequences, we get the assertion.

Certainly the estimates leading to the result (iii) above for some choices of
J0, u, ϕ can be far from optimal. Nevertheless, for many interesting cases they
are good enough, and moreover, the final result, the RHS of (2.10), has a rather
simple form. In particular, the function Fd depends only on the number d being
the length of the interval I supporting the modifying function ϕ. If we want to
base our search on this result, we should only optimize the choice of ϕ for any
given d (i.e., find the inf of the values of Fd).

LEMMA 2.3. The function Fd reaches its infimum on the unit sphere Sd =
{

t ∈

Rd+1 :
d
∑

k=0
t2
k = 1

}
and this infimum equals 2− 2 cos(π/(d + 2)).

Proof. Fd is a continuous homogeneous function of degree 0, so the infimum
of its values is reached on the unit sphere Sd. For t ∈ Sd we have

Fd(t) = t2
0 +

d

∑
k=1

(t2
k − 2tk−1tk + t2

k−1) + t2
d = 2− 2

d

∑
k=1

tk−1tk

= 2−
( d

∑
k=1

tk−1tk +
d−1

∑
k=0

tk+1tk

)
= 2− 〈Hd+1t, t〉,
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where 〈· , ·〉 denotes the scalar product in Rd+1 and Hd+1 is the discrete free
Shrödinger operator in Rd+1, i.e., it is the operator given by the (d + 1)× (d + 1)
matrix 

0 1
1 0 1

1 0
. . .

. . . . . . 1
1 0

 .

Hence
inf

t∈Sd
Fd(t) = 2− sup

t∈Sd

〈Hd+1t, t〉 = 2− µ(Hd+1),

where µ(Hd+1) is the maximal eigenvalue of Hd+1, which equals to 2 cos(π/(d+2))
(see e.g. [3], [4]).

REMARKS 2.4. (i) The exact value 2− 2 cos(π/(d + 2)) of the minimum for
Fd is not very important for us. In fact, the information that

(2.11) min
t∈Sd

Fd(t) � 1
d2 , d ∈ N

can be more convenient.
(ii) It is not necessary to choose the optimal t = (t0 . . . , td) (i.e., t with the

minimal value of Fd(t)) for the entries (ϕ(p), . . . , ϕ(p + d)) (from the part (iii) of
Lemma 2.2). A commonly used choice is the following “triangle choice”:

t0 = tk − tk−1 = td−k − td−k+1 = td = ν, k = 1, . . . ,
[d

2

]
,

where ν is an arbitrary positive number. Let us denote the above t ∈ Rd+1 by
ttrigd (e.g., with ν such that ttrigd ∈ Sd). One can easily check that for our purposes
this choice is not worse than the optimal one, since we also have Fd(ttrigd) �
1/d2, d ∈ N. Such “triangle choice” for Weyl sequence construction can be found
for instance in [10], [11].

(iii) In the part (iii) of Lemma 2.2 it is assumed that {ηk} is increasing and
{ξk}k>l0 is decreasing. Observe, that assuming other kinds of monotonicity for
these two sequences we shall also obtain some estimates similar to (2.10), with
slightly changed part ‘(ηp+d/ξp+d)’.

Summing up the above two lemmas and Remark 2.4(i) we immediately ob-
tain the following general result concerning the existence of approximative eigen-
vector { fn}n>n0 (for the unperturbed Jacobi operator J0) determined by a modi-
fying function sequence {ϕn}n>n0 with suppϕn ⊂ In, where

(2.12) In = [pn; pn + dn] ∩N

for some pn, dn ∈ N.
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PROPOSITION 2.5. Let u be a generalized eigenvector for J0 and λ ∈ R. Assume
that a non-negative increasing scalar sequence {ηk}, a positive decreasing scalar sequence
{ξk}k>l0 and sequences {pn}n>n0 , {dn}n>n0 of natural numbers with pn > max{2; l0}
for large n, are such that (2.8), (2.9) hold with some positive constants c, C and

(2.13)
ηpn+dn

dnξpn+dn

→ 0.

