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ABSTRACT. In this article, we characterize the “identity” of an operator space
through an analogue of the abstract numerical radius. From this, we give a
simple proof of the fact that quotients of unital operator spaces by complete
M-ideals are unital. Moreover, we show that both CB(A) and CB(M∗) are
unital operator spaces, when A is a C∗-algebra andM is a von Neumann al-
gebra. We also show that if X is a normed space with numerical index 1, then
CB(max X; min X) is a unital operator space. Using the idea in our characteri-
zation, we consider unital tensor products of unital operator spaces.
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1. INTRODUCTION AND NOTATIONS

Operator spaces are important objects in functional analysis and there is a
ground breaking characterization of operator spaces by Effros and Ruan (see e.g.
[18] or [12]). However, in applications, sometimes the starting point is not general
subspaces of L(H) but unital subspaces of L(H) (i.e. subspaces that contain the
identity; see e.g. [2]). Therefore, it seems important to have an abstract character-
ization of unital operator spaces.

The aim of this paper is to find the operator space analogue of the well-
known notion of geometric unitaries in Banach spaces theory and use it to char-
acterize unital operator spaces. Moreover, we will give some applications of this
characterization. After we finished an earlier version of this work, we learned
that Blecher and Neal gave a metric characterization of unital operator spaces in
more or less the same period as we. Nevertheless, there seems to be no direct
relation between these two works.
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In Section 2, we will define a quantity ncb(V; u) for an operator space V
and a norm-one element u ∈ V, which is an operator space analogue of the well-
known notion of numerical radius n(X, u) in Banach space theory (it is also a gen-
eralization of the k-numerical radius as defined in [4]). We will show that there
exists a complete isometry (respectively, complete isomorphism) from V to some
L(H) that sends u to idH if and only if ncb(V; u) = 1 (respectively, ncb(V; u) > 0).
We will also study some properties of ncb(V; u).

Although the argument for our characterization theorem is easy, the idea
behind it seems to open a door for the discovery and manipulation of unital op-
erator spaces, and we will give such examples in Section 3. First of all, we use
our characterization to give a simple proof for the fact that the quotient of a unital
(respectively, quasi-unital) operator space by a complete M-ideal is also a unital
(respectively, quasi-unital) operator space. Even though one can use the theory
of the C∗-envelope to prove this fact, our proof is more elementary. Secondly, we
use the idea of our characterization to construct unital tensor products of unital
operator spaces. More precisely, one can always “unitize”, in a functorial way,
an operator space tensor product of two unital operator spaces. Thirdly, we use
our characterization to show that CB(A) and CB(M∗) are unital operator spaces
with identity IA and IM∗ respectively, when A is a C∗-algebra and M is a von
Neumann algebra. Finally, our characterization can be used to show that if X is
a normed space with numerical index 1, then IX is the identity for the operator
space CB(max X; min X).

NOTATION 1.1. Throughout this article, unless specified, H is a Hilbert
space, X is a Banach space, and U, V as well as W are matricially normed spaces
(i.e. a matrix normed space that satisfies only condition (M2) in [12], p. 20), while
V is the underlying normed space of V. Moreover, we will denote by BX and
S1(X) the closed unit ball and the unit sphere of X.

Note that given a matricially normed space V, the image V0, of V in V∗∗
is an operator space. Moreover, it is easy to see that the canonical map from
CB(V0, W) to CB(V, W) given by the canonical map κV : V → V0 is a complete
isometry (see e.g. [16]).

We end this section by recalling the notion of “numerical radius” and “geo-
metric unitary” for normed spaces (see e.g. [1] and [13]). For any u ∈ S1(X), we
set SX;u := { f ∈ X∗ : ‖ f ‖ = 1 = f (u)}, γu(x) := sup{‖ f (x)‖ : f ∈ SX;u}
(x ∈ X), as well as n(X; u) := inf{γu(x) : x ∈ S1(X)}.

A norm one element u in a normed space X is called a geometric unitary
(respectively, strict geometric unitary) if the numerical radius n(X; u) is non-zero
(respectively, equals 1).

