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ABSTRACT. For 0 < s < 1, let ϕs(z) = sz + (1− s). We investigate the unital
C∗-algebra generated by the semigroup {Cϕs : 0 < s < 1} of composition
operators acting on the Hardy space of the unit disk. We determine the joint
approximate point spectrum of a related collection of operators and show that
the quotient of the C∗-algebra by its commutator ideal is isomorphic to the
direct sum of C and the algebra of almost periodic functions on the real line.
In addition, we show that the C∗-algebra is irreducible.
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1. INTRODUCTION

For any analytic self-map ϕ of the unit disk D, one can define the composi-
tion operator Cϕ : f → f ◦ ϕ, which is a bounded linear operator on the Hardy
space H2(D). Individual composition operators on the Hardy space have been
extensively studied, and there has been great success in relating the properties
of a single composition operator Cϕ to the function-theoretic properties of the
associated map ϕ. Many of these results can be found in [15] and [34].

Recently, several authors have begun studying unital C∗-algebras generated
by composition operators [20], [22], [23], [24], [25], [26], [27], [28]. Although a few
authors have considered composition operators induced by finite Blaschke prod-
ucts [20], [22], [23], most of the investigations have focused on composition oper-
ators induced by linear-fractional maps. One motivation for this restriction is that
the linear-fractional case has proven to be a useful model for guiding the study
of more general composition operators in the single operator setting. Moreover,
composition operators induced by linear-fractional non-automorphisms serve as
building blocks modulo the compact operators for certain more general compo-
sition operators [29].
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The study of C∗-algebras generated by composition operators induced by
linear-fractional maps tends to split into two cases, automorphism-induced gen-
erators and non-automorphism-induced generators. The two cases have typically
required different methods. M. Jury has investigated the automorphism case [24],
[25], and Kriete, MacCluer, and Moorhouse have studied the non-automorphism
case [26], [27], [28]. The work of Kriete, MacCluer, and Moorhouse has focused
on composition operators induced by maps ϕ that either satisfy ϕ(ζ) = η for dis-
tinct points ζ and η in the unit circle T or fix a point ζ ∈ T and have ϕ′(ζ) = 1.
In this paper, we begin consideration of the remaining non-automorphism case:
ϕ(ζ) = ζ and ϕ′(ζ) 6= 1.

For 0 < s < 1, let ϕs(z) = sz + (1− s). Note that ϕs is a linear-fractional,
non-automorphism self-map of D, ϕs(1) = 1, and ϕ′s(1) = s. For 0 < s, t < 1,
Cϕs Cϕt = Cϕst = Cϕt Cϕs , so {Cϕs : 0 < s < 1} is a semigroup of commut-
ing composition operators. The elements of the semigroup have been studied as
individual operators by several authors, including Cowen and Ko [13], who de-
termined the polar decomposition and Aluthge transform of Cϕs , and Cowen and
Kriete [14], who showed that C∗ϕs is subnormal. In this paper, we determine the
structure of the unital C∗-algebra generated by the semigroup modulo its com-
mutator ideal. Recall that the commutator ideal of a C∗-algebra A is the closed
ideal of A generated by elements of the form [A, B] = AB− BA for A, B ∈ A.

To simplify our investigations, we will consider several sets of operators
that are unitarily equivalent to {Cϕs : 0 < s < 1}. These alternate settings are
more conducive to the determination of spectral information and invariant sub-
spaces than the original setting in H2(D). The operators that we will consider,
and the Hilbert spaces on which they act, are introduced in Section 2.

In Section 3, we recall the definition of the joint approximate point spectrum
of a collection of operators and a theorem of J. Bunce that relates the structure of
the unital C∗-algebra generated by a collection of commuting hyponormal op-
erators to the joint approximate point spectrum of the collection. Motivated by
this relationship, we determine the joint approximate point spectra of finite sub-
sets of {Tsz : 0 < s < 1}, a collection of operators that is unitarily equivalent to
{C∗ϕs : 0 < s < 1}. These spectra prove to be rather complicated, which makes a
direct application of Bunce’s theorem impractical. Instead we connect these spec-
tra to the joint approximate point spectra of almost periodic Toeplitz operators, a
better-understood class of operators. In Section 4, we use this connection to prove
our main result:

THEOREM 1.1. For 0 < s < 1, let ϕs(z) = sz + (1 − s). Let C denote the
commutator ideal of C∗({Cϕs : 0 < s < 1}). Then there exists a ∗-homomorphism
ψ : C∗({Cϕs : 0 < s < 1})→ AP(R)⊕C such that

0→ C ↪→ C∗({Cϕs : 0 < s < 1}) ψ→ AP(R)⊕C→ 0

is a short exact sequence.
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Here, and throughout this paper, C∗({Cϕs : 0 < s < 1}) denotes the unital C∗-
algebra generated by {Cϕs : 0 < s < 1}, and AP(R) is the algebra of almost
periodic functions on the real line.

