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1. INTRODUCTION

Vector valued harmonic analysis is closely connected with the geometry of
Banach spaces. The fact that a certain property, for instance, the boundedness of
certain classical operators, is true when Banach-valued functions are considered,
is related to geometrical or topological properties of the underlying Banach space.
Thus, new characterizations of old properties are obtained or new type of Banach
spaces appear (see, [5], [6], [7], [8], [9], [11], [16], [20], [23], [25], amongst others).

Bourgain [6] characterized the UMD property of a Banach function space
by using a version of the Hardy–Littlewood maximal function. Suppose that X is
a Banach space consisting of equivalence classes, modulo equality almost every-
where, of locally integrable real functions on a complete σ-finite measure space
(Ω, Σ, µ). This class of Banach spaces is named Köthe function spaces ([19] and
[23]) when the following two conditions are satisfied:

(a) If | f (w)| 6 |g(w)|, a.e. w ∈ Ω, with f measurable and g ∈ X, then f ∈ X
and ‖ f ‖X 6 ‖g‖X .

(b) For every A ∈ Σ with µ(A) < ∞ the characteristic function χA of A belongs
to X.

Each Köthe function space is a Banach lattice with the obvious order ( f >
0⇔ f (w) > 0, a.e. w ∈ Ω). This lattice is σ-order complete. Moreover each order
continuous Banach lattice with a weak unit is order isometric to a Köthe function
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space ([19], Theorem 1.b.14). Thus, a separable Banach lattice is order isometric to
a Köthe function space if and only if it is σ-order complete. If X is a Köthe space,
X′ denotes the linear space of all integrals in X ([19], p. 29).

Every function f : Rn → X is understood as a two variable function f (x, w),
x ∈ Rn and w ∈ Ω. The operator M denotes the usual Hardy–Littlewood maxi-
mal function with respect to the first variable

M( f )(x, w) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

| f (y, w)|dy, x ∈ Rn, w ∈ Ω.

Here |B(x, r)| represents the Lebesgue measure of B(x, r), for every x ∈ Rn and
r > 0. Bourgain [6] proved that X has the UMD property if and only if M is

bounded in Lp
X(R

n) and also in Lp′
X∗(R

n), for some 1 < p < ∞, where X∗ is the
dual space of X and p′ is the exponent conjugated of p.

Motivated by this result of Bourgain, García-Cuerva, Macías and Torrea [11]
introduced the Hardy–Littlewood property for a Banach lattice. Definitions and
main properties of Banach lattices can be encountered in [19].

Let Q+ be the set of positive rational numbers. If X is a Banach lattice, J is a
finite subset of Q+ and f ∈ L1

X,loc(R
n), the maximal function MJ f is defined by

MJ( f )(x) = sup
r∈J

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy, x ∈ Rn.

Here |z| denotes, for every z ∈ X, the absolute value of z in the lattice X. Note
that the supremum in the above definition exists because J is finite. If the supre-
mum in MJ is taken over an infinite set J then the supremum is not always de-
fined. However, if X is a σ-order complete Banach lattice ([19], p. 4) we can define
MQ+

by

MQ+
( f )(x) = sup

r∈Q+

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy, x ∈ Rn,

when f ∈ L1(Rn)⊗ X.
It is said that a Banach lattice has the Hardy–Littlewood property ([11])

when for a certain 1 < p < ∞ there exists C > 0 such that

‖MJ f ‖p 6 C‖ f ‖p, f ∈ Lp
X(R

n),

for every finite subset J of Q+.
If X is a Köthe function space, for every finite subset J of Q+, we have

MJ( f )(x) as a function of w ∈ Ω, for every x ∈ Rn, given by

[MJ( f )(x)](w) = MJ( f )(x, w) = sup
r∈J

1
|B(x, r)|

∫
B(x,r)

| f (y, w)|dy, x ∈ Rn, w ∈ Ω.
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Moreover, if X is a Köthe function space having Fatou property (see [19], p. 30)
then X has the Hardy–Littlewood property if and only if the maximal operator

[MQ+
( f )(x)](w) = MQ+

( f )(x, w) = sup
r∈Q+

1
|B(x, r)|

∫
B(x,r)

| f (y, w)|dy, x ∈ Rn,

is bounded in Lp
X(R

n), for some 1 < p < ∞ ([12], Remark 1.4).
In [11] García-Cuerva, Macías and Torrea characterized the Banach lattices

having the Hardy–Littlewood property by using smooth versions of MJ and
MQ+

. They applied, as an important rule, the theory of vector valued singular
integrals. If ϕ is an smooth real function defined on [0, ∞) such that

χ[0,1] 6 ϕ 6 χ[0,2],

the maximal operator Mϕ,J and Mϕ considered in [11] are the following ones. If X
is a Banach lattice and J is a finite subset of Q+, for every f ∈ L1

X,loc(R
n), Mϕ,J( f )

is given by

Mϕ,J( f )(x) = sup
t∈J

∣∣∣ 1
tn

∫
Rn

ϕ
( |x− y|

t

)
f (y)dy

∣∣∣, x ∈ Rn.

If X is a σ-order complete Banach lattice, for every f ∈ L1(Rn)⊗ X the maximal
function Mϕ( f ) is defined by

Mϕ( f )(x) = sup
t∈Q+

∣∣∣ 1
tn

∫
Rn

ϕ
( |x− y|

t

)
f (y)dy

∣∣∣, x ∈ Rn.

