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ABSTRACT. We characterize the spectrum and essential spectrum of “essen-
tially linear fractional” composition operators acting upon the Hardy space
H2(U) of the open unit disc U. When the symbols of these composition oper-
ators have Denjoy–Wolff point on the unit circle, the spectrum and essential
spectrum coincide. Our work permits us to describe the spectrum and essen-
tial spectrum of certain associated weighted composition operators on H2(U).
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INTRODUCTION

Let U be the open unit disc in the complex plane, let H(U) be the space of
analytic functions on U, and let H2(U) be the classical Hardy space, consisting of
those functions in H(U) whose Maclaurin coefficients are square summable. For
ϕ an analytic selfmap of U, let Cϕ be the composition operator with symbol ϕ,
so that Cϕ f = f ◦ ϕ for any f ∈ H(U). Clearly Cϕ preserves H(U). Littlewood
[26] proved Cϕ also preserves H2(U); and thus, by the closed-graph theorem,
Cϕ : H2(U)→ H2(U) is a bounded linear operator.

Following p. 48 of [2], we say an analytic selfmap ϕ of U is essentially linear
fractional provided

(a) ϕ(U) is contained in a proper subdisc of U internally tangent to the unit
circle at some point η ∈ ∂U;

(b) ϕ−1({η}) := {γ ∈ ∂U : η belongs to the cluster set of ϕ at γ} consists of
one element, say ζ ∈ ∂U; and

(c) ϕ′′′ extends continuously to U∪ {ζ}.
When a selfmap ϕ of U satisfies (a), (b), and (c) above, we write

ϕ ∈ LFe(ζ; η).
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For instance, ϕ(z) = (2z2 − 3z + 3)/(2z2 − 7z + 7) belongs to LFe(1; 1) (see Ex-
ample 1.5 below). Theorem 7.6 of [2] shows that for each essentially linear frac-
tional ϕ ∈ LFe(ζ, η), there is a linear fractional selfmap ψ of U (satisfying ϕ(j)(ζ)

= ψ(j)(ζ) for j ∈ {0, 1, 2}) such that Cϕ − Cψ is a compact operator. Thus, an
essentially linear fractional composition operator differs from a linear fractional
composition operator by a compact operator. However, this compact-difference
condition obviously does not characterize essentially linear fractional composi-
tion operators: in fact, a linear fractional composition operator Cϕ will be essen-
tially linear fractional only when ϕ is nonautomorphic and ϕ(∂U) contacts ∂U.

Much is known about spectra of composition operators on H2(U); see, e.g.,
Chapter 7 of [18]. However, for many composition operators on H2(U), includ-
ing some essentially linear fractional composition operators, complete spectral
characterizations have not been obtained. Moreover, there are interesting general
questions that remain open, two of which we highlight below.

The analysis of the spectral behavior of Cϕ : H2(U) → H2(U) is typically
case based, with the cases depending upon the type of the symbol ϕ: “dilation,”
“hyperbolic,” “parabolic automorphism,” and “parabolic nonautomorphism.”
(We review the notion of type in the “Preliminaries” section below.) Here are
two of the questions addressed in this paper:

(Q1) For ϕ of hyperbolic type or either of the parabolic types, do the spectrum
and essential spectrum of Cϕ always coincide?

(Q2) Let r(Cϕ) denote the spectral radius of Cϕ and re(Cϕ), the essential spectral
radius. When ϕ is of dilation type and is either univalent or analytic on the closed
disc, then work by Cowen and MacCluer [17] and Kamowitz [23] shows that the
spectrum of Cϕ consists of a disc D (possibly degenerate) centered at the origin
of radius re(Cϕ) together with isolated eigenvalues. In this situation, must every
point in D be in the essential spectrum of Cϕ?

In this paper, we characterize the spectrum and essential spectrum of com-
position operators on H2(U) induced by selfmappings ϕ of U that are essentially
linear fractional. For such mappings ϕ, our work shows that “yes” is the answer
to (Q1). For question (Q2), we show that the “disc plus isolated eigenvalues”
characterization of the spectrum continues to be valid for composition operators
whose symbols are dilation-type essentially linear fractional maps (which need
not be univalent, or analytic on the closed disc), and we show that the answer to
(Q2) is also yes for such composition operators. We also show that the spectrum
and essential spectrum of certain weighted composition operators coincide.

This paper is organized as follows. In the next section, we set the stage for
our work, providing needed background information. In Section 2, we present
some general results about spectra of composition operators; for example, we
show that for any selfmapping ϕ of U of hyperbolic type or either of the para-
bolic types, if λ is an eigenvalue of Cϕ having an outer function as a correspond-
ing eigenvector, then λ does not belong to the compression spectrum of Cϕ; i.e.,
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Cϕ − λI has dense range. We also show that no eigenvalue of Cϕ can be iso-
lated for certain selfmaps ϕ of parabolic nonautomorphism type. Using results
in Section 2 as lemmas, we characterize in Section 3 the spectrum and essen-
tial spectrum of Cϕ when ϕ is essentially linear fractional. We show, e.g., that
if ϕ is an essentially linear fractional mapping of parabolic nonautomorphism
type, then the spectrum and essential spectrum of Cϕ coincide, each equaling
a spiral {e−at : t > 0}, where a is the second derivative of ϕ at its Denjoy–
Wolff point. (This characterization is consistent with one obtained by Cowen
([12], Corollary 6.2) for a special family of composition operators whose sym-
bols are univalent and of parabolic nonautomorphism type.) In Section 4, we
characterize the spectrum and essential spectrum of certain weighted compo-
sition operators f 7→ g f ◦ ϕ, where g is bounded and analytic on U and ϕ is
essentially linear fractional. For example, a consequence of Theorem 4.5 is that
if ϕ ∈ LFe(ω; ω) with ϕ′(ω) < 1 and the radial-limit function of g ∈ H∞(U)
is continuous at ω, then the spectrum and essential spectrum of the weighted
composition operator Cg,ϕ : H2(U) → H2(U) coincide, each equaling the disc
{z : |z| 6 |g(ω)|ϕ′(ω)−1/2}. Here, Cg,ϕ f = g f ◦ ϕ. We also obtain a sufficient
condition for Cg,ϕ to be quasinilpotent; see Theorem 4.4.

Regarding Section 4: the only prior results of which the author is aware
concerning spectra of weighted composition operators on H2(U) pertain to the
compact (or power-compact) case (see, e.g., [21]) or to the case where Cg,ϕ is Her-
mitian [15], [16] or normal [4].

1. PRELIMINARIES

For detailed information about the Hardy space H2(U) as well as inner and
outer functions, the reader may consult [19], for example. Good general refer-
ences for properties of selfmaps ϕ of U and of the composition operators they
induce on H2(U) are [18] and [27]. We concentrate here on background informa-
tion crucial to our work.

1.1. REPRODUCING KERNELS FOR H2(U). The Hardy space H2(U) is a Hilbert
space with inner product

〈 f , g〉 =
∞

∑
n=0

f̂ (n)ĝ(n),

where ( f̂ (n)) and (ĝ(n)) are the sequences of Maclaurin coefficients for f and g

respectively. The norm of f ∈ H2(U) is given by
( ∞

∑
n=0
| f̂ (n)|2

)1/2
or, alterna-

tively, by

‖ f ‖2
H2(U) =

1
2π

2π∫
0

| f (eit)|2 dt,
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where f (eit) represents the radial limit of f at eit, which exists for a.e. t ∈ [0, 2π)
(with respect to Lebesgue measure). Also, the inner product of two functions f
and g in H2(U) may be expressed as a boundary integral:

〈 f , g〉 = 1
2π

2π∫
0

f (eit)g(eit)dt.

Let h ∈ H∞(U), the Banach algebra of bounded analytic functions on U
with ‖h‖∞ = sup{|h(z)| : z ∈ U}. The integral representation of the H2(U) norm
makes it clear that ‖h f ‖H2(U) 6 ‖h‖∞‖ f ‖H2(U) for each f ∈ H2(U). Thus, the
multiplication operator Mh : H2(U) → H2(U), defined by Mh f = h f , is bounded
and linear on H2(U).