The commutator ideal of C∗({Cϕs : 0 < s < 1}) is non-trivial and contains a
large collection of non-compact operators. For example, [C∗ϕt , Cϕs ] is not compact
for all s, t ∈ (0, 1) [4], [7]. It is not known whether the ideal of compact operators
is contained in the commutator ideal or even in the full C∗-algebra C∗({Cϕs : 0 <
s < 1}). As a step toward answering these questions, we prove, in Section 5, that
C∗({Cϕs : 0 < s < 1}) is irreducible, which implies that the two questions are
equivalent.

2. SOME RELATED SPACES AND OPERATORS

During the course of our investigations, we will use a variety of spaces and
operators. We now describe these spaces and establish our notation.

2.1. HARDY SPACE OF THE DISK. The Hardy space of the disk, denoted H2(D),
is the set of all functions f (z) =

∞
∑

n=0
anzn that are analytic in the open unit disk D

and satisfy

‖ f ‖2
H2(D) :=

∞

∑
n=0
|an|2 < ∞.

The Hardy space has reproducing kernels κw(z) = (1− wz)−1 for all w ∈ D that
satisfy 〈 f , κw〉H2(D) = f (w) for all f ∈ H2(D). More information about H2(D) can
be found in [15] and [17].

2.2. A UNITARILY EQUIVALENT SPACE: H2(µ). We define a measure µ on the
half-plane Ω = {z ∈ C : Re z > − 1

2} by

(2.1) dµ =
∞

∑
n=−1

|Γ( n
2 + iy + 1)|2

2π(n + 1)!
dydδn/2(x),

where δn/2 is the measure on R having a unit point mass at x = n
2 and Γ is

the gamma function. The measure µ is finite with total mass equal to 1 [30]. For
convenience, we denote L2(Ω, µ) and L∞(Ω, µ) by L2(µ) and L∞(µ), respectively.
For 0 < a 6 1, the function f (z) = az is in L2(µ). The Hilbert space H2(µ) is
defined as the closed linear span of {az : 0 < a 6 1} in L2(µ).

The orthogonal projection of L2(µ) onto H2(µ) will be denoted Pµ. For f ∈
L∞(µ), we define the multiplication operator M f : L2(µ) → L2(µ) by M f g = f g
for all g ∈ L2(µ) and the Toeplitz-like operator Tf : H2(µ) → H2(µ) by Tf h =

Pµ f h for all h ∈ H2(µ). Note that for 0 < s, t < 1, Tsz Ttz = T(st)z = Ttz Tsz , and
Tsz = Msz |H2(µ) since szaz ∈ H2(µ) for all a ∈ (0, 1]. Thus, {Tsz : 0 < s < 1} is a
semigroup of commuting subnormal operators.
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A unitary operator V : H2(D)→ H2(µ) can be defined in the following way
[14]: For 0 < a, b 6 1,

(2.2) 〈κ(1−a), κ(1−b)〉H2(D) = 〈az, bz〉H2(µ).

Define the operator V on the functions κ(1−a) by Vκ(1−a) = az. The set {κ(1−a) :
0 < a 6 1} has dense linear span in H2(D), and the set {az : 0 < a 6 1} has dense
linear span in H2(µ). Since V preserves inner products by (2.2), it has a unique
extension to a unitary operator, also denoted V, from H2(D) onto H2(µ).

Our interest in the space H2(µ) comes from the following theorem of Cowen
and Kriete:

THEOREM 2.1 ([14], Theorem 18). Let 0 < s < 1. Then C∗ϕs is unitarily equiva-
lent to Tsz via V.

We will find that for many of our investigations it is more convenient to
study C∗({Tsz : 0 < s < 1}) instead of considering C∗({Cϕs : 0 < s < 1})
directly.

2.3. A SECOND EQUIVALENT SPACE: THE NEWTON SPACE. The Newton space,
denoted N , is a Hilbert space of analytic functions on {z ∈ C : Re z > − 1

2} that
has the Newton polynomials,

Nn(z) =

{
1 if n = 0,

(−1)n z(z−1)···(z−(n−1))
n! if n > 1,

as an orthonormal basis. Recall that the Newton polynomials satisfy

(2.3) (1− w)z =
∞

∑
n=0

Nn(z)wn,

for |w| < 1 and z ∈ C. The reproducing kernels for N are

(2.4) Kw(z) =
Γ(z + w + 1)

Γ(z + 1)Γ(w + 1)

for w ∈ C with Re w > − 1
2 .

Every function f ∈ N has a non-tangential boundary function f (ζ) that is
defined a.e. on the line Re ζ = − 1

2 , and N is contained isometrically in L2(µ) by
taking the values of a function on the line Re z = − 1

2 to be those of the boundary
function [32]. In fact, since the linear span of {az : 0 < a 6 1} is dense in N
[30], we can view N as a subspace of H2(µ). Moreover, the map U1 that restricts
a function g ∈ H2(µ) to the representative function f (w) = 〈g, Kw〉H2(µ) on the
open half-plane {w : Re w > − 1

2} is a unitary operator from H2(µ) onto N that
satisfies f = g µ-almost everywhere on the open half-plane. Note that U1az = az

for all 0 < a 6 1.
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2.4. A THIRD EQUIVALENT SPACE: H2(µ̃). The map Ψ(z) = z
1−z takes D onto Ω.