When f ∈ Lp(Rn) ⊗ X, 1 6 p < ∞, where X is a Köthe function space on Ω,
Mϕ( f ) is defined through

Mϕ( f )(x, w) = sup
t∈Q+

∣∣∣ 1
tn

∫
Rn

ϕ
( |x− y|

t

)
f (y, w)dy

∣∣∣, x ∈ Rn, w ∈ Ω.

In [2] new characterizations of the UMD property and the martingale type
and cotype for a Banach space were obtained in terms of harmonic analysis op-
erators (Riesz transforms and Littlewood–Paley g-functions) associated with the
Bessel operator

Sλ = −x−λ−1/2Dx2λ+1Dx−λ−1/2, λ > −1
2

.

Moreover, in [3] the Banach spaces with the UMD property and the Hardy–Li-
ttlewood property were described by using harmonic analysis operators (Riesz
transforms and maximal operators for the heat semigroup) associated with the
Laguerre expansions.

One of our objective in this paper is to establish new characterizations of
the Banach lattices with the Hardy–Littlewood property by using maximal oper-
ators defined by Hankel convolution operators in the Sλ-setting. Also we char-
acterize the Köthe function spaces which have the UMD property in terms of
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the Lp-boundedness properties for Littlewood–Paley g-functions associated with
Poisson semigroups for the Bessel operators Sλ.

We now recall some definitions and properties that will be useful in the
sequel.

The Hankel convolution operation was studied by Hirschman [17] and Hai-
mo [14]. We adapt the definition in [17] and [14] to the Sλ-setting. Assume that
λ > − 1

2 . If f and g belong to L1((0, ∞), xλ+1/2dx), the convolution f #λg of f and
g is defined by

( f #λg)(x) =
∞∫

0

f (y)λτx(g)(y)dy, x ∈ (0, ∞),

where, for every x ∈ (0, ∞),

(1.1) λτx(g)(y)=
(xy)λ+1/2

√
π2λΓ(λ+1/2)

π∫
0

(sin θ)2λg(
√
(x− y)2+2xy(1−cos θ))

((x−y)2+2xy(1−cos θ))(2λ+1)/4
dθ,

y ∈ (0, ∞), (see [13]).
In the sequel, if φ is a real function defined on (0, ∞), we denote by φ(t),

t > 0, the function

φ(t)(x) =
1

tλ+3/2 φ
( x

t

)
, x ∈ (0, ∞).

Suppose that φ is a suitable real function defined on (0, ∞). If X is a Banach
lattice, f : (0, ∞) → X is also good enough, and J is a finite subset of Q+, we
define the maximal function Mλ

φ,J( f ) by

Mλ
φ,J( f ) = sup

t∈J
| f #λφ(t)|.

When X is a σ-order complete Banach lattice we define

Mλ
φ( f ) = sup

t∈Q+

| f #λφ(t)|.

Moreover, if X is a Köthe function space on Ω we define

Mλ
φ( f )(x, w) = sup

t∈Q+

∣∣∣ ∞∫
0

f (y, w)λτx(φ(t))(y)dy
∣∣∣, x ∈ (0, ∞), w ∈ Ω.

For every y ∈ (0, ∞), the function φλ(·; y) given by

φλ(x; y) =
√

xyJλ(xy), x ∈ (0, ∞),

where Jλ denotes the Bessel function of the first kind and order λ, is an eigen-
function of the operator Sλ and

Sλ,xφλ(x; y) = y2φλ(x; y), x, y ∈ (0, ∞).
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Then, the Poisson kernel associated with Sλ is defined by

Pλ
t (x, y) =

∞∫
0

e−ztφλ(x; z)φλ(y; z)dz, t, x, y ∈ (0, ∞).

The Poisson integral Pλ
t ( f ) of f is given by

Pλ
t ( f )(x) =

∞∫
0

Pλ
t (x, y) f (y)dy,

and according to p. 23, (4.3) of [24] we can write

Pλ
t ( f ) = f #λkλ

(t),

where

(1.2) kλ(x) =
2λ+1Γ(λ + 3/2)xλ+1/2
√

π(1 + x2)λ+3/2 , x ∈ (0, ∞).

{Pλ
t }t>0 is a non Markovian semigroup of bounded operators in Lp(0, ∞), 1 6

p 6 ∞. The maximal operator

Pλ,∗( f ) = sup
t∈(0,∞)

| f #λkλ
(t)|,

is bounded from Lp(0, ∞) into itself, for every 1 < p < ∞, and from L1(0, ∞) into
L1,∞(0, ∞) ([4]).

The operator Sλ can be written as Sλ =D∗λDλ, where Dλ = xλ+1/2 d
dx x−λ−1/2

and D∗λ = −x−λ−1/2 d
dx xλ+1/2 is the formal adjoint operator of Dλ in L2(0, ∞).

According to the ideas of Muckenhoupt and Stein [22] we consider a Cauchy
Riemann type equations associated with Sλ as follows

(1.3) Dλ,xu(x, t) =
∂

∂t
v(x, t), D∗λ,xv(x, t) =

∂

∂t
u(x, t).