REMARK 1.2. Let X be a normed space and u ∈ S1(X). Suppose that Y is
another normed space and Ψ : X → Y is a contractive topological injection. If
Ψ(u) ∈ S1(Y), then n(Y; Ψ(u)) 6 ‖Ψ−1‖ · n(X; u).
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2. COMPLETE GEOMETRIC UNITARIES

2.1. DEFINITION AND MAIN RESULTS. Let V and W be matrically normed spaces,
v ∈ S1(V) and w ∈ S1(W). For any n ∈ N, we put Morv

w(V; W) := {ϕ ∈
CB(V, W) : ‖ϕ‖cb 6 1; ϕ(v) = w}, SV;v

n := Morv
In

(V; Mn),

γv
k (x) := sup{‖ϕk(x)‖ : ϕ ∈ SV;v

n ; n ∈ N} (k ∈ N; x ∈ Mk(V))

(where ϕk : Mk(V)→ Mnk is given by ϕk([xij]) = [ϕ(xij)]), as well as

ncb(V; v) := inf{γv
k (x) : x ∈ S1(Mk(V)); k ∈ N}.

Moreover, we denote by Av(V) the unital C∗-algebra
∞⊕

n=1
C(SV,v

n Mn) and define

jv
V : V→ Av(V) to be the map given by evaluations.

In the case when V is an operator algebra and u being the identity of V, the
quantity γu

k (x) was defined in [4], p. 192, and is called the k-th numerical radius of
x ∈ V.

DEFINITION 2.1. u ∈ S1(V) is called a complete strict geometric unitary (re-
spectively, complete geometric unitary) if ncb(V; u) = 1 (respectively, ncb(V; u) > 0).
In this case, we say that V is a unital operator space with identity u (respectively, a
quasi-unital operator space with quasi-identity u).

REMARK 2.2. (i) SV;u
n is a compact set under the point-norm topology, and

SV;u
1 = SV;u.

(ii) Suppose that V is a matrix normed subspace of a matricially normed space
W and γu,W

k is defined by SW;u
n in a similar way as γu

k . It is easy to see that
γu

k = γu,W
k for all k ∈ N and so ncb(W, u) 6 ncb(V, u).

Suppose that X is a vector space and σk is a seminorm on Mk(X) (k ∈ N)
satisfying conditions (M1) and (M2) in [12], p. 20. Let N := {v ∈ V : σu

1 (v) = 0}.
Then σk induces a semi-norm σ̃k on Mk(X/N) which, by 2.3.6 of [12], provides an
operator space structure on X/N. This gives the following lemma.

LEMMA 2.3. γu
k induces an operator space structure on Vu := V/Nu (where

Nu := {v ∈ V : γu
1 (v) = 0}).

Whenever we talk about the operator space Vu, we consider the operator
space structure as given in the above lemma (even when Nu = (0)). Moreover,
we denote by Qu the canonical complete contraction from V to Vu.

LEMMA 2.4. Let V be a matricially normed space and u ∈ S1(V).
(i) ncb(V; u) > 0 if and only if Qu is a complete isomorphism. In this case, we have

ncb(V; u) = ‖Q−1
u ‖−1

cb .
(ii) ncb(Vu, Qu(u)) = 1.
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Proof. (i) The first statement is more or less obvious. If ncb(V; u) > 0, then
we have the following which gives the second statement:

ncb(V; u)−1 = inf{µ ∈ R+ : ‖(Q−1
u )n(y)‖ 6 µγ̃u

n(y); n ∈ N; y ∈ Mn(Vu)}.

(ii) It is not hard to see that Qu induces a bijection from SVu ;Qu(u)
n to SV;u

n .
Consequently, NQu(u) = (0) and γ̃u

k = γ
Qu(u)
k on Mk(Vu) = Mk(VQu(u)), which

implies that ncb(Vu; Qu(u)) = 1.

PROPOSITION 2.5. Let V and W be matricially normed spaces. Suppose that
Ψ : V→W is a complete contraction and u ∈ S1(V) such that Ψ(u) ∈ S1(W).

(i) There exists a complete contraction Ψu : Vu→WΨ(u) with QΨ(u) ◦Ψ =Ψu◦Qu.
(ii) If Ψ is a complete topological injection, then ncb(W; Ψ(u))6‖Ψ−1‖cb · ncb(V; u).

Proof. (i) Ψ induces a map Ψ̃n : SW;Ψ(u)
n → SV;u

n and we have γ
Ψ(u)
n ◦Ψ 6 γu

n
(n ∈ N). This produces the required map Ψu.