We define the measure µ̃ on D by µ̃ = µ ◦Ψ and µ̃({1}) = 0. Let L2(µ̃) and L∞(µ̃)
denote L2(D, µ̃) and L∞(D, µ̃), respectively. We define the Hilbert space H2(µ̃) to
be the closed linear span of {az/(1−z) : 0 < a 6 1} in L2(µ̃). It is clear that the
map U2, defined by

U2

( n

∑
j=1

az
j

)
=

n

∑
j=1

az/(1−z)
j

for n ∈ N and 0 < aj 6 1 for j = 1, . . . , n, extends to a unitary operator from
H2(µ) onto H2(µ̃).

We denote the projection of L2(µ̃) onto H2(µ̃) by Pµ̃. For f ∈ L∞(µ̃), we
define the multiplication operator M f : L2(µ̃) → L2(µ̃) by M f g = f g for all
g ∈ L2(µ̃) and the Toeplitz-like operator T̃f : H2(µ̃)→ H2(µ̃) by T̃f h = Pµ̃ f h for
all h ∈ H2(µ̃). Note that, for 0 < s < 1, T̃sz/(1−z) = Msz/(1−z) |H2(µ̃) and U2Tsz =

T̃sz/(1−z)U2.
One advantage of studying operators in this space is that the support of µ̃

is the union of the circles Cm with centers m
m+1 and radii 1

m+1 for m = 0, 1, 2, . . . ,
a compact set in C. Also, H2(µ̃) is the closure of the polynomials in L2(µ̃) [30].
These facts will be key ingredients in proving that C∗({Cϕs : 0 < s < 1}) is
irreducible.

2.5. HARDY SPACE OF A STRIP. For a set J ⊂ C, let Hol(J) denote the set of all
functions analytic on J. For a, b ∈ R with a < b, we define a strip S(a, b) := {z ∈
C : a < Re z < b}. Then the Hardy class H2(a, b) for the strip S(a, b) is{

F ∈ Hol(S(a, b)) : sup
a<x<b

∫
R

|F(x + iy)|2dy < ∞
}

.

Functions F(z) in H2(a, b) have boundary functions

F(a + iy) = lim
x→a+

F(x + iy), F(b + iy) = lim
x→b−

F(x + iy),

which exist almost everywhere and in the metric of L2(R)[33] and satisfy a Three
Lines-type Lemma:

THEOREM 2.2 ([1], Theorem 2.3). Let F ∈ H2(a, b). Let a 6 α < β < γ 6 b.
Then

‖F(β + iy)‖L2(R) 6 ‖F(α + iy)‖(γ−β)/(γ−α)

L2(R) ‖F(γ + iy)‖(β−α)/(γ−α)

L2(R) .

The Newton space is related to the Hardy space of a strip by the following
theorem:

THEOREM 2.3 ([32], Theorem 1.6). If f (z) ∈ N , then the function Γ(z+ 1) f (z)
is in H2(− 1

2 , ξ) for every ξ ∈ (− 1
2 , ∞).
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2.6. HARDY SPACE OF THE LINE AND ALMOST PERIODIC FUNCTIONS. We set
L2(R) := L2(R, m), where m is Lebesgue measure, and we denote the Fourier
transform on L2(R) by F . The Hardy space H2(R) is the subspace of L2(R) of
all functions f for which F f is supported on [0, ∞). The subspace is non-trivial
and is the subspace of L2(R) consisting of the boundary values of functions in the
Hardy space of the upper half-plane.

We are also interested in a class of continuous functions on R. For α ∈ R,
we define χα : R → C by χα(y) = eiαy for all y ∈ R. Finite linear combinations
of the functions {χα : α ∈ R} are called trigonometric polynomials. A continuous
function f : R → C is called almost periodic if, for all ε > 0, there exists a trigono-
metric polynomial Tε(x) such that | f (x) − Tε(x)| < ε for all x ∈ R. The space
of all almost periodic functions is denoted AP(R). The theory of almost periodic
functions was created by H. Bohr and has been thoroughly developed over the
course of the last century [2], [3], [12], [31].

The orthogonal projection of L2(R) onto H2(R) will be denoted by Pm. For
f ∈ L∞(R) := L∞(R, m), we define the multiplication operator M f : L2(R) →
L2(R) by M f g = f g for all g ∈ L2(R) and the Toeplitz operator W f : H2(R) →
H2(R) by W f h = Pm f h for all h ∈ H2(R). We are particularly interested in the
collection {Wχα : α ∈ R+}, where R+ denotes the set of positive real numbers. If
α ∈ R+, then Wχα = Mχα |H2(R). The C∗-algebra C∗({Wχα : α ∈ R+}) has been
studied extensively [8], [9], [10], and its structure modulo its commutator ideal is
described by the following result:

THEOREM 2.4 ([9]). Let CW be the commutator ideal of C∗({Wχα : α ∈ R+}).
Then

C∗({Wχα : α ∈ R+})/CW ∼= AP(R).