If u, v : (0, ∞)2 → R, when u and v satisfy the pair of equations (1.3), we say
that the function v is the Sλ-conjugate of u . If f ∈ Lp(0, ∞), 1 6 p < ∞, the
Sλ-conjugate of the Poisson integral Pλ

t ( f )(x) is the function

Qλ
t ( f )(x) =

∞∫
0

Qλ
t (x, y) f (y)dy, t, x ∈ (0, ∞),

where

Qλ
t (x, y)=

2λ+1
π

(xy)λ+1/2
π∫

0

(x− y cos θ)(sin θ)2λ

(x2+y2+t2−2xy cos θ)λ+3/2 dθ, t, x, y ∈ (0, ∞).
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The boundary value lim
t→0+

Qλ
t ( f ) of Qλ

t ( f ) is the Sλ-Riesz transform Rλ( f ) of f

defined by

Rλ( f )(x) = lim
ε→0

∞∫
0, |x−y|>ε

Rλ(x, y) f (y)dy, a.e. x ∈ (0, ∞),

for every f ∈ Lp(0, ∞), 1 6 p < ∞, where

Rλ(x, y) =
1√
π

∞∫
0

Dλ,xPλ
t (x, y)dt, x, y ∈ (0, ∞).

Rλ defines a bounded operator from Lp(0, ∞) into itself, when 1 < p < ∞, and
from L1(0, ∞) into L1,∞(0, ∞) (see [1]).

We now consider the operator Sλ = DλD∗λ. Note that Sλ = Sλ+1. We denote

Pλ
t (x, y) = Pλ+1

t (x, y), t, x, y ∈ (0, ∞), and Pλ
t ( f ) = Pλ+1

t ( f ).

As Cauchy–Riemman type equations for the operator Sλ+1 we consider the pair
of equations

(1.4) D∗λ,xu(x, t) =
∂

∂t
v(x, t), Dλ,xv(x, t) =

∂

∂t
u(x, t),

and if u, v : (0, ∞)2 → R we say that v is Sλ-conjugate of u when u and v satisfy
the equations in (1.4). Then, v is Sλ-conjugate of u if and only if u is Sλ-conjugate
of v. If f ∈ Lp(0, ∞), 1 6 p < ∞, the Sλ conjugate of the Poisson integral Pλ

t ( f )(x)
is the function

Qλ
t ( f )(x) =

∞∫
0

Qλ
t (x, y) f (y)dy, t, x ∈ (0, ∞),

where
Qλ

t (x, y) = Qλ
t (y, x), t, x, y ∈ (0, ∞).

By proceeding as in [1] we can see that the boundary value lim
t→0+

Qλ
t ( f ) of Qλ

t ( f )

is the Sλ-Riesz transform Rλ( f ) of f defined by

Rλ( f )(x) = lim
ε→0

∞∫
0, |x−y|>ε

Rλ(x, y) f (y)dy, a.e. x ∈ (0, ∞),

for every f ∈ Lp((0, ∞), dx), 1 6 p < ∞, where

Rλ(x, y) =
1√
π

∞∫
0

D∗λ,xP
λ
t (x, y)dt = Rλ(y, x), x, y ∈ (0, ∞).

Rλ defines a bounded operator from Lp(0, ∞) into itself, when 1 < p < ∞, and
from L1(0, ∞) into L1,∞(0, ∞).
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The Littlewood–Paley g-functions associated with Poisson semigroups
{Pλ

t }t>0 and {Pλ
t }t>0 are defined as follows. If X is a Köthe function space on

Ω and f : (0, ∞)→ X we consider

gλ( f )(x, w) =
( ∞∫

0

|t∇λPλ
t ( f )(x, w)|2 dt

t

)1/2
, x ∈ (0, ∞), w ∈ Ω,

where ∇λh(x, t) = (|Dλ,xh(x, t)|2 + | ∂
∂t h(x, t)|2)1/2, and

gλ( f )(x, w) =
( ∞∫

0

|t∇̃λPλ
t ( f )(x, w)|2 dt

t

)1/2
, x ∈ (0, ∞), w ∈ Ω,

where

∇̃λh(x, t) =
(
|D∗λ,xh(x, t)|2 +

∣∣∣ ∂

∂t
h(x, t)

∣∣∣2)1/2
.

Here Pλ
t ( f )(x, w) and Pλ

t ( f )(x, w) are defined in a natural way.
The main results of this paper are the following ones.

THEOREM 1.1. Let X be a Banach lattice and λ > − 1
2 . Assume that φ is a

nonnegative and not identically zero real function defined on (0, ∞) such that x−λ−1/2φ
can be extended to R as an even and smooth function having bounded support. Then, the
following assertions are equivalent:

(i) X has the Hardy–Littlewood property.
(ii) There exist 1 < p < ∞ and a constant C > 0 such that

‖Mλ
φ,J( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞), f ∈ Lp

X(0, ∞),

for every finite subset J of Q+.
(iii) There exists C > 0 such that

|{x ∈ (0, ∞) : ‖Mλ
φ,J( f )‖X > γ}| 6

C‖ f ‖L1
X(0,∞)

γ
, f ∈ L1

X(0, ∞),

for every γ > 0 and every finite subset J of Q+.
(iv) For every 1 < p < ∞ there exists a constant C > 0 such that

‖Mλ
φ,J( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞), f ∈ Lp

X(0, ∞),

for every finite subset J of Q+.

THEOREM 1.2. Let X be a Köthe function space such that X′ is a norming subspace
of X∗ and λ > − 1

2 . Assume that φ is a nonnegative and not identically zero real function
defined on (0, ∞) such that x−λ−1/2φ can be extended to R as an even and smooth
function belonging to Schwartz class. Then, the following assertions are equivalent:

(i) X has the Hardy–Littlewood property.
(ii) There exist 1 < p < ∞ and a constant C > 0 such that

‖Mλ
φ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞), f ∈ Lp

X(0, ∞).
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(iii) There exists C > 0 such that

|{x ∈ (0, ∞) : ‖Mλ
φ( f )‖X > γ}| 6

C‖ f ‖L1
X(0,∞)

γ
, f ∈ L1

X(0, ∞),

for every γ > 0.
(iv) For every 1 < p < ∞ there exists a constant C > 0 such that

‖Mλ
φ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞), f ∈ Lp

X(0, ∞).