(ii) By Remark 2.2(ii) and the argument for part (i),

ncb(W; Ψ(u)) 6 ncb(Ψ(V); Ψ(u))

= sup
{

λ ∈ R+ : λ‖Ψn(x)‖ 6 γ
Ψ(u)
n (Ψn(x)); n ∈ N; x ∈ Mn(V)

}
6 sup{λ ∈ R+ : λ‖Ψ−1‖−1

cb ‖x‖ 6 γu
n(x); n ∈ N; x ∈ Mn(V)}

= ‖Ψ−1‖cb · ncb(V; u).

Consequently, for any complete contraction Ψ : V → L(H) with Ψ(u) =
idH (where u ∈ S1(V)), there exists a complete contraction Ψu : Vu → L(H) with
Ψ = Ψu ◦Qu.

The following is our first theorem which tells us that one can use strict com-
plete geometric unitary to describe the “identity” of an operator space. Let us
first recall the following well-known fact.

LEMMA 2.6. For any T ∈ L(Hn), one has ‖T‖ = sup{‖(P⊗ In)T(P⊗ In)‖ :
P ∈ L(H) is a finite rank projection}.

THEOREM 2.7. Let V be a matricially normed space and u ∈ S1(V). Then u is a
complete geometric unitary if and only if there exists a Hilbert space H and a completely
contractive complete topological injection Θ : V → L(H) such that Θ(u) = idH and
ncb(V; u) = ‖Θ−1‖−1

cb .

Proof. Suppose that ncb(V; u) = 1. If π : Au(V) → L(H) is a unital ∗-
representation and Θ := π ◦ ju

V , then Θ(u) = idH , and Θ is a complete isometry
(because ncb(V, u) = 1). Conversely, suppose there exists such a Θ which is a
complete isometry. For any rank n projection P on H, the map x 7→ PΘ(x)P is an
element of SV;u

n . Therefore by Lemma 2.6, ‖ · ‖k = γu
k (k ∈ N), and ncb(V, u) = 1

(see Lemma 2.4(i)). The general case follows from the case of ncb(V; u) = 1 as
well as Lemma 2.4(i) and Proposition 2.5(ii).
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In the case of ncb(V; u) = 1, one can also prove the necessity of the above

theorem by taking H =
∞⊕

n=1

⊕
ϕ∈SV;u

n

`2(n) and adapting the argument of 2.3.5 in [12].

COROLLARY 2.8. Let V be a matricially normed space and u ∈ S1(V).
(i) If u is a complete strict geometric unitary, then V is an operator space.

(ii) ncb(V; u) = ncb(V∗∗; u) (where V∗∗ is the bidual of V).

2.2. RELATIONSHIPS BETWEEN ncb(V, u) AND n(V, u). In this subsection, we will
compare ncb(V, u) and n(V, u).

LEMMA 2.9. Let V be a matricially normed space. If ncb(V; u) > 0 (respectively,
ncb(V; u) = 1), then n(V; u) > 0 (respectively, n(V; u) > 1

2 ).

Proof. If Ψ is the completely contractive complete topological injection (re-
spectively, complete isometry) given by Theorem 2.7, then Remark 1.2(ii) and
Theorem 3 of [9] show that n(V; u) > n(L(H);1)

‖Ψ−1‖ > 1
2‖Ψ−1‖ .

Next, we consider the case of minimal quantization.

PROPOSITION 2.10. Let X be a normed space and u ∈ S1(X).
(i) n(X; u) 6 ncb(min X; u).

(ii) n(X; u) > 0 if and only if ncb(min X; u) > 0.

Proof. (i) Since Smin X;u
1 = SX;u, it suffices to prove that for any k ∈ N and

x = (xij) ∈ S1(Mk(min X)), we have

(2.1) n(X; u) 6 sup{‖ fk(x)‖ : f ∈ SX;u}.

Suppose that Ω is a compact Hausdorff space such that min X ⊆ C(Ω) as oper-
ator subspace. There exist ω ∈ Ω and (ci), (di) ∈ S1(`2(n)) with 1 = ‖x‖ =
‖x(ω)‖ =

∣∣∣∑
ij

cixij(ω)dj

∣∣∣, which implies that
∥∥∥∑

ij
cixijdj

∥∥∥ > 1. On the other hand,

it is easy to see that
∥∥∥∑

ij
cixijdj

∥∥∥ 6 ‖x‖ = 1. Now, for any f ∈ SX;u,

‖ fk(x)‖ >
∣∣∣〈( f (xij))

 d1
...

dk

 ,

 c1
...

ck

〉∣∣∣ =
∣∣∣ f(∑

ij
cixijdj

)∣∣∣.
Hence, γu

(
∑
ij

cixijdj

)
6 sup{‖ fk(x)‖ : f ∈ SX;u} and Equality (2.1) is verified.