3. JOINT APPROXIMATE POINT SPECTRA

The joint approximate point spectrum, denoted σap(A1, . . . , An), of a finite set
{A1, . . . , An} of commuting bounded operators on a Hilbert spaceH is the set

{(λ1, . . . , λn) ∈ Cn : B(H)(A1 − λ1 I) + · · ·+ B(H)(An − λn I) 6= B(H)}.

By the work of J. Bunce [6], σap(A1, . . . , An) is a non-empty compact set, and

(3.1) σap(A1, . . . , An) ⊂ σap(A1)× σap(A2)× · · · × σap(An).

An equivalent characterization is that (λ1, . . . , λn) ∈ σap(A1, . . . , An) if and only
if there exists a sequence {xm} of unit vectors inH such that

lim
m→∞

‖(Aj − λj I)xm‖H = 0

for all j ∈ {1, . . . , n} [18]. Thus, for n = 1, σap(A1) is the usual approximate point
spectrum, i.e. the set of all λ ∈ C such that A1 − λI is not bounded below.
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The connection between the joint approximate point spectrum of a collec-
tion of hyponormal operators and the C∗-algebra generated by the operators is
identified in the following theorem of Bunce:

THEOREM 3.1 ([6], Corollary 4). If A1, A2, . . . , An are commuting hyponormal
operators, then σap(A1, . . . , An) equals

{(ρ(A1), . . . , ρ(An)) : ρ is a character on C∗({A1, . . . , An})},

and if

J =
⋂
{ρ−1(0) : ρ is a character on C∗({A1, . . . , An})},

then
C∗({A1, . . . , An})/J ∼= C(σap(A1, . . . , An)).

Note that the ideal J is the commutator ideal of C∗({A1, . . . , An}), and the
map from C∗({A1, . . . , An})/J onto C(σap(A1, . . . , An)) is simply the Gelfand
transform.

Both the definition of the joint approximate point spectrum and Theorem 3.1
can be extended to infinite collections of operators. For a family S = {Aα : α ∈
Λ} of commuting hyponormal operators, we define

σap(S) = {{ρ(Aα)}α∈Λ : ρ is a character on C∗(S)}.

By Proposition 5 in [6], σap(S) is the inverse limit of the sets σap(Aα : α ∈ F),
where F ⊂ Λ is finite, and thus σap(S) is a compact set. As suggested by the
notation, we call σap(S) the joint approximate point spectrum of S .

THEOREM 3.2 ([6]). Let S = {Aα : α ∈ Λ} be a family of commuting hyponor-
mal operators. Let C be the commutator ideal of C∗(S). Then

C∗(S)/C ∼= C(σap(S)).

3.1. CALCULATING σap(Tsz
1
, . . . , Tsz

n). Since {Tsz : 0 < s < 1} is a collection of
commuting subnormal, and hence hyponormal, operators, Theorems 3.1 and 3.2
can be applied to the unital C∗-algebras generated by these operators. Thus, we
wish to determine the joint approximate point spectra of finite subsets of {Tsz :
0 < s < 1}. We begin our investigations with an inner product calculation.

LEMMA 3.3. Let 0 < s, t < 1 and w ∈ C with Re w > − 1
2 . Let kw = Kw

‖Kw‖N
be the normalized reproducing kernel function for N corresponding to evaluation at w.
Then

〈T∗tz Tsz kw, kw〉H2(µ) =
swtw

(s + t− st)2Re w+1 .

Proof. Recall from (2.4) that

Kw(z) =
Γ(z + w + 1)

Γ(z + 1)Γ(w + 1)
and ‖Kw‖2

H2(µ) = ‖Kw‖2
N =

Γ(2Re w + 1)
|Γ(w + 1)|2 .
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Thus, we find that

〈T∗tz Tsz kw, kw〉H2(µ) = 〈Msz kw, Mtz kw〉L2(µ)

=
∫
Ω

sztz |Γ(z + w + 1)|2
|Γ(z + 1)|2|Γ(w + 1)|2

|Γ(w + 1)|2
Γ(2Re w + 1)

dµ

=
∞

∑
n=−1

∞∫
−∞

sn/2+iytn/2−iy |Γ(
n
2 + iy + w + 1)|2dy

Γ(2Re w + 1)2π(n + 1)!

=
∞

∑
n=−1

(st)n/2( s
t )

iIm w

2π(n + 1)!