Then there exists an approximative eigenvector { fn}n>n0 for J0 and λ such that ‖ fn‖ = 1
and supp fn ⊂ In for n > n0, where In is given by (2.12). If, moreover, pn → +∞, then
the above { fn}n>n0 is a Weyl sequence for J0 and λ.

Proof. We only need to prove the last sentence of the assertion, i.e., that
fn

w→ 0. And this follows from the well-known criterion of week convergence in
Hilbert space (see, e.g., [14]).

REMARKS 2.6. (i) By Remark 2.4(ii), constructing the modifying function
sequence {ϕn}n>n0 we can choose the entries from ttrigdn for the values of ϕn on
In instead of making the „optimal” choice.

(ii) We do not need the assumption on self-adjointness of J0, until we do not
claim any spectral consequences of the existence of the approximative eigenvec-
tor. When we assume also that J0 is self-adjoint, then by Proposition 2.1 we get
λ ∈ σ(J0) (and λ ∈ σess(J0) if pn → +∞).

3. PARTICULAR RESULTS FOR H CLASS

In this section we show a particular case of Proposition 2.5 being very con-
venient for some applications. The extra assumption we shall make is that the
sequence of transfer matrices for J0 and λ belongs to the H class (see, e.g., [12],
[13]). Recall that the transfer matrix Bk(λ) for J0 and λ is given for k > 2 by

(3.1) Bk(λ) :=

(
0 1

−w0(k−1)
w0k

λ−q0k
w0k

)
,

if the weights satisfy

(3.2) w0k 6= 0, k ∈ N.

Recall also that a sequence {Ck}k>k0 of complex 2× 2 matrices is in the H
class if and only if there exists 0 < M < +∞ such that

(3.3)
∥∥∥ k

∏
j=k0

Cj

∥∥∥2
6 M

k

∏
j=k0

|det Cj|, k > k0

(in this paper
n
∏

j=m
Aj denotes An · · · Am if n > m; if n = m it equals Am, and

if n < m it equals I). This class is a convenient tool to study the absolutely
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continuous part of some Jacobi operators. For some “typical situations”, if λ ∈ R
and {Bk(λ)}k>2 ∈ H, then λ ∈ σac(J0). More details concerning H class can be
found in [12], [13], in particular, several criteria containing sufficient conditions
for belonging to H class.

Let us begin here with a result showing that the assumption {Bk(λ)}k>2 ∈
H has important asymptotic consequences for generalized eigenvectors.

PROPOSITION 3.1. If (3.2) holds, λ ∈ C, and {Bk(λ)}k>2 ∈ H, then for any
non-zero generalized eigenvector u for J0 and λ

(3.4) |u(k)|2 + |u(k + 1)|2 � w−1
0k , k ∈ N.

If, moreover, λ ∈ R and

det

(
u(1) u(1)
u(2) u(2)

)
6= 0,

then there exists a constant c > 0 such that

(3.5) |u(k)| > c|w0k|−1/2, k ∈ N.

Note, that in general (3.5) does not follow from (3.4), which gives some es-
timates from below only for |u(k)|, |u(k + 1)| “being together”. Typical initial
conditions satisfying the extra condition above are u(1) = 1, u(2) = i.

Proof. Denote

Φk :=
k

∏
j=2

Bj(λ).

We have

(3.6)
(

u(k)
u(k + 1)

)
= Φk

(
u(1)
u(2)

)
, k > 2

and hence, by the definition of H class, for any k > 2

|u(k)|2+|u(k+1)|2 6C1‖Φk‖2 6C2

k

∏
j=2
|det Bj(λ)|=C2

k

∏
j=2

∣∣∣w0(j−1)

w0j

∣∣∣=C3|w0k|−1,

with some positive constants C1, C2, C3. To get an estimate from below, let us ob-
serve first that by the explicit formula for the inverse matrix the following general
result holds for 2× 2 matrices:

(3.7) ‖A−1‖ � |det A|−1‖A‖, A ∈ Inv(2),

where Inv(2) denotes the set of invertible 2× 2 complex matrices. Now, by (3.6),
by “‖Ax‖ > ‖x‖/‖A−1‖” and by (3.7) we have

|u(k)|2 + |u(k + 1)|2 =
∥∥∥Φk

(
u(1)
u(2)

)∥∥∥2
>

C4

‖Φ−1
k ‖2

> C5

(
|det Φk|
‖Φk‖

)2

> · · ·

and continuing with the use of the definition of H class again

· · · > C7|det Φk| = C8|w0k|−1
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for any k > 2, with some positive constants C4, . . . , C8.
To prove the second part of the lemma, observe that since λ ∈ R and the

weights and the diagonals are real, the sequence u is also a generalized eigenvec-
tor for J0 and λ. So, we have(

u(k) u(k)
u(k + 1) u(k + 1)

)
= Bk(λ)

(
u(k− 1) u(k− 1)

u(k) u(k)

)
.

Thus, denoting zk = u(k + 1)u(k) and computing the determinants of both sides
above, we get w0kImzk = w0(k−1)Imz(k−1) for any k > 2, which means that
w0kImzk does not depend on k. Moreover, by the assumption on the initial condi-
tions, the constant value C′ of w0kImzk is non-zero. We have

|u(k + 1)||u(k)| = |zk| > |Imzk| =
|C′|
|w0k|

(in particular u(k + 1), u(k) are non-zero), and by the first part of the lemma

|u(k + 1)| 6 C′′√
|w0k|

for any k ∈ N, with a positive constant C′′. Hence

|u(k)| > |C′|
|w0k| |u(k + 1)| >

|C′|
√
|w0k|

C′′|w0k|
=
|C′|
C′′
|w0k|−1/2, k ∈ N.

We are ready now to formulate the main result of our Step 1.

THEOREM 3.2. Suppose that W : N→ R+ is an increasing function satisfying

w0k �W(k), k ∈ N,

and that (3.2) holds. Assume also that λ ∈ R and {Bk(λ)}k>2 ∈ H.
Then for any pair of sequences {pn}n>n0 , {dn}n>n0 of natural numbers satisfying

pn → +∞ and

(3.8)
W(pn + dn)

dn
→ 0,

there exists a Weyl sequence { fn}n>n0 for J0 and λ such that ‖ fn‖ = 1 and supp fn ⊂ In
for n > n0, where In is given by (2.12).

Proof. Let us consider the generalized eigenvector u for J0 and λ with the
initial conditions u(1) = 1, u(2) = i. By Proposition 3.1 (note that (3.2) holds by
w0k �W(k)) we have

|w0k|(|u(k)|+ |u(k + 1)|) 6 C
√
|w0k| 6 C′

√
W(k)

and

|u(k)| > c√
|w0k|

>
c′√

W(k)
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for any k ∈ N with some positive constants c, C, c′, C′. Now we can use Proposi-
tion 2.5, taking monotonic {ηk}, {ξk}k>l0 with l0 = 1 and

ηk =
√

W(k), ξk =
1√

W(k)
,

and we obtain our assertion.

REMARK 3.3. Suppose that J0 is self-adjoint and that the assumptions of the
above theorem hold. Then for “typical situations” λ ∈ σac(J0), as it has already
been mentioned. In particular λ ∈ σess(J0), and thus the spectral consequence
of Theorem 3.2 (see also Remarks 2.6(ii)) is not very interesting in fact. Yet, the
main goal of this theorem is not this kind of spectral information, but exactly the
information about the existence of many Weyl sequences satisfying some special
“support” conditions.

4. TWO EXAMPLES

We show here two non-trivial examples of classes of Jacobi operators for
which Theorem 3.2 can be used.

For a sequence a = {ak}k>k0 of elements of a normed space (e.g., for a scalar
or matrix sequence) we write a ∈ D1 (or a is a D1 sequence) if and only if ∆a ∈ l1

(we use the same symbols D1, l1 for all spaces and any k0). We denote by discr A
the discriminant of the characteristic polynomial of 2× 2 matrix A, i.e., discr A =
(tr A)2 − 4 det A.