(v) For every f ∈ Lp
X(0, ∞), 1 6 p < ∞, Mλ

φ( f )(x) ∈ X, for almost all x ∈ (0, ∞).

Theorems 1.1 and 1.2 also hold when the function φ is replaced by the Pois-
son kernel kλ defined in (1.2).

THEOREM 1.3. Let X be a Köthe function space. Then the following assertions are
equivalent:

(i) X is a UMD space.
(ii) There exists 1 < p < ∞ and a constant C > 0 such that

(1.5) C−1‖ f ‖Lp
X(0,∞) 6 ‖gλ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞),

and

(1.6) C−1‖ f ‖Lp
X(0,∞) 6 ‖gλ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞),

for every f ∈ Lp
X(0, ∞).

(iii) For every 1 < p < ∞ there exists C > 0 such that

C−1‖ f ‖Lp
X(0,∞) 6 ‖gλ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞),

and
C−1‖ f ‖Lp

X(0,∞) 6 ‖gλ( f )‖Lp
X(0,∞) 6 C‖ f ‖Lp

X(0,∞),

for every f ∈ Lp
X(0, ∞).

In Section 2 we prove Theorems 1.1 and 1.2. Section 3 is devoted to the proof
of Theorem 1.3.

Throughout this paper C always denotes a suitable constant that can change
in each occurrence.

2. PROOFS OF THEOREMS 1.1 AND 1.2

In this section we present proofs for Theorems 1.1 and 1.2. The strategy of
the proofs is as follows. We split the region (0, ∞) × (0, ∞) in three parts: two
parts far away from the diagonal (global parts) and one part close to the diagonal
(local part). Then, we decompose the convolution operators in three parts that
correspond to each of the above regions. The key of the proofs is the comparison
of Hankel and classical convolution operators in the local part. In the global parts
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the Hankel convolution operators are bounded by Hardy type operators whose
Lp-boundedness properties are well-known (see, for instance, [21]).

Proof of Theorem 1.1. Let us consider ψ(z) = z−λ−1/2φ(z), z ∈ R. According
to [10] there exists Φ in the Schwartz class such that ψ(z) = Φ(z2), z ∈ R. We
define

Ψ(x) =
1√

π2λ+1Γ(λ + 1/2)

∞∫
0

uλ−1/2Φ(x2 + u)du, x ∈ R.

Firstly, we are going to prove that, if 1 6 p < ∞ and J ⊂ Q+, the following
assertions are equivalent:

(a) The operator Mλ
φ,J is of strong type (respectively, weak type) (p, p), with

respect to ((0, ∞), dx).
(b) The operator MΨ,J,+ defined by

MΨ,J,+( f )(x) = sup
t∈J

∣∣∣1
t

∞∫
0

Ψ
( |x− y|

t

)
f (y)dy

∣∣∣, x ∈ (0, ∞),

is of strong type (respectively, weak type) (p, p), with respect to ((0, ∞), dx).
Note that the operators MΨ,J,+ and Mλ

φ,J are acting on functions f : (0, ∞)→
X. Then the strong and weak type (p, p), 1 6 p < ∞, are understood in a vector
valued setting.

According to (1.1) we can write

λτx(φ(t))(y)=
(xy)λ+1/2

√
π2λΓ(λ+1/2)

t−2λ−2
π∫

0

(sin θ)2λψ
(√(x−y)2+2xy(1−cos θ)

t

)
dθ

=H1(t, x, y) + H2(t, x, y), t, x, y ∈ (0, ∞),

where, for every t, x, y ∈ (0, ∞),

H1(t, x, y)=
(xy)λ+1/2

√
π2λΓ(λ+1/2)

t−2λ−2
π/2∫
0

(sin θ)2λψ
(√(x−y)2+2xy(1−cos θ)

t

)
dθ

and
H2(t, x, y) =λ τx(φ(t))(y)− H1(t, x, y).

Since ψ is in the Schwartz class it follows that

|H2(t, x, y)|6C(xy)λ+1/2t−2λ−2
π∫

π/2

(sin θ)2λ
∣∣∣ψ(√(x−y)2+2xy(1−cos θ)

t

)∣∣∣dθ

6C(xy)λ+1/2t−2λ−2
(√x2+y2

t

)−2λ−2
6

(xy)λ+1/2

(x+y)2λ+26C

{
1
y 0< x<y,
1
x 0<y< x.
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We now analyze H1(t, x, y). Firstly, we note that by using again that ψ is in
the Schwartz class, it has that

|H1(t, x, y)|6C(xy)λ+1/2t−2λ−2
π/2∫
0

(sin θ)2λ
∣∣∣ψ(√(x− y)2 + 2xy(1− cos θ)

t

)∣∣∣dθ

6C(xy)λ+1/2t−2λ−2
π/2∫
0

(sin θ)2λ
(√(x−y)2+2xy(1−cos θ)

t

)−2λ−2
dθ

6
(xy)λ+1/2

|x− y|2λ+2 6 C

{
1
y 0 < 2x < y,
1
x 0 < y < x

2 .

Assume that x/2 < y < 2x and t > 0. We define

H1,1(t, x, y)=
(xy)λ+1/2

t2λ+2
√

π2λΓ(λ + 1/2)

π/2∫
0

θ2λψ
(√(x− y)2 + 2xy(1− cos θ)

t

)
dθ.