∞∫
−∞

e−i ln(t/s)α|Γ( n+2+2Re w
2 + iα)|2dα

Γ(2Re w + 1)
(3.2)

by applying the definition of µ and using the change of variable α = y− Im w to
obtain the last line. Note that, for n ∈ {−1, 0, 1, . . .},

(3.3)
Γ(n + 2 + 2Re w)

(n + 1)!
= Nn+1(−2Re w− 1)Γ(2Re w + 1).

Since n + 2 + 2Re w > 0, we can use a table of integrals ([19], p. 30) to show
that

1
2π

∞∫
−∞

|Γ( n+2+2Re w
2 + iα)|2

Γ(n + 2 + 2Re w)
e−i ln(t/s)αdα =

[1
2

sech
( ln( t

s )

2

)]n+2+2Re w

=
[ √st

t + s

]n+2+2Re w
.(3.4)

By applying (3.3) and (3.4) to (3.2) and recalling property (2.3) of the Newton
polynomials, we obtain

〈T∗tz Tsz kw, kw〉H2(µ) =
∞

∑
n=−1

(st)n/2
( s

t

)iIm w
Nn+1(−2Re w− 1)

[ √st
t + s

]n+2+2Re w

=
swtw

(t + s)2Re w+1

∞

∑
n=−1

Nn+1(−2Re w− 1)
( st

t + s

)n+1

=
swtw

(t + s)2Re w+1

(
1− st

t + s

)−2Re w−1
=

swtw

(s + t− st)2Re w+1 .

We can apply the previous lemma to determine a set of points that is con-
tained in the joint approximate point spectrum of {Tsz

1
, . . . , Tsz

n}.

LEMMA 3.4. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k. Then

{(s−1/2+iy
1 , . . . , s−1/2+iy

n ) : y ∈ R} ∪ {(0, . . . , 0)} ⊆ σap(Tsz
1
, . . . , Tsz

n).

Proof. To show that (0, . . . , 0) ∈ σap(Tsz
1
, . . . , Tsz

n), let ω` =
`
2 for ` ∈ N, and

consider the sequence {kω`
}`∈N of normalized reproducing kernel functions for
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N . Then by Lemma 3.3,

‖Tsz
j
kω`
‖2

H2(µ) =
s`j

(2sj − s2
j )

`+1
=

1
(2sj − s2

j )

( 1
2− sj

)`
for 1 6 j 6 n. Thus, ‖Tsz

j
kω`
‖H2(µ) → 0 as ` → ∞ for all j ∈ {1, . . . , n}, and

(0, . . . , 0) ∈ σap(Tsz
1
, . . . , Tsz

n).

Now consider λ = (λ1, . . . , λn) ∈ {(s−1/2+iy
1 , . . . , s−1/2+iy

n ) : y ∈ R}. Fix a
sequence {y`}∞

`=1 of real numbers such that

lim
`→∞

(s−1/2+iy`
1 , . . . , s−1/2+iy`

n ) = λ.

Notice that since lim
`→∞

s−1/2+iy`
j = λj for 1 6 j 6 n, it is required that |λj| = s−1/2

j

for all j ∈ {1, . . . , n}.
Let w` = − 1

2 + 1
` + iy` for ` ∈ N, and consider the sequence {kw`

}`∈N of
normalized reproducing kernel functions for N . For 1 6 j 6 n,

‖(Tsz
j
− λj I)kw`

‖2
H2(µ) =

sw`
j sw`

j

(2sj − s2
j )

2Re w`+1
− 2Re λjsw` + |λj|2

=
1
sj

( 1
2− sj

)2/`
− 2Reλjs

−1/2+iy`
j s1/`

j +
1
sj

by Lemma 3.3. Since

lim
`→∞

( 1
2− sj

)2/`
= 1 = lim

`→∞
s1/`

j and lim
`→∞

λjs
−1/2+iy`
j = |λj|2 = s−1

j ,

we obtain that ‖(Tsz
j
− λj I)kw`

‖H2(µ) → 0 as ` → ∞ for 1 6 j 6 n. Hence,

λ ∈ σap(Tsz
1
, . . . , Tsz

n).

We want to show the the points specified in Lemma 3.4 are the only points
in the joint approximate point spectrum. We need an additional tool to help us ex-
clude some of the other points. Given a measure space (X, ν), let ϕ1, ϕ2, . . . , ϕn ∈
L∞(X, ν). The joint essential range of ϕ1, . . . , ϕn, denoted Eν(ϕ1, . . . , ϕn), is the set
of all (λ1, . . . , λn) ∈ Cn such that, for all ε > 0,

ν
({

z ∈ X :
n

∑
j=1
|ϕj(z)− λj| < ε

})
> 0.

Note that, for n = 1, Eν(ϕ1) is the usual essential range of ϕ1. In our case, X = Ω
and ν = µ, the measure defined by (2.1).

LEMMA 3.5. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k. Then
σap(Tsz

1
, . . . , Tsz

n) ⊆ Eµ(sz
1, . . . , sz

n).
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Proof. The arguments in this proof follow closely those of the proof of The-
orem 5.2 in [16].

