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1. INTRODUCTION

An operator algebra (respectively operator space) is a norm closed algebra (re-
spectively vector space) of operators on a Hilbert space. The present paper is a
continuation of a program (see e.g. [7], [8], [9], [15], [25], [38]) studying the struc-
ture of operator algebras and operator spaces using “one-sided ideals”. We shall
have nothing to say about general one-sided ideals in an operator algebra A, in-
deed not much is known about general closed ideals in some of the simplest clas-
sical function algebras. However there is a tractable and often interesting class of
one-sided ideals in A, which corresponds to a kind of “noncommutative topol-
ogy” for A, and to a noncommutative variant of the theory of peak sets and peak
interpolation for function algebras (see [25], [9]). These are the r-ideals, namely the
right ideals of A possessing a left contractive approximate identity (cai). These
ideals are in bijective correspondence with the l-ideals (left ideals with right cai),
and with the hereditary subalgebras (HSA’s) of A, defined below. Much of our
paper is a further development of the general properties and behaviors of these
objects, with applications to the structure of operator algebras. Thus in Section 2
we record many new general facts about one-sided ideals and HSA's, as well as
some other preliminary results. Section 3 mainly concerns the existence of non-
trivial r-ideals, and of maximal r-ideals. There are some interesting connections
here with the remaining open problems from [25], [9], [8].



398 MELAHAT ALMUS, DAVID P. BLECHER, AND SONIA SHARMA

In Section 4 we apply some of these ideas to study a class of operator alge-
bras which we have not seen in the literature, which we call 1-matricial algebras.
One of our original motivations for introducing these algebras, is that they might
perhaps lead to some insight into important open questions about operator alge-
braic amenability and related notions, for example because their second duals are
also easy to work with. This class of algebras is large enough to display some in-
teresting behaviors, e.g. some 1-matricial algebras are right ideals in their biduals,
and others are not. Amongst other things we prove Wedderburn type structure
theorems for operator algebras, using 1-matricial algebras as the building blocks.
A key ingredient, as one might expect given the history of Wedderburn type de-
compositions, is played by minimal r-ideals. In Section 5 we continue this theme
by deriving some new characterizations of C*-algebras consisting of compact op-
erators.

In the final section we turn to the ideal structure of the Haagerup tensor
product of operator algebras. We also discuss some connections with the study
of operator spaces which are one-sided M- or L-ideals in their biduals (initiated
in [38]). Our results provide natural examples of operator spaces which are right
but not left ideals (or M-ideals) in their second dual. Their duals are left but not
right L-summands in their biduals.

Turning to notation, we reserve the letters H and K for Hilbert spaces. We
will use basic concepts from operator space theory, and from the operator space
approach to operator algebras, which may be found e.g. in [11], [35].

A topologically simple algebra has no closed ideals. A semiprime algebra is
one in which J2 = (0) implies ] = (0), for closed ideals J. For subsets J, I of an
algebra A the left (respectively right) annihilators are L(J) = {a € A : a] = (0)}
and R(I) = {a € A : In = (0)}. We recall that a Banach algebra A is a right
(respectively left) annihilator algebra if R(I) # (0) (respectively L(J) # (0)) for
any proper closed left ideal I (respectively right ideal J) of A. An annihilator
algebra is both a left and right annihilator algebra. In [27], Kaplansky studied a
class of algebras which he called dual, these satisfy R(L(])) = J and L(R(I)) = I
for J, I as in the last lines. It is known that a C*-algebra is an annihilator algebra
if and only if it is dual in Kaplansky’s sense, and these are precisely the cp-direct
sums of “elementary C*-algebras”, where the latter term refers to the space of
compact operators on some Hilbert space. This class of algebras has very many
diverse characterizations, some of which may be found in Kaplansky’s works or
Exercise 4.7.20 of [17], and which we shall use freely. For example, these are also
the C*-algebras A which are ideals in their bidual [24], or equivalently, A** =
M(A). We shall usually not use the word “dual”, to avoid any confusion with
Banach space duality, and instead will call these annihilator C*-algebras, or C*-
algebras consisting of compact operators. In Section 4, we will be more interested in
several properties weaker than being an annihilator algebra: modular annihilator,
compact, dense socle. See Chapter 8 of [32] for the definitions, and a thorough
discussion of these properties and their connections to each other.
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A normed algebra is unital if it has an identity of norm 1; any operator al-
gebra A has a (unique) operator algebra unitization Al. A bai (respectively cai)
is a bounded (respectively contractive) two-sided approximate identity. The ex-
istence of a bai implies of course that A is left and right essential, by which we
mean that the left or right multiplication by an element in A induces a bicontin-
uous injection of A in B(A). An operator algebra A is Arens regular, and A has a
right bai (respectively right cai) if and only if A** has a right identity (respectively
right identity of norm 1) — see e.g. Proposition 5.1.8 of [32], Section 2.5 of [11].
An algebra is approximately unital if it has a cai. For an approximately unital op-
erator algebra A, we denote the left, right, and two-sided, multiplier algebras by
LM(A),RM(A), M(A), usually viewed as subalgebras of A** (see Section 2.5 of
[11]). If A is an operator algebra, or operator space containing the identity oper-
ator, then we write A(A) for the diagonal A N A*, and write Ag, for the selfadjoint
part of A(A).

The one-sided approximate identity in any r-ideal (respectively l-ideal) | in
an operator algebra A, converges weak* to the support projection p of | in A**,
and [+t = pA** (respectively | L1 = A**p). Indeed, we recall from [25], [9] that
r-ideals are precisely those right ideals of the form pA** N A for a projection p in
A** which is open. By the latter term we mean that there is a net in pA*™*p N A
converging weak* to p; there are several other equivalent characterizations in
[9]. Similarly for l-ideals. A hereditary subalgebra (HSA) of A is an approximately
unital subalgebra D of A such that DAD C D: these are also the subalgebras of
the form pA**p N A for an open projection p in A**.

For subspaces V. of a vector space, we write ) Vj for the vector subspace

of finite sums of elements in Vj, for all k. A projelétion in an operator algebra
A is always an orthogonal projection. A projection in A is called *-minimal if it
dominates no nontrivial projection in A. We use this nonstandard notation to
distinguish it from the next concept: a projection or idempotent ¢ in A is called
algebraically minimal if eAe = Ce. Clearly an algebraically minimal projection is
x-minimal. In certain algebras the converse is true too, but this is not common.
In a semiprime Banach algebra the minimal left ideals are all closed, and all of
the form Ae for an algebraically minimal idempotent. Indeed, if e is an idempo-
tent then Ae is a minimal left ideal if and only if e is algebraically minimal [32].
Similarly for right ideals. Idempotents ¢, f are mutually orthogonal if ef = fe = 0.
Any A-modules appearing in our paper will be operator spaces too; hence for
morphisms we use CB(X, Y) 4, the completely bounded right A-module maps.

We will also need in a couple of places some concepts from the theory of
operator space multipliers and one-sided M-ideals, which can be found e.g. in
Chapter 4 of [11], [8], or the first few pages of [15]. We write M;(X) and M;(X)
for the unital operator algebras of left and right operator space multipliers of an
operator space X. See Chapter 4 of [11] for the definition of these. The diago-
nal of these two operator algebras are the C*-algebras A;(X) and A;(X) of left
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and right adjointable multipliers. The operator space centralizer algebra Z(X) is
Aj(X) N Ar(X). The projections in these three C*-algebras are called respectively
left, right, and complete, M-projections on X. A subspace | of X is called, respec-
tively, a right, left, or complete, M-ideal in X, if [ is, respectively, the range of a
left, right, or complete, M-projection on X**. The right (respectively left, com-
plete) M-ideals in an approximately unital operator algebra are precisely the r-
ideals (respectively l-ideals, closed ideals with cai).

If X is an operator space then C(X) (respectively R (X)) denotes the op-
erator space of (countably) infinite columns (respectively rows) with entries in
X, formed by taking the closure of those columns (respectively rows) with only
finitely many nonzero entries. Also, if Ey is a subspace of X for each k, then the
“column sum” @° Ej consists of the tuples (x;) € Co(X) with x; € Ej for each k.

k
Similarly for the “row sum” @' E.
k

2. HSA’S AND r-IDEALS

In this section we collect several new results about r-ideals and HSA’s. The
first is a generalization of Proposition 6.4 in [8].

PROPOSITION 2.1. Let A be an operator algebra with right cai (e;). Then we have
M, (A) = CB4o(A) = RM({a € A : eqa — a}). Also, the left M-ideals of A are the
l-ideals in A. The left M-summands of A are precisely the left ideals of form Ae, for a
projection e in the multiplier algebra of {a € A : e;a — a}; and also coincide with the
ranges of completely contractive idempotent left A-module maps on A.

Proof. That M;(A) = CBs(A) = RM({a € A : e;a — a}) follows from
Theorem 6.1 of [7]. We are using the quite nontrivial fact that the hypothesis of
Theorem 6.1 (5) in [7] is removable, which was established in [9]. This, together
with Proposition 5.1 in [9], proves the summand assertion. It follows that if A has
a right identity of norm 1, then the right M-projections correspond bijectively to
the projections in A. Using this, the proof of the left M-ideal assertion is just as in
Proposition 6.4 of [8]. 1

REMARK 2.2. It is not hard to see that the last result is not true for gen-
eral operator algebras. Indeed, right M-summands or right M-ideals of operator
algebras with a left cai, will be right ideals, but they need not have a left cai.

LEMMA 2.3. An r-ideal which has a left identity has a left identity of norm 1.
The proof follows from Corollary 4.7 of [7].

PROPOSITION 2.4. If A is an operator algebra with right cai, and if p is a projec-
tion in A** such that pA C A, then Ap C A.

The proof is as in Proposition 5.1 of [9].
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PROPOSITION 2.5. Semiprimeness and topological simplicity pass to (approxi-
mately unital) HSA's of operator algebras.

Proof. Suppose that D is an HSA in an operator algebra A. If A is semiprime
and ] is an ideal in D with J? = (0), then since D is approximately unital we have

JAJ] C JDADJ C JDJ C J* = (0).

Thus AJA is a nil ideal in A, hence is zero, so that ] C DJD C AJA = (0).
If A is topologically simple and ] is a closed ideal in D, then AJA = (0) or
AJA = A. In the first case, ] = DJD = (0). In the second case,

D = D? c DAJAD c DADJDAD C J.
So D = J, and so D is topologically simple. 1

REMARK 2.6. We show elsewhere that semisimplicity passes to HSA's.

We now state a series of simple results about the diagonal of an operator
algebra.

PROPOSITION 2.7. For any operator algebra A, we have A(A) = A(A**) N A.

Proof. Suppose that A is a subalgebra of a C*-algebra B. Clearly A(A) C
A(A™)NA. If x € A(A™) N A, we may write x = x1 + ixp with x; selfadjoint in
A(A**). Then x + x* = 2x1, so that x; € BN A++ = A. Since x1 is selfadjoint it is
in A(A). Similarly for xp, so that x € A(A). 1

COROLLARY 2.8. Let A be an operator algebra. If A is an ideal in its bidual,
then A(A) is an ideal in A(A**), and also in A(A)**. Thus A(A) is an annihilator
C*-algebra.

Proof. Since A(A*™)AA(A**) C A**AA** C A, the first assertion follows.
The second assertion follows from the first, and the third from the second. 1

PROPOSITION 2.9. If A is an HSA in an approximately unital operator algebra
B, then A(A) = A(B) N A, and this is an HSA in A(B) if it is nonzero.

Proof. If x € A(B) N A, write x = x1 + ix with x selfadjoint. If A = eB**e N
B then x = exje +iexpe. Thus x; = exge € eB**eMNB = A,andsox € A(A). Hence
A(B)NA = A(A). Clearly A(A)A(B)A(A) C A(B)N(ABA) C A(B)NA = A(A),
and so A(A) is an HSA in A(B) if it is nonzero.

REMARK 2.10. (i) Idempotents ¢ in an HSA D of A are algebraically minimal
in A if and only if they are algebraically minimal in D, since eAe = e?Ae? C
eDe C Ce.
(ii) If A is an approximately unital operator algebra, and p is a projection in
M(A) then A(pAp) = pA(A)p. This follows from Proposition 2.9, or directly.

For any operator algebra A, the diagonal A(A) acts nondegenerately on A
if and only if A has a positive cai, and if and only if 1, )11 = 14+. The latter is
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equivalent to 14+ € A(A)*+. To see these last equivalences, note that a positive
cai in A will converge weak* to both 1,4y11 and 14+, so they are equal. Con-
versely, if 1, 4y11 = 14+, and if (¢;) is a cai for A(A), then e;a — a weak*, hence
weakly, for all @ € A. Thus A(A)A is weakly dense in A, hence norm dense by
Mazur’s theorem.

PROPOSITION 2.11. If A is an operator algebra such that A(A) acts nondegener-
ately on A, then M(A(A)) = A(M(A)).