Mean value theorem leads to∣∣∣H1(t, x, y)−H1,1(t, x, y)
∣∣∣

6 C
(xy)λ+1/2

t2λ+2

π/2∫
0

|θ2λ − (sin θ)2λ|
∣∣∣ψ(√(x− y)2 + 2xy(1− cos θ)

t

)∣∣∣dθ

6 C
(xy)λ+1/2

t2λ+2

π/2∫
0

θ2λ+2
(√(x− y)2 + 2xy(1− cos θ)

t

)−2λ−2
dθ

6 C
(xy)λ+1/2

t2λ+2

π/2∫
0

θ2λ+2
( xyθ2

t2

)−λ−1
dθ 6 C

1
x

.

We can write

H1,1(t, x, y)=
(xy)λ+1/2

t2λ+2
√

π2λΓ(λ + 1/2)

π/2∫
0

θ2λΦ
( (x− y)2 + 2xy(1− cos θ)

t2

)
dθ.

We consider

H1,2(t, x, y) =
(xy)λ+1/2

t2λ+2
√

π2λΓ(λ + 1/2)

π/2∫
0

θ2λΦ
( (x− y)2 + xyθ2)

t2

)
dθ.
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By using again mean value theorem, since Φ belongs to the Schwartz class, we
get

|H1,1(t, x, y)− H1,2(t, x, y)|

6 C
(xy)λ+1/2

t2λ+2

π/2∫
0

θ2λ
∣∣∣Φ( (x− y)2 + 2xy(1− cos θ)

t2

)
−Φ

( (x− y)2 + xyθ2

t2

)∣∣∣dθ

6 C
(xy)λ+1/2

t2λ+2

π/2∫
0

θ2λ
∣∣∣ xy(1− cos θ − θ2/2)

t2

∣∣∣( t2

(x− y)2 + xyθ2

)λ+2
dθ

6 C(xy)λ+3/2
π/2∫
0

θ2λ+4(xyθ2)−λ−2dθ 6 C
1
x

.

By making the change of variables u = xyθ2/t2 it has that

H1,2(t, x, y) =
1

t
√

π2λ+1Γ(λ + 1/2)

xyπ2/(4t2)∫
0

uλ−1/2Φ
(( x− y

t

)2
+ u

)
du

=
1

t
√

π2λ+1Γ(λ + 1/2)

( ∞∫
0

−
∞∫

xyπ2/(4t2)

)
uλ−1/2Φ

(( x− y
t

)2
+ u

)
du

= H1,3(t, x, y)− H1,4(t, x, y).

We can write

|H1,4(t, x, y)|6C
1
t

∞∫
xyπ2/(4t2)

uλ−1/2
∣∣∣Φ(( x− y

t

)2
+ u

)∣∣∣du

6C
1
t

∞∫
xyπ2/(4t2)

uλ−1/2
(( x−y

t

)2
+u
)−λ−1

du6C
1
t

∞∫
xyπ2/(4t2)

u−3/2du6C
1
x

.

Note that H1,3(t, x, y) = Ψt(x − y), x ∈ R and t > 0. Since Φ is in the
Schwartz class, Ψ also is in the Schwartz class. Moreover, Ψ is even. Then

|Ψ(x− y)| 6 C

{
1
y 0 < 2x < y,
1
x 0 < y < x

2 .

By the above estimates, defining

Ψt(x)=
1
t

Ψ
( x

t

)
, x∈R, t>0, and Ψt ∗+ f (x)=

∞∫
0

f (y)Ψt(x−y)dy, x, t>0,
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we get, for every J ⊂ Q+,∥∥∥ sup
t∈J
|Ψt ∗+ f (x)| − sup

t∈J
|φ(t)#λ f (x)|

∥∥∥
X

6 C
(

I0(‖ f ‖X)(x) + I∞(‖ f ‖X)(x)

+
∥∥∥ sup

t∈J

∣∣∣ 2x∫
x/2

Ψt(x− y) f (y)dy
∣∣∣− sup

t∈J

∣∣∣ 2x∫
x/2

f (y)λτx(φ(t))(y)dy
∣∣∣∥∥∥

X

)
6 C(I0(‖ f ‖X)(x) + I∞(‖ f ‖X)(x) + N(‖ f ‖X)(x)), x ∈ (0, ∞),

where, for every x ∈ (0, ∞)

I0(g)(x) =
1
x

x∫
0

g(y)dy, I∞(g)(y) =
∞∫

x

g(y)
y

dy, N(g)(y) =
2x∫

x/2

1
y

g(y)dy.

Jensen inequality allows us to see that N is a bounded operator from Lp(0,∞)
into itself, for every 1 6 p < ∞. Moreover, the well-known Hardy inequalities
([21]) say that the operators I0 and I∞ are bounded from Lp(0, ∞) into itself, for
every 1 < p < ∞, and that they are bounded from L1(0, ∞) into L1,∞(0, ∞).

Thus the equivalence (a)⇔ (b) is established.
Also, if 1 6 p < ∞ and J ⊂ Q+, the following assertions are equivalent:

(c) The operator MΨ,J,+ is of strong type (respectively, weak type) (p, p), 1 <
p < ∞, (respectively (1, 1)) with respect to ((0, ∞), dx).

(d) The operator MΨ,J is of strong type (respectively, weak type) (p, p), 1 <
p < ∞, (respectively, (1, 1)) with respect to (R, dx).