For each α ∈ U, let Kα = 1/(1− αz). Then Kα ∈ H2(U), and it is easy to see
that for each function f ∈ H2(U),

〈 f , Kα〉 = f (α);

thus, Kα is the reproducing kernel at α for H2(U).
It is easy to check that (Cϕ)∗Kα = Kϕ(α). Also, the reproducing kernels

Kα, α ∈ U, are eigenfunctions for adjoint multiplication operators on H2(U): if
h ∈ H∞(U) then (Mh)

∗Kα = h(α)Kα. Finally, we have the following estimate for
each f ∈ H2(U) and each z ∈ U:

(1.1) | f (z)| = |〈 f , Kz〉| 6 ‖ f ‖H2(U)‖Kz‖H2(U) =
‖ f ‖H2(U)√

1− |z|2
.

1.2. THE DENJOY–WOLFF POINT ω. Throughout this paper, ϕ will denote an an-
alytic function on U for which ϕ(U) ⊆ U; i.e., ϕ will always denote an analytic
selfmap of U. For n a nonnegative integer, let ϕ[n] denote the n-th iterate of ϕ so
that, e.g., ϕ[0] is the identity function on U and ϕ[2] = ϕ ◦ ϕ. If ϕ is not an elliptic
automorphism of U, then there is a (unique) point ω in the closure U− of U such
that

ω = lim
n→∞

ϕ[n](z)

for each z ∈ U. The point ω, called the Denjoy–Wolff point of ϕ, is also charac-
terized as follows: if |ω| < 1, then ϕ(ω) = ω and |ϕ′(ω)| < 1; if ω ∈ ∂U, then
ϕ(ω) = ω and 0 < ϕ′(ω) 6 1. If |ω| = 1, then ϕ(ω) represents the angular (non-
tangential) limit of ϕ at ω and ϕ′(ω) represents the angular derivative of ϕ at
ω. The location of the Denjoy–Wolff point and the behavior of iterate sequences
(ϕ[n](z)) as they approach the Denjoy–Wolff point strongly influence properties
of the operator Cϕ. For example, no ϕ with Denjoy–Wolff point on ∂U can be the
symbol of a compact composition operator on H2(U) (see e.g., p. 56 of [27]). The
Denjoy–Wolff point plays a major role in the classification system for selfmaps of
U presented in the next subsection.
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1.3. TYPE FOR SELFMAPS OF U. Let ϕ be a selfmap of U with Denjoy–Wolff point
ω. We classify ϕ as follows (cf. Definition 0.3 of [5]):

(i) Dilation type: ω ∈ U.
(ii) Hyperbolic type: ω ∈ ∂U and ϕ′(ω) < 1.

(iii) Parabolic automorphism type: ω ∈ ∂U, ϕ′(ω) = 1, and the iterate sequence
(ϕ[n](0)) is separated in the hyperbolic metric on U (meaning that the hyperbolic
distance between successive points of the orbit (ϕ[n](0)) stays bounded away
from zero).

(iv) Parabolic nonautomorphism type: ω ∈ ∂U, ϕ′(ω) = 1, and the iterate
sequence (ϕ[n](0)) is not separated in the hyperbolic metric on U.

Assuming ϕ′(ω) = 1, distinguishing whether ϕ is of parabolic automor-
phism or nonautomorphism type can be difficult. However, there is an easy test
if ϕ has enough smoothness near its Denjoy–Wolff point.

DEFINITION 1.1. Let n be a positive integer, let ζ ∈ ∂U, and let 0 6 ε < 1.
Following p. 50 of [5], we say that the selfmap ϕ of U belongs to Cn+ε(ζ) provided
that ϕ is differentiable at ζ up to order n (viewed as a function with domain
U∪ {ζ}) and, for z ∈ U, has the expansion

ϕ(z) =
n

∑
k=0

ϕ(k)(ζ)

k!
(z− ζ)k + γ(z),

where γ(z) = o(|z− ζ|n+ε) as z→ ζ from within U.

It is not difficult to show that ϕ ∈ Cn(ζ) whenever ϕ(n) extends continu-
ously to U∪ {ζ}.

The following is Theorem 4.4 of [5].

PARABOLIC-TYPE TEST. Suppose that ϕ ∈ C2(ω) and ϕ′(ω) = 1. Then
Re (ωϕ′′(ω)) > 0; moreover,

(a) if ϕ′′(ω) = 0 or if Re (ωϕ′′(ω)) > 0, then ϕ is of parabolic nonautomorphism
type;

(b) if ωϕ′′(ω) is pure imaginary (and nonzero) and ϕ ∈ C3+ε(ω) for some positive
ε, then ϕ is of parabolic automorphism type.

1.4. HOROCYCLIC SELFMAPS OF U. For ζ ∈ ∂U and β > 0, let H(η, β) = {z :
|1 − zη|2 < β(1 − |z|2)} be the open horodisc (of radius β/(1 + β)) internally
tangent to the unit circle at η. Call a selfmap ϕ of U horocyclic at η provided ϕ(U)
lies in a horodisc H(η, β), for some β > 0. Note any ϕ ∈ LFe(ζ; η) must, by
definition, be horocyclic at η.

In the next subsection, we present a criterion (Proposition 1.3) for ϕ to be
horocyclic at 1. We apply the criterion to show ϕ(z) = 2/(

√
13− 4z− 1) is horo-

cyclic at 1 (see Example 1.4).
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1.5. ESSENTIALLY LINEAR FRACTIONAL SELFMAPS OF U. Let ϕ be an essentially
linear-fractional selfmapping of U belonging to LFe(ζ; η). Thus η and ζ are uni-
modular constants such that ϕ ∈ C3(ζ), ϕ(ζ) = η, ϕ−1({η}) = {ζ}, and ϕ is
horocyclic at η. Recall from the Introduction that in this context ϕ−1({η}) = {ζ}
means that ζ is the only point in ∂U whose cluster set under ϕ includes η. It
follows that if η 6= ζ, then ‖ϕ ◦ ϕ‖∞ < 1 (for otherwise there would be a se-
quence (zn) in ϕ(U) such that lim

n
|ϕ(zn)| = 1, but since ϕ(U) is contained in

a proper subdisc of U internally tangent to ∂U at η, then both (zn) and (ϕ(zn))
approach η, making ϕ−1({η}) ⊇ {ζ, η}, a contradiction). Hence if η 6= ζ, then
(Cϕ)2 is compact (see, e.g., p. 23 of [27]). When some power of Cϕ is compact
the essential spectrum of Cϕ is just {0} and a result of Caughran and Schwartz
([7], Theorem 3) shows that the spectrum of Cϕ is {0} ∪ {ϕ′(ω)n, n = 0, 1, 2, . . .},
where ω (necessarily in U) is the Denjoy–Wolff point of ϕ. Thus, in our discussions
below concerning spectra for essentially linear fractional composition operators, we will
restrict our attention to the case where the essentially linear fractional symbol ϕ fixes a
point ζ ∈ ∂U. Without loss of generality, we assume ζ = 1.

Let ϕ be an arbitrary selfmap of U such that ϕ(1) = 1 and ϕ ∈ C2(1). Let
p = ϕ′(1), a = ϕ′′(1), and let T(z) = (1+ z)/(1− z) so that T maps U univalently
onto the right halfplane Π. Because ϕ ∈ C2(1), the selfmapping Φ := T ◦ ϕ ◦ T−1

of Π has the following representation:

(1.2) Φ(w) =
1
p

w +
( 1

p
− 1 +

a
p2

)
+ Γ(w), w ∈ Π,

where Γ(w) = o(1) as |w| → ∞ (cf. equation (27) of [2]). Clearly, ϕ is horocyclic
at 1 if and only if there is a constant c > 0 such that

(1.3) Re (Φ(w)) > c for all w ∈ Π.

The representation (1.2) reveals that if (1.3) holds, then Re (1/p − 1 + a/p2) >
c > 0. Thus, we have established the following:

PROPOSITION 1.2. Let ϕ be an arbitrary selfmap of U such that ϕ(1) = 1 and
ϕ ∈ C2(1). If ϕ is horocyclic at 1, then 1/ϕ′(1)− 1 + ϕ′′(1)/ϕ′(1)2 must be positive.

The next proposition shows that the converse is true if ϕ extends to be con-
tinuous on the closed disc and |ϕ(ζ)| < 1 for ζ ∈ ∂U \ {1}.