Proof. For any approximately unital operator algebra A, viewing multipli-
ers of A as elements of A**, and multipliers of A(A) in A(A)** = A(A)++ C A*,
we have A(M(A)) N A(A)*+ € M(A(A)). Forif T € A(M(A)) and if a € A(A),
then to see that Tn € A(A), we may assume by linearity that T and a are self-
adjoint. Then Ta € A, but also (Ta)* = aT € A, so that Ta € A(A). Suppose
that A and A(A) share a common positive cai (e;). Then Te; € A(A), and so
T € A(A)*+. Thus A(M(A)) C M(A(A)).

For T € M(A(A)),a € A, wehave Ta = li¥n Teta € A(A)A C A. Similarly
aT € A, and so the C*-algebra M(A(A)) is a unital subalgebra of M(A). So
M(A(A)) C A(M(A)). 1

We define a notion based on the noncommutative topology of operator al-
gebras [9], [25]. We will say that an operator algebra A is nc-discrete if it satisfies
the equivalent conditions in the next result.

PROPOSITION 2.12. For an approximately unital operator algebra A the following
are equivalent:
(i) Every open projection e in A** is also closed (in the sense that 1 — e is open).

(ii) The open projections in A** are exactly the projections in M(A).

(iii) Every r-ideal ] of A is of the form eA for a projection e € M(A).

(iv) The left annihilator of every nontrivial r-ideal of A is a nontrivial 1-ideal.

(v) Every HSA of A is of the form e Ae for a projection e € M(A).
If any of these hold then A(A) is an annihilator C*-algebra.

Proof. If a projection p in A is both open and closed, then p € M(B) for
any C*-cover B of A by Theorem 3.12.9 of [34] and Theorem 2.4 of [9]. Hence
pA C AY- N B = A. Similarly Ap C A, so that p € M(A). So (i) implies (ii), and
the converse follows from the fact that any projection in M(A) is open [9]. The
equivalence of (i) and (ii) with (iii) and (v) follows from basic correspondences
from [9], [25]. That (iii) implies (iv) follows from the fact that here L(eA) = Ae™,
an r-ideal. Conversely, if (iv) holds, and e # 1 is an open projection, then we
claim that there is a nonzero open projection f with f < e*. Indeed choose such
f to be the support projection of L(]) where ] = A**¢ N A. If f = ¢! then (i)
follows, so assume that e + f # 1. Since e + f is open, by the claim there exists a
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nonzero open projection p with p < (e + f)*. Then the HSA D = pA**pN A C
L(J) N R(L(])), so that D = D? = (0). Thus p = 0, a contradiction.

If (i)—(v) hold, then every open projection in A(A)** is in A(M(A)), hence
in M(A(A)) by the argument in Proposition 2.11. Thus every left ideal ] of A(A)
is of the form eA(A) for a projection e € M(A(A)), hence has a nonzero right
annihilator. Thus A(A) is an annihilator C*-algebra. 1

REMARK 2.13. (i) Every finite dimensional unital operator algebra is obvi-
ously nc-discrete. We will see more examples later.

(if) Of course the “other-handed” variants of (iii) and (iv) in the Proposi-
tion 2.12 are also equivalent to the others, by symmetry. For a projection e €
M(A), the l-ideal and HSA corresponding to the r-ideal eA, are Ae and eAe re-
spectively, by the theory in [9].

We will say that an operator algebra A is A-dual if A(A) is a dual C*-algebra
in the sense of Kaplansky, and A(A) acts nondegenerately on A.

We briefly discuss the connections between the “A-dual” and the
“nc-discrete” properties. The flow is essentially one-way between these prop-
erties. Being A-dual certainly is far from implying nc-discrete. For example the
disk algebra A(DD) has no nontrivial projections and is A-dual; but it has many
nontrivial approximately unital ideals (such as {f € A(D) : f(1) = 0}), thus
is not nc-discrete. However nc-discrete implies A-dual under reasonable condi-
tions. For future use we record some necessary and sufficient conditions for a
nc-discrete algebra to be A-dual.

COROLLARY 2.14. Let A be an approximately unital operator algebra which is
nc-discrete. The following are equivalent:
(1) A is A-dual.
(ii) A(A) acts nondegenerately on A.
(iii) Every nonzero projection in M(A) dominates a nonzero positive element in A.
(iv) If p is a nonzero projection in M(A), then there exists a € A with pap selfadjoint.
(V) 144+ € A(A)LL

Proof. We said in Proposition 2.12 that A(A) is an annihilator C*-algebra.
Thus (i) < (ii); and (ii) < (v) by the arguments above the statement of Proposi-
tion 2.11. Clearly (iii) = (iv).

(i) = (iii) As in the last line p € M(A(A)) = A(A)*+, hence dominates a
projection in A(A).

(iv) = (ii) Since A(A) is a ¢p-sum of C*-algebras of compact operators, ev-
ery projection p in A(A)*™* = M(A(A)) is open in A**, hence lies in M(A) by
Proposition 2.12(ii). In particular, e,, the identity of A(A)** is in M(A). Hence
ep = 1 (since (1 —ep)A(1 — e,) cannot contain any nonzero (selfadjoint) element
in A(A)). So A has a positive cai. 1
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The nc-discrete algebras are reminiscent of Kaplansky’s “dual algebras”, in
that the “left (respectively right) annihilator” operation is a lattice anti-isomor-
phism between the lattices of one-sided M-ideals of A:

COROLLARY 2.15. Let A be an nc-discrete approximately unital operator algebra.
If ] is an r-ideal (respectively l-ideal) in A, then the left annihilator L(]) (respectively
right annihilator R(J)) equals Ae* (respectively e* A) where e is the support projection
of J. This annihilator is an l-ideal (respectively r-ideal), and R(L(])) = ] (respectively
L(R(])) = ]). Also, the intersection, and the closure of the sum, of any family of r-ideals
(respectively l-ideals) in A is again an r-ideal (respectively 1-ideal).

Proof. The first statements are evident. The last statement is always true for
the closure of the sum [15]. An intersection ) J; of r-ideals J; is an r-ideal, since it
i

equals R(Y; L(J;)), and ¥ L(J;) isan l-ideal. &

PROPOSITION 2.16. If A is an operator algebra, which is an l-ideal in its bidual,
then every projection e € A** is open, and the r-ideals (respectively l-ideals) in A are
precisely the ideals e A (respectively Ae) for projections e € A**.

Ifin addition A is approximately unital, then A is nc-discrete, and every projection
in A** isin M(A).

Proof. By Proposition 2.4, any projection in A** is in the idealizer of A in
A**, and is open by an argument similar to that on p. 336 of [9]. Also, eA is an

r-ideal, and Ae is an l-ideal, by Theorem 2.4 in [9]. The last statement is now
easy. 1

If in the first paragraph of the statement of the last result, A also happens
to be semiprime, then it is automatically approximately unital, hence the second
paragraph of the statement holds automatically. This follows from:

PROPOSITION 2.17. A semiprime Arens regular Banach algebra A which is a left
ideal in its bidual, has a bai (respectively cai) if it has a right bai (respectively right cai).

Proof. Suppose that (e;) is a right bai for A, with e; — e € A** weak*. If we
can show that e is an identity for A**, then A hasabai. Let ] = {ey —y : y €
A} C A. Then A] = (0), so that J> = (0), and JA C J. Thus | = (0), so that
ey =y forall y € A. Hence A** has an identity. Similarly in the cai case. 1

The next result generalizes part of Proposition 2.1. Although we will not
really use it in the sequel, it is of independent interest, extending a result of Lin
on C*-modules [30]. See Theorem 2.3 of [10] for the “weak* version” of the result.
We refer to [6] for most of the notation used in the following statement and proof.

THEOREM 2.18. IfY is a right rigged module in the sense of [6] over an approxi-
mately unital operator algebra A, then M(Y) = CB(Y)4 = LM(K(Y) 4) completely
isometrically isomorphically.
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Proof. By facts from the theory of multipliers of an operator space (see e.g.
Chapter 4 of [11]), the “identity map” is a completely contractive homomorphism
M, (Y) — CB(Y), which maps into CB(Y)4. Since by [13], p. 34, CB(Y)4 is
an operator algebra, and Y is a left operator CB(Y) 4-module (with the canon-
ical action), then by the aforementioned theory there exist a completely con-
tractive homomorphism 7w : CB(Y)4 — M, (Y) with 7(T)(y) = T(y) for all
y €Y, T € CB(Y)4. Thatis, m(T) = T. Thus CB(Y)4 = M(Y). Finally, K(Y)
is an essential left ideal in CB(Y) 4: itis easy to see that the left regular representa-
tion of CB(Y) 4 on K(Y) 4 is completely isometric. Thus CB(Y)4 C LM(K(Y)A)
completely isometrically. However Y is a left operator module over K(Y) 4, hence
also over LM(K(Y),4) (see Theorem 3.6 (5) in [6] and 3.1.11 in [11]), and so every
T € LM(K(Y)A) corresponds to a map in CB(Y) 4. &

The following follows either from Proposition 2.1, or from Theorem 2.18
(since all r-ideals | in an approximately unital operator algebra A are right rigged
modules over A).

COROLLARY 2.19. If | is an r-ideal in an approximately unital operator algebra
A then My(J) = CB(])a. In particular, if e is a projection in A then Mj(eA) =
CB(eA)y = eAe.

3. EXISTENCE OF r-IDEALS

In Lemma 6.8 of [9] it is shown that if A is a unital operator algebra, and
x € Ball(A), then ] = (1 — x)A is an r-ideal. These ideals, which have also been
studied by G. Willis in a Banach algebra context (see e.g. [41]), for us correspond
to the noncommutative variant of peak sets from the theory of function algebras
(see Proposition 6.7 of [9] for the correspondence). Here and in the following we
write 1 for the identity in A! if A is a nonunital algebra. The following enlarges
this class of examples:

PROPOSITION 3.1. If A is an approximately unital operator algebra, which is an
ideal in an operator algebra B, then (1 — x) A is an r-ideal in A for all x € Ball(B).

Proof. We may assume that B is unital and closed. Then (1 — x)B is an r-
ideal in B. Also, A is a two-sided M-ideal in B. By Proposition 5.30(ii) in [15],
AN (1—x)Bisanr-ideal in B, so has a left cai. Clearly (1 —x)A C AN (1—x)B.
Conversely, if 2 € A isin (1 — x)B, then since the latter has left cai we have that
a€(1—x)BAC (1—x)A.Thus (1 —x)Aisanr-ideal. &

REMARK 3.2. This is false if A has only a right cai, e.g. C;. We do not know
if it is true if A has a left cai, or is a left ideal in B, or both. Note that if A has a left
identity e of norm 1 then (e — x)A is an r-ideal in A for any x € Ball(A); in this
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case (e — x)Ae = (e — xe)Ae is an r-ideal in Ae, so has a left cai which serves as a
left cai for (e — x)A = (e — xe) A.

We recall that a right ideal | of a normed algebra A is regular if there exists
y € Asuch that (1 —y)A C J. We shall say that ] is 1-reqular if this can be done
with |y|| < 1and y # 1. We do not know if every r-ideal in a unital operator
algebra is 1-regular, this is related to a major open question in [25], [9] concerning
the noncommutative variant of the notion of peak sets from the theory of function
algebras. That is, if A is a unital operator algebra, then is every closed projection
(i.e. the “perp” of an open projection) in A** a p-projection in the sense of [25]?
We recall that p-projections are a noncommutative generalization of the p-sets,
and peak sets, from the theory of function algebras. By Proposition 6.7 of [9] and
other principles from [25], [9], this open question is equivalent to whether every
r-ideal in a unital operator algebra A is the closure of a union of (nested, if one
wishes) right ideals of the form (1 —a)A for elements a € Ball(A)? This is true
if A is a unital function algebra (uniform algebra), by results of Glicksberg and
others [25]. There are many reformulations of this question in [9].

PROPOSITION 3.3. If A is a unital operator algebra, then every r-ideal in A whose
support projection is the complement of a p-projection, is 1-regular. If every closed projec-
tion in A** is a p-projection (that is, if the major open problem from [25], [9] mentioned
above has an affirmative solution), then every r-ideal in A is 1-regular.

Proof. The first statement follows easily from Theorem 6.1 of [9]. The sec-
ond follows from the first and the correspondence between r-ideals and closed
projections [25]. 1

We will say that a one-sided ideal in an algebra A is nontrivial, if it is not
A or (0). From Proposition 3.1, one would usually expect there to be many non-
trivial r-ideals in an approximately unital operator algebra. For example, one can
show that in every function algebra there are plenty of nontrivial r-ideals. How-
ever consider for example the semisimple commutative two dimensional opera-
tor algebra A = Span({I, E11 + E12}) in My. This algebra has only two proper
ideals, and neither is an r-ideal. The following results give criteria for the exis-
tence of nontrivial r-ideals, and make it apparent that the operator algebras which
contain nontrivial r-ideals are far from being a small or uninteresting class. We
have not seen item (ii) of the next result in the literature, but probably it is well
known in some quarters.

