
J. OPERATOR THEORY
67:2(2012), 329–334

© Copyright by THETA, 2012

ON EXTENSIONS OF STABLY FINITE C∗-ALGEBRAS

HONGLIANG YAO

Communicated by William Arvenson

ABSTRACT. In this paper, we prove that for any C∗-algebra A with an approxi-
mate unit of projections, there is a smallest ideal I of A, in which quotient A/I
is stably finite. We give a sufficient condition and a necessary condition on
which I is the smallest ideal in this case for A by K-theory.
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1. INTRODUCTION AND MAIN RESULTS

Extension theory is important in many contexts, since it describes how more
complicated C∗-algebras can be constructed out of simpler “building blocks”.
There are many important applications of extension theory (see [2]). A C∗-algebra
A is called finite if it admits an approximate unit of projections and all projections
in A are finite. If A⊗K is finite, then A is called stably finite. About extensions of
stably finite C∗-algebras, J.S. Spielberg gave an important result:

THEOREM 1.1 ([6]). Let A be a C∗-algebra, let I be an ideal in A, and suppose
that I and A/I are stably finite. Then A is stably finite if and only if

∂(K1(A/I)) ∩ K0(I)+ = 0.

In this short paper, we will prove that for any C∗-algebra A with an approxi-
mate unit of projections, there is a smallest ideal I in which quotient A/I is stably
finite. Thus if Q is a stably finite quotient of C∗-algebra A, then there is a canoni-
cal surjective ∗-homomorphism from Q to A/I. Give a sufficient condition and a
necessary condition on which I is a smallest ideal in this case for A by K-theory.
When the ideal I is simple and has real rank zero, the former result is equivalent
to Theorem 1.1.

THEOREM 1.2. Let A be a C∗-algebra with an approximate unit of projections,
{Iλ}λ∈Λ is a set of ideals of A.
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(i) If quotient A/Iλ is a finite C∗-algebra for each λ ∈ Λ, then A/
⋂

λ∈Λ
Iλ is a finite

C∗-algebra;
(ii) If quotient A/Iλ is a stably finite C∗-algebra for each λ ∈ Λ, then A/

⋂
λ∈Λ

Iλ is a

stably finite C∗-algebra.

Let {Iλ}λ∈Λ be the set of all ideals Iλ of A with A/Iλ is stably finite. Through-
out this paper, we denote the ideal

⋂
λ∈Λ

Iλ of A by I(A).

THEOREM 1.3. Let A be a C∗-algebra with an approximate unit of projections,
and let I be an ideal of A, which has real rank zero. If A/I is stably finite and for any
x ∈ K0(I)+, there is an y in ∂(K1(A/I)) ∩ K0(I)+ such that x 6 y, then I = I(A).

COROLLARY 1.4. Let A be a C∗-algebra with real rank zero. If K0(A)+ = K0(A),
then I(A) = A.

THEOREM 1.5. Let A be a C∗-algebra with an approximate unit of projections. Let
J be the ideal of A generated by

{q : there is a hyponormal partial isometry v ∈ A such that vv∗ − v∗v = q}.

Then for any x = [p]0 in K0(I(A))+, where p ∈ J, there is an y in ∂(K1(A/I(A))) ∩
K0(I(A))+ such that x 6 y.

COROLLARY 1.6. Let

0 // I // A // B // 0

be an extension of C∗-algebras. Suppose that A has an approximate unit of projections
and that I and B are two stably finite C∗-algebras. If I is a non-zero simple C∗-algebra
with real rank zero, then the following conditions are equivalent:

(i) A is not stably finite;
(ii) I = I(A);

(iii) for any x ∈ K0(I)+, there is an y in ∂(K1(A/I)) ∩ K0(I)+ such that x 6 y.

COROLLARY 1.7. Let A be a simple C∗-algebra with real rank zero. Then I(A) =
A if and only if K0(A)+ = K0(A). Furthermore, either (K0(A), K0(A)+) is an order
group or K0(A)+ = K0(A).

2. PROOFS

LEMMA 2.1 ([3], 1.11.42). Let A be a C∗-algebra with an approximate unit of
projections. Then every ideal I of Mn(A) has the form Mn(J) for some ideal J of A. So
Mn(A)/I ∼= Mn(A/J).