To see that, we write

∞∫
−∞

∥∥∥ sup
t∈J

∣∣∣1
t

∞∫
−∞

Ψ
( |x−y|

t

)
f (y)dy

∣∣∣∥∥∥p

X
dx

6

∞∫
0

∥∥∥ sup
t∈J

∣∣∣1
t

∞∫
0

Ψ
( |x−y|

t

)
f (y)dy

∣∣∣∥∥∥p

X
dx+

∞∫
0

∥∥∥ sup
t∈J

∣∣∣1
t

∞∫
0

Ψ
( |x+y|

t

)
f (y)dy

∣∣∣∥∥∥p

X
dx

+

∞∫
0

∥∥∥sup
t∈J

∣∣∣1
t

∞∫
0

Ψ
(|x−y|

t

)
f (−y)dy

∣∣∣∥∥∥p

X
dx+

∞∫
0

∥∥∥sup
t∈J

∣∣∣1
t

∞∫
0

Ψ
(|x+y|

t

)
f (−y)dy

∣∣∣∥∥∥p

X
dx.

Moreover, since Ψ is in the Schwartz class, it has

∣∣∣Ψ( x + y
t

)∣∣∣ 6 C

{
t
y y > x,
t
x 0 < y < x.
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Then, the operator

f → sup
t>0

∣∣∣1
t

∞∫
0

Ψ
( x + y

t

)
f (y)dy

∣∣∣, x ∈ (0, ∞)

is bounded from Lp
X(0, ∞) into itself, when 1 < p < ∞.

Hence, if MΨ,J,+ is bounded from Lp
X(0, ∞) into itself, then MΨ,J is bounded

from Lp
X(R) into itself, when 1 < p < ∞. The converse property is clear.

The corresponding property for p = 1 can be seen in a similar way.
Note that, since ψ has compact support, Ψ also has compact support. More-

over, Ψ(x) > 0, |x| 6 b, for a certain b ∈ Q+, because φ is nonnegative and not
identically zero. Then, there exists C > 0 such that

χ(x−bt,x+bt)(y) 6 CΨ
( |x− y|

t

)
, x, y ∈ R, t > 0.

Assume that J is a finite subset of Q+. Then, if f : R → X is a nonnegative
function

(2.1) MJb( f )(x) 6 CMΨ,J( f )(x), x ∈ R,

where Jb = {bq : q ∈ J}. Moreover, if f : R → X is a nonnegative function, we
can write, for a certain a ∈ Q+,

1
t

∫
R

Ψ
( x− y

t

)
f (y)dy =

1
t

∫
|x−y|<at

Ψ
( x− y

t

)
f (y)dy

6
C
t

∫
|x−y|<at

f (y)dy 6 CMJa( f )(x), x ∈ R.

Then

(2.2) MΨ,J( f )(x) 6 CMJa( f )(x), x ∈ R.

Since ‖ |b| ‖X = ‖b‖X , for every b ∈ X, we conclude from (2.1) and (2.2)
that MΨ,J is a bounded operator from Lp

X(R), 1 < p < ∞, (respectively, L1
X(R))

into itself (respectively, L1,∞
X (R)), for every finite subset J of Q+, if and only if MJ

is a bounded operator from Lp
X(R), 1 < p < ∞, (respectively, L1

X(R)) into itself
(respectively, L1,∞

X (R)), for every finite subset J of Q+.
Thus the proof of Theorem 1.1 is complete by using Theorem 1.7 of [11].

Proof of Theorem 1.2. Suppose that X is a Köthe function space such that X′

is a norming subspace of X∗ and f : R → X is a nonnegative function belonging
to Lp(R)⊗ X, 1 6 p < ∞. As in (2.1), for a certain b > 0, we have

(2.3) MJb( f )(x, w) 6 CMΨ,J( f )(x, w), x ∈ R, w ∈ Ω,

for every finite subset J of Q+. Then

M( f )(x, w) 6 CMΨ( f )(x, w), x ∈ R.
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Also, we can write∣∣∣1
t

∫
R

Ψ
( x− y

t

)
f (y, w)dy

∣∣∣
6

∞

∑
k=0

∣∣∣1
t

∫
2kt<|x−y|62k+1t

Ψ
( x− y

t

)
f (y, w)dy

∣∣∣+∣∣∣1
t

∫
|x−y|6t

Ψ
( x− y

t

)
f (y, w)dy

∣∣∣
6C

( ∞

∑
k=0

1
t

∫
2kt<|x−y|62k+1t

(
1+
|x−y|

t

)−2
f (y, w)dy+

1
t

∫
|x−y|6t

(
1+
|x−y|

t

)−2
f (y, w)dy

)

6C
( ∞

∑
k=0

1
22kt

∫
|x−y|62k+1t

f (y, w)dy +
1
t

∫
|x−y|6t

f (y, w)dy
)

6C sup
r∈Q+

1
r

∫
|x−y|<r

f (y, w)dy, t ∈ Q+, x ∈ R, w ∈ Ω.

Then, we obtain that

(2.4) MΨ( f )(x, w) 6 CM( f )(x, w), x ∈ R.

Now, by taking into account that for our Köthe function space to have the
Hardy–Littlewood property is equivalent to the maximal operator M is bounded
from Lp

X(R) into itself, for some 1 < p < ∞, or from L1
X(R) into L1,∞

X (R), the
arguments developed in the proof of Theorem 1.1 allow us to establish the equiv-
alences (i)⇔ (ii)⇔ (iii)⇔ (iv).

To see that (i) ⇔ (v) it is sufficient to proceed as in the proof of Proposi-
tion 4.12 in [16] by using (2.3) and (2.4).