EXAMPLE 4.1. Consider J0 with weights and diagonals given for k ∈ N by

(4.1) w0k = kα + b, q0k = a,

where α ∈ (0; 1) and a, b are arbitrary real constants, such that kα + b 6= 0 for all
k ∈ N. Let λ ∈ R. We have

Bk(λ) :=

 0 1

− (1− 1
k )α+ b

kα

1+ b
kα

λ−a
kα

1+ b
kα

 ,

so using properties of D1 class (see, e.g., some generalizations for more general
classes in Appendix 5.1 of [13] or in Section 2.1 of [6]) we can easily see that
{Bk(λ)}k>2 ∈ D1. Moreover we have

Bk(λ)→ B∞ :=
(

0 1
−1 0

)
,

with discr B∞ = −4 < 0, which gives {Bk(λ)}k>2 ∈ H by Criterion 1 of [12] (see
also Criterion 5.8 (1) of [13]). Let us choose W:

W(k) = kα.
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Now condition (3.8) has the form

(4.2)
(pn + dn)α

dn
→ 0,

but by Lemma 4.2 below, for pn → +∞ this condition is equivalent to

(4.3)
pα

n
dn
→ 0.

Hence, in this case, by Theorem 3.2, for any λ ∈ R and any sequences {pn}n>n0 ,
{dn}n>n0 of natural numbers such that pn → +∞ and (4.3) holds, there exists a
Weyl sequence { fn}n>n0 for J0 and λ such that ‖ fn‖=1 and supp fn⊂ [pn; pn+dn].

Above we have used the following simple result.

LEMMA 4.2. Suppose that {pn}n>n0 and {dn}n>n0 are sequences of natural num-
bers, and that pn → +∞. Then for α ∈ (0; 1) conditions (4.2) and (4.3) are equivalent.
Moreover dn → +∞, if those conditions hold.

Proof. The first assertion immediately follows from the estimates

pα
n

dn
6

(pn + dn)α

dn
6

pα
n + dα

n
dn

=
pα

n
dn

+
( pα

n
dn

1
pα

n

)1−α
,

and the second from dn = (pα
n/dn)−1 pα

n.

EXAMPLE 4.3. As the second example consider J0 with weights and diago-
nals more complicated, given by formula more general than the one in the previ-
ous case:

(4.4) w0k = kα + bk, q0k = ak

for k ∈ N, where α ∈ (0; 1) and {ak}k>1, {bk}k>1 are arbitrary real 2-periodic
sequences, such that kα + bk 6= 0 for all k ∈ N. Let λ ∈ R. In this case {Bk(λ)}k>2
need not to be a D1-sequence, but we shall study {B2k+1(λ)B2k(λ)}k>1. Using
properties of D1 class (in particular, it is convenient to use Lemma 2.1 b) of [5])
we can compute

B2k+1(λ)B2k(λ) :=

(
0 1

− (2k)α+b2
(2k+1)α+b1

λ−a1
(2k+1)α+b1

)(
0 1

− (2k−1)α+b1
(2k)α+b2

λ−a2
(2k)α+b2

)

=

(
C(1)

k C(2)
k

C(3)
k C(4)

k

)
,
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where

C(1)
k = −1 +

1
kα

( b2 − b1

2α

)
ν
(1)
k + r(1)

k ,

C(2)
k =

1
kα

(λ− a2

2α

)
ν
(2)
k + r(2)

k ,

C(3)
k =

1
kα

( a1 − λ

2α

)
ν
(3)
k + r(3)

k ,

C(4)
k = −1 +

1
kα

( b1 − b2

2α

)
ν
(4)
k + r(4)

k ,

with {ν(j)
k }k>1 ∈ D1, ν

(j)
k → 1 and {r(j)

k }k>1 ∈ l1 for j = 1, 2, 3, 4. Hence

B2k+1(λ)B2k(λ) = −I +
1
kα

Vk(λ) + Rk(λ),

where {Vk(λ)}k>1 ∈ D1, {Rk(λ)}k>1 ∈ l1 and Vk(λ)→ V∞(λ), with

V∞(λ) =

(
b2−b1

2α
λ−a2

2α

a1−λ
2α

b1−b2
2α

)
.