THEOREM 3.4. If A is a Banach algebra, and x € Ball(A), then
(i) (1 —x)A = (0) if and only if x is a left identity of norm 1 for A.
(ii) If A is unital then 1 — x is left invertible in A if and only if 1 — x is right invertible
in A. If A is nonunital then x is left quasi-invertible in A if and only if x is right quasi-
invertible in A. These statements are also equivalent to any one, and all, of the following

statements: (1 —x)A=A,(1—x)A=A, A(1—x)=A,and A(1—x) = A.
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(iii) If A is unital then the statements in (ii) are also equivalent to the same statements,
but with A replaced throughout by the Banach subalgebra generated by 1 and x.

(iv) If A has a left identity of norm 1 write this element as e, else set e = 0. Every
1-reqular right ideal of A is trivial if and only if the spectral radius r(a) < |la|| for all
a € A\ Ce; and if and only if Ball(A) \ {e} is composed entirely of quasi-invertible
elements.

Proof. (i) Clear.
(ii) and (iii) If A is unital then (1 — x)A has a left bai (e, ), defined by e, =

n
1—(1/n) ¥ xK. Let B be the closure of the algebra generated by 1 and x. Then
k=1

(en) C (1 —x)B. Suppose that (1 —x)A = A. Clearly (1 — x)B C B. Conversely,
ifb e BC (1—x)A, thene,b — b,sothatb € (1—x)B. Thus (1-x)B =B =
B(1 — x). Therefore 1 — x is invertible in B, and hence also in A, by the Neumann
series lemma. Conversely, if 1 — x is right invertible in A then (1 — x)A = A. This
proves the unital case of (ii) and (iii).

For a nonunital Banach algebra A, let A! be a unitization of A. If (1 — x)A =
Athenx € (1—x)A C (1—x)AL If (e,) is a left bai for (1 — x)A! as in the last
paragraph, thene,(1—x) - 1—x,s0e;, = e,(1 —x)+ep,x - 1—x+x =1
Thus A! = (1 — x)Al, and so x is quasi-invertible. Conversely, it is clear that x
right quasi-invertible in A implies that (1 —x)A = A.

(iv) If the condition on the spectral radius holds, then for a € Ball(A) \ Ce,
we have r(a) < 1, so that a is quasi-invertible, or equivalently (1 —a)A = A. If
a € Ce the corresponding ideals are clearly trivial.

Supposing every 1-regular right ideal is trivial, then 1 ¢ Sp ,(x) for all x €
A\ Ce of norm 1. Multiplying x by unimodular scalars shows that the unit circle
does not intersect Sp 4 (x). Thus r(x) < 1. By scaling, r(x) < ||x|| for all x €
A\Ce.

The rest of (iv) is evident from the above. 1

REMARK 3.5. Of course the r(x) < ||x|| condition in (iv) is equivalent to
a" — Oforalla € Ball(A) \ Ce.

For operator algebras one can refine the last result further. The equivalences
of (i)—(ii) below is probably a well known observation.

PROPOSITION 3.6. Let A be a closed subalgebra of B(H), and x € Ball(A).
If A is unital, then the following are equivalent (and are equivalent to the other
conditions in (ii) and (iii) in the last theorem);
(1) 1 — x is invertible in A.
(i) 11+ x] < 2.
If A is nonunital, then x is quasi-invertible in A if and only if (ii) holds with respect
to AL
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If A is any operator algebra then the conditions in (iv) of the last theorem hold if
and only if |1 + x|| < 2 for all x € Ball(A) with x # e, and if and only if v(x) < ||x||
forall x € A\ Ce. Here v is the numerical radius in Al.

Proof. (i) = (ii) Suppose that ||I + x|| = 2. If {,, € Ball(H) satisfies ||, +
xZu||? — 4, then ||Zx|, ||xCnl|, and Re({xZy, {x)), all converge to 1, and so ||, —
xZn||>—0. Thus ||Z,|| < ||(1 — x)~Y|||Zn — xCu|| — O, which is a contradiction.

(i) = (i) Letb = (x+1)/2. If |[x + 1|| < 2, then by the Neumann series
lemma, 1 — b is invertible in any operator subalgebra containing 1 and x, and in
particular in A. Hence (i) holds.

If ||x + 1] < 2forall x € Ball(A) \ Ce, then the unit circle does not intersect
the numerical range in A' of such x, since |1 + ¢(e?x)| < 2 for all states ¢ on A.
So v(x) < 1. By scaling, v(x) < ||x|| forallx € A\ Ce.

The rest of the assertions of the theorem are obvious. 1

PROPOSITION 3.7. Let A be an nc-discrete approximately unital operator algebra.
If ] is a right ideal in A then | is a reqular r-ideal in A if and only if | is 1-reqular and if
and only if | = e A for a projection e € A. Also, the following are equivalent:
(i) Every 1-regular right ideal is trivial.
(i) A(A) c C1L.
(iii) A contains no nontrivial projections.
Also, A has no nontrivial r-ideals if and only if M(A) contains no nontrivial projections.

Proof. 1f (1 —y)A C ] as above, and | = eA for a projection e € M(A), then
e(1-y) =1—y. Thatise' = e'y € A. Conversely, et € A implies that eA is
1-regular.

That (ii) = (iii), and (iii) = (i), is now clear. To see that (i) = (ii), note that
if A(A) contains a hermitian & then v(h) = ||h||, so h € C1 by the last assertion of
Proposition 3.6. Thus A(A) C C1.

The last part follows from Proposition 2.12(iii). &

PROPOSITION 3.8. Let A be an operator algebra which contains nontrivial 1-
regular ideals (or equivalently, Ball(A) \ {1} is not composed entirely of quasi-invertible
elements). Then proper maximal r-ideals of A exist. Indeed, if y € Ball(A) is not quasi-
invertible then (1 — y)A is contained in a proper (1-reqular) maximal r-ideal. The unit
ball of the intersection of the 1-reqular maximal r-ideals of A is composed entirely of
quasi-invertible elements of A.

Proof. We adapt the classical route. For a non-quasi-invertible y € Ball(A),
let (J;) be an increasing set of proper r-ideals, each containing (1 — y)A. Then
J = U Ji is aright ideal which does not contain y, or else thereis a t with a = ya +

t

(1—y)a € Jforalla € A. The closure | of ] is an r-ideal since it equals the closure
of U J;. Also ] is proper, since the closure of a proper regular ideal is proper [32].
t

Thus by Zorn’s lemma, (1 — y)A is contained in a (regular) maximal r-ideal. Let
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I be the intersection of the proper 1-regular maximal r-ideals. If y € Ball(I), but
y is not quasi-invertible, then y ¢ (1 —y)A. Let K be a maximal proper r-ideal
containing (1 —y)A. Theny ¢ K (forif y € Kthena = (1 —y)a+ya € K for all
a € A),and K is regular. Soy € I C K, a contradiction. Hence every element of
Ball(I) is quasi-invertible. &

REMARK 3.9. (i) One may replace r-ideals in the last result with l-ideals, or
HSA's.
(if) In connection with the last result we recall from algebra that the Jacobson
radical is the intersection of all maximal (regular) one-sided ideals.

4. MATRICIAL OPERATOR ALGEBRAS

In this section, we shall only consider separable algebras. This is a blanket
assumption, and will be taken for granted hereafter. This is only for convenience,
the general case is almost identical.

If (qx);>; are elements in a normed algebra A then we say that }_ g, = 1

k

right strictly if ) gra = a for all a € A, with the convergence in the sense of nets
k

(indexed by finite subsets of N). Similarly for left strictly, and strict convergence

means both left and right strict convergence. If A is a Banach algebra and the g

are idempotents with q;q; = 0 for j # k, and if }_ g; = 1 strictly, then (L3_; q¢) is
k

an approximate identity for A. If A is left or right essential (thatis, A C B(A) bi-
continuously via left or right multiplication) then (Y_}_; gx) is a bai for A. Indeed
by a simple argument involving the principle of uniform boundedness, there is a
constant K such that H Y gk H < Kfor all finite sets J. (We are not saying that con-

ke]
vergent nets are bounded, but that convergent series have bounded partial sums,

which follows because the sets | are finite.) Now suppose that in addition, A is

a closed subalgebra of B(H). In this case we claim that, up to similarity, we may

assume that the gy are orthogonal projections and that (Y}, gx) is a cai for A.

Indeed, since by the above the finite partial sums of | q; are uniformly bounded,
k

by basic similarity theory there exists an invertible operator S with S~1¢;S a pro-
jection for all k. To see this, note that the set {1 —2 Y ycr gx}, where E is any finite
subset of N, is a bounded abelian group of invertible operators. Hence by Lem-
ma XV.6.1 of [18], there exists an invertible S with S™1(1 — 2 Y ;< gx)S unitary for
every E. This forces ex = S~14;S to be a projection for all k. Then B = S~1AS is
a subalgebra of B(H) with a cai (Y_}_; ex), for a sequence of mutually orthogonal
projections ey in B.

Because of the trick in the last paragraph, we will usually suppose in the re-
mainder of this section that the idempotents g are projections. This corresponds
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to the “isometric case” of the theory. The “isomorphic case” of our theory be-
low sometimes follows from the “isometric case” by the similarity trick above,
however we will make rarely mention this variant of the theory.

PROPOSITION 4.1. Let (qy)}>, be mutually orthogonal projections in an operator
algebra A. Then ) q; = 1 right strictly if and only if A is the closure of 3 qiA. In this
k k

case (L_p_q qk) is a left cai; and it is a cai if and only if A is approximately unital, and if
and only if A is also the closure of ), Agy.
k

Proof. The first part is obvious. If A is approximately unital then (Y}_; g)
must converge weak* to an identity 1 for A**. The closure of ) Agy is an l-ideal
k

n
with support projectione > Y gi, soe = 1and A is the closure of ), Agy. 1
k=1 k

PROPOSITION 4.2. If A is an Arens regular Banach algebra with idempotents
(qr) 5, with Y- Aq or ¥ qiA dense in A (for example, if Y q = 1 left or right strictly),
k k k

then A is a right ideal in A** if and only if qi A is reflexive for all k. If A is topologi-
cally simple and Arens regular, then A is a right ideal in A** if eA is reflexive for some
idempotent e € A.

Proof. This is probably well known, and so we will just sketch the proof.
We write “w-" for the weak topology. We use the fact that T : X — Y is w-
compact if and only if the w-closure of T(Ball(X)) is w-compact and if and only
if T**(X**) C Y [31]. Suppose that A is a right ideal in A**. We have Ball(g;A) C
gxBall(A), and the w-closure of the latter set is w-compact in A. A little argu-
ment shows that it is w-compact in g A. Since Ball(g;A) w-closed in gi A, it is w-
compact, and so g A is reflexive. Conversely, if g; A is reflexive then L, : A — A
is w-compact since the w-closure in A of L, (Ball(A)) is contained in a multiple
of Ball(gxA), which is w-compact in g A, hence in A. Inside LM(A), A is the
closure of finite sums of terms of the form alL,, or Ly a, for a € A, which are all
weakly compact. Since the weakly compact operators form an ideal, left multi-
plication by any element of A is weakly compact, and hence A is a right ideal in
A**. We only need k = 1 in the above argument if A is topologically simple, for
then AgjAisdensein A. 1

DEFINITION 4.3. We now define a class of examples which fit in the above
context. We say that an operator algebra A is matricial if it has a full set of ma-
trix units {Tij}, whose span is dense in A. Thus T;;Ty; = 6 T;;, where Jj is the
Kronecker delta. Define q; = Tjx. We say that a matricial operator algebra A
is 1-matricial if ||qx|| = 1 for all k, that is, if and only if the g are orthogonal
projections. We mostly focus on 1-matricial algebras (other matricial operator al-
gebras appear only occasionally, for example in Corollary 4.27). We will think of
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two 1-matricial algebras as being the same if they are completely isometrically
isomorphic.

As noted at the start of the section, we are only interested in separable (or
finite dimensional) algebras, and in this case we prefer the following equiva-
lent description of 1-matricial algebras. Consider a (finite or infinite) sequence
Ty, Ty, ... of invertible operators on a Hilbert space K, with T = I. Set H =
22K =K®) = Ka2K@?--- (in the finite sequence case, H = K™). Define
Tij = E;® TflTj € B(H) for i,j € N, and let A be the closure of the span of
the Tj;. Then T;; Ty = 0;Tj, so that these are matrix units for A. Then A is a
1-matricial algebra, and all separable or finite dimensional 1-matricial algebras
are completely isometrically isomorphic to one which arises in this way (by the
proof of Theorem 4.8 below). Let g5 = Ty, then ) g = 1 strictly.

k

A o-matricial algebra is a co-direct sum of 1-matricial algebras. Since we only
care about the separable case these will all be countable (or finite) direct sums. It
would certainly be better to call these o-1-matricial algebras, or something sim-
ilar, but since we shall not really consider any other kind, we drop the “1” for
brevity.