The proof of Theorem 1.2 is thus finished.

3. PROOF OF THEOREM 1.3

We now prove Theorem 1.3. Suppose firstly that X has the UMD property.
We consider the partial g-Littlewood–Paley functions associated with {Pλ

t }t>0
defined by

gλ,1( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂t
Pλ

t ( f )(x, w)
∣∣∣2 dt

t

)1/2
,

and

gλ,2( f )(x, w) =
( ∞∫

0

|tDλ,xPλ
t ( f )(x, w)|2 dt

t

)1/2
.

It is clear that
‖gλ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞),
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if and only if the same inequality holds when gλ is replaced by gλ,1 and gλ,2.
In Lemmas 5.1 and 5.2 of [2] it was proved that

∥∥∥t
∂

∂t

(
Pλ

t (x, y)− Pt(x, y)
)∥∥∥

L2((0,∞), dt/t)

6 C


1
y y > 2x,

1
y

(
1 +

(
log
(

1 + xy
|x−y|2

))1/2)
x
2 < y < 2x,

1
x 0 < y < x

2 ,

(3.1)

where Pt(x, y) =
1
π

t
(x− y)2 + t2 , t, x, y ∈ (0, ∞).

We can write, by using the Minkowski inequality

gλ,1( f )(x, w)=
( ∞∫

0

∣∣∣t ∂

∂t

∞∫
0

Pλ
t (x, y) f (y, w)dy

∣∣∣2 dt
t

)1/2

6
( ∞∫

0

∣∣∣t ∞∫
0

∂

∂t
(Pλ

t (x, y)− Pt(x, y)) f (y, w)dy
∣∣∣2 dt

t

)1/2

+
( ∞∫

0

∣∣∣t ∞∫
0

∂

∂t
Pt(x, y) f (y, w)dy

∣∣∣2 dt
t

)1/2

6

∞∫
0

| f (y, w)|
∥∥∥t

∂

∂t
(Pλ

t (x, y)−Pt(x, y))
∥∥∥

L2((0,∞),dt/t)
dy+g1( f )(x, w),

being

g1( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂t

∞∫
0

Pt(x, y) f (y, w)dy
∣∣∣2 dt

t

)1/2
.

From (3.1) it follows that, for every 1 6 p < ∞, there exists Cp > 0 for which

∥∥∥ ∞∫
0

| f (y, w)|
∥∥∥t

∂

∂t
(Pλ

t (x, y)− Pt(x, y))
∥∥∥

L2((0,∞),dt/t)
dy
∥∥∥

Lp
X(0,∞)

6 Cp‖ f ‖Lp
X(0,∞),

for each f ∈ Lp
X(0, ∞).
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Also, it has that

gλ,2( f )(x, w)=
( ∞∫

0

∣∣∣t ∞∫
0

Dλ,xPλ
t (x, y) f (y, w)dy

∣∣∣2 dt
t

)1/2

6
( ∞∫

0

∣∣∣ ∞∫
0

(
tDλ,xPλ

t (x, y)− t
∂

∂x
Pt(x, y)

)
f (y, w)dy

∣∣∣2 dt
t

)1/2

+
( ∞∫

0

∣∣∣t ∞∫
0

∂

∂x
Pt(x, y) f (y, w)dy

∣∣∣2 dt
t

)1/2

6

∞∫
0

| f (y, w)|
∥∥∥t
(
Dλ,xPλ

t (x, y)− ∂

∂x
Pt(x, y)

)∥∥∥
L2((0,∞),dt/t)

dy+g2( f )(x, w),

where

g2( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂x

∞∫
0

Pt(x, y) f (y, w)dy
∣∣∣2 dt

t

)1/2
.

From Lemmas 5.4 and 5.5 of [2] we deduce that, for every 1 6 p < ∞, there exists
Cp > 0 such that

∥∥∥ ∞∫
0

| f (y, w)|
∥∥∥t
(

Dλ,xPλ
t (x, y)− ∂

∂x
Pt(x, y)

)∥∥∥
L2((0,∞),dt/t)

dy
∥∥∥

Lp
X(0,∞)

6Cp‖ f ‖Lp
X(0,∞),

for each f ∈ Lp
X(0, ∞).

Then, gλ is bounded from Lp
X(0, ∞) into itself, with 1 < p < ∞, provided

that gj, j = 1, 2, are bounded from Lp
X(0, ∞) into itself.

To analyze gλ we proceed in a similar way. We define

gλ,1( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂t
Pλ

t ( f )(x, w)
∣∣∣2 dt

t

)1/2
,

and

gλ,2( f )(x, w) =
( ∞∫

0

|tD∗λ,xP
λ
t ( f )(x, w)|2 dt

t

)1/2
.

By using (5.3.5) of [18] we obtain

D∗λ,xP
λ
t (x, y) = Dλ,yPλ

t (y, x), t, x, y ∈ (0, ∞).

Hence, since gλ,1 = gλ+1,1 and by using again Lemmas 5.4 and 5.5 of [2] and
symmetries, from the above arguments we deduce that gλ,1 (respectively, gλ,2) is
bounded from Lp

X(0, ∞) into itself, with 1 < p < ∞, provided that g1 (respec-
tively, g2) is bounded from Lp

X(0, ∞) into itself.
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Also it is not hard to see that g1 (respectively, g2) is bounded from Lp
X(0, ∞)

into itself, with 1 < p < ∞, if and only if G1 (respectively, G2) is bounded from
Lp

X(R) into itself, where

G1( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂t

∞∫
−∞

Pt(x, y) f (y, w)
∣∣∣2 dt

t

)1/2

and

G2( f )(x, w) =
( ∞∫

0

∣∣∣t ∂

∂x

∞∫
−∞

Pt(x, y) f (y, w)
∣∣∣2 dt

t

)1/2
.