(ii) This part follows from part (i) as well as Lemma 2.9.

Consequently, if V is an operator space and u ∈ S1(V) such that ncb(V; u) >
0, then we have ncb(min V; u) > 0 (by Lemma 2.9 and Proposition 2.10). This fact
is not easy to obtain directly from the definition.
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For a C∗-algebra A and u ∈ S1(A), it is easy to see, by using 4.1 of [5] and
the above discussions, that u is a unitary if and only if ncb(A; u) = 1, which is
also equivalent to ncb(A; u) > 0. However, for a general operator spaces V it is
possible to have elements u, v ∈ S1(V) such that ncb(V, u) > 0 and ncb(V, u) > 0
but ncb(V; u) 6= ncb(V; v). In order to give such an example, we need the follow-
ing lemma which is probably known but we include a simple argument here (as
we do not find it explicitly stated in the literature).

LEMMA 2.11. Suppose that X and Y are two normed spaces and u ∈ S1(X).
Then n(E; (u, 0)) = n(X; u) where E = X⊕1 Y.

Proof. Note that SE;(u,0) = SX;u × BY∗ , which implies γ(u,0)(x, y) 6 γu(x) +
‖y‖. For any ε > 0, there are f ∈ SX;u and g ∈ BY∗ with γu(x) < | f (x)| + ε

and g(y) = ‖y‖. If f (x) = | f (x)|eiθ , then | f (x) + (eiθ g)(y)| > γu(x) + ‖y‖ − ε.
Consequently, γ(u,0)(x, y) = γu(x) + ‖y‖, and n(E; (u, 0)) 6 n(X; u). On the
other hand, for any n ∈ N, there exists (xn, yn) ∈ E with ‖xn‖+ ‖yn‖ = 1 and
γu(xn) + ‖yn‖ < n(E; (u, 0)) + 1

n . If there are infinitely many n with xn = 0, then
there is a subsequence with 1 = ‖ynk‖ < n(E; (u, 0)) + 1

nk
, which implies that

n(E; (u, 0)) = 1 and n(X; u) = 1 as well. Otherwise, we may assume that all xn
are non-zero and take zn = xn

1−‖yn‖ ∈ S1(X). Since (γu(xn) + ‖yn‖)(1− ‖yn‖) >

γu(xn) (because γu(xn) 6 ‖xn‖ = 1− ‖yn‖), we have γu(zn) 6 γu(xn) + ‖yn‖ <
n(E; (u, 0)) + 1

n . This completes the proof.

EXAMPLE 2.12. If E is a finite dimensional Banach space with n(E; u) = 1
e

(see e.g. 3.5 of [10]), then for any quantization E of E, we have 0 < ncb(E; u) < 1
(by Propositions 2.10(ii) and the fact that 1

e < 1
2 together with Lemma 2.9). More-

over, if F = C⊕1 E, then n(F; (0, u)) = 1
e and n(F; (1, 0)) = 1 (by Lemma 2.11)

and so, by the above, 0 < ncb(min F; (0, u)) < 1 but ncb(min F; (1, 0)) = 1 (by
Proposition 2.10(i)).

3. APPLICATIONS

The idea of characterizing unital operator spaces through the quantity
ncb(V; v) can be used to give an abstract characterization for non-unital opera-
tor systems in a similar fashion as [19]. However, we leave the details to the
readers (see also [17] for a even more general situation). In the following, we will
give another four interesting applications.

3.1. QUOTIENT OF QUASI-UNITAL SPACES. In this subsection, we will show that
the quotient of a quasi-unital (respectively, unital) operator space by a proper
complete M-ideal is also quasi-unital (respectively, unital). In the case of uni-
tal operator space, one can also obtain the same result by considering the C∗-
envelope (see the closing remark of [3]), but our argument is more elementary.
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LEMMA 3.1. Let X and Y be two normed spaces, and E = X ⊕∞ Y. If (u, v) ∈
S1(E) with n(E; (u, v)) > 0, then ‖u‖ = 1 = ‖v‖.