LEMMA 4.4. Any 1-matricial algebra A is approximately unital, topologically
simple, hence semisimple and semiprime, and is a compact modular annihilator alge-
bra. It is an HSA in its bidual, so has the unique Hahn—Banach extension property in
Theorem 2.10 of [9]. It also has dense socle, with the gy algebraically minimal projections
with A = @° qx A = @ Aqy. The canonical representation of A on Aqq is faithful and

k k

irreducible, so that A is a primitive Banach algebra.

Proof. Clearly (Y}_; qx) is a cai. Also, g;Agy = CTj. Thus q;Aq; = Cqj, so
the gy are algebraically minimal projections with A = @° g, A by Theorem 7.2 of
k

[6]. Also q;A = Span({Tj : k € N}). If ] is a closed ideal in A, and 0 # x € ],
then g;x # 0, and g;xqx # O, for some j, k. Hence Ty € ], and so Tpq € ] for all
p,q € N, since these are matrix units. So A = J. Thus A is topologically simple,
hence semisimple and semiprime. Thus the g; A are minimal right ideals, so A has
dense socle, and by Proposition 8.7.6 of [32] we have that A is a compact modular
annihilator algebra. Note that q;A™q, C CTy C A, and so AA™q, C A and
AA*A C A. Hence A is an HSA in its bidual, so has the unique Hahn-Banach
extension property in Theorem 2.10 of [9]. The representation of A on Ag; is
faithful, since aAq; = (0) implies 1Aq1 A = (0), hence aA = (0) and a = 0. It is
also irreducible, since Aq; is a minimal left ideal. &

REMARK 4.5. If a Banach space X has the unique Hahn-Banach extension
property in Theorem 2.10 of [9], then by [29], it is Hahn—Banach smooth in X**,
hence it is a HB-subspace of X**, and X* has the Radon-Nikodym property. By
the work of Godefroy and collaborators, if X* has the latter property then there is
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a unique contractive projection from X(4) onto X**, and X* is a strongly unique
predual (see e.g. [38]). Thus all of the above holds if X is a o-matricial operator
algebra.

COROLLARY 4.6. A 1-matricial algebra A is a right (respectively left, two-sided)
ideal in its bidual if and only if g1 A (respectively Aqy, 1 A and Aqy) is reflexive.

REMARK 4.7. (i) It is known that semisimple (and many semiprime) anni-
hilator algebras are ideals in their bidual ([32], Corollary 8.7.14). In particular, a
1-matricial annihilator algebra is an ideal in its bidual. We conjecture that a 1-
matricial algebra A is bicontinuously isomorphic to K(¢2) if and only if it is an
annihilator algebra.

(i) It is helpful to know that in any 1-matricial algebra, (Tyx) = (Eqx ® Ty) is
a monotone Schauder basis for g1 A. Indeed, clearly the closure of the span of the
Ty equals g1 A, and if n < m then

n 2 n ) m 2
‘ ) “lekH - H Y T T = H Y. ‘XlekH :
k=1 k=1 k=1

The following is a first characterization of 1-matricial algebras. Others may
be derived by adding to the characterizations of cy-sums of 1-matricial algebras
below, the hypothesis of topological simplicity.

m
<| L luPrr
k=1

THEOREM 4.8. If A is a topologically simple left or right essential operator algebra
with a sequence of nonzero algebraically minimal idempotents (qi) with q;qx = 0 for
j # k and Y, g = 1 strictly, then A is similar to a 1-matricial algebra. If further the gy

k

are projections, then A is unitarily isomorphic to a 1-matricial algebra.

Proof. By the similarity trick at the start of this section, we may assume that
the g are projections. Since A is semiprime, the gxA are minimal right ideals,
and A has dense socle. Any nonzero T € B(q;A,qxA)4 is invertible, and if
S, T € B(qjA,qxA) 4 then T~'S € Cgj. Thus B(q;A,qxA) 4 = CT. We now show
that the “left multiplication map” 6 : q;Aqx — CB(qxA4,q;A) 4 is a completely iso-
metric isomorphism. Certainly it is completely contractive and one-to-one. Also,
if T € CB(qiA, 4jA) o then T(qi) € q;Aqy with T(qx)qea = T(qga). Thus 6~ is a
contraction, and similarly it is completely contractive. Choose 0 # Ty € q1Aqy,
with g; = T;. Write T~ ! for the inverse of Ty € B (9jA,qxA) 4, an element of
qkAql with Tk_lTk = qk and Tka_l = q1. Then T]k = Tj_lTk € %A% and so

n
qjAq, = C Tj’lTk. Any a € A may be approximated first by k; qxa, and then by

n
Y. qkaqj- Thus A is the closure of the span of {T;;}, which are a set of matrix
jk=1

units for A.
If A C B(Hp) nondegenerately, set Ky = qx(Hp) = T,:l(HO), and let K =
q1Hp. Then K = K via Ty and T~ 1. Since these are Hilbert spaces, there is a
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unitary Uy : Ky — K, and hence a unitary isomorphism U : Hy = P> Ky — K(®),
k

It is easy to see UAU* is a 1-matricial algebra, so that A is unitarily equivalent to
a 1-matricial algebra. 1

LEMMA 4.9. Let A be an infinite dimensional 1-matricial algebra. Then A is
completely isomorphic to K(¢2) if and only if A is topologically isomorphic to a C*-
algebra (as Banach algebras), and if and only if (|| Ty ||| T, Y|) is bounded (where Ty is as
in Definition 4.3). If || Ty || ||Tl;l | < 1forall k then A = K(¢%) completely isometrically.

Proof. If p : A — K(¢?) is a bounded homomorphism and ¢, = p(q), then
e are finite rank idempotents. If p is surjective, then the idempotents e; are rank
one, since they are algebraically minimal. They are mutually orthogonal and
uniformly bounded, so there is an invertible S € B(¢?) with S~1¢;S rank one
projections, say S~'e,S = |¢) (&, & a unit vector in 2. Since these projec-
tions are mutually orthogonal, (¢x) is orthonormal. Then p(Ty) = e;p(Ty)ex, so
that S™1p(T)S = Ax|&1)(&] for some scalars Ay. There is a constant such that
ITell < ClAgl. Similarly, §~'p(T, )8 = jueléx) @, and | T, 1| < Dlpgl. Thus
| T |l \|Tk_1|| < CD|Agpg|. However since g1 = Tka_1 we have

S 0(91)S = 181) (1l = Akpar|€1) (Gl

so that Agpy = 1. Hence ||Tk||||Tk_1|| < CD.

Suppose that || Ty ||| T, Y| < M? for each k. By multiplying by appropri-
ate constants, we may assume that |Ty|| = [T, '] < M for all k. Let x =
diag{Ty, T»,...}, and x~' = diag{T; ', T,'},...}. The map 0(a) = xax'isa
complete isomorphism from A onto K(¢2), and 6 is isometric if M = 1.

If A were isomorphic to a C*-algebra B, then B is a topologically simple C*-
algebra with dense socle, so is a dual algebra in the sense of Kaplansky. Since it is
topologically simple, B = K(¢?). It is a simple consequence of similarity theory
that a bicontinuous isomorphism from K(¢?) is a complete isomorphism. &

An operator algebra will be called a subcompact 1-matricial algebra, if it is
(completely isometrically isomorphic to) a 1-matricial algebra with the space K in
the definition of a 1-matricial algebra (the second paragraph of 4.3) being finite
dimensional.

LEMMA 4.10. A 1-matricial algebra A is subcompact if and only if A is completely
isometrically isomorphic to a subalgebra of K(¢2), and if and only if its C*-envelope is
an annihilator C*-algebra. In this case, A is an ideal in its bidual, and q A (respectively
Aqy) is linearly completely isomorphic to a row (respectively column) Hilbert space. Here
gy is as in Definition 4.3. Indeed, if a 1-matricial algebra A is bicontinuously (respectively
isometrically) isomorphic to a subalgebra of K(¢2), then A is bicontinuously (respectively
isometrically) isomorphic to a subcompact 1-matricial algebra.
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Proof. That a subcompact 1-matricial algebra is a subalgebra of K(¢?) fol-
lows from the definition. We leave it as an exercise that the separable operator
algebras whose C*-envelope is an annihilator C*-algebra, are precisely the sub-
algebras of K(¢2). If § was a bicontinuous homomorphism from A onto a sub-
algebra of K(¢?), then ¢, = 6(qy) is a finite rank idempotent. Hence e, K(¢?) is
Hilbertian. Thus g, A is Hilbertian, and similarly Agq is Hilbertian. These are re-
flexive, and so A is an ideal in its bidual by Corollary 4.6. If Hy is the closure of
8(A)(£?), then the compression of § to Hy is a nondegenerate bicontinuous homo-
morphism, with range easily seen to be inside K(Hp). So we may assume that 6
is nondegenerate from the start. As in Theorem 4.8, there is an invertible operator
S on % with p; = S~'e;S mutually orthogonal projections. These are compact,
so finite dimensional. Now appeal to Theorem 4.8 and its proof to see that A is
bicontinuously isomorphic to a subcompact 1-matricial algebra. The other cases
are similar. 1

REMARK 4.11. (i) Suppose that in the last lemma, also (||Tx|| HT]:l I is un-
bounded, so that A is not isomorphic to a C*-algebra as Banach algebras. In this
case A is not amenable (nor has the total reduction property of Gifford [21], etc.).
For amenability implies the total reduction property, and the total reduction prop-
erty for subalgebras of K(¢2), implies by [21] that A is similar to a C*-algebra. It
is interesting to ask if a c-matricial algebra is amenable (or has the total reduction
property, etc.) if and only if it is isomorphic to a C*-algebra. Probably no 1-
matricial algebras are amenable, biprojective, have Gifford’s reduction property,
etc., unless it is isomorphic to a C*-algebra, but this needs to be checked.

(if) We do not know if 1-matricial algebras are bicontinuously isomorphic if
and only if they are completely isomorphic.

EXAMPLE 4.12. LetK = ¢4, and Ty = diag{k, 1/k}. In this case by the above
A is an ideal in its bidual, but is not topologically isomorphic to K(¢?) as Banach
algebras. Here g1 A is a row Hilbert space and Agq; is a column Hilbert space.
Note that A is not an annihilator algebra by Theorem 8.7.12 of [32], since (g1 A)*
is not isomorphic to Aq; via the canonical pairing.

EXAMPLE 4.13. Let K = /2, and T = Ej + (1/k)L.

Claim. g1 A is not reflexive. Indeed the Schauder basis (Ty;) (see Remark 4.7)
fails the first part of the well known two part test for reflexivity [31], because
[e9)
Y. TiT; converges weak* but not in norm. Or one can see that 1A = ¢g by
k=1
Lemma 4.15 below. Here T, ! has k in all diagonal entries but one, which has a
positive value < k. It follows that Aq; is a column Hilbert space. By Corollary 4.6,
A is aleftideal in its bidual, but is not a right ideal in its bidual. This is interesting
since any C*-algebra which is a left ideal in its bidual is also a right ideal in its
bidual [38].
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Note that this is not an annihilator algebra by Theorem 8.7.12 of [32], since
(q1A)* is not isomorphic to Agy. Also A is not bicontinuously isomorphic to a
subalgebra of K(¢?) by Lemma 4.10.

k
EXAMPLE 4.14. Let K = (2 and Ty = I — ¥ (1 — V/i/k)E;;. It is easy to see
i=1

that gx A is a row Hilbert space and Agy is a cohllmn Hilbert space, for all k. Thus
A is an ideal in its bidual. Also A is not isomorphic to K(¢2) since (||T¢|||| T, *[|)
is unbounded. Some of the authors are currently using examples such as these
to test conjectures about 1-matricial algebras. For example, an argument by the
second and third author in [37] gives a negative answer to the question “if g; A
is a row Hilbert space and Agy is a column Hilbert space for all k, then is A sub-
compact?” Indeed, we show there that the C*-envelope of the present example is
not an annihilator C*-algebra (so A is not subcompact by Lemma 4.10).

For a 1-matricial algebra A, if we only care about the norms on g A, Aq; (as
opposed to go A etc.) then we also may assume that Ty > 0 for all k, by replacing
Ty by (TxT;)'/2. This does not change the norm on q;A and Ag;. Note that if
we are given any not necessarily invertible T, > 0, for all k € N, then we can
set Sy = gk(Tk), where gi(t) = Xjo1/26)(£) + tX[1/2k 00y (£). Then Sy is a small
perturbation of Ty which is invertible. Using this trick one can build 1-matricial
algebras such that q; A is “very bad”:

LEMMA 4.15. If T, T3, . .. are arbitrary elements of norm > 1 in an operator
space X, then there exists a 1-matricial algebra A with g1 A bicontinuously isomorphic
to Span{Eqx ® Ty} C Reo(X). (One may suppose without loss that X contains I, the
identity operator on a Hilbert space on which X is represented, and set Ty = 1.) Also, A

n n 2
may be chosen such that Aqy is a row Hilbert space, if ¥ |ax|* < H Y \ock|2T,§H for
k=2 k=2
all scalars o and n € N.