PROPOSITION 1.3. Let ϕ be an analytic selfmap of U that extends to be continuous
on U−. Suppose that ϕ ∈ C2(1), that ϕ(1) = 1, and that |ϕ(ζ)|<1 for ζ∈∂U\{1}. If

(1.4) Re
( 1

ϕ′(1)
− 1 +

ϕ′′(1)
ϕ′(1)2

)
> 0

then ϕ(U) is contained in a proper subdisc of U internally tangent to ∂U at 1; i.e., ϕ is
horocyclic at 1.

Proof. Suppose that (1.4) holds. Set Φ := T ◦ ϕ ◦ T−1. We know that the
proposition follows if the real part of Φ is bounded below on Π by a positive
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number. Suppose, in order to obtain a contraction, that Re (Φ) is not bounded be-
low, so that there is a sequence (wn) in the right halfplane for which (Re (Φ(wn)))
converges to 0.

Since Φ has the representation (1.2) and (1.4) holds, we see that (wn) must
be a bounded sequence. Thus (wn) has a limit point b in the closure of the right
halfplane. Because ϕ is continuous on U−, Φ is continuous at b and Re (Φ(b)) =
0. Note that Re (Φ(b)) = 0 tells us that b must be on the imaginary axis. Hence,
ϕ(T−1(b)) = T−1(Φ(b)) belongs to ∂U \ {1}, contradicting the hypothesis that
|ϕ(ζ)| < 1 for ζ ∈ ∂U \ {1}.

Let ϕ ∈ LFe(1; 1) so that ϕ(1) = 1 and ϕ is horocyclic at 1. Let p = ϕ′(1) and
a = ϕ′′(1). Because ϕ ∈ C3(1) ⊆ C2(1), the selfmapping Φ := T ◦ ϕ ◦ T−1 of Π
has the representation (1.2). As we discussed above, because ϕ is horocyclic at 1,
(1.2) shows that there is a positive constant c such that Re (1/p− 1+ a/p2) > c >
0. Note in particular that if p = 1 (ϕ is parabolic type) then we must have Re (a) >
0, so that ϕ is of nonautomorphism type by the Parabolic Type Test. Thus, of the
two types of parabolic selfmappings of U, only those of nonautomorphism type
can be essentially linear fractional. Because Re (1/p− 1 + a/p2) > c > 0,

(1.5) Ψ(w) :=
w
p
+
( 1

p
− 1 +

a
p2

)
is a nonautomorphic selfmap of Π. Theorem 7.6 of [2] shows that if ψ is the linear-
fractional map of U defined by T−1 ◦ Ψ ◦ T, then Cϕ −Cψ is a compact operator
on H2(U).

Here are three concrete examples of essentially linear fractional selfmap-
pings of U.

EXAMPLE 1.4. Let ϕ(z) = 2/(
√

13− 4z− 1), where
√
· represents the prin-

cipal branch of the square root function — all roots in this paper should be viewed
as principal ones. The function z 7→ 13− 4z takes U to the disc centered at 13 of
radius 4 and thus z 7→ |

√
13− 4z − 1| attains its absolute minimum value 2 on

U− at z = 1 and only at z = 1. Thus ϕ is a selfmap of U such that ϕ(1) = 1,
ϕ−1({1}) = {1}, and ϕ ∈ C3(1) (in fact ϕ is analytic on U−). One may apply
Proposition 1.3 to see that ϕ(U) belongs to proper subdisc of U internally tangent
to U at 1. Thus ϕ ∈ LFe(1; 1). Since ϕ(1) = 1 and ϕ′(1) = 1/3, ϕ is of hyperbolic
type.

EXAMPLE 1.5. Constructing examples of essentially linear fractional self-
maps ϕ is quite simple using the representations like (1.2). For instance, choos-
ing p = 2, a = 6 and Γ(w) = 2/(w + 1), we obtain ϕ(z) = T−1(Φ(T(z))) =
(2z2 − 3z + 3)/(2z2 − 7z + 7) as an essentially linear fractional selfmap of U such
that ϕ(1) = 1 and ϕ′(1) = 2. That ϕ is horocyclic at 1 is clear from the form of Φ,
which shows Re (Φ(w)) > 1 for every w ∈ Π. The form of Φ also makes it clear
that ϕ−1({1}) = {1}. Finally, note that ϕ must be of dilation type since ϕ′(1) > 1
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(in fact, ϕ(1/2) = 1/2.) We note that essentially linear fractional mappings need
not be univalent on U; in fact, this is the case for the the rational mapping ϕ we
just constructed (its derivative vanishes at 0).

EXAMPLE 1.6. For w ∈ Π, let

Φ(w) = w + 2 + i− 1
4(w + 1)

− 1
4(w + 1)3/2 .

Note that Φ is an analytic selfmap of Π and that, in fact, Re (Φ(w)) > 3/2 for
every w ∈ Π (since |1/(4(w + 1)) + 1/(4(w + 1)3/2)| < 1/2 for w ∈ Π). It
follows that

ϕ(z) = T−1(Φ(T(z))) =
z2 − (2− 8i)z− (15 + 8i) + 2−1/2(1− z)5/2

z2 + (14 + 8i)z− (31 + 8i) + 2−1/2(1− z)5/2

is an analytic selfmap of U that is horocyclic at 1 (in fact, since Re (Φ(w)) >
3/2, the set ϕ(U) must be contained in T−1({w : Re (w) > 3/2}), which is the
horodisc H(1, 2/3) (having radius 2/5 and center 3/5); see the figure below).
The form of Φ ensures that ϕ is C3+ε(1) for 0 6 ε < 1/2 (see pp. 50–51 of [5])
and ϕ−1({1}) = {1}. Since ϕ′(1) = 1 (and ϕ′′(1) = 2 + i has positive real
part) we see that ϕ is an essentially linear fractional selfmap of U of parabolic
nonautomorphism type.

H

F

FIGURE 1. The image of the unit disk under the essentially lin-
ear fractional mapping ϕ of Example 1.6. Here H stands for
∂H(1, 2/3) and F stands for ϕ(U).

1.6. ADJOINTS OF COMPOSITION OPERATORS. Recall that for h ∈ H∞(U), Mh
denotes the operator of multiplication by h on H2(U). We let B = (Mz)∗ so that
B is the backward shift operator on H2(U).

Let ϕ(z) = (az + b)/(cz + d) be a nonconstant linear-fractional selfmap of
U. Cowen [13] derives the following formula for the adjoint of Cϕ:
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(1.6) C∗ϕ = MgCσ M∗h

where g(z) = 1/(−bz + d), h(z) = cz + d, and σ(z) = (az − c)/(−bz + d).
Analogs of this adjoint formula have been developed for rational selfmappings
of U (see, e.g., [14], [22], and [6]). We need the following variant of (1.6) (see
equation (2) of [22] or equation (18) of [6]):

(1.7) C∗ϕ = Λ0 + Mzσ′ Cσ B,

where Λ0 is the rank-one operator defined by (Λ0 f ) = f (0)/(1− ϕ(0)z).

1.7. SPECTRUM AND ESSENTIAL SPECTRUM. For an operator T on the Hilbert
space H, let Sp(T) denote the spectrum of T and Spe(T) denote the essential
spectrum. We will make use of the following well-known fact from Fredholm
theory: any point λ belonging to both the spectrum of T and unbounded com-
ponent of the complement of the essential spectrum must be an eigenvalue of
T. The argument is simple. Because the Fredholm index is continuous on the
complement of the essential spectrum and has value zero on the complement of
the spectrum, the index is zero on the unbounded component of the complement
of the essential spectrum. Thus, whenever λ belongs to both Sp(T) and the un-
bounded component of the complement of Spe(T), then the Fredholm index of
T − λI is zero. Thus for such a λ, the operator T − λI has closed range and has
kernel and co-kernel of the same dimension; it follows that the kernel must have
positive dimension, for otherwise Cϕ − λI would be invertible.

2. SOME GENERAL RESULTS ON COMPOSITION-OPERATOR SPECTRA

We begin with our most general result.

PROPOSITION 2.1. Let ϕ be a selfmap of U having Denjoy–Wolff point ω in ∂U.
Suppose that λ is an eigenvalue of Cϕ : H2 → H2 having a corresponding eigenvector
that is an outer function. Then Cϕ − λI has dense range.

Proof. Let λ ∈ C be an eigenvalue of Cϕ with eigenvector g being an outer
function. Note that ϕ is nonconstant (because its Denjoy–Wolff point belongs to
∂U); hence λ 6= 0. We show that λ is not an eigenvalue of C∗ϕ to complete the
proof of the proposition.