Proof. Suppose that ‖u‖ = 1 but ‖v‖ < 1. For any ( f , g) ∈ SE;(u,v), we have
‖ f ‖ + ‖g‖ = 1 = f (u) + g(v). Hence ‖g‖ = 0 and so, SE;(u,v) = SX;u × {0}.
Thus, we have a contradiction that ( f , 0)(0, y) = 0 for any y ∈ S1(Y) and ( f , 0) ∈
SE;(u,v).

THEOREM 3.2. Let V be an operator space and W ( V be a complete M-ideal. If
v ∈ S1(V) with ncb(V; v) > 0, then ‖Q(v)‖ = 1 and ncb(V; v) 6 ncb(V/W; Q(v))
(where Q : V→ V/W is the canonical quotient map).

Proof. By Corollary 2.8(ii), we assume that W is a complete M-summand of
V (since W⊥⊥ is a complete M-summand of V∗∗). Let P : V→ V be the complete
M-projection such that P(V) = W and let U = (I − P)(V). Then V ∼= U⊕∞ W
as operator spaces and Q(x) 7→ (I − P)(x) is a complete isometry from V/W to
U. Suppose that v = (u, w) with u ∈ U and w ∈ W. Then by Lemmas 2.9 and
3.1, we see that ‖u‖ = 1 = ‖w‖. Pick any f ∈ S1(U∗) with f (u) = 1 and define
Ψ : U → V by Ψ(x) = (x, f (x)w). It is not hard to check that Ψ is a complete
isometry (as ‖ fn(x)w‖ 6 ‖x‖ for any x ∈ Mn(U)) such that Ψ(u) = (u, w). Now,
ncb(V; (u, w)) 6 ncb(U; u) (by Proposition 2.5(ii)).

Consequently, the quotient of a unital operator system by a complete M-
ideal is also a unital operator system.

3.2. UNITAL TENSOR PRODUCTS. Let us start with the following easy lemma
which follows from Proposition 2.5(i) and Theorem 2.7.

LEMMA 3.3. Let U be an operator space, u ∈ S1(U) and Uu := ju
U(U) ⊆ Au(U).

(i) If V is a unital operator space with identity e and ϕ ∈ Moru
e (U; V), there is

ψ ∈ Moru
e (Uu, V) such that ϕ = ψ ◦ ju

U .
(ii) u is a complete strict geometric unitary if and only if juU is a complete isometry.

If V and W are operator spaces, an operator space matrix norm ‖ · ‖µ on
the algebraic tensor product V�W is called a subcross matrix norm if ‖v⊗w‖µ 6
‖v‖‖w‖ for any p, q ∈ N, v ∈ Mp(V) and w ∈ Mq(W).

DEFINITION 3.4. Let V and W be unital operator spaces with identity e and
f respectively. A unital operator space subcross matrix norm on the algebraic tensor
product V �W is an operator space subcross matrix norm such that e ⊗ f is a
complete strict geometric unitary.

One may wonder whether there are many unital operator space subcross
norm around. The following result shows that it is the case. Moreover, one can
actually construct, in a functorial way, a unital operator space subcross norm from
a given operator space subcross norm.
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PROPOSITION 3.5. Let V and W be unital operator spaces with identity e and f
respectively. Suppose that ‖ · ‖µ is an operator space subcross matrix norm on V�W
with ‖ · ‖∨ 6 ‖ · ‖µ, where ‖ · ‖∨ is the injective operator space tensor norm.

(i) j e⊗ f
V�µW is injective and induces a unital operator space subcross matrix norm,

‖ · ‖u
µ, on V �W. Moreover, ‖ · ‖µ = ‖ · ‖u

µ if and only if ‖ · ‖µ is unital.
(ii) ‖ · ‖∨ = ‖ · ‖u

∨ 6 ‖ · ‖u
µ 6 ‖ · ‖u

∧ (where ‖ · ‖∧ is the projective operator space
tensor norm).

Proof. (i) It is easy to check that j e⊗ f
V�̌W is a complete isometry (i.e. e ⊗ f is

the identity of V�̌W). Let Φ : V �µ W → V�̌W be the canonical map and
Φ̄ : Ae⊗ f (V �µ W) → Ae⊗ f (V�̌W) be the corresponding ∗-homomorphism.

Since Φ̄ ◦ j e⊗ f
V�µW = j e⊗ f

V�̌W ◦ Φ and is injective, j e⊗ f
V�µW is also injective. The sec-

ond statement is clear.
(ii) The first inequality is clear, and the second one follows from Lem-

ma 3.3(i).