It is known that the (sublinear) operators

G1( f )(x) =
( ∞∫

0

∣∣∣t ∂

∂t

∞∫
−∞

Pt(x, y) f (y)
∣∣∣2 dt

t

)1/2
, x ∈ R,

and

G2( f )(x) =
( ∞∫

0

∣∣∣t ∂

∂x

∞∫
−∞

Pt(x, y) f (y)
∣∣∣2 dt

t

)1/2
, x ∈ R,

are bounded from Lp(R, u(x)dx) into itself, for every 1 < p < ∞ and u ∈ Ap,
where as usual Ap denotes the Muckenhoupt class of weights. Then, according
to Theorem 5 of [23] Gj, j = 1, 2, are bounded from Lp

X(R) into itself, for every
1 < p < ∞.

We have proved that for every 1 < p < ∞ there exists Cp > 0 such that

‖gλ( f )‖Lp
X(0,∞) 6 Cp‖ f ‖Lp

X(0,∞), f ∈ Lp
X(0, ∞),

and

‖gλ( f )‖Lp
X(0,∞) 6 Cp‖ f ‖Lp

X(0,∞), f ∈ Lp
X(0, ∞).

By Proposition 6.1 of [2] we have that, for every f , g ∈ L2(0, ∞),

(3.2)
1
4

∞∫
0

f (x)g(x)dx =

∞∫
0

∞∫
0

t
∂

∂t
(Pλ

t ( f )(x))t
∂

∂t
(Pλ

t (g)(x))
dt
t

dx.

Let 1 < p < ∞. Since both of the sides define bounded bilinear operators from
Lp(0, ∞) × Lp′(0, ∞) into C, where p′ denotes the exponent conjugate of p, we
conclude that (3.2) holds for every f ∈ Lp(0, ∞) and g ∈ Lp′(0, ∞). Hence (3.2)
holds for every f ∈ Lp(0, ∞) ⊗ X and g ∈ Lp′(0, ∞) ⊗ X∗, that is, if n ∈ N,
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fi ∈ Lp(0, ∞), gi ∈ Lp′(0, ∞), αi ∈ X and βi ∈ X∗, i = 1, 2, . . . , n, then

1
4

∞∫
0

〈 n

∑
i=1

fi(x)αi,
n

∑
m=1

gm(x)βm

〉
dx

=

∞∫
0

∞∫
0

〈 n

∑
i=1

t
∂

∂t
Pλ

t ( fi)(x)αi,
n

∑
m=1

t
∂

∂t
Pλ

t (gm)(x)βm

〉dt
t

dx.

By taking into account that X′ is an UMD space (here X′ = X∗) and Lp′(0, ∞)⊗X′

is dense in Lp′

X′(0, ∞) we conclude that,

‖ f ‖Lp
X(0,∞) 6 C‖gλ,1( f )‖Lp

X(0,∞), f ∈ Lp(0, ∞)⊗ X.

Again density implies that

‖ f ‖Lp
X(0,∞) 6 C‖gλ,1( f )‖Lp

X(0,∞), f ∈ Lp
X(0, ∞).

Thus the proof of (i)⇒ (iii) is finished.
Suppose now that, for some 1 < p < ∞, the inequalities (1.5) and (1.6) hold.

According to Theorem 2.1 of [2] to see that X has the UMD property it is sufficient
to prove that the Riesz transform R∗λ, the adjoint of Rλ, associated to the Bessel
operator Sλ can be extended to Lp

X(0, ∞) as a bounded operator from Lp
X(0, ∞)

into itself.
Let f ∈ L2(0, ∞). Then

Pλ
t (R∗λ f ) = Qλ

t ( f ).

Hence according to Cauchy–Riemann equations (1.3) and (1.4) we obtain

(3.3)
∂

∂t
Pλ

t (R∗λ f ) =
∂

∂t
Qλ

t ( f ) = D∗λ,xP
λ
t ( f ),

and

(3.4) Dλ,xPλ
t (R∗λ f ) = Dλ,xQλ

t ( f ) =
∂

∂t
Pλ

t ( f ).

If we extend R∗λ to L2(0, ∞)⊗ X in the obvious way, then R∗λ( f ) ∈ L2(0, ∞)⊗ X,
for every f ∈ L2(0, ∞)⊗ X, and the formulas (3.3) and (3.4) hold for every f ∈
L2(0, ∞)⊗ X. Thus we conclude that

gλ(R∗λ f ) = gλ( f ), f ∈ L2(0, ∞)⊗ X.

By combining inequalities (1.5)–(1.6) we get, for every f∈(L2(0, ∞)∩Lp(0, ∞))⊗X,

1
C
‖R∗λ f ‖Lp

X(0,∞) 6 ‖gλ(R∗λ f )‖Lp
X(0,∞) = ‖gλ( f )‖Lp

X(0,∞) 6 C‖ f ‖Lp
X(0,∞).

Hence, since (L2(0, ∞) ∩ Lp(0, ∞))⊗ X is dense in Lp
X(0, ∞), R∗λ can be extended

to Lp
X(0, ∞) as a bounded operator from Lp

X(0, ∞) into itself.
Thus it is established that (ii)⇒ (i) and the proof of Theorem 1.3 finishes.
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