Proof. Assume that I € X C B(K). As above, we may assume Ty > 0, and
form S; as described. Also, Ty < S, (1/2k) I < S, and S, — Ty < (1/2k)1 and
S2 — T2 < (1/29)1. Then

n n n n |ka|2 n
Yo lePTE < Y alSE < Y |aPTE + ) x IS Y laxPT¢ + sup [agl?L,
k=1 k=1 k=1 k=1 k=1 k

so that

n 1/2 n 1/2 n 1/2
| X P2 < X kPt < || Xt TR+ sup e
k=1 k=1 k=1

n 1/2
If 1 < || Tx|| then the right hand side is dominated by ZH Y | T? H , so that
k=1

Span({Ey; ® Sg : k € N}) = Span({E;, ® Ty : k € N})
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bicontinuously (hence they are reflexive or nonreflexive simultaneously). Thus
we obtain a 1-matricial algebra A formed from the Si, S, 1 with g1 A bicontinu-
ously isomorphic to the closure of the span of Ejx ® Ty in Reo(X).

n n n
Assume that | ¥ |a|* < H v |1xk|2T,?H < H Y |ak|ZS£H. Since | [+ T|| =
k=2 k=2 k=2

1+ ||T||if T > 0, itis easy to see that we can replace all occurrences of the symbols
“k = 27, in the last formula, by “k = 1”. Let Ry = Sy @ t¢I. Then

n n n
| ¥ leaPRE| = max {|| Y- a5, X I3 }-
k=1 k=1 k=1

n
The last sum is dominated by WX lag |4, if Y tﬁ < 1, and so there is no change
k=1 k

n n
in the norm on g A: H Y |ak|2RiH = H y \ak\ZS%H. Moreover, S, ' < 2¢], and
k=1 k=1
n n n n
SO H Y ‘“k‘ZSk_ZH < Y |w|?(29)2. Therefore H Y |ock|2Rk_2H = Y |wl?/82 if
k=1 k=1 k=1 k=1

tp < 1/2%. A similar fact holds at the matrix level. This forces Agq to be a row
Hilbert space, since the map (a1, aa,...) = [a1t1R] " : aptraRy ! ¢ - - - ] isa complete
isometry from the finitely supported elements in ¢2, with its row operator space
structure, into Ag;. Thus for example we may take t;, = 1/ 2k and obtain a 1-
matricial algebra A formed from the Ry, R, 1 with Aqy a row Hilbert space, and
g1 A bicontinuously isomorphic to the closure of the span of Ex ® Ty in Reo(X). I

EXAMPLE 4.16. An example of a 1-matricial algebra A with g1 A reflexive
(isomorphic to £*) but not isomorphic to a Hilbert space, and Aq; a row Hilbert
space, is obtained from Lemma 4.15 by taking T, T, . . . to be the canonical basis
for Of2. Here Of? is Pisier’s operator Hilbert space [35], and T; = Ip is the iden-

n 1/2 n 1/4
tity operator on H where O¢?> C B(H). Here H Y |txk\2T£H = ( v |zxk|4) :
k=2 k=2

One may vary this example by replacing O¢? with other “classical” operator
spaces, to obtain 1-matricial algebras with other interesting features.

REMARK 4.17. (i) For a C*-algebra A, it is well known that every minimal
left or right ideal is a Hilbert space (since it is a C*-module over Ce = C), as is
A/] for a maximal left or right ideal | (any maximal left ideal is the left kernel of
a pure state ¢, and then A/] C A**(1 — p) where 1 — p is a minimal projection in
A** (see p. 87 in [34]). For a minimal projection g in a W*-algebra M, gMg is one
dimensional since it is projectionless, so Mg is a Hilbert space as in the minimal
ideal argument above).

The above gives, in contrast, very nice (semisimple, etc.) approximately
unital operator algebras A with an r-ideal | (respectively K) which is maximal
(respectively minimal) amongst all the right ideals, such that A/] (respectively
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K) is not Hilbertian, indeed is not reflexive, or is reflexive but is not Hilbertian.
For if A is one of the 1-matricial algebras in our examples, one can show that | =

Y. qxA is maximal amongst all the right ideals, and A/] = q1Aand A/(q1A) =
kA1
J. The latter is because for example L, : A — q1A is a complete quotient map

with kernel J.

(if) For a 1-matricial algebra A, one may consider the associated Haagerup
tensor product Ag; ®j q1A, which is also an operator algebra. Such algebras
are considered in the interesting paper [3]. Immediately several questions arise,
which may be important, such as if there are some useful sufficient conditions for
when this algebra is isomorphic to A (if it is, then A is completely isomorphic to
K(£2)).

PROPOSITION 4.18. Let A be a o-matricial algebra. Then A is a A-dual algebra.
Proof. Clearly A has a positive cai. Also A(@? Ay) = @° A(Ay), so that we
k

may assume that A is a 1-matricial algebra. If x € A(A) then so is g;xq; for any
i,j. Note that g;xq; # 0 if and only if T;T;" € C TJTJ* If we assume, as we may
without loss of generality, that || Ty|| = 1 for all k, then the latter is equivalent to
TiT{ = T;T;. This gives an equivalence relation ~ on N, and we may partition
into equivalence classes, Ej say, each consisting of natural numbers. Let By be the
closure of the span of the E;; ® T;lTj, for i, j € Ex. These are 1-matricial algebras,
which are selfadjoint, hence C*-algebras. Thus By = K(Hy) for a Hilbert space
Hy. Note that the relation T;T; = T;T;" above implies that |IT;]| is constant on

Ex, and by taking inverses we also have || Tlfl | constant on Ej. Since g;xq; = 0

if i and j come from distinct equivalence classes, A(A) decomposes as a co-sum

A(A) = @ By. Indeed, clearly B, C A(A), and any x € A(A)s, is approximable
k

by a selfadjoint finitely supported matrix in A(A)s, , and hence by a finite sum of

elements from the By. Hence A(A) is an annihilator C*-algebra. &

A pleasant feature of 1-matricial algebras is that their second duals have a
simple form:

LEMMA 4.19. If A is a 1-matricial algebra defined by a system of matrix units
{Tij}in B(K(®)) as in Definition 4.3, then

A* 2 {T € B(K™®)) : 4;Tq; € CT; Vi,j}.
Thus A** is the collection of infinite matrices [,BijTlflT]-], for scalars Bj;, which are
bounded operators on K(*).

Proof. Write N for the space on the right of the last displayed equation. This
is weak* closed. Suppose that A is represented nondegenerately on a Hilbert
space H in such a way that Iy = 14+« € A** C B(H), the latter as a weak* closed
subalgebra, with the o-weak topology agreeing on A** with the weak* topology
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of A**. Then we have q;A**g; = CT;;. Thatis, A** C N completely isometrically.
If x € N,and if x, = (Y} qx)x(Xf—q 9x), thenx, € A, and x, — x WOT, hence
weak*. Thusx € A" = A**. 1

LEMMA 4.20. Let A be a o-matricial algebra. If p is a projection in the second
dual of A, then p lies in M(A) and in M(A(A)), and is thus open in the sense of [9].
Hence A is nc-discrete. Also,

A(A™) = A(A)™ = M(A(A)) = A(M(A)).
Proof. We may assume that A is a 1-matricial algebra. Let x € A(A™)ga.

If xy = (X1 qx)x(XF_q qk), then x,, € A(A), and x, — x WOT, hence weak*.
Thus x € A(A)+. Hence

A(A™) C A(A)™ = A(M(A)) = M(A(A)),

using Proposition 2.11. Therefore all of these sets are equal since A(A), and hence
A(A)*+, are subsets of A(A**). Thus any projection p € A** is in M(A), and
hence is open by 2.1in [9]. 1

REMARK 4.21. By the above, and using also the notation in the proof of
Proposition 4.18, for any 1-matricial algebra A we have A(A) = @° B, where
k

By are C*-subalgebras of A(A) corresponding to the equivalence relation ~ on N,
and By = K(Hjy) for a Hilbert space Hy. It follows by Lemma 4.20 that

A(A*) = MA)™ =P B = D" B(Hy).
k k

Recall, by Lemma 4.19, we may write any element of A** as a matrix [ﬁ,-]- T ! T]} ,
for scalars ;. One may ask what this matrix looks like if x € A(A**). In this case,
Bij = 0if i and j are in different equivalence classes for the relation ~ discussed
in the proof of Proposition 4.18. Indeed if x = x* then it is easy to see that

BT = BT i

Assume, as we may, that || T|| = 1 for all k. Taking norms we see that |B;;| = |B;il-
It follows that B;; = B]-i; and also, if B;; # 0 then i ~ j. Thus B;; = 0 if i and j are
in different equivalence classes.

PROPOSITION 4.22. Let A be an operator algebra such that for every nonzero
projection p in A, pqg # 0 for some algebraically minimal projection q € A. Then
every x-minimal projection in A is algebraically minimal. This holds in particular for
o-matricial algebras.

Proof. If p is x-minimal, pg # 0 as above, then (1/t)pgp is an algebraically
minimal projection for some ¢t > 0, and thus equals p. Hence p is algebraically
minimal. 1
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We now give some “Wedderburn type” structure theorems. See e.g. [26],
[28] for some other operator algebraic “Wedderburn type” results in the literature.

THEOREM 4.23. Let A be an approximately unital semiprime operator algebra.
The following are equivalent:
(i) A is completely isometrically isomorphic to a o-matricial algebra.
(i) A is the closure of Y~ qx A for mutually orthogonal algebraically minimal projec-
k

tions q; € A.

(iii) A is the closure of the joint span of minimal right ideals which are also r-ideals
(these are the g A for algebraically minimal projections q € A).

(iv) A is A-dual, and every x-minimal projection in A is algebraically minimal.

(v) A is A-dual, and every nonzero projection in A dominates a nonzero algebraically

minimal projection in A.

(vi) A is nc-discrete, and every nonzero projection in M(A) dominates a nonzero
algebraically minimal projection in A.

(vii) A is nc-discrete, and every nonzero HSA D in A containing no nonzero projec-
tions of A except possibly an identity for D, is one-dimensional.

Proof. Clearly (i) implies (ii), and (ii) implies (iii), and (v) implies (iv). Also
fairly obvious are that (vi) implies (v) (using Corollary 2.14(iii)) and (vii).
(ii) = (i) By Proposition 4.1 we have ) q, = 1 strictly. We partition the
k

(qx) into equivalence classes I;, according to whether gzA = g;A or not. Note
that gy Ag; = (0) if j, k come from distinct classes, by the idea in the proof of
Theorem 4.8 above. If j, k come from the same class then gxAg; is one dimen-

sional, gy Ag; = CTy;j say. Lete; = kezl‘ qk- Then either ¢;T,; = 0 = Tpge; (if

j is in a different class to p,q) or ¢;Ty; = Ty = Tpge; (if j is in the same class
as p,q). So ¢; is in the center of M(A). Then B = ¢;A is an ideal in A, and for

beB, Y, qib=1) qxb =0b,and similarly b ) gy = b. As in earlier proofs B is
kel; k kel;

generated by a set of matrix units T;; which it contains, and hence is topologically

simple. By Theorem 4.8, B = ¢;A is a 1-matricial algebra. The map A — @]0 ejA
€

is a completely isometric isomorphism, since any a € A is approximable i]n norm

by finite sums of term of the form g;aqy, each contained in some ¢;A.

(iif) = (v) Given (iii), the joint support of all the algebraically minimal pro-
jections is 1 (e.g. as in the proof of (v) = (ii) below). Thus the closure of the sum of
the gA(A) for all the algebraically minimal projections g, is A(A) (since the weak*
closure in the second dual contains 1). So by Exercise 4.7.20(ii) of [17], A(A) is
an annihilator C*-algebra with support projection 1, and hence A is A-dual. Lete
be a nonzero projection in M(A). Then since the joint support of all algebraically
minimal projections is 1, eg # 0 for an algebraically minimal projection 4. We
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have (ege)? = egeqe = tege for some t > 0, so that (1/t)ege is an algebraically
minimal projection dominated by e.
(v) = (ii) Let (¢x) be a maximal family of mutually orthogonal algebraically
minimal projections in A, and lete = } ¢ € A™. If A is A-dual, and 1 is the
k

identity in A**, then 1 is also the identity of M(A(A)) = A(A)**,sothat1 —e €

M(A(A)). Hence if e # 1 then 1 — e dominates a nonzero *-minimal projection

in A(A), which in turn dominates a nonzero algebraically minimal projection in

A, contradicting maximality of (ex). So }_ ey = 1. The closure L of }_ e, A is A.
k k

This is because L1 is the weak* closure of sums of the e; A** by e.g. A.3 in [15],

which contains 1 and hence equals A**. So L = AN L++ = A.