Denote

G = {λ ∈ R : (λ− a2)(λ− a1) 6 (b2 − b1)2} = [g−; g+],

Ğ = {λ ∈ R : (λ− a2)(λ− a1) < (b2 − b1)2} = (g−; g+),

where

(4.5) g± =
±
√

(a2 − a1)2 + 4(b2 − b1)2 + a1 + a2

2
.

We have discr V∞(λ) < 0 if and only if λ ∈ R \G. Therefore, by Criterion 2 of [12]
(see also Criterion 5.8(2) of [13]), when λ ∈ R \G, then {B2k+1(λ)B2k(λ)}k>1 ∈ H,
which gives also {Bk(λ)}k>2 ∈ H (see Proposition 1.1 b) of [12]). Now choosing
W(k) = kα as in the previous example, we get similarly as before: for any λ ∈
R \ G and any sequences {pn}n>n0 , {dn}n>n0 of natural numbers such that pn →
+∞ and (4.3) holds, there exists a Weyl sequence { fn}n>n0 for J0 and λ such that
‖ fn‖ = 1 and supp fn ⊂ [pn; pn + dn].

REMARKS 4.4. (i) In both examples J0 is self-adjoint (the Carleman con-
dition is satisfied), and both are the ”typical situations” mentioned in the Re-
mark 3.3. In particular, using methods of subordination theory developed e.g.
in [5], [12], it can be easily proved that σac(J0) = R in the first example, and
σac(J0) = R \ Ğ in the second one.

(ii) Taking α = 1 instead of 0 < α < 1, in both examples we unfortunately
cannot obtain any result on Weyl sequences, by our methods. It is related to the
fact that (pn + dn)α/dn = (pn + dn)/dn > 1 for such case.
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5. WEYL SEQUENCES AND THE ESSENTIAL SPECTRUM FOR PERTURBATIONS OF J0

In this section we shall try to find some Weyl sequences for perturbations J
of J0, using the family of Weyl sequences found for J0 in the previous sections. In
other words, we make here Step 2 described in Section 1.

Let J be the Jacobi operator with a weight sequence {wk} and a diagonal
sequence {qk}. We treat J as a perturbation of J0. More precisely, we assume

(5.1) wk = w0k + υk, qk = q0k + δk, k ∈ N,

where {υk}k>1, {δk}k>1 are real sequences. Denoting by P the Jacobi operator
given by weight sequence {υk} and diagonal sequence {δk} we get in particular

J f = J0 f + P f

for any f ∈ lfin(N), where lfin(N) denotes the space of ”finite sequences”, i.e.,
of such sequences from l(N) which have only finite number of non-zero entries.
Our further considerations are based on the following obvious observation.

LEMMA 5.1. Suppose that { fn}n>n0 is a Weyl sequence for J0 and λ, consisting
of vectors fn from lfin(N). If

(5.2)
‖P fn‖
‖ fn‖

→ 0,

then { fn}n>n0 is also a Weyl sequence for J and λ.

In practice, the condition (5.2) will be obtained here, by the use of the esti-
mate from the lemma below.

LEMMA 5.2. Suppose that f ∈ l2(N) is such that supp f ⊂ I, where I = [p; p +
d] ∩N with p, d ∈ N, p > 2. Then

‖P f ‖ 6
(

2 sup
j∈ Ĩ
|υj|+ sup

j∈ Ĩ
|δj|
)
‖ f ‖,

where Ĩ = [p− 1; p + d + 1] ∩N.