If ‖ · ‖µ is an operator space subcross matrix norm on V �W, we denote by

V �u
µ W the unital operator space j e⊗ f

V�µW(V �µ W).

REMARK 3.6. (i) If U is another unital operator space with an identity g,

More⊗ f
g (V�̂uW; U) = {Ψ ∈ CB(V; CB(W; U)) : ‖Ψ‖cb 6 1; Ψ(e)( f ) = g}.

(ii) By part (i), for any n, p, q ∈ N, v ∈ Mp(V), w ∈ Mq(W), α ∈ Mn,pq and
β ∈ Mpq,n, we know that ‖α(v⊗ w)β‖u

∧ equals

sup{‖α(ϕp,q(v, w))β‖ : ϕ ∈ CB(V×W; Mk); ‖ϕ‖cb 6 1; ϕ(e, f ) = Ik; k ∈ N}.
(iii) If B is a completely contractive unital Banach algebra (respectively, uni-

tal operator algebra) with an algebraic identity e, then the product on B induces
a map in Mor e⊗e

e (Bu⊗̂uBu; Bu) (respectively, Mor e⊗e
e (B⊗u

h B; B)).

3.3. CB(A) AND CB(M∗) ARE UNITAL OPERATOR SPACES. Our last two subsec-
tions concern with the existence of complete geometric unitaries in CB(V; W).
Let us first recall the well-known fact that T 7→ T∗ is a complete isometry from
CB(V; W) to CB(W∗; V∗). This gives the following lemma.

LEMMA 3.7. Let V and W be operator spaces. For any T ∈ S1(CB(V; W)), one
has ncb(CB(V; W); T) > ncb(CB(W∗; V∗); T∗).

THEOREM 3.8. Let A be a C∗-algebra andM be a von Neumann algebra. Then
ncb(CB(A); IA) = 1 and ncb(CB(M∗); IM∗) = 1.

Proof. Let e be the identity of M, n ∈ N and T ∈ S1(CB(M; Mn(M))).
For any ε ∈ (0, 1

2 ), there exists k ∈ N and a ∈ BMk(M) with 1 6 ‖Tk(a)‖+ ε. If

u =
(

a (1− aa∗)1/2

(1− a∗a)1/2 −a∗

)
, then u is a unitary in M2k(M) and ‖Tk(a)‖ 6
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‖T2k(u)‖. As e is a complete strict geometric unitary, there exists m ∈ N and
ϕ ∈ SM;e

m with

‖T2k(u)‖ = ‖(u∗ ⊗ In)T2k(u)‖ 6 ‖ϕ2kn((u∗ ⊗ In)T2k(u))‖+ ε.

Now define Φ : CB(M) → M2km by Φ(S) = ϕ2k(u∗S2k(u)) (S ∈ CB(M)). It is
clear that Φ(IM) = I2km, and ‖Φ‖cb 6 1 because

Φl(S) = ϕ2kl((u∗ ⊗ Il)S2k(u)) (l ∈ N; S ∈ CB(M; Ml(M))).

Consequently, Φ ∈ SCB(M);IM
2km and we have ‖Φn(T)‖ > 1− 2ε. This shows that

ncb(CB(M); IM) = 1 and so, ncb(CB(M∗); IM∗) = 1 by Lemma 3.7. Finally,
ncb(CB(A); IA) = 1 because A∗∗ is a von Neumann algebra.

3.4. A SITUATION WHEN CB(max X; min X) IS UNITAL. For a normed space X,
we denoted by max X and min X the two operator space structures on X as de-
fined in Section 3.3 of [12]. In this subsection, we will show that ncb(CB(max X;
min X); IX) is greater than the numerical index n(X). Consequently, CB(max X;
min X) is quasi-unital if X is a Banach space (note that in this case, n(X) > 0),
and CB(max X; min X) is a unital operator space if n(X) = 1. We recall that n(X)
is defined as follows: n(X) := inf

T∈S1(L(X))
γ(T), where

γ(T) := sup{| f (Tx)| : x ∈ S1(X); f ∈ SX;x} (T ∈ L(X)).

Please see [6], [7], [8], [11], [14] and [15] for general information and background
on numerical indices.

THEOREM 3.9. Let X be a normed space. Then ncb(CB(max X,min X);IX)>n(X).

Proof. It is well-known that CB(max X; min X) = minL(X) and we have
n(X) 6 n(L(X); IX). We can apply Proposition 2.10(i) to complete the proof.
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