Suppose, in order to obtain a contradiction, that λ is an eigenvalue of C∗ϕ
with corresponding eigenvector h. Observe that for any nonnegative integer n
and any positive integer k, we have

λk〈zn(ω− z)g(z), h〉 = 〈zn(ω− z)g(z), (C∗ϕ)
kh〉 = λk〈(ϕ[k])n(ω− ϕ[k])g, h〉,
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so that (since λ 6= 0)

(2.1) 〈zn(ω− z)g(z), h〉 = 〈(ϕ[k])n(ω− ϕ[k])g, h〉.

By Theorem 3.1 of [3], the iterate sequence (ϕ[k]) converges to ω in the norm of
H2(U) and it follows that some subsequence (ϕ[jk ]) converges a.e. on ∂U to ω.
Because |(ϕ[jk ])n(ω − ϕ[jk ])gh| 6 2|gh| ∈ L1(∂U) and (ϕ[jk ]) converges to ω a.e.
on ∂U, Lebesgue’s Dominated Convergence Theorem shows that

lim
k→∞
〈(ϕ[jk ])n(ω− ϕ[jk ])g, h〉 = 0.

Thus, by (2.1), we conclude that

〈zn(ω− z)g(z), h〉 = 0

for all n > 0. Since z 7→ (ω− z)g(z) is outer (being a product of outer functions),
the preceding equation shows that h is orthogonal to the polynomial multiples
of an outer function, a set which is a dense set in H2(U) by Beurling’s Theorem.
Thus h ≡ 0, a contradiction that completes the proof of the proposition.

We present three applications of the preceding proposition, with first two
stated as corollaries.

COROLLARY 2.2. Suppose that ϕ is a selfmap of U having Denjoy–Wolff point ω
in ∂U; then Cϕ − I has dense range.

Proof. The number λ = 1 is an eigenvalue for Cϕ having the outer function
g(z) = 1 (∀z ∈ U) as an eigenvector.

If ϕ has Denjoy–Wolff point ω ∈ U, then the range of Cϕ − I is not dense
because Kω belongs to its orthogonal complement.

COROLLARY 2.3. Suppose that ϕ is a selfmapping of U of hyperbolic type with
Denjoy–Wolff point ω. Then (Cϕ − λI) has dense range whenever λ belongs to the
annulus A := {z : ϕ′(ω)1/2 < |z| < ϕ′(ω)−1/2}.

Proof. Let b be such that −1/2 < Re (b) < 1/2. Then it is easy to see
that fb(z) := ((1 + z)/(1− z))b belongs to H2(U). Moreover, fb is outer (be-
cause, e.g., both fb and 1/ fb are in H2(U)). Cowen ([12], Theorem 4.5) shows
that there is a selfmap σ of U such that fb ◦ σ is an eigenvector for Cϕ with cor-
responding eigenvalue ϕ′(ω)b. Because b is an arbitrary complex number with
Re (b) ∈ (−1/2, 1/2), it follows that every point in the annulus A is an eigen-
value of Cϕ with corresponding eigenfunction having the form fb ◦ σ for an ap-
propriate b. Since every composition operator preserves the collection of outer
functions (see, e.g., Section 2.7 of [8]), fb ◦ σ is outer and the corollary follows.

Our third application of Proposition 2.1 concerns a family of composition
operators introduced by Cowen ([12], Section 6). Let Tθ(z)=((1+z)/(1−z))2θ/π ,
so that for 0 < θ 6 π/2, Tθ maps U univalently onto the sector {z : | arg(z)| < θ}
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in the right halfplane Π. In particular, Tπ/2 = T maps U onto Π. For a 6= 0 such
that | arg(a)| < θ 6 π/2, define the selfmap ϕa,θ of U by

ϕa,θ(z) = (Tθ)
−1 ◦ (Tθ + a).

PROPOSITION 2.4. The compression spectrum of Cϕa,θ is empty, i.e., (Cϕa,θ − λI)
has dense range for every λ.

Proof. Let θ ∈ (0, π/2] and let a 6= 0 satisfy | arg(a)| < θ. Note that ϕa,θ(U)
is a simply connected domain whose boundary is a Jordan curve. Thus, by
Walsh’s Theorem (see, e.g., p. 11 of [5]), the set of polynomials in ϕa,θ is dense
H2(U); equivalently, Cϕa,θ has dense range.

Cowen proves ([12], Corollary 6.2) that

Sp(Cϕa,θ ) = {e
−βa : | arg β| 6 π/2− θ} ∪ {0}.

In fact, he shows that every nonzero spectral point is an eigenvalue of Cϕa,θ . We
now examine the eigenfunctions that Cowen exhibits. Let β 6= 0 belong to the
sector {z : | arg(z)| 6 π/2 − θ} so that e−βa belongs to the spectrum of Cϕa,θ .
Note that Re (βTθ(z)) > 0 for every z ∈ U so that F := e−βTθ ∈ H∞(U). Clearly
F is an eigenfunction for Cϕa,θ with corresponding eigenvalue e−βa. We complete
the argument by considering two cases.

Case 1. θ < π/2. We need to show Cϕa,θ − e−βa I has dense range. This
follows from Proposition 2.1, because the eigenfunction F = e−βTθ for e−βa is
outer by the following simple computation:

1
2π

π∫
−π

log |F(eit)|dt=Re
(−β

2π

π∫
−π

Tθ(eit)dt
)
=Re(−β Tθ(0))=Re(−β)= log |F(0)|,

where the second equality follows, e.g., from Theorem 3.6 of [19], because T(z) =
((1 + z)/(1− z))2θ/π is an H1(U) function (since 2θ/π < 1).

Case 2. θ = π/2. In this case, β > 0 and the eigenfunction F(z) = e−βTθ(z) =

e−β(1+z)/(1−z) is a singular inner function; in fact, the β-power of the unit sin-
gular function S(z) = e−(1+z)/(1−z). Let t be any nonnegative real number. We
have (Cϕa,θ − e−βa I)St = (e−ta − e−βa)St. It follows that the closure of the range
of (Cϕa,θ − e−βa I) contains all nonnegative powers of the unit singular function.
Since the linear span of the collection of all nonnegative powers of S is dense
in H2(U) (see, e.g, Lemma 4.2 of [20]), (Cϕa,θ − e−βa I) has dense range, as de-
sired.

REMARK 2.5. The issue of when (Cϕ − λI) has dense range relates to ques-
tion (Q1) raised in the Introduction as follows. Suppose that ϕ is a selfmap of
U of hyperbolic or parabolic automorphism type. Then by Corollary 4.4 and the
remarks following Theorem 4.10 of [12], every eigenvalue of Cϕ has infinite mul-
tiplicity. Thus if there is a number λ ∈ Sp(Cϕ) \ Spe(Cϕ), then Cϕ − λI must be
injective with closed range and it follows that the range of (Cϕ − λI) cannot be
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dense. Thus for selfmaps ϕ of hyperbolic or parabolic automorphism type, (Q1)
has an affirmative answer if one can show that for every nonzero λ, the operator
Cϕ − λI has dense range.

The remainder of the results in this section serve as lemmas in the next sec-
tion, permitting us to characterize the spectrum and essential spectrum of essen-
tially linear fractional composition operators (fixing a point on ∂U).

For η ∈ ∂U and β > 0, recall that H(η, β) = {z : |1− zη|2 < β(1− |z|2)} is
the open horodisc (of radius β/(1 + β)) internally tangent to the unit circle at η.

PROPOSITION 2.6. Suppose that ϕ is a selfmap of U of hyperbolic type that is
horocyclic at its Denjoy–Wolff point ω ∈ ∂U; then Spe(Cϕ) = Sp(Cϕ).

Proof. Without loss of generality, we take ϕ’s Denjoy–Wolff point to be 1.
Let β > 0 be such that ϕ(U) ⊆ H(1, β). Then by Julia’s Theorem ([27], p. 63), for
every z ∈ U and positive integer n,

(2.2) |1− ϕ[n+1](z)|2 < ϕ′(1)nβ(1− |ϕ[n+1](z)|2) 6 ϕ′(1)nβ.