Proof. Denote by P1, P2, P3 the operators in l2(N) with the domain lfin(N) de-
termined by the sub-diagonal, the diagonal and the super-diagonal of the Jacobi
matrix for P, respectively. Hence, for f ∈ lfin(N) we have P f = P1 f + P2 f + P3 f ,
and in particular, if supp f ⊂ I, then

‖P f ‖ 6 ‖P1 f ‖+ ‖P2 f ‖+ ‖P3 f ‖ 6 2 sup
j∈ Ĩ
|υj|‖ f ‖+ sup

j∈I
|δj|‖ f ‖,

which gives the final estimate.
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In this section, to simplify the formulation of the main theorem, we shall
consider some stronger assumptions on the function (sequence) W from Theo-
rem 3.2. Namely

(Z)


(i) W : N→ R+, W(n)↗ +∞;

(ii) ∃C∈R∀k∈N W(2k) 6 CW(k);
(iii) W(k)

k → 0.

Note that such W satisfies also

(5.3) ∃C∈R∀p,d∈N W(p + d) 6 C(W(p) + W(d)),

because by (i) and (ii)

W(p+d)6W(2 max(p, d))6CW(max(p, d))=C max(W(p), W(d))6C(W(p)+W(d)).

In particular, from (5.3) and (Z) (i) we easily get

(5.4) ∃0<c<C<+∞∀p∈N,p>1 c 6
W(p− 1)

W(p)
6 C.

Positive increasing sequences given for large k by the formula kα(ln k)β with
0 < α < 1, β ∈ R are examples of W satisfying (Z). In particular, (Z) holds for the
function W(k) = kα, which was used in our examples from the previous section.
One of benefits from (Z) is the possibility of a simple generalization of Lemma 4.2
for such W.

LEMMA 5.3. Assume (Z). Suppose that {pn}n>n0 and {dn}n>n0 are sequences of
natural numbers, and that pn → +∞. Then conditions (3.8) and

(5.5)
W(pn)

dn
→ 0,

are equivalent. Moreover dn → +∞, if those conditions hold.

Proof. ”(3.8) ⇒ (5.5)” is obvious by the monotonicity of W. Assume (5.5).
By (5.3) for some C ∈ R we have

W(pn + dn)
dn

6 C
(W(pn)

dn
+

W(dn)
dn

)
and dn = (W(pn)/dn)−1W(pn) → +∞, thus by (iii) of (Z) and by (5.5) we get
(3.8).

We introduce now a convenient class 0W of scalar sequences.

DEFINITION 5.4. The scalar sequence {xk}k>k0 is in the 0W class if and only
if it possesses a subsequence convergent to 0, and

(5.6) (∆x)k = o(W(k)−1), k→ +∞.

In the particular cases W(k) = kα we shall also write 0α instead of 0W .
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EXAMPLE 5.5. Let f : [0; +∞) → R be a C1 periodic function such that
inf f ([0; +∞)) 6 0 6 sup f ([0; +∞)), let 0 < α < 1 and 0 < γ < 1− α. Taking
xk = f (kγ), we get {xk} ∈ 0α. To prove this fact let us formulate the following
lemma.

LEMMA 5.6. If ak → +∞ and (4a)k → 0, then for any T > 0 the sequence {ak
(modT)} is dense in [0; T].

We omit here a proof of this lemma, being rather elementary. Using now
this result for ak = kγ, by the periodicity and the continuity of f , we get that
{xk} possesses a subsequence convergent to any limit between inf f ([0; +∞)) and
sup f ([0; +∞) (to get this, it has been enough to assume 0 < γ < 1 for γ). More-
over f ′ is bounded, hence for any k

|(∆x)k| = | f ((k + 1)γ)− f (kγ)| 6 C|(k + 1)γ − kγ| 6 Cγ
1

k1−γ
,

with a constant C, which gives (5.6).

The role of the assumptions (Z) and of the class 0W , and their relation to the
results of the previous section becomes more clear in the following lemma.

LEMMA 5.7. Assume (Z). If {xk}k>1 ∈ 0W , then there exist sequences of natural
numbers {pn}n>1 and {dn}n>1 such that pn → +∞, (3.8) holds and

sup
k∈ Ĩn

|xk| → 0,

where Ĩn = [pn − 1; pn + dn + 1] ∩N.

Proof. For p, d ∈ N, p > 1 denote Ĩ := [p− 1; p + d + 1] ∩N and

y(p, d) := sup
k∈ Ĩ
|xk|.