Proof of Theorem 1.2. (i) Let {pi} be an approximate unit of projections in A.
π is the quotient map form A to A/

⋂
λ∈Λ

Iλ. Then π(pi) becomes an approximate
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unit of projections in A/
⋂

λ∈Λ
Iλ. For any i, we assume that v∗v = π(pi). There

is w ∈ pi Api such that π(w) = v. Since π(w∗w) = π(pi), w∗w ∈ pi +
⋂

λ∈Λ
Iλ.

By the hypothesis of the theorem, ww∗ ∈ pi + Iλ for all λ, so ww∗ ∈ pi +
⋂

λ∈Λ
Iλ,

vv∗ = π(ww∗) = π(pi). Therefore A/
⋂

λ∈Λ
Iλ is a finite C∗-algebra.

(ii) By Lemma 2.1 and (i), (ii) is obvious.

LEMMA 2.2. Let A be a C∗-algebra with an approximate unit of projections. Then:
(i) if B is an ideal of A, with an approximate unit of projections, then I(B) ⊂ I(A);

(ii) I(Ã) = I(A);
(iii) I(Mn(A)) = Mn(I(A)), I(A⊗K) = I(A)⊗K.

Proof. Note that every ideal I of Mn(A) has the form Mn(J) for some ideal
J of A. (iii) is trivial.

(i) Let {Iλ} be the set of all ideal of A with A/Iλ is stably finite. Then
ker πλ ◦ i = B ∩ Iλ. I(B) ⊂ ⋂

λ∈Λ
Iλ = I(A).

(ii) By (i), I(A) ⊂ I(Ã) and conversely, I(Ã) ⊂ I(A) is trivial.

Let A be a C∗-algebra and let Mn(A) denote the n× n matrices whose en-
tries are elements of A. Let M∞(A) denote the algebraic limit of the direct system
(Mn(A), φn), where φn : Mn(A)→ Mn+1(A) is given by

a 7→
(

a 0
0 0

)
.

Let M∞(A)+ (respectively Mn(A)+) denote the positive elements in M∞(A) (re-
spectively Mn(A)).

Given a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b, written
a - b, if there is a sequence {xn}∞

n=1 of elements of M∞(A) such that

lim
n→∞

‖xnbx∗n − a‖ = 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a - b and b - a. It is
easy to see that if p and q are projections, p - q is equivalent to the existence of a
partial isometry u ∈ A with u∗u = p and uu∗ 6 q.

PROPOSITION 2.3 ([4], [5]). Let A be a C∗-algebra, and a, b ∈ A+. Then
(a) (a− ε)+ - a for every ε > 0.
(b) The following are equivalent:

(i) a - b;
(ii) for all ε > 0, (a− ε)+ - b;

(iii) for all ε > 0, there exists δ > 0 such that (a− ε)+ - (b− δ)+;
(iv) there are xn, yn ∈ Ã with lim

n→∞
‖xnbyn − a‖ = 0, where Ã is the unitiza-

tion of A.
(c) If ε > 0 and ‖a− b‖ < ε, then (a− ε)+ - b.
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LEMMA 2.4. Let A be a C∗-algebra, a, b ∈ A+, then a + b - a⊕ b. If A has real
rank zero and a⊥b, then a + b ∼ a⊕ b.

Proof. Since(
1 1
0 0

)(
a 0
0 b

)(
1 0
1 0

)
=

(
a + b 0

0 0

)
,

a + b - a⊕ b. Let A have real rank zero, and let a⊥b. Sine A has real rank zero,
for any ε > 0, there is a projection p ∈ aAa such that ‖a− pap‖ < ε, and there is
a projection q ∈ bAb such that ‖b− qaq‖ < ε. Note that p⊥q. Since(

p 0
q 0

)(
pap + qbq 0

0 0

)(
p q
0 0

)
=

(
pap 0

0 qbq

)
.

Hence
(a⊕ b− ε)+ - pap⊕ qbq - pap + qbq - a + b.

By (b) of Proposition 2.3, a + b ∼ a⊕ b.

The following lemma is a generalization of Lemma 3.3.6 in [3].

LEMMA 2.5. If B ⊂ A+ is a subset of a C∗-algebra A, and p is a projection in the
ideal generated by B, then there are x1, . . . , xk in A, and a1, . . . , ak in B such that

p = ∑
i=1,k

xiaix∗i .

Proof. There are y1, . . . , yk and z1, . . . , zk in A such that∥∥∥ k

∑
i=1

yiaizi − p
∥∥∥ <

1
2

.