(iif) = (vi) We have by the above that (iii) implies (i), which implies by
Lemma 4.20 that A is nc-discrete. The proof of (iii) implies (v) also gives the other
part of (vi).

(iv) = (v) Given a projectione € M(A), we havee € A(M(A)) = M(A(A))
by Proposition 2.11. Since A(A) is an annihilator C*-algebra, e majorizes a nonzero
*-minimal projection (since this is true for algebras of compact operators), which
by (iv) is algebraically minimal.

(vii) = (iv) As we said in Proposition 2.12, A(A) is an annihilator C*-
algebra. Given a nonzero projection p € M(A) \ A, then either the HSA pAp
is one-dimensional, in which case p dominates the identity of pAp, or it is not
one-dimensional, in which case p dominates a nonzero projection in A by (vii).
Thus A is A-dual by Corollary 2.14(iii). Now (iv) is clear.

That (iii) is equivalent to (i) also follows from Theorem 4.31. 1

REMARK 4.24. If A is a one-sided ideal in A**, then A is nc-discrete by
Proposition 2.16. In this case, one may remove the condition “A is nc-discrete” in
(vi)—(vii), and one may replace “A is A-dual” by “A(A) acts nondegenerately on
A” in (iv) and (v).

The following is another characterization of o-matricial algebras.

THEOREM 4.25. Let A be an approximately unital semiprime operator algebra
such that A(A) acts nondegenerately on A. Suppose also that every x-minimal projection
p € Aisalso minimal among all idempotents (that is, there are no nontrivial idempotents
in pAp). The following are equivalent:

(i) A is completely isometrically isomorphic to a o-matricial algebra.
(ii) A is compact.
(iif) A is a modular annihilator algebra.
(iv) The socle of A is dense.
(V) A is semisimple and the spectrum of every element in A has no nonzero limit
point.
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Proof. We first point out a variant of (iv) in the last theorem: if A is a A-dual
algebra which is semiprime, and if every nonzero *-minimal projection p is mini-
mal among the idempotents in A, and pAp is finite dimensional (or equivalently,
p is in the socle, or is “finite rank”), then A is completely isometrically isomor-
phic to a o-matricial algebra. To see this, note that by Proposition 2.5, pAp is
semiprime, hence is one-dimensional, or equivalently p is algebraically minimal
(for if not, then by Wedderburn’s theorem pAp contains nontrivial idempotents,
contradicting the hypothesis). Thus Theorem 4.23(iv) holds.

If (ii), (iii), (iv), or (v) hold, then it is known that pAp is finite dimensional
for every projection p € A (some of these follow from the ideas in 8.6.4 and 8.5.4
in [32]). Suppose that p is *-minimal. By the last paragraph, we will be done if
we can show that any one of (ii)-(v) imply that A(A) is an annihilator C*-algebra.
If A is compact then so is A(A), hence it is an annihilator C*-algebra. By 8.7.6
in [32], (iv) implies (ii) and (iii). If A is a modular annihilator algebra then the
spectrum condition in (v) holds by 8.6.4 in [32]. If the spectrum condition in (v)
holds, then by the spectral permanence theorem, if x € A(A)sy and B is a C*-
algebra generated by A, then Sp, 4)(x) \ {0} = Sp,(x) \ {0} = Spy(x)\ {0},
which has no nonzero limit point. So A(A) is an annihilator C*-algebra by 4.7.20
(vii) of [17]. n

EXAMPLE 4.26. In the last theorems, most of the hypotheses seem fairly
sharp, as one may see by considering examples such as the disk algebra, Exam-
ple 4.30, or the following example. Let B = RDR™!, where D is the diagonal
copy of cg in B(£?), and R = I+ (1/2)S where S is the backwards shift. Indeed
R could be any invertible operator such that the commutant of R*R contains no
nontrivial projections in D. This example has most of the properties in Theorem
4.25: its second dual is isometrically identifiable with RD"'Rlin B(/#?), which
is unital, and so B is approximately unital; B is semiprime and satisfies (ii)—(v) in
Theorem 4.25, since D does. Moreover, B has no nontrivial projections. Indeed,
if g = RpR~! is a projection then p is an idempotent in D, hence is a projection.
That g = ¢* implies that p is in the commutant of R*R, which forces p = 0 = g.
On the other hand, B does not satisfy (i) of Theorem 4.25, hence has no positive
cai. Thus it is not A-dual although it is nc-discrete, indeed it is an ideal in its bid-
ual, and its diagonal C*-algebra is an annihilator C*-algebra. Thus this example
illustrates the importance of the condition that A(A) acts nondegenerately on A
in the last theorem. One may vary this example by letting A = B & C, where
B = RDR™! as above. This has exactly one nontrivial projection. Variants of this
example are also useful to illustrate hypotheses in others of our results, such as
replacing D by the diagonal copy of ¢/~ in B(¢2).

COROLLARY 4.27. Let A be a semiprime left or right essential operator algebra,
containing algebraically minimal idempotents (qx);>, with q;qr = 0 for j # k, and
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Y qx = 1strictly. Then A is semisimple and A is completely isomorphic to a o-matricial
k
algebra.

Proof. By the similarity trick from the start of this section, we can assume
that the gy are projections, and A is the closure of } g A. We may then appeal to
k

Theorem 4.23(ii). 1

We now consider a class of algebras which are a commutative variant of
matricial operator algebras, and are ideals in their bidual.

PROPOSITION 4.28. Let A be a commutative operator algebra with no nonzero
annihilators in A, and possessing a sequence of nonzero algebraically minimal idempo-
tents (qi) with q;qx = 0 for j # k,and ) Aqy = A. Then A is a semisimple annihilator

k

algebra with dense socle, and A is an ideal in its bidual. If further the qy are projections
(respectively Y qr = 1 strictly), and if A is left essential, then A =2 cq isometrically
k

(respectively A = cq isomorphically).

Proof. If x € J(A), the Jacobson radical, then xq; € J(A) NCgqi = 0 for all

k, since J(A) contains no nontrivial idempotents. Thus xA = 0 and x = 0, and

so A is semisimple. If | is a closed ideal in A with g;] # (0) for all k, then g4 € |

since gx] C JNCgqy. Thus ), Agr C Jand | = A. So A is an annihilator algebra.
k

The g; A are minimal ideals and so A has dense socle. By Proposition 4.2, A is an
ideal in its bidual. We leave the other assertions as an exercise. I

REMARK 4.29. If in addition to the conditions in the first sentence of Propo-
sition 4.28, A(A) acts nondegenerately on A then A is A-dual and nc-discrete
(using Proposition 2.16).

EXAMPLE 4.30. The following example illustrates the distinction between
the condition ) qxA = Y} Agqx = A, and the condition }_ gy = 1 strictly (the
k k k

latter defining algebras isomorphic or similar to a o-matricial algebra by Corol-
lary 4.27). Inside B = M, &> M, &% - - -, we consider idempotents gy, = 0®
- BO0PePO0D - and gopy1 = 0B - BO0B frPOD - -+, where e, fx are
idempotents in M, with e fy = 0,¢ex + fx = I, and ||ex]|, || f|| = oo. For example,
consider the rank one operators ¢y = [1 : 1] ® [~k : k+ 1] and fx = [(k+1)/k :
1] ® [k : —k] in My. Let A be the closure of the span of these idempotents (gy),
which has cai, and may be viewed as a subalgebra of K(¢2). The algebra A is of
the type discussed in the last result, and the remark after it. Indeed it is a "dual
Banach algebra" in the sense of Kaplansky. However A is not isomorphic to a o-
matricial algebra, indeed is not isomorphic to ¢y, since the algebraically minimal
idempotents in A are not uniformly bounded, whereas they are in cy.
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Let A be any operator algebra. If ey, . . ., e, are algebraically minimal projec-
tions in A, set e = eje; - - - e,. Then e? = tejey - - - e, = te, for some t with |¢| < 1.
Note that t = 0if and only if e is nilpotent, whereas if t # 0 then (1/t)e is an alge-
braically minimal idempotent. The set E of linear combinations of such products
is a x-subalgebra of A(A), and so E is the C*-subalgebra B of A(A) generated by
the algebraically minimal projections in A. Note that the sum of all minimal right
ideals of B is dense in B, so that B is an annihilator C*-algebra. We write B as
A-soc(A).

For an operator algebra A, define the r-socle r-soc(A) to be the closure of
the sum of r-ideals of the form eA for algebraically minimal projections e. This
is an r-ideal, with support projection f equal to the “join” of all the algebraically
minimal projections. Thus r-soc(A) = fA** N A. Note that f € M(B) = B**
where B = A-soc(A). Similarly, /-soc(A) = A™ f N A is the closure of the sum of
l-ideals of the form Ae for such e, and h-soc(A) is the matching HSA fA** f N A.
We say that the i-socle exists if r-soc(A) = f(-soc(A), an approximately unital
ideal, which also equals h-soc(A) in this case. Note that r-soc(A) N J(A) = (0)
by p. 671 of [32], hence h-soc(A) N J(A) = (0).

THEOREM 4.31. Let A be a semiprime operator algebra. Then h-soc(A) is a o-
matricial algebra.

Proof. We use the notation above. Let B = A-soc(A), an annihilator C*-
algebra. Let D = h-soc(A) = fA*f N A, an approximately unital semiprime
operator algebra by Proposition 2.5. Set | = fA** N A. Let (fi)rer be a maximal
family of mutually orthogonal algebraically minimal projections in D, and set e =

Y. fx € M(B). Note that e < f. Suppose that f # e. Then (f —e)g # 0 for some
keE

algebraically minimal projection ¢ in A (or else (f —e) f = 0, which is false). Then
p =t(f —e)g(f —e) is an algebraically minimal projection for some f > 0, which
lies in B since f,e € M(B). Thus p € AN fAf C D, contradicting the maximality
of the family. So f = Y fy, and ] = @ € fyA by the argument that (v) implies

keE keE
(i) in Theorem 4.23 (f € (Bfcp frA) L so J4t = fA™ = (g frA)™h). The
partial sums of ) fi are a positive left cai for J, so they are a cai for D [9]. So
keE

Y. fx = f strictly on D. By Theorem 4.23, D is a c-matricial algebra. 1
keE

If A is a o-matricial algebra, then the r-ideals, l-ideals, and HSA’s of A are
of a very nice form:

PROPOSITION 4.32. If A is a o-matricial algebra, then for every r-ideal (respec-
tively l-ideal) | of A, there exist mutually orthogonal algebraically minimal projections
(f)ker in Awith Y. fr = L1strictlyon A, and ] = @ € fr A (respectively | = @ " Afy),

k keE keE
for some set E C 1.
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Proof. By Proposition 2.16, every r-ideal | equals fA for a projection f €
M(A). Then D = fAf is the HSA corresponding to ], and Af is the correspond-
ing l-ideal. We follow the proof of Theorem 4.31. Let (fi)rcr be as in that proof,
thene = Y fr € M(A(A)) = A(M(A)). If f #ethenf—e e M(A),sof—e

keE

dominates a nonzero algebraically minimal projection in D, producing a contra-
diction. So f = Y. fy, and ] = @ fyA as before. A similar argument shows
keE keE
that Af = @ Afy.
keE

By a maximality argument (similar to the proof of (v) implies (ii) in The-

orem 4.23), we can enlarge (fi)rep to a set (fx) in A with A = @°fyA. Then
k

Y. fx = Lstrictlyon A. 1
k

COROLLARY 4.33. Every HSA in a 1-matricial algebra (respectively in a
o-matricial algebra) is a 1-matricial algebra (respectively a o-matricial algebra).

Proof. We may assume that A is a 1-matricial algebra. Continuing the proof

of Proposition 4.32: as in the proof of Theorem 4.31, Y} fx = f strictly on D.
keE
By Proposition 2.5, D is topologically simple. By Theorem 4.8, D is a 1-matricial

algebra. 1

5. CHARACTERIZATIONS OF C*-ALGEBRAS OF COMPACT OPERATORS

An interesting question is whether every approximately unital operator al-
gebra with the property that all closed right ideals have a left cai (and/or simi-
larly for left ideals), is a C*-algebra. The following is a partial result along these
lines:

THEOREM 5.1. Let A be a semiprime approximately unital operator algebra. The
following are equivalent:
(i) Every minimal right ideal of A has a left cai (or equivalently by Lemma 2.3, equals
pA for a projection p € A).
(ii) Every algebraically minimal idempotent in A has range projection in A.
If either of these hold, and if A has dense socle, then A is completely isometrically isomor-
phic to an annihilator C*-algebra.

Proof. (i) = (ii) If e is an algebraically minimal idempotent in A, then eA
is a minimal right ideal, hence an r-ideal by (i). By Lemma 2.3, eA = pA for
a projection p € A. We have pe = e,ep = p, which forces p to be the range
projection of e.