Let (λ1, . . . , λn) ∈ Cn \Eµ(sz
1, . . . , sz

n). We want to show that there exist

ψ1, ψ2, . . . , ψn ∈ L∞(µ) such that
n
∑

j=1
ψj(sz

j − λj) = 1 µ-almost everywhere. In that

case,
n
∑

j=1
Tψj(Tsz

j
−λj I)=T∑n

j=1 ψj(sz−λj)
=I, and, thus, (λ1, . . . , λn)/∈σap(Tsz

1
, . . . ,Tsz

n).

Suppose not, i.e. suppose that for all ψ1, . . . , ψn ∈ L∞(µ),
n
∑

j=1
ψj(sz

j − λj)

is not invertible in L∞(µ). This is equivalent to saying that, for all ε > 0 and
ψ1, . . . , ψn ∈ L∞(µ),

µ
({

z ∈ Ω :
∣∣∣ n

∑
j=1

ψj(z)(sz
j − λj)

∣∣∣ < ε
})

> 0.

By setting ψj = sz
j − λj, we obtain that

µ
(

E1(ε) :=
{

z ∈ Ω :
n

∑
j=1
|sz

j − λj|2 < ε
})

> 0

for all ε > 0. But since λ /∈ Eµ(sz
1, . . . , sz

n), there exists ε′ > 0 such that

µ
(

E2(ε
′) :=

{
z ∈ Ω :

n

∑
j=1
|sz

j − λj| < ε′
})

= 0.

However, for all z ∈ C,
n

∑
j=1
|sz

j − λj| 6
( n

∑
j=1
|sz

j − λj|2
)1/2( n

∑
j=1

1
)1/2

=
(

n
n

∑
j=1
|sz

j − λj|2
)1/2

by the Schwarz inequality. Thus, if ε = (ε′)2

n , E1(ε) ⊆ E2(ε
′) and µ(E1(ε)) = 0,

which is a contradiction.

COROLLARY 3.6. Let 0 < s < 1. Then

σap(Tsz) ⊆
{

sw : Re w =
m
2

, m = −1, 0, 1, . . .
}
∪ {0}.

We now temporarily restrict to the case of one operator. To be able to deter-
mine when an operator Tsz − λI is bounded below, we need to obtain a certain
upper bound on the norms of functions in H2(µ).

LEMMA 3.7. If f ∈ H2(µ) and m ∈ N∪ {0}, then

(3.5) ‖ f ‖2
H2(µ) 6 (m + 3)

∞

∑
n=−1, n 6=m

∞∫
−∞

∣∣∣ f(n
2
+ iy

)∣∣∣2 |Γ( n
2 + 1 + iy)|2dy
2π(n + 1)!

.
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Proof. Let f ∈ H2(µ) and m ∈ N ∪ {0}. By the relationship between H2(µ)
and N , there exists g ∈ N with f = g µ-almost everywhere. Then F(z) :=
g(z)Γ(z + 1) ∈ H2(−1

2 , m+1
2 ) by Theorem 2.3, and hence F ∈ H2(m−1

2 , m+1
2 ). By

Lemma 2.2,

(3.6)
∥∥∥F
(m

2
+ iy

)∥∥∥
2
6
∥∥∥F
(m− 1

2
+ iy

)∥∥∥1/2

2
·
∥∥∥F
(m + 1

2
+ iy

)∥∥∥1/2

2
,

where ‖ · ‖2 indicates the norm in L2(R) and y is the variable. By manipulating
(3.6), we obtain

‖F(m
2 + iy)‖2

2
2π(m + 1)!

6 max
{‖F(m−1

2 + iy)‖2
2

(m + 1)2π(m!)
,
(m + 2)‖F(m+1

2 + iy)‖2
2

2π(m + 2)!

}
6 (m + 2)

(‖F(m−1
2 + iy)‖2

2
2π(m!)

+
‖F(m+1

2 + iy)‖2
2

2π(m + 2)!

)
.(3.7)

By filling in the definition of F, (3.7) becomes

∞∫
−∞

∣∣∣g(m
2
+ iy

)∣∣∣2 |Γ(m
2 + 1 + iy)|2

2π(m + 1)!
dy

6 (m + 2)
( ∞∫
−∞

∣∣∣g(m− 1
2

+ iy
)∣∣∣2 |Γ(m−1

2 + 1 + iy)|2

2π(m!)
dy

+

∞∫
−∞

∣∣∣g(m + 1
2

+ iy
)∣∣∣2 |Γ(m+1

2 + 1 + iy)|2

2π(m + 2)!
dy
)

.(3.8)

By replacing the expression in the parentheses on the right hand side of (3.8) by

(3.9)
∞

∑
n=−1, n 6=m

∞∫
−∞

∣∣∣g(n
2
+ iy

)∣∣∣2∣∣∣Γ(n
2
+ 1 + iy

)∣∣∣2 dy
2π(n + 1)!

and then adding (3.9) to both sides, we obtain (3.5) with f replaced by g. Since
f = g µ-almost everywhere, we have (3.5) as written in the statement of the
theorem.