Thus ‖1− ϕ[n+1]‖∞ 6 ϕ′(1)nβ.
Suppose that there is a number λ ∈ Sp(Cϕ) but not in Spe(Cϕ). Since the

only Fredholm composition operators are the invertible ones induced by auto-
morphisms of U ([9]), we know λ 6= 0. Since ϕ is of hyperbolic type, every
eigenvalue of Cϕ has infinite multiplicity ([12], Corollary 4.4). Thus λ cannot
be an eigenvalue of Cϕ; i.e., Cϕ − λI is injective. We arrive at a contradiction by
showing that λ also cannot be an eigenvalue of C∗ϕ, which shows that Cϕ− λI has
dense range and hence is surjective since its range must be closed.

Suppose, in order to obtain a contradiction, that λ is an eigenvalue of C∗ϕ
with corresponding eigenvector g. Because λ 6= 0 and ϕ′(1) < 1 (recall ϕ is of
hyperbolic type), we may choose the positive integer k such that ϕ′(1)k < |λ|. Be-
cause z 7→ (1− z)k is an outer function and g ∈ H2(U) is nonzero function, there
is a nonnegative integer m such that 〈zm(1− z)k, g〉 6= 0. For each nonnegative
integer n, we have

|λ|n+1|〈zm(1−z)k, g〉|= |〈zm(1− z)k, (C∗ϕ)
n+1g〉| = |〈(ϕ[n+1])m(1− ϕ[n+1])k, g〉|

6‖(ϕ[n+1])m(1−ϕ[n+1])k‖∞‖g‖H2(U)6ϕ′(1)nkβk‖g‖H2(U).

Hence,

|λ|
∣∣∣ λ

ϕ′(1)k

∣∣∣n 6
βk‖g‖H2(U)

|〈zm(1− z)k, g〉|

for every n, a contradiction since |λ/ϕ′(1)k| > 1.

The discussion of Section 1.5 shows that if ϕ ∈ LFe(ω; ω) is of parabolic
type, then ϕ satisfies the hypotheses of the following proposition.
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PROPOSITION 2.7. Suppose that ϕ ∈ C2(ω) satisfies ϕ′(ω) = 1 and that
Re (ωϕ′′(ω)) > 0. If λ 6= 1 is an eigenvalue of Cϕ, then λ is not an isolated point
of Sp(Cϕ).

Proof. Suppose that λ 6= 1 is an eigenvalue of Cϕ so that f ◦ ϕ = λ f for
some f ∈ H2, which is not the zero function. Note that since ϕ is nonconstant,
we must have λ 6= 0. Suppose that f (z0) = 0 for some z0 ∈ U. Then because
f (ϕ[n](z0)) = λn f (z0) = 0, we see that f vanishes at every point in the orbit
{ϕ[n](z0) : n > 0}. However, by Lemma 4.5 of [5], (ϕ[n](z0)) is not a Blaschke
sequence. Thus we have an H2(U) function f , which is not the zero function,
vanishing on a non-Blaschke sequence, which is a contradiction. It follows that f
has no zeros in U. Hence there is an analytic function g on U such that f = eg and
f 1/x := eg/x is an H2(U) function for each x > 1. Let log λ represent some fixed
choice of the logarithm of λ. Because λeg = f ◦ ϕ = eg◦ϕ, there is an integer k
such that g ◦ ϕ = log λ + g + 2πik. Then f 1/x ◦ ϕ = e1/x(log λ+2kπi) f 1/x so that for
each x > 1, λ1/x := e1/x(log λ+2kiπ) is an eigenvalue of Cϕ. Thus λ belongs to the
path λ1/x, x > 1 of eigenvalues, so that λ is not an isolated point of Sp(Cϕ).

The proof of the following lemma relies on some ideas from Section 3 of [1].

PROPOSITION 2.8. Suppose that ϕ ∈ C2(ω) satisfies ϕ′(ω) = 1 and that
Re (ωϕ′′(ω)) > 0. Then the point spectrum of Cϕ has no interior.

Proof. Let k be an arbitrary positive integer and let z0 ∈ U also be arbi-
trary. By Lemma 4.5 of [5], applied to ϕ[k] (which also satisfies (ϕ[k])′(ω) = 1
and Re (ω(ϕ[k])′′(ω) > 0), the sequence (ϕ[kn](z0)) is not Blaschke. It follows
that (C∗ϕ)k = C∗

ϕ[k] is a cyclic operator on H2. In fact, Kz0 is a cyclic vector: if

for some f ∈ H2, we have 〈 f , (C∗
ϕ[k])

nKz0〉 = 0 for all nonnegative integers n,

then since 〈 f , (C∗
ϕ[k])

nKz0〉 = 〈 f , Kϕ[kn](z0)
〉 = f (ϕ[kn](z0)), we see f vanishes on a

non-Blaschke sequence so that f ≡ 0.
We have shown that every positive integral power of C∗ϕ is cyclic and it

follows that no power of Cϕ can have an eigenvalue of multiplicity greater than
1. In particular this means that if λ is an eigenvalue of Cϕ then ζλ cannot be an
eigenvalue of Cϕ for ζ any root of unity different from 1. Thus, in particular, the
point spectrum of Cϕ has no interior.

3. SPECTRA OF ESSENTIALLY LINEAR FRACTIONAL COMPOSITION OPERATORS

As we explained in Section 1.5, when characterizing spectra for composition
operators induced by essentially linear fractional selfmaps ϕ of U, the situation of
interest is that where ϕ fixes a point on the unit circle. Without loss of generality,
we assume ϕ(1) = 1. We begin with the hyperbolic case.
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THEOREM 3.1. Suppose that ϕ is an essentially linear fractional selfmap of U of
hyperbolic-type with Denjoy–Wolff point 1. Then

Sp(Cϕ) = Spe(Cϕ) = {z : |z| 6 ϕ′(1)−1/2}.
Proof. Let ϕ′(1) = p so that p < 1 and let a = ϕ′′(1). Let Ψ be the selfmap

of the right halfplane Π given by

Ψ(w) =
1
p

w +
( 1

p
− 1 +

a
p2

)
.

By the discussion of Section 1.5, we know that Cϕ is compactly equivalent to Cψ,
where ψ = T−1 ◦ Ψ ◦ T and T(z) = (1 + z)/(1− z). Because ϕ is horocyclic at
1, Proposition 1.2 ensures that the constant summand on the right in the equa-
tion defining Ψ is positive, and thus Ψ is not an automorphism. Transferring the
properties of Ψ to its unit-disk incarnation ψ, we see that ψ is a linear-fractional
non-automorphism of U with Denjoy–Wolff point 1 and ψ′(1) = p, so that ψ is of
hyperbolic type. By, e.g., Corollary 4.8 of [12] (which characterizes the spectrum
of any composition operator whose symbol is of hyperbolic type and analytic on
the closed disc) the spectrum of Cψ is the disc D := {z : |z| 6 ψ′(ω)−1/2} = {z :
|z| 6 ϕ′(ω)−1/2}. Actually every point in the interior of D \ {0} is an infinite
multiplicity eigenvalue of Cψ, so that D = Spe(Cψ). Alternatively, D = Spe(Cψ)
because ψ is horocyclic at 1 (Proposition 2.6 above).

Because Cϕ and Cψ are equivalent modulo the compacts, we have Spe(Cϕ) =
D; but since ϕ is horocyclic at 1, Proposition 2.6 yields Sp(Cϕ) = Spe(Cϕ), which
completes the argument.

Consider ϕ(z) = 2/(
√

13− 4z − 1), the hyperbolic-type essentially linear
fractional selfmap of U discussed in Example 1.4. By Theorem 3.1, the disc {z :
|z| 6

√
3} is both the spectrum and essential spectrum of Cϕ.

We now turn to the case in which the essentially linear fractional selfmap
has interior fixed point (as well as boundary fixed point 1).

THEOREM 3.2. Suppose that ϕ is an essentially linear fractional selfmap of U
fixing 1. Suppose that ϕ′(1) > 1 so that the Denjoy–Wolff point ω of ϕ lies in U. Let N
be least positive integer for which |ϕ′(ω)|N 6 ϕ′(1)−1/2. Then

Sp(Cϕ) = {z : |z| 6 ϕ′(1)−1/2} ∪ {ϕ′(ω)n : n = 0, . . . , N − 1}

and
Spe(Cϕ) = {z : |z| 6 ϕ′(1)−1/2}.