We have (∆x)k = εk/W(k), where {εk} is such that εk → 0. Define

ωk :=
1
k

+ sup
j>k
|ε j|.

Thus ωk > 0, and we can estimate |(∆x)k| 6 ωk/W(k). For k ∈ Ĩ we have

|xk|6 |xp−1|+|xp−1−xk|6 |xp|+|(∆x)p−1|+
k−1

∑
j=p−1

|(∆x)j|6 |xp|+2
p+d

∑
j=p−1

|(∆x)j|.

Hence, since W is increasing and {ωk}, decreasing, we have

(5.7) y(p, d) 6 2
(
|xp|+

ωp−1(d + 2)
W(p− 1)

)
.

Let us choose now {pn}n>1 such that pn > 2, pn → +∞ and xpn → 0. The proof is
completed by showing that there exists {dn}n>1 such that (3.8) and y(pn, dn)→ 0
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hold. Observe that ωk → 0. Thus, by (5.7), (5.4) and Lemma 5.3, it is sufficient to
construct {dn}n>1 satisfying

W(pn)
dn

→ 0 and
dn

W(pn)
ωpn−1 → 0.

Define

dn :=
[W(pn)√

βn

]
,

where βn := ωpn−1, and [ · ] denotes the integer part. We have βn → 0 and
W(pn)/

√
βn → +∞ (since W(k) → +∞, ωk → 0, pn → +∞), which gives

dn → +∞. Moreover, for large n

W(pn)
dn

6 2
W(pn)
W(pn)√

βn

= 2
√

βn,
dn

W(pn)
ωpn−1 6

W(pn)√
βn

W(pn)
βn =

√
βn,

which proves the desired conditions on {dn}n>1.

We are ready now to formulate the main result of the paper.

THEOREM 5.8. Suppose that J, with weights and diagonals given by (5.1), is self-
adjoint, and λ ∈ R. Assume that w0k � W(k), where (Z) and (3.2) hold, and that the
sequence {Bk(λ)}k>2 of transfer matrices for J0 and λ is in the H class. Assume also
that the sequences {υk}k>1, {δk}k>1 have the form

υk = z(1)
k + t(1)

k xk, δk = z(2)
k + t(2)

k xk,

with some real sequences {xk}k>1, {t(j)
k }k>1, {z(j)

k }k>1 satisfying: {xk}k>1 ∈ 0W ,

{t(j)
k }k>1 ∈ l∞ and z(j)

k → 0 for j = 1, 2. Then λ ∈ σess(J).

Proof. Let us first choose some sequences {pn}n>1 and {dn}n>1 of natural
numbers for {xk}k>1, as in Lemma 5.7. By Theorem 3.2, there exists a Weyl se-
quence { fn}n>n0 for J0 and λ such that ‖ fn‖ = 1 and supp fn ⊂ In for n > n0,
where In = [pn; pn + dn] ∩N. Hence, by Lemma 5.2 and by the assumption that
{t(j)

k }k>1 ∈ l∞, there exists a constant C such that

‖P fn‖
‖ fn‖

6 2 sup
j∈ Ĩn

|z(1)
j |+ sup

j∈ Ĩn

|z(2)
j |+ C sup

j∈ Ĩn

|xj|

6 2 sup
j>pn−1

|z(1)
j |+ sup

j>pn−1
|z(2)

j |+ C sup
j∈ Ĩn

|xj|

for n large enough. Using now z(j)
k → 0, pn → +∞ and the assertion of Lemma 5.7

we obtain ‖P fn‖/‖ fn‖ → 0. Therefore our assertion follows from Lemma 5.1 and
Proposition 2.1(ii).
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REMARK 5.9. The terms {z(j)
k } tending to zero are rather of less importance,

since compact perturbations do not change the essential spectrum. More impor-
tant are the bounded terms {t(j)

k }, which can be chosen independently for the
weights and for the diagonals of J. Unfortunately, such independence is rather
impossible for “the main perturbation term” {xk}.