(if) = (i) Every minimal right ideal equals ¢A for an algebraically minimal
idempotent e. The range projection p of ¢ satisfies pe = e,ep = p, so thateA = pA.
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Suppose that these hold, and A has dense socle. We will argue that A sat-
isfies Theorem 4.23(iv), hence is a o-matricial algebra. As in the proof of Theo-
rem 4.25, A is a semisimple modular annihilator algebra, and A(A) is a nonzero
annihilator C*-algebra. Let e be the identity of A(A)**, and set ] = epA*™ N A, a
closed right ideal in A. If e is an algebraically minimal idempotent not in J, and
if g is its range projection, which is in A, then g is not in J, or else e = ge would
be in . However g < e, since g € A(A), so that g € J. Thus every algebraically
minimal idempotent in A is in |. Hence ] contains the socle, so that | = A and
ep = 1. Therefore A is A-dual. If p is a *-minimal projection in A, then pA con-
tains a nonzero algebraically minimal idempotent e € A, by Theorem 8.4.5(h) of
[32]. By the hypothesis, eA = fA for a projection f € A. Clearly f is algebraically
minimal, and f € eA C pA, sothat pf = f = fp. Thus p = f is algebraically
minimal. By Theorem 4.23(iv), A is a o-matricial algebra.

It remains to show that every 1-matricial algebra A satisfying the given con-
dition, is a C*-algebra of compact operators. To this end, fix integers i # j and
let x = q; +q; + T;j + Tji € (q; +q;)A(q; +q;). Then xA = eA for a projection
e € A, since x is a scalar multiple of an algebraically minimal idempotent. We
have (q; +q;)e = e = e(q; + q;). Suppose that the i-j entry of e is zero, which
forces e to be g;, g, or 9; + q;. Let u = Tj; + Tj;, then ux = x. There exists (a,) C A
with xa, — e, and it follows that ue = ¢, which is false. This contradiction shows
that the i-j entry of e is nonzero. By the proof of Proposition 4.18, T;T;" = T]T]*
Since i, j were arbitrary, it follows as in Proposition 4.18 that A is selfadjoint, and
A =2 K(H) for a Hilbert space H. 1

We say that a left ideal in A is A-complemented if it is the range of a bounded
idempotent left A-module map.

LEMMA 5.2. Let A be an operator algebra with a bounded right approximate iden-
tity.
(i) Every A-complemented closed left ideal | in A has a right bai, and also a nonzero
right annihilator. Indeed | = Ae for some idempotent e € A**.
(ii) If every closed left ideal in A is A-complemented, then A is a semiprime right
annihilator algebra.
(iii) If A has a bai, and if | is a two-sided ideal in A which is both right and left
complemented, then | = eA for an idempotent e in the center of M(A). Also, | has a bai.
(iv) If A has a right cai, then every contractively A-complemented closed left ideal | in
A has a right cai, and the e in (i) may be chosen to be a contractive projection in M(A).

Proof. (i) Let P : A — ] be the projection, with ||P|| < K'. If (e) is the
right bai, then xP(e;) = P(xe;) — P(x) = x for x € ]J. Thus | has a right
bai. There is a weak* convergent subnet P(e;,) — r weak* in A**. Then ar =
w*—li}rln P(aes,) = P(a) € J foralla € A. Sor € RM(A) N J++. Also, xr = x for

x € J. Hence ] = Ar,and ||r|| < KK/, if K is abound for the right bai. If ArA = (0)
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then ar? = ar = O for alla € A, so that ¥ = 0. Thus if | is nontrivial then | has
a nonzero right annihilator. Also, | 11 is a weak* closed left ideal containing r so
A*Fy = ]LL.

(ii) In this case, A is a right annihilator algebra, by (i). Also A is semiprime,
since if ] were a two-sided ideal with J> = (0), then ArAr = (0),and r* = r = 0.

(iii) In this case, | has a right and a left bai, hence a bai [32].

(iv) This is a slight modification of the proof of (i). 1

COROLLARY 5.3. Let A be a semisimple approximately unital operator algebra
such that every closed left ideal in A is contractively A-complemented, or equivalently
equals | = Ap for a projection p € M(A). Then A is completely isometrically isomor-
phic to an annihilator C*-algebra.

Proof. As we said above, A is a right annihilator algebra. If it is semisimple
then it has dense socle by Proposition 8.7.2 of [32]. Now apply Theorem 5.1. 1

REMARK 5.4. (i) This result is related to theorems of Tomiuk and Alexander
(see e.g. [40], [1] concerning “complemented Banach algebras”, but the proofs
and conclusions are quite different).

(if) We imagine that a semisimple approximately unital operator algebra such
that every closed left ideal in A is A-complemented, is isomorphic to an annihi-
lator C*-algebra. Certainly in this case A is a right annihilator algebra by the last
lemma. It therefore has dense socle by Proposition 8.7.2 of [32], and an argument
from [27] shows that A = }_ Ae; for mutually orthogonal algebraically minimal

1

idempotents e; in A. Also by [27], we have a family {S; : i € I} of two-sided
closed ideals of A, with S;S; = (0) if i # j, and whose union is dense in A. If we
assume that ideals are uniformly A-complemented, then there is a constant K, and
idempotents f; with || f;|| < Kand S; = Af; for each i. For any finite | C I we
L fi
i€]

similarity as at the start of Section 4 to reduce to the case that f; are projections.

have A(Yc; fi) is complemented too, so that

< K. We may thus use a

f
The canonical map @ S; — A is an isometric homomorphism with respect to
iel
the co-norm on the direct sum, so that A = @°S;. Thus if we are assuming that
icl
closed ideals are uniformly complemented then we have reduced the question to
the case that A is a topologically simple annihilator algebra.

We now give a characterization amongst the C*-algebras, of C*-algebras
consisting of compact operators. There are many such characterizations in the
literature, however we have not seen the one below, in terms of the following
notions introduced by Hamana. If X contains a subspace E then we say that X is
an essential extension (respectively rigid extension) of E if any complete contraction
with domain X (respectively from X to X) is completely isometric (respectively
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is the identity map) if it is completely isometric (respectively is the identity map)
on E. If X is injective then it turns out that it is rigid if and only if it is essential,
and in this case we say X is an injective envelope of E, and write X = I(E). See e.g.
4.2.3 in [11], or the works of Hamana; or [33] for some related topics.

THEOREM 5.5. If A is a C*-algebra, the following are equivalent:
(i) A is an annihilator C*-algebra.
(if) A™* is an essential extension of A.
(iif) A** is an injective envelope of A.
(iv) I(A**) is an injective envelope of A.
(v) Every surjective complete isometry T : A** — A*™* maps A onto A.
(iv) A is nuclear and A** is a rigid extension of A.

Proof. Clearly (i) = (iii) (from e.g. Lemma 3.1(ii) of [23]), and (iii) = (iv) =
(i) by standard diagram chasing. Since A is nuclear if and only if A** is injective,
we have (vi) if and only if (iii).

Item (ii) implies that the normal extension of every faithful *-representation
of A is faithful on A**. This implies that A** is injective, the latter since 77, (A)" =
@ B(H;) is injective (see Lemma 4.3.8 of [34]), where 7, is the atomic represen-

1
tation of A. So (ii) < (iii). Moreover, in the notation above, these imply that
ma(A)" is an injective envelope of A, and hence 7,(A) contains EBO K(H;) by

1
Lemma 3.1(iii) of [23]. Thus A has a subalgebra B with 7,(B) = @° K(H;), and
i

7ta(B+) = ma(A)”. Hence B+ = A**, and so A = B. So (ii) = (i).

From e.g. Proposition 3.3 of [38], (i) = (v). Conversely, if p is a projection in
A** then u = 1 — 2p is unitary, and so (1 —2p)A C A if (v) holds. Indeed clearly
p € M(A), so that A" C M(A). Thus A is an ideal in A**, which implies (i)
[24]. n

REMARK 5.6. We are not sure if in (vi) one may drop the nuclearity con-
dition. By standard diagram chasing, for nonselfadjoint algebras (or operator
spaces), (ii) is equivalent to (iv), and to A** C I(A) unitally. Also (i) = (ii) for
nonselfadjoint algebras of compact operators, indeed if A is an operator algebra
with cai, which is a left or right ideal in its bidual, then we have (ii) (since LM(A)
and RM(A) may be viewed in I(A), see e.g. Chapter 4 of [11]), and also (v) (by
Proposition 3.3 of [38]). Also (ii) implies that A** is a rigid extension (since I(A)
is), and this works for operator spaces too. It is easy to see that A** being a rigid
extension of an operator space A, implies that every surjective complete isome-
try T : A*™ — A* is weak* continuous (a property enjoyed by all C*-algebras).
To see this, let T| 4 AT — A be the weak* continuous extension of T‘ 4, then
T~ o T, = I- by rigidity.
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In [22], [23], Hamana defines the notion of a regular extension of a C*-
algebra. It is not hard to see that A** is an essential extension of A if and only if it
is a regular extension. This uses the fact that (ii) is equivalent to A** C I(A), and
the fact that the regular monotone completion of A from [22], resides inside I(A)
(see [37] for more details if needed).

6. ONE-SIDED IDEALS IN TENSOR PRODUCTS OF OPERATOR ALGEBRAS

Amongst other things, in this section we extend several known results about
the Haagerup tensor products of C*-algebras (mainly from [5], [15]), to general
operator algebras, and give some applications. For example, we investigate the
one-sided M-ideal structure of the Haagerup tensor products of nonselfadjoint
operator algebras.

We will write M @ N for the o-Haagerup tensor product (see e.g. [20], [19],
[12], [11]). We will repeatedly use the fact that for operator spaces X and Y, we
have (X ®p, Y)*™* = X** @M Y** (see e.g. 1.6.8 in [11]). We recall from Section 3 of
[12] that the Haagerup tensor product and o-Haagerup tensor product of unital
operator algebras is a unital operator space (in the sense of [12]), and also is a
unital Banach algebra. We write Her(D) for the hermitian elements in a unital
space D (recall that / is hermitian if and only if ¢(h) € R for all ¢ € Ball(D*)
with ¢(1) = 1).

LEMMA 6.1. If A and B are unital operator spaces then Her(A ®p B) = Aga ®
14 1® Bsa and A(A @y, B) = A(A) ® 14+ 1® A(B). Similarly, if M and N are unital
dual operator algebras, then Her(M @" N) = Mgy ® 14+ 1® Ny and A(M @ N) =
AM)®1+1® A(N).

Proof. If A and B are unital operator spaces then A ®y, B is a unital operator
space (see [12]), and Her(A ®y, B) C Her(C*(A) ®, C*(B)). By a result in [5],
it follows that if u € Her(A ®y, B) then there exist h € C*(A)sa,k € C*(B)sa
such that u = h®1+1®k. Itis easy to see that this forces h € A,k € B.
For example if ¢ is a functional in A+ then 0 = (¢ ® Ip)(u) = @(h)1, so that
h € (A'), = A. Conversely, it is obvious that As; ® 1 + 1 ® Bs, C Her(A ®y, B).
Indeed the canonical maps from A and B into A ®y, B must take hermitians to
hermitians. This gives the first result, and taking spans gives the second.

Now let M and N be unital dual operator algebras. Again it is obvious that
Msa ®141® N5y C Her(M QDN ). For the other direction, we may assume that
M = N by the trick of letting R = M @& N. It is easy to argue that M @ N C
R®"M R, since M and N are appropriately complemented in R. If Wy, (M) is the
“maximal von Neumann algebra” generated by M, then by Theorem 3.1(i) of [12]
we have M @™ M C W, (M) @ Wi (M). So (again using the trick in the
first paragraph of our proof) we may assume that M is a von Neumann algebra.
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By a result of Effros and Kishimoto ([19], Theorem 2.5), Her(M ®°" M) equals
Her(CByy(B(H))) C Her(CB(B(H))) ={h®1+1®k: hk € B(H)sa},

the latter by a result of Sinclair and Sakai (see e.g. Lemma 4.3 of [14]). By a small
modification of the argument in the first paragraph of our proof it follows that
h,k € M. The final result again follows by taking the span. 1

THEOREM 6.2. Let M and N be unital dual operator algebras. If A(M) is not
one-dimensional then A(M) = A (M @™ N). If A(N) is not one-dimensional then
A(N) =2 A (M @™ N). If A(M) and A(N) are one-dimensional then

A (M@ N) = A (M@ N) =CI.