Let b = p
k
∑

i=1
yiaizi p. Then b is invertible in pAp. So p =

k
∑

i=1
b−1yiaizi p, where the

inverse is taken in pAp. To save notation, we obtain g1, . . . , gk and f1, . . . , fk such

that p =
k
∑

i=1
giai fi. Set

g =


g1 g2 · · · gk
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

 , f =


f1 0 · · · 0
f2 0 · · · 0
· · · · · · · · · · · ·
fk 0 · · · 0

 ,

e = diag(p, 0, . . . , 0), and a = diag(a1, . . . , ak).

Then e = ga f in Mk(A). So e = ega f f ∗ag∗e. We have e 6 ‖ f f ∗‖egaag∗e. Let
c = egaag∗e. Then c has an inverse c−1 in eMk(A)e = pAp. Note that

gaag∗ =
k

∑
i=1

(gia1/2)a(gia1/2)∗.
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Therefore

p =
k

∑
i=1

c−1/2e(gia1/2)a(gia1/2)ec−1/2.

Set xi = c−1/2e(gia1/2). The lemma then follows.

Proof of Theorem 1.3. For any projection p in I, there is a projection q in Mn(I)
for some positive integer n, such that [p]0 6 [q]0 and [q]0 belongs to ∂(K1(A/I)).
If q = 0, then p ∈ I(A). We may assume that q 6= 0. Let u be a unitary in
Mm(Ã/I) with ∂([u]1) = [q]0. By K-theory, there is a unitary w in M2m(Ã) such
that π(w) = u⊕ u∗, where π is the quotient map from A to A/I. Then

∂([u]1) = [w(1m ⊕ 0m)w∗]0 − [1m ⊕ 0m]0.

Therefore
[w(1m ⊕ 0m)w∗ ⊕ 0n]0 = [1m ⊕ 0m ⊕ q]0.

So there are integer r, s and a unitary v in M2m+n+r+s( Ĩ) such that

v(w(1m ⊕ 0m)w∗ ⊕ 0n ⊕ 1r ⊕ 0s)v∗ = 1m ⊕ 0m ⊕ q⊕ 1r ⊕ 0s.

Let R = v(w(1m ⊕ 0m)⊕ 0n ⊕ 1r ⊕ 0s) in M2m+n+r+s(Ã), then R is cohyponormal
partial isometry and RR∗ − R∗R = 02m ⊕ q⊕ 0r+s belongs to I(M2m+n+r+s(Ã)).
By Lemma 2.2, q belongs to I(Mn(A)). Since [p]0 6 [q]0, there is a projection p′ in
Ml(I) such that [p]0 + [p′]0 = [q]0, without loss of generality, we may assume that
p⊕ p′ and q belong to Mk(I). There are integers i, j and a unitary x in Mk+i+j( Ĩ),
such that

p⊕ p′ ⊕ 1i ⊕ 0j = x(q⊕ 1i ⊕ 0j)x∗.

Let π′ be the quotient map from Ĩ to Ĩ/I(A). Then

π′(q⊕ 1i ⊕ 0j) = 0k ⊕ 1i ⊕ 0j,

and

π′(x(q⊕ 1i ⊕ 0j)x∗) = π′(p⊕ p′ ⊕ 1i ⊕ 0j) = π′(p⊕ p′)⊕ 1i ⊕ 0j.

Since Ĩ/I(A) is stably finite, π′(p⊕ p′) = 0k. So p ∈ I(Mk(A)). By Lemma 2.2,
p ∈ I(A).

Proof of Theorem 1.5. By Lemma 2.2(iii), without loss of generality, we may
assume that I, A and A/I are stable. Note that J is the ideal of A generated by

C = {q : there is a hyponormal partial isometry v ∈ A such that vv∗ − v∗v = q}.

J ⊂ I(A). For any p ∈ J, by Lemma 2.5, there are projections q1, . . . , qk in C and
there are x1, . . . , xk in A such that

p =
k

∑
i=1

xiqix∗i .
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By Lemma 2.4,

p -
k⊕

i=1

xiqix∗i -
k⊕

i=1

qi.

So [p]06
k
∑

i=1
[qi]0. Note from the construction of C, that

k
∑

i=1
[qi]0 belongs to ∂(K1(A/I))

∩K0(I)+.

Finally, we end with the following question.

QUESTION 2.6. Let A be a C∗-algebra which has real rank zero. For any x ∈
K0(I(A))+, is there an y in ∂(K1(A/I(A))) ∩ K0(I(A))+ such that x 6 y?
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