Proof. The spectrum of Cϕ contains all powers of ϕ′(ω) ([12], Theorem 4.1).
Moreover, work of Koenigs [25] shows that the only possible eigenvalues of Cϕ

are powers of ϕ′(ω).
Let D = {z : |z| 6 ϕ′(1)−1/2}. We prove that the disc D equals Spe(Cϕ),

and the proposition follows from the discussion of the preceding paragraph and
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that of Section 1.7 because any spectral point λ outside of D is in the unbounded
component of the essential resolvent, making λ an eigenvalue.

Let ψ be the linear-fractional selfmapping of U given by T−1 ◦Ψ ◦ T, where

Ψ(w) =
w
p
+
( 1

p
− 1 +

a
p2

)
,

p = ϕ′(1) > 1, and a = ϕ′′(1). From the discussion of Section 1.5, we know there
is a constant c > 0 such that

(3.1) Re
( 1

p
− 1 +

a
p2

)
> c,

and since p > 1, it follows that Re (a) > 0 (just as in parabolic non-automorphism
case). We prove that the essential spectrum of Cψ is the disc D, which implies the
same is true of Cϕ since Cϕ and Cψ differ by a compact operator.

Applying either results of Kamowitz (see, e.g. p. 296 of [18]) or Theo-
rem 7.31 of [18], we see that the essential spectral radius of Cψ is ψ′(1)−1/2 =

ϕ′(1)−1/2. Thus we need only show that every point in D is in the essential spec-
trum of Cψ.

Applying the modified version (1.7) of Cowen’s adjoint formula for linear
fractional composition operators, we see

C∗ψ = Λ0 + Mzσ′(z)CσB,

where B is the backward shift and

σ(z) =
(−2p2 + a)z− a

(2p− 2p2 + a)z− 2p− a
while zσ′(z) =

4p3z
((2p− 2p2 + a)z− 2p− a)2 .

Thus, since Λ0 is a rank-one operator, we see that C∗ψ is equivalent to the operator

Mzσ′(z)CσB

modulo the compacts.
By Lemma 3.3 of [2] (or Corollary 2.2 of [24]), the weighted composition op-

erator Mσ′(z)Cσ is equivalent to σ′(1)Cσ = (1/p)Cσ modulo the compacts, mak-
ing C∗ψ equivalent to Mz/pCσB modulo the compacts. We show that every point
in the interior of the punctured disc D \ {0} is an infinite multiplicity eigenvalue
of Mz/pCσB. Thus each point of D is in the essential spectrum of Mz/pCσB, hence
of C∗ψ, hence of Cψ, as desired.

The selfmapping σ of U is of hyperbolic type with Denjoy–Wolff point 1
and Denjoy–Wolff derivative equal to σ′(1) = 1/p. Translated to the right-half
plane Π via T, the function σ takes the form Σ(w) = pw + 1 − p + a/p (i.e.
Σ = T ◦ σ ◦ T−1). Note 1− p + a/p = p(1/p− 1+ a/p2) has positive real part so
that Σ is indeed a self-mapping of Π. It is easy to see that

Γ(w) = w +
p− p2 + a
p(p− 1)
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is a self-mapping of Π for which

(3.2) Γ ◦ Σ = pΓ.

Note well that (p− p2 + a)/(p(p− 1)) has strictly positive real part (the denom-
inator is positive and (p− p2 + a) = p2(1/p− 1 + a/p2) has real part exceeding
p2c by (3.1)), which means that γ(z) := (T−1 ◦ Γ ◦ T)(z) will take the unit disc
U univalently onto a proper subdisc of U internally tangent to the unit disc at 1.
In particular γ(U) will be bounded away from −1. The intertwining relationship
(3.2) translates to the disc as follows

γ ◦ σ = ν ◦ γ

where ν = T−1 ◦ (pT) is a hyperbolic automorphism of U with ω = 1 and
ν ′(1) = 1/p. Let ln be the principal branch of the logarithm function and recall
that fb(z) = eb ln((1+z)/(1−z)) belongs to H2(U) whenever −1/2 < Re (b) < 1/2.
Since γ(U) is bounded away from −1, we conclude that fb ◦ γ belongs to H2(U)
whenever −∞ < Re (b) < 1/2. Let g(z) = z fb(γ(z)) so that Bg = fb ◦ γ. For
every b satisfying −∞ < Re (b) < 1/2, we have

Mz/p(CσBg)(z) = Mz/p( fb ◦ γ ◦ σ)(z) =
z
p
( fb ◦ ν)(γ(z)) =

z
p
(T ◦ ν)b(γ(z))

=
z
p

pb fb(γ(z)) = pb−1g(z).

Fix b with −∞ < Re (b) < 1/2 and let k be an integer. Replacing b with b +
2πki/ ln(p) in the preceding computation, we see that

z 7→ ze(b+2πki/ ln(p)) ln((1+γ(z))/(1−γ(z)))

is an eigenvector for Mz/pCσB with corresponding eigenvalue pb−1. It follows
that every point in the punctured disc {z : |z| < p−1/2} \ {0} is an infinite-
multiplicity eigenvalue of the operator Mz/pCσB. Hence the essential spectrum
of Mz/pCσB contains the closure of this punctured disc, which is D, as desired.

By the the preceding theorem, Sp(Cϕ) = {z : |z| 6 1/
√

2} ∪ {1} and
Spe(Cϕ) = {z : |z| 6 1/

√
2}when ϕ(z) = (2z2 − 3z + 3)/(2z2 − 7z + 7) is the es-

sentially linear fractional selfmap of Example 1.5 (ϕ(1/2) = 1/2, ϕ′(1/2) = 3/8,
and ϕ′(1) = 2).

As we have discussed, if ϕ is essentially linear fractional and of parabolic
type with Denjoy–Wolff point 1, then Re (ϕ′′(1)) > 0. We now complete our
characterization of spectra and essential spectra for essentially linear fractional
composition operators.

THEOREM 3.3. Suppose that ϕ is an essentially linear fractional selfmap of U
fixing 1. Suppose that ϕ′(1) = 1 so that the Denjoy–Wolff point ω of ϕ is 1. Let
a = ϕ′′(1) so that Re (a) > 0. Then

Sp(Cϕ) = Spe(Cϕ) = {e−at : t > 0} ∪ {0}.
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Proof. Let ψ be the linear fractional selfmap of U given by ψ = T−1 ◦Ψ ◦ T,
where Ψ is the selfmap of Π given by

Ψ(w) = w + a.

By Corollary 6.2 of [12], the spectrum of Cψ is precisely the spiral S := {e−at :
t > 0} ∪ {0}. Because S has no interior and no isolated points, S is the essential
spectrum of Cψ as well. Because Cϕ and Cψ are equivalent modulo the compact
operators, Spe(Cϕ) = S, as desired.

That Sp(Cϕ) = Spe(Cϕ) follows quickly from Propositions 2.7 and 2.8. Let
λ ∈ Sp(Cϕ) \ Spe(Cϕ) be arbitrary. Note λ is neither 0 nor 1. Because the comple-
ment of S is connected, Cϕ−λI must be Fredholm of index 0. Thus λ must belong
to the point spectrum of Cϕ and from Proposition 2.7, we see that λ is not an iso-
lated point of the spectrum of Cϕ. Since λ is in the essential resolvent and not
isolated, it cannot be a boundary point of Sp(Cϕ) (see, e.g, Theorem 6.8, p. 366 of
[11]). This contradicts Proposition 2.8: since Sp(Cϕ) \ Spe(Cϕ) consists of eigen-
values, every point in Sp(Cϕ) \ Spe(Cϕ) must be a boundary point of Sp(Cϕ). We
conclude Sp(Cϕ) \ Spe(Cϕ) is empty, as desired.

Applying the preceding theorem, we see that the spiral {e−2t−it : t > 0} ∪
{0} is the spectrum and essential spectrum of the parabolic-type selfmap ϕ of
Example 1.6.

4. SPECTRA OF SOME WEIGHTED COMPOSITION OPERATORS

In this section, we consider the spectrum of weighted composition operators
on H2(U) of the form Cg,ϕ, where ϕ is an analytic selfmap of U and g ∈ H∞(U).
Here, we have Cg,ϕ f = g f ◦ ϕ for f ∈ H2(U). Clearly, Cg,ϕ is a bounded linear op-
erator on H2(U) and ‖Cg,ϕ : H2(U)→ H2(U)‖ 6 ‖g‖∞‖Cϕ : H2(U)→ H2(U)‖.

We begin with a couple results that do not require ϕ to be essentially linear
fractional.