Proof. We just prove the first and the last assertions. Let M and N be unital
dual operator algebras, and let X = M ®" N. The map 6 : A;(X) — X defined
by 6(T) = T(1) is a unital complete isometry (see the end of the notes section
for 4.5 in [11]). Hence, by Corollary 1.3.8 of [11] and Lemma 6.1, it maps into
A(X) = A(M) ®1+4+1® A(N). The last assertion is now clear. For the first, if we
can show that Ran() C A(M) ® 1, then we will be done. There is a copy of A(M)
in Aj(X) via the embedding a — L,g1, and this is a C*-subalgebra. Note that
6 restricts to a *-homomorphism from this C*-subalgebra into the free product
M x N discussed in [12]. Let T € Aj(X)sa, then 6(T) € Xsa. By Lemma 6.1,
T(1®1) =h®1+1®k withh € A(M)sa, k € A(N)sa. It suffices to show that
(T —Lyg1) =1®k € A(M)®1. SoletS =T — Lyg;. By Proposition 1.3.11 of
[11] we have for a € A(M)s, that

S(@@1) =0(SLag1) =0(S) x (a®1) = (1@k) * (a®1).

The involution in M * N, applied to the last product, yields a xk = a®@ k € M ®@°"
N. Hence

S(a®1) € AMR™MN) =AM)®1+12A(N) C A(M) @ A(N).

Since left and right multipliers of an operator space automatically commute, we
have that p(A(N)) commutes with S, where p : A(N) — A;(M ®"" N) is the
canonical injective *-homomorphism. Thus for b € A(N) we have

S(a®b) =S(pb)(a®1)) =p(b)(S(a®1)) =S(a®1)(1®b) € A(M)® A(N).

By linearity this is true for any a € A(M) too. It follows that A(M) ®y A(N)
is a subspace of M ®™ N which is invariant under S. Since S is selfadjoint, it
follows from Propositionn 5.2 of [15] that the restriction of S to A(M) ®, A(N) is
adjointable, and selfadjoint. Hence by Theorem 5.42 of [15] we have that there
existsanm € A(M) withS(1®1) =m®1=1®k Thus1l®k € A(M)®1 as
desired. 1

COROLLARY 6.3. Let A and B be approximately unital operator algebras. If
A(A**) is not one dimensional then A(M(A)) = Aj(A ®y B). If A(B**) is not one
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dimensional then A(M(B)) = A;(A ®y B). If A(A**) and A(B**) are one dimensional
then A|(A®pB) = A, (A®,B) =CI.

Proof. We just prove the first and last relations. Let p : A(LM(A)) —
Aj(A ®y, B) be the injective *-homomorphism given by S — S® Ig. If T €
A1(A ®p, B)sa, then by Proposition 5.16 from [15], we have T** € A;(A** @h
B**)sa. By the last theorem, T**(a ® b) = T(a ® b) = Lyg1(a ® b), for some
h e A and foralla € A, b € B. Since T(a®b) isin A ®, B, sois Ljg1(a ® b)
foralla € A, b € B. Also Ljg1(a®1) = ha®1 € A®yBforalla € A. So
ha € Aforalla € A. Thus L, € A(LM(A)sa). This shows that p is surjective,
since selfadjoint elements span A;(A ®y, B). Thus A(LM(A)) = A;(A ®y B). By
the proof of Proposition 5.1 in [9], we have A(LM(A)) = A(M(A)). This proves
the first relation. If A(A**) and A(B**) are one dimensional, then so is A(M(A)),
and so is Aj(A** @M B**), by the theorem. Hence the T above is in C I, and this
proves the last assertion. 1

REMARK 6.4. For A, B, M, N as in the last results, it is probably true that we
have A(M(A)) = A;(A ®y, B), and similarly that A(M) = A (M ®“" N), if A and
M are not one-dimensional, with no other restrictions. We are able to prove this
if B = N is a finite dimensional C*-algebra.

The following is a complement to Theorem 5.38 of [15]:

THEOREM 6.5. Let A and B be approximately unital operator algebras, and sup-
pose that A(A**) is not one-dimensional. Then the right M-ideals (respectively right
M-summands) in A ®y, B are precisely the subspaces of the form | @y B, where | is a
closed right ideal in A having a left cai (respectively having form eA for a projection
e € M(A)).

Proof. The summand case follows immediately from Corollary 6.3. The one
direction of the M-ideal case is Theorem 5.38 of [15]. For the other, suppose that
I is a right M-ideal in A ®}, B. View (A ®}, B)** = A** @M B**. Then I*! is a
right M-summand in A** ®”" B**. By Theorem 6.2 we have [+ = e A** @1 B**
for a projection e € A**. Let ] = eA™ N A, a closed right ideal in A. We claim
that I = J®, B. Since I = I N (A ®}, B), we need to show that (eA** @
B*)N (A ®y B) = (eA*™ N A) ®y B. By injectivity of ®y, it is clear that (eA™* N
A) @y B C (eA** ®"" B**) N (A @y, B). For the other containment, we let u €
(eA** @M B**) N (A @y, B), and use a slice map argument. By Corollary 4.8 of [39],
we need to show that forall ¢ € B*, (1® ¢)(u) € eA** N A = ]. Let ¢ € B*, then
(I, 12¢p) = (1@ 9)(u) € A, where il is u regarded as an element in A** @7 B**.
Since u € eA™ @M B**, wehave (i, 1@ ) € eA*™. So (1®y)(u) € eA*NA =],
and so u € | ®p, B as desired.

Next we show that | has a left cai. It is clear that -+ = Tw* C eA**.
Suppose that there is x € eA** such that x ¢ J*-*. Then there exists ¢ € J* such
that x(¢p) # 0. Since I = J®, Band ¢ € J*, we have ¢ @ p € I for all states
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¢ on B. So I annihilates ¢ ® ¥, and in particular 0 = (x ® 1)(¢p @ ) = x(¢),
a contradiction. Hence [+ = eA**, and it follows from basic principles about
approximate identities that | has a left cai. 1

THEOREM 6.6. Let M and N be unital (respectively unital dual) operator algebras,
with neither M nor N equal to C. Then the operator space centralizer algebra Z(M ®y,
N) (respectively Z(M @™ N)) (see Chapter 7 of [15]) is one-dimensional.

Proof. First we consider the dual case. If A(M) and A(N) are both one-
dimensional then Z(M ®@"" N) € A;(M ®°" N) = C I, and we are done. If A(M)
and A(N) are both not one-dimensional, let P be a projection in Z(M @“" N). By
the theorem, Px = ex = xf, forall x € M ®@7N'N, for some projections e € M and
f € N. Then

ctef=ctoff=Plof)=c0f=0,

which implies that either e = 0 or f = 0. Hence P = O or P = I. So Z(M ®@“" N)
is a von Neumann algebra with only trivial projections, hence it is trivial.

Suppose that A(N) is one-dimensional, but A(M) is not. Again it suffices
to show that any projection P € Z(M ®" N) is trivial. By Theorem 6.2, P is
of the form Px = ex for a projection e € M. Assume that e is not 0 or 1. If
D = Span{e,1 — e}, and X is the copy of D ® N in M ®“M' N, then P leaves
X invariant. Note that X = D ®y N, since ®y, is known to be completely iso-
metrically contained in ®7" (see [20]). Hence by Section 5.2 in [15] we have
that the restriction of P to X is in A(X) N A(X) = Z(X). Thus we may as-
sume without loss of generality that M = D = /3°, and P is left multiplication
by e, where {ej, ey} is the canonical basis of ¢3°. Since P is an M-projection,
lle1 ® x4+ e; @yl = max{||x|, |ly||}, forallx,y € N. Setx = 1y, and lety € N be
ofnorm 1. Then |ley ® 1+ e, ® y||;, = 1. If we can show thaty € C 1y then we will
be done: we will have contradicted the fact that N is not one-dimensional, hence
e, and therefore P, is trivial. By the injectivity of the Haagerup tensor product, we
may replace N with Span{1,y}. By basic facts about the Haagerup tensor prod-
uct, there exist z1,z; € /3 and v, w € Nwithey®1+ e,y =21®90+2 0w,
and with ||[z; 2]||? = ||[v*v + w*w| = 1. Multiplying by e; ® 1 we see that
z1(1)v + zp(1)w = 1, so that

1< (I )P + 22D P) [o*o + w'wl| = |21 (1)1 + 22()? < [[[z1 22] > = 1.

From basic operator theory, if a pair of contractions have product I, then the one
is the adjoint of the other. Thus v, w, and hence y, are in C1.

A similar argument works if A(M) is one-dimensional, but A(N) is not.

In the “non-dual case”, use Theorem 7.4(ii) of [15] to see that Z(M ®}, N) C
Z(M** @M N*) = CI. 1

COROLLARY 6.7. Let A and B be approximately unital operator algebras, with
neither being one-dimensional. Then A @y, B contains no non-trivial complete M-ideals.
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Proof. Suppose that | is a complete M-ideal in A ®, B. The complete M-
projection onto [+ is in Z((A ®y, B)**) = Z(A** @™ B**), and hence is trivial
by Theorem 6.6. 1

REMARK 6.8. The ideal structure of the Haagerup tensor product of C*-
algebras has been studied in [2] and elsewhere.

PROPOSITION 6.9. Let A and B be approximately unital operator algebras with
A not a reflexive Banach space, B finite dimensional and B # C. If A is a right ideal in
A**, then A ®y, B is a right M-ideal in its second dual, and it is not a left M-ideal in its
second dual.

Proof. Since Aisaright M-idealin A**, A ®, Bis aright M-idealin A** ®y, B
by Proposition 5.38 of [15]. Since B is finite dimensional, (A ®}, B)** = A** @y B
(see e.g. 1.5.9 of [11]). Hence A ®y, B is a right M-ideal in its bidual. Suppose that
itis also a left M-ideal. Then it is a complete M-ideal in its bidual, and therefore
corresponds to a projection in Z(A) @y, B). However, the latter is trivial by Theo-
rem 6.6. This forces A ®}, B, and hence A, to be reflexive, which is a contradiction.
So A ®y, B is not a left M-ideal in its bidual. 1

REMARK 6.10. A similar argument (see [38]) shows that if Y is a non-reflexive
operator space which is a right M-ideal in its bidual and if X is any finite dimen-
sional operator space, then Y ®, X is a right M-ideal in its bidual. Further, if
Z(Y® ®y, X) 2 CI then Y @}, X is not a left M-ideal in its bidual.

The last few paragraphs, and Corollary 4.6 and Example 4.13, provide natu-
ral examples of spaces which are right but not left M-ideals in their second dual.
Their duals will be left but not right L-summands in their second dual, by the
next result. We refer to [8], [15] for notation.

LEMMA 6.11. If an operator space X is a right but not a left M-ideal in its second
dual, then X* is a left but not a right L-summand in its second dual.

Proof. We first remark that a subspace | of operator space X is a complete L-
summand of X if and only if it is both a left and a right L-summand. This follows
e.g. from the matching statement for M-ideals ([11], Proposition 4.8.4), and the
second “bullet” on p. 8 of [15]. By Proposition 2.3 of [38], X* is a left L-summand
in X***, via the canonical projection ix« o (ix)*. Thus if X* is both a left and a
right L-summand in its second dual, then ix- o (ix)* is a left L-projection by the
third “bullet” on p. 8 of [15]. Hence by Proposition 2.3 of [38], X is a left M-ideal
in its second dual, a contradiction. &

We end with some remarks complementing some other results in [38].
(i) Theorem 3.4(i) of [38] can be improved in the case that X is an approxi-
mately unital operator algebra A. Theorem 3.4(i) there, is valid for all one-sided
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Me-ideals, both right and left. This follows from Proposition 2.16 and Proposi-
tion 2.12.

(if) Theorem 3.4 (iii) of [38] can also be improved in the case that X is an oper-
ator algebra A. If A is an operator algebra with right cai which is a left ideal in
A** (or equivalently, if A is a left M-ideal in its bidual), and if | is a right ideal in
A**,then JA C JN A. Hence if JN A = (0) then JA = (0). Thus JA** = (0),
and hence | = (0), since A** has a right identity. Thus the case JN A = (0) will
not occur in the conclusion of Theorem 3.4(iii) of [38], in the case that X is an
approximately unital operator algebra.

(i) One further result on L-structure: If an operator space X is a right L-
summand in its bidual, then any right L-summand Y of X is a right L-summand
in Y**. Indeed if X is the range of a left L-projection P on X**, and if Y is the range
of a left L-projection Q on X, then Q** and P are in the left Cunningham algebra
of X** ([15], p- 8-9). Note that Q**P = PQ**P (since Ran(Q**P) C Y C X). Since
we are dealing with projections in a C*-algebra, we deduce that PQ** = Q**P.
It follows that P(Y++) C Y, and so Y is a right L-subspace of X in the sense of
Theorem 4.2 of [38]. By that result, Y is a right L-summand in its bidual.
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ADDED IN PROOFS. The open questions stated in Section 3 have now been solved.
See e.g. "Operator algebras with contractive approximate identities” by the second author
and C. J. Read, |. Funct. Anal. 261(2011), 188-217; and a forthcoming paper of the same
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authors with the first author. We also remark that there is an obvious variant of Theo-
rem 4.23 in terms of HSA’s: a separable operator algebra A is sigma-matricial if and only
if A is semiprime, a HSA in its bidual, and every HSA D in A of dimension bigger than 1,
contains a nonzero projection which is not an identity for D.