We can use the preceding results to identify the approximate point spectrum
of a single operator of the form Tsz .

PROPOSITION 3.8. If 0 < s < 1, then the approximate point spectrum of Tsz is

σap(Tsz) = {s−1/2+iy : y ∈ R} ∪ {0} = s−1/2T∪ {0}.
Proof. By Lemma 3.4 and Corollary 3.6,

{s−1/2+iy : y ∈ R} ∪ {0} ⊆ σap(Tsz) ⊆
{

sw : Re w =
m
2

, m = −1, 0, 1, . . .
}
∪ {0}.
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Let z0 = m
2 + iy0 for m ∈ N ∪ {0} and y0 ∈ R. We want to show that

sz0 /∈ σap(Tsz). Note that, for z = n
2 + iy, where y ∈ R and n ∈ N ∪ {0,−1} with

n 6= m,

|sz − sz0 | > |sn/2 − sm/2| > sm/2 ·min{|s1/2 − 1|, |s−1/2 − 1|} := λs,m.

By Lemma 3.7 and the definition of µ,

‖(Tsz − sz0 I) f ‖2
H2(µ) =

∫
Ω

|sz − sz0 |2| f (z)|2dµ

>
∞

∑
n=−1, n 6=m

∞∫
−∞

λ2
s,m

∣∣∣ f(n
2
+ iy

)∣∣∣2 |Γ( n
2 + 1 + iy)|2dy
2π(n + 1)!

>
λ2

s,m

m + 3
‖ f ‖2

H2(µ)

for all f ∈ H2(µ). Thus, Tsz − sz0 I is bounded below, so sz0 /∈ σap(Tsz).

We now return to the case of considering an arbitrary finite number of op-
erators. By Lemma 3.5, Proposition 3.8 and (3.1),

(3.10) σap(Tsz
1
, . . . , Tsz

n) ⊆ Eµ(sz
1, . . . , sz

n) ∩
n

∏
j=1
{s−1/2

j T∪ {0}}.

We study the space on the right hand side of (3.10) through the following lemmas:

LEMMA 3.9. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k. Then

Eµ(sz
1, . . . , sz

n) ∩
n

∏
j=1
{s−1/2

j T∪ {0}}

is contained in {
Eµ(sz

1, . . . , sz
n) ∩

n

∏
j=1

s−1/2
j T

}
∪ {(0, . . . , 0)}.

Proof. The statement is trivially true if n = 1, so we assume n > 2. Suppose

(λ1, . . . , λn) ∈ Eµ(sz
1, . . . , sz

n) ∩
n
∏
j=1
{s−1/2

j T ∪ {0}} with λj0 = 0 for some j0 ∈

{1, . . . , n} and λj1 6= 0 for some j1 ∈ {1, . . . , n} \ {j0}. Since λj1 6= 0, there exists

yj1 ∈ R such that λj1 = s
−1/2+iyj1
j1

.

Let ε = min{1, s−1/2
j1

− 1}. Suppose that z ∈ C with Re z = m
2 for some

m ∈ {−1, 0, 1, . . .}. If m > 0, then

(3.11) |sz
j1 − λj1 | = |s

z
j1 − s

−1/2+iyj1
j1

| > s−1/2
j1

− |sz
j1 | > s−1/2

j1
− 1 > ε,

and

(3.12) |sz
j0 − 0| > 1 > ε
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if m = −1. Therefore,

µ
({

z ∈ Ω :
n

∑
j=1
|sz

j − λj| < ε
})

= 0,

which contradicts the fact that (λ1, . . . , λn) ∈ Eµ(sz
1, . . . , sz

n) and thus proves the
lemma.

LEMMA 3.10. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k. Then

Eµ(sz
1, . . . , sz

n) ∩
n

∏
j=1

s−1/2
j T ⊆ {(s−1/2+iy

1 , . . . , s−1/2+iy
n ) : y ∈ R}.

Proof. For j = 1, 2, . . . , n, consider the function ψsj : R → C defined by

ψsj(y) = s−1/2+iy
j . We can view ψsj as sz|Re z=−1/2. By restricting the measure µ

to the line Re z = − 1
2 in a similar way, we obtain a measure µ̂ on R given by

dµ̂ =
|Γ( 1

2 + iy)|2

2π
dy.

Notice that ψsj ∈ L∞(R, µ̂) for all 1 6 j 6 n. Using the idea behind equation
(3.11) in this setting, it is easy to show that

Eµ(sz
1, . . . , sz

n) ∩
n

∏
j=1

s−1/2
j T ⊆ Eµ̂(ψs1 , . . . , ψsn).