Special cases of Theorem 5.8 can be obtained, for instance, by taking the
examples of J0 considered in Section 3. In those examples W(k) = kα with
α ∈ (0; 1), and the weights w0k for J0 are estimated by a constant multiplied by
kα. So, as it is easy to see, the weights wk for J from our theorem are estimated by
const · (kα + k1−α). In particular, the Carleman condition holds for J, which guar-
antees its self-adjointness. Hence, the following two results are the direct conse-
quences of Theorem 5.8 and Examples 4.1 and 4.3, respectively.

COROLLARY 5.10. Assume that J has weights and diagonals given by

(5.8) wk = kα + b + t(1)
k xk + z(1)

k , qk = a + t(2)
k xk + z(2)

k ,

where α ∈ (0; 1), a, b ∈ R, kα + b 6= 0 for all k ∈ N, and {xk}k>1, {t(j)
k }k>1, {z(j)

k }k>1

are real sequences satisfying {xk}k>1 ∈ 0α, {t(j)
k }k>1 ∈ l∞ and z(j)

k → 0 for j = 1, 2.
Then σess(J) = R.

COROLLARY 5.11. Assume that J has weights and diagonals given by

(5.9) wk = kα + bk + t(1)
k xk + z(1)

k , qk = ak + t(2)
k xk + z(2)

k ,

where α ∈ (0; 1), {ak}k>1, {bk}k>1 are arbitrary real 2-periodic sequences, such that

kα + bk 6= 0 for all k ∈ N and {xk}, {t
(j)
k }, {z

(j)
k } are as in Corollary 5.10. Then

R \ Ğ ⊂ σess(J), where Ğ = (g−; g+) (see (4.5)).

We have formulated Corollary 5.10 mainly to show the case with the full
information on the essential spectrum — formally it was not necessary, since it
is a special case of Corollary 5.11 (Ğ = ∅ when a1 = a2, b1 = b2). Note that
spectral properties of several classes of Jacobi operators satisfying the above or
similar assumptions have been presented in many papers, where some stronger
spectral results were obtained (see, e.g., [1], [5], [6], [8], [9], [10], [12]). The typi-
cal results were a full or a partial description of the absolutely continuous spec-
trum, obtained by the use of the subordination theory. However, it seems that the
corollaries presented above work also for some cases where the currently known
subordination theory tools cannot be used.

EXAMPLE 5.12. Consider J with weights and diagonals given by

(5.10) wk = kα + bk + ck f (kγ), qk = ak,

where f is as in Example 5.5, α ∈ (0; 1), 0 < γ < 1− α, and {ak}k>1, {bk}k>1,
{ck}k>1 are arbitrary real 2-periodic sequences, such that kα + bk 6= 0 for all k ∈ N.
Then, by Corollary 5.11, R \ (g−; g+) ⊂ σess(J), where g± are given by (4.5). Janas,
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Naboko and Stolz in [10] consider a special case of this example. They addition-
ally assume that f is a C2 function with inf f ([0; +∞)) = 0, sup f ([0; +∞)) = 1,
that ak = bk = 0 for any k, 0 < c1, c2, c1 6= c2, and that γ < 1/2(1− α). For such a
case we have g− = g+, i.e., σess(J) = R. This result is obtained in [10] by the use
of Weyl sequence, which is constructed essentially in the same way as here. But
the authors prove much more for their case. Using some subordination theory
tools based on weighted Stolz class (see [6]) they obtain also the absolute conti-
nuity of J in R \ [−|c1 − c2|; |c1 − c2|]. Moreover, using some spectral averaging
argumentation, they also prove that σac(J) ∩ (−|c1 − c2|; |c1 − c2|) = ∅. Note
that the subordination theory methods, mentioned above, do not work when
1/2(1− α) 6 γ < 1− α. However, the Weyl sequences method presented here
works also in such a case. But even for γ < 1/2(1− α) it seems to be not clear
how to prove that σess(J) = R, without using Weyl sequences. . . Note also that
some detailed spectral properties of some other special cases, related to the gen-
eral case considered in this example are studied in [7].
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