LEMMA 4.1. Suppose that ϕ is an arbitrary analytic selfmap of U with Denjoy–
Wolff point ω. Suppose that g ∈ H∞(U) extends to be continuous on U ∪ {ω} (if
ω ∈ ∂U). If λ is an eigenvalue of Cg,ϕ, then |λ| 6 |g(ω)| r(Cϕ), where r(Cϕ) is
the spectral radius of ϕ. If g(ω) = 0 and ϕ and g are nonconstant, then Cg,ϕ has no
eigenvalues.

Proof. Suppose that λ is a nonzero eigenvalue for Cg,ϕ with corresponding
eigenvector f . For each positive integer n and z ∈ U, we have

(4.1) λn f (z) =
n−1

∏
j=0

g(ϕ[j](z)) f (ϕ[n](z)).
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Observe that for any fixed z ∈ U and positive integer n, we have from (1.1):

(4.2) | f (ϕ[n](z))| 6
‖ f ◦ ϕ[n]‖H2(U)√

1− |z|2
6 ‖Cn

ϕ‖
‖ f ‖H2(U)√

1− |z|2
.

Choose z ∈ U such that f (z) 6= 0 and notice from (4.1) that g(ϕ[j](z)) must
be nonzero for every non-negative integer j. Since (ϕ[j](z)) approaches ω as j →
∞, we know g(ϕ[j](z)) approaches g(ω) as j → ∞. Upon (i) taking n-th roots of
the absolute value each side of (4.1), (ii) using the estimate (4.2), and (iii) letting
n→ ∞, we obtain

(4.3) |λ| 6 |g(ω)| r(Cϕ),

as desired.
Now assume g(ω) = 0 while g and ϕ are nonconstant. Then by (4.3), λ = 0

is the only possible eigenvalue for Cg,ϕ. However, g, being nonconstant, is not the
zero function; since ϕ is also nonconstant, 0 cannot be an eigenvalue of Cg,ϕ.

We can weaken the hypothesis on g by making further assumptions on ϕ.

LEMMA 4.2. Suppose that
(i) ϕ is an arbitrary selfmapping of U of hyperbolic type or

(ii) ϕ ∈ C2(ω) satisfies ϕ′(ω) = 1 and Re (ωϕ′′(ω)) > 0.
If λ is an eigenvalue of Cg,ϕ and g ∈ H∞(U) has finite radial (equivalently non-

tangential) limit g(ω) at ω, then

|λ| 6 |g(ω))| r(Cϕ);

moreover, Cg,ϕ will have no eigenvalues if g(ω) = 0, and ϕ and g are nonconstant
functions.

Proof. In cases (i) and (ii) for each z ∈ U, the sequence (ϕ[j](z)) converges
nontangentially to ω (for case (i) see Lemma 2.66 of [18]; for case (ii), see Lem-
ma 4.5 of [5]). Thus (g(ϕ[j](z)) will converge to g(ω) as j→ ∞ and the argument
of Lemma 4.1 may be applied to complete the proof.

We now turn our attention to weighted composition operators Cg,ϕ, where
ϕ is essentially linear fractional. Suppose that ϕ ∈ LFe(ζ; η) so that η and ζ are
unimodular constants such that ϕ ∈ C3(ζ), ϕ(ζ) = η, ϕ−1({η}) = {ζ}, and
ϕ(U) lies in a proper subdisc of U internally tangent to the unit circle at η. Just
as in Section 1.5, we see that if η 6= ζ, then ‖ϕ ◦ ϕ‖∞ < 1 and (Cϕ)2 is thus
compact. It follows that (Cg,ϕ)2 = g g ◦ ϕ (Cϕ)2 is also compact and its spectrum
is {g(ω)ϕ′(ω)n : n = 0, 1, 2, . . .} ∪ {0} by, e.g, Corollary 1 of [21] or p. 187 of [10].
Thus, just as in the preceding section, we focus on the situation where ϕ fixes a
point on ∂U and we assume, without loss of generality, that this point is 1.

Let ζ ∈ ∂U. We say that g ∈ H∞(U) is continuous at ζ provided that g’s
radial limit function is continuous at ζ (which implies g is continuous on U∪{ζ}).
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We require the following lemma, which is a quick consequence of Corollary 2.2
of [24].

LEMMA 4.3. Suppose that ϕ∈LFe(1; 1) and that g∈H∞(U) is continuous at 1.
Then

Cg,ϕ ≡ g(1)Cϕ modulo the compact operators.

Proof. The essentially linear fractional map ϕ satisfies ϕ(1) = 1. Let p =
ϕ′(1), a = ϕ′′(1), and ψ be the selfmap of U defined by ψ = T−1 ◦ Ψ ◦ T, where
Ψ is given by (1.5). We know that Cϕ − Cψ is compact. Hence, for g ∈ H∞(U),
MgCϕ −MgCψ is compact; that is

Cg,ϕ ≡ Cg,ψ modulo the compact operators.

Our linear-fractional selfmap ψ is not an automorphism and satisfies ψ(1) = 1.
By Corollary 2.2 of [24], we have Cg−g(1),ψ is compact and the lemma follows.

The next theorem generalizes Theorem 3 of [21].

THEOREM 4.4. Suppose that ϕ and g are as in Lemma 4.3 and that g(1) = 0.
Then Sp(Cg,ϕ) = {0}.

Proof. By Lemma 4.3, Cg,ϕ is compact and thus Spe(Cg,ϕ) = {0}. Hence any
nonzero spectral point must be an eigenvalue of Cg,ϕ. Apply Lemma 4.1 to see
that Cg,ϕ has no nonzero eigenvalues and the theorem follows.

We now characterize the spectrum and essential spectrum of Cg,ϕ when ϕ
and g satisfy the hypotheses of Lemma 4.3 and either ϕ′(1) < 1 or ϕ′(1) > 0.
Our final result will be a spectral characterization for Cg,ϕ in the parabolic case
ϕ′(1) = 1, but this result requires significant additional assumptions on ϕ.

THEOREM 4.5. Suppose that ϕ and g are as in Lemma 4.3 and ϕ′(1) < 1. Then

Sp(Cg,ϕ) = Spe(Cg,ϕ) = {z : |z| 6 |g(1)|ϕ′(1)−1/2}.
Proof. By Lemma 4.3, Cg,ϕ is equivalent to g(1)Cϕ modulo the compact op-

erators. By Theorem 3.1, the essential spectrum of g(1)Cϕ is D := {z : |z| 6
|g(1)|ϕ′(1)−1/2}, and thus Spe(Cg,ϕ) = D as well.

Suppose that Cg,ϕ has a spectral point λ outside D, then λ must be an eigen-
value of Cg,ϕ. However, Lemma 4.1 (or Lemma 4.2) ensures that all eigenvalues
of Cg,ϕ must belong to D (because r(Cϕ) = ϕ′(1)−1/2 by Theorem 2.1 of [12]), and
we conclude the spectrum of Cg,ϕ = D, as desired.

Let ϕ(z) = 2/(
√

13−4z−1) and g(z) = 1/
√

3+(1−z)3/2. Then, by Theo-
rem 4.5, the closed unit disc is both the spectrum and essential spectrum of Cg,ϕ.

THEOREM 4.6. Suppose that ϕ and g are as in Lemma 4.3 and ϕ′(1) > 1 so that
the Denjoy–Wolff point ω of ϕ belongs to U. Let N be the least nonnegative integer such



556 PAUL S. BOURDON

that |g(ω)||ϕ′(ω)|N 6 |g(1)||ϕ′(1)|−1/2. Then

Sp(Cg,ϕ) = {z : |z| 6 |g(1)|ϕ′(1)−1/2} ∪ {g(w)ϕ′(ω)n : n = 0, 1, . . . , N − 1}
and

Spe(Cg,ϕ) = {z : |z| 6 |g(1)|ϕ′(1)−1/2}.
Proof. The proof is similar to that of Theorem 4.5. Just as before, Cg,ϕ is

equivalent to g(1)Cϕ modulo the compact operators. By Theorem 3.2, the essen-
tial spectrum of g(1)Cϕ is D := {z : |z| 6 |g(1)|ϕ′(1)−1/2} and thus, Spe(Cg,ϕ) =
D as well.

Any spectral point of Cg,ϕ outside D must be an eigenvalue of Cg,ϕ. How-
ever, it’s not difficult to see that every eigenvalue of Cg,ϕ must have the form
g(ω)ϕ′(ω)n for some nonnegative integer n (see, e.g, proof of Lemma 1 of [21])
and that all points of this form are in the spectrum of Cg,ϕ ([21], Lemma 3). The
theorem follows.

For a concrete example illustrating the preceding theorem, set g(z) = (3−
2z)3 and ϕ(z) = (2z2 − 3z + 3)/(2z2 − 7z + 7) . Then ϕ is the essentially linear
fractional map of Example 1.5, which satisfies ϕ(1) = 1, ϕ′(1) = 2, ϕ(1/2) = 1/2,
and ϕ′(1/2) = 3/8. Here g(1) = 1 while g(1/2) = 8. Thus |g(1/2)||ϕ′(1/2)|n >
|g(1)||ϕ′(1)|−1/2 for precisely n = 0, 1, and 2. Hence,

Sp(Cg,ϕ) = {z : |z| < 1/
√

2} ∪ {8, 3, 9/8}

and Spe(Cg,ϕ) = {z : |z| < 1/
√

2}.
Only with significantly stronger hypotheses on ϕ can we obtain a spectral

characterization for Cg,ϕ when ϕ is of parabolic type. We suppose that ϕ satisfies
the hypotheses of Lemma 4.3 and in addition that ϕ is continuous on the closed
disc U−, one-to-one on U−, and is C3+ε(1) for some ε > 0. Moreover, we assume
that

Re (ϕ′′(1)(Sϕ)(1)) > 0,

where

Sϕ(1) =
( ϕ′′

ϕ′

)′
(1)− 1

2

( ϕ′′

ϕ′

)2
(1)

is the Schwarzian derivative of ϕ at 1. With all these hypotheses on ϕ, the “Par-
abolic Models” Theorem 4.12 of [5] may be applied to ϕ, or, more precisely to
the right halfplane incarnation Φ of ϕ (so that Φ = T ◦ ϕ ◦ T−1). The Parabolic
Models Theorem from [5] tells us that there is an analytic mapping ν defined on
the right halfplane Π such that ν ◦Φ = ν + ϕ′′(1). Moreover by part (c) of The-
orem 4.12 of [5] (see also the discussion of Schwarzian derivatives on pages 51
and 52 of [5]), we can assume that ν is a selfmap of the right halfplane Π. Thus
ν ◦ T ◦ ϕ = ν ◦ T + ϕ′′(1) and since ν is a selfmap of Π, for each t > 0, we see that
h(z) = e−tν◦T belongs to H∞(U) and

(4.4) Cϕh = e−tϕ′′(1)h.
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THEOREM 4.7. Suppose that ϕ and g are as in Lemma 4.3, that ϕ is of parabolic
type, and that ϕ is continuous on the closed disc U−, one-to-one on U−, and is C3+ε(1)
for some ε > 0. Moreover, assume that

Re (ϕ′′(1)(Sϕ)(1)) > 0,

where (Sϕ)(1) is the Schwarzian derivative of ϕ at 1. Then

Sp(Cg,ϕ) = Spe(Cg,ϕ) = {g(1)e−bt : t > 0} ∪ {0},

where b = ϕ′′(1).

Proof. If g(1) = 0, the theorem follows from Theorem 4.4 above. Thus, we
assume g(1) 6= 0.

Just as in the proofs of Theorems 4.5 and 4.6 above, Cg,ϕ is equivalent to
g(1)Cϕ modulo the compact operators. By Theorem 3.3, the essential spectrum of
g(1)Cϕ is S := {g(1)e−bt : t > 0} ∪ {0}; thus, Spe(Cg,ϕ) = S as well.

The argument that there are no points in the spectrum of Cg,ϕ outside of S
is similar to that of Theorem 3.3.

As we have discussed (see Section 1.5), since ϕ is essentially linear fractional
and of parabolic type, Re (ϕ′′(1)) > 0. Hence, by Lemma 4.5 of [5], applied to ϕ[k]

the iterate sequence (ϕ[kn](z)) fails to be Blaschke for every z ∈ U. We claim that
every power of C∗g,ϕ is cyclic on H2(U). Since g is continuous on U ∪ {1} with
g(1) 6= 0 and since (ϕ[j](0)) approaches 1, there is a positive integer N such that
for all j > N, g(ϕ[j](0)) is nonzero. Set z0 = ϕ[N](0). Then Kz0 will be cyclic for

the k-th power of C∗g,ϕ: ((C∗g,ϕ)
knKz0 = (C∗ϕ(Mg)∗)kn =

kn−1
∏
j=0

g(ϕ[j](z0))Kϕ[kn](z0)
so

that if f ∈ H2(U) is orthogonal to all powers of (Cg,ϕ)∗, it must vanish on the
non-Blaschke sequence (ϕ[kn](z0)) and hence f ≡ 0. Thus, we have established
our claim: every power of Cg,ϕ is cyclic.

If follows, just as in the proof of Proposition 2.8, that every spectral point of
Cg,ϕ outside of the essential spectrum must be boundary point of the spectrum
and thus must be an isolated point of the spectrum. We show no spectral point of
Cg,ϕ outside of S can be isolated, completing the proof of the theorem.

Suppose that λ ∈ Sp(Cg,ϕ) \ S so that λ is an eigenvalue of Cg,σ. Note λ 6= 0.
Let f ∈ H2(U) be an eigenfunction associated with λ. Since Re (ϕ′′(1)(Sϕ)(1)) >
0, there is an analytic self map ν of the right halfplane such that ν ◦ T ◦ ϕ =
ν ◦ T + ϕ′′(1). Let t > 0, let h(z) = e−tν◦T . Since h ∈ H∞(U), h f ∈ H2(U);
moreover, applying (4.4) and g f ◦ ϕ = λ f , we see for each t > 0,

Cg,ϕh f = (h ◦ ϕ)(g f ◦ ϕ) = e−tϕ′′(1)λh f .

Thus for each t > 0, we see e−tϕ′′(1)λ is an eigenvalue of Cg,ϕ so λ is not an
isolated spectral point, which completes the proof of the theorem.
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For a concrete example illustrating the preceding theorem consider the es-
sentially linear fractional mapping ϕ of Example 1.6. Recall ϕ = T−1 ◦ Φ ◦ T
where Φ(w) = w+ 2+ i− 1/(4(w+ 1))− 1/(4(w+ 1)3/2. It is easy to see that Φ′

has positive real part on a neighborhood of the closed right halfplane and thus ϕ

is one-to-one on the closed disc. Also ϕ ∈ C3+ε(1) for, say, ε = 1/4. Finally, using
ϕ′′(1) = 2 + i and ϕ′′′(1) = 39/8 + 6i, one calculates the Schwarzian derivative
of ϕ at 1 to be 3/8. Thus Re (ϕ′′(1)(Sϕ)(1)) = 3/4 > 0. Letting g(z) = i

√
5− z,

e.g, we see Sp(Cg,ϕ) = Spe(Cg,ϕ) = {2ie−2t−it : t > 0} ∪ {0}.

5. OPEN QUESTIONS

Aside from questions (Q1) and (Q2) raised in the Introduction, the following
questions seem interesting:

(i) What is the compression spectrum of Cϕ : H2(U)→ H2(U)?
(ii) If ϕ is of hyperbolic type or parabolic automorphism type, is the compres-

sion spectrum of Cϕ at most {0}?
(iii) To what extent can the spectral characterizations of Theorems 3.1, 3.2, and

3.3 for essentially linear fractional composition operators be generalized? For ex-
ample, can analogs be shown to hold under only the assumption that ϕ is horo-
cyclic at a boundary fixed point?

(iv) For a weighted composition operator Cg,ϕ, where g and ϕ satisfy the hy-
potheses of either Theorem 4.5 or Theorem 4.7, the spectrum and essential spec-
trum of Cg,ϕ are the same. Can Sp(Cg,ϕ) = Spe(Cg,ϕ) be established for a wider
variety of combinations of g and ϕ?

As we mentioned in Section 2, if the answer to the second question above
is “yes”, then (Q1) from the Introduction has an affirmative answer when ϕ is
of hyperbolic or parabolic-automorphism type. We remark that for maps ϕ of
parabolic automorphism type (but not automorphisms), Cowen ([12], Section 7)
conjectures that Sp(Cϕ) = Spe(Cϕ) = U−.
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