Since µ̂ is mutually absolutely continuous with respect to Lebesgue measure and
ψsj is a continuous function for 1 6 j 6 n,

Eµ̂(ψs1 , . . . ψsn) = {(s
−1/2+iy
1 , . . . , s−1/2+iy

n ) : y ∈ R},

which proves the lemma.

Combining the results of Lemmas 3.4, 3.5, 3.9, and 3.10, we obtain the fol-
lowing theorem that includes the results of Proposition 3.8 as a special case.

THEOREM 3.11. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k.
Then

σap(Tsz
1
, . . . , Tsz

n) = {(0, . . . , 0)} ∪ {(s−1/2+iy
1 , . . . , s−1/2+iy

n ) : y ∈ R}.

The following corollary of Theorem 3.11 is immediate from Theorem 3.1.

COROLLARY 3.12. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k.
Let C{s1,...,sn} be the commutator ideal of C∗(Tsz

1
, . . . , Tsz

n). Then

C∗(Tsz
1
, . . . , Tsz

n)/C{s1,...,sn}
∼= C({(s−1/2+iy

1 , . . . , s−1/2+iy
n ) : y ∈ R})⊕C.
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3.2. INVESTIGATING THE SHAPES OF THE SETS σap(Tsz
1
, . . . , Tsz

n). We would like
to use Theorem 3.2 to determine the structure of C∗({Tsz : 0 < s < 1}) modulo
its commutator ideal. Thus, we need to understand the shapes of the joint ap-
proximate point spectra of all finite subsets of {Tsz : 0 < s < 1} so that we can
compute the needed inverse limit. The structures of these spectra depend on the
relations between the numbers ln(s1), . . . , ln(sn) via Kronecker’s Theorem. The
following version of Kronecker’s Theorem is included in [31].

THEOREM 3.13 (Kronecker’s Theorem). Let α1, α2, . . . , αn, θ1, θ2, . . . , θn be ar-
bitrary real numbers. For the system of inequalities

|αkt− θk| < δ mod 2π (k = 1, 2, . . . , n)

to have consistent real solutions for any arbitrarily small positive number δ, it is nec-
essary and sufficient that every time the relation k1α1 + k2α2 + · · ·+ knαn = 0 holds,
where k1, k2, . . . , kn are integers, we have the congruence

k1θ1 + k2θ2 + · · ·+ knθn ≡ 0 mod 2π.

The simplest case of Kronecker’s Theorem is when α1, α2, . . . , αn are linearly
independent over Z. A finite collection {α1, α2, . . . , αn} of real numbers is linearly
independent over Z if k1α1 + k2α2 + · · ·+ knαn = 0 with k1, k2, . . . , kn ∈ Z if and
only if k1 = k2 = · · · = kn = 0. In this case, we can combine Theorem 3.11 with
a method used by Böttcher, Karlovich, and Spitkovsky in Corollary 1.13 of [5] to
straight-forwardly show the following result:

COROLLARY 3.14. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6= k. If
the numbers ln(s1), ln(s2), . . . , ln(sn) are linearly independent over Z, then

σap(Tsz
1
, . . . , Tsz

n) = {(0, . . . , 0)} ∪ (s−1/2
1 T× s−1/2

2 T× · · · × s−1/2
n T).

The other case in which the shape of σap(Tsz
1
, . . . , Tsz

n) is easy to determine is
the case in which all of the ln(sj) are rational multiples of each other.

LEMMA 3.15. Let n ∈ N and 0 < s1, s2, . . . , sn < 1 with sj 6= sk if j 6=
k. Suppose there exist integers a2, . . . , an, b2, . . . , bn such that ln(sj) =

aj
bj

ln(s1) and

gcd(aj, bj) = 1 for j = 2, . . . , n. Then the range of (s−1/2+iy
1 , . . . , s−1/2+iy

n ) is closed, so

σap(Tsz
1
, . . . , Tsz

n) = {(0, . . . , 0)} ∪ {(s−1/2+iy
1 , . . . , s−1/2+iy

n ) : y ∈ R}.

Proof. Let M = lcm[b2, . . . , bn]. Let ψ : R→ C be defined by

ψ(y) = (s−1/2+iy
1 , . . . , s−1/2+iy

n ).

Clearly, ψ is a continuous function. We want to show that ψ is periodic with
period 2Mπ

− ln(s1)
. Let y ∈ R and k ∈ Z. Then it is clear that

s−1/2+i(y+k(2Mπ/(− ln(s1))))
1 = s−1/2+iy

1 eln(s1)ik(2Mπ/(− ln(s1))) = s−1/2+iy
1 .
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If 2 6 j 6 n, then

s−1/2+i(y+k(2Mπ/(− ln(s1))))
j = s−1/2+iy

j e(aj/bj) ln(s1)ik(2Mπ/(− ln(s1))) = s−1/2+iy
j

since bj divides M. Thus, ψ is a periodic function with period 2Mπ
− ln(s1)

, so ψ(R)
= ψ([0, 2Mπ

− ln(s1)
]), which is a closed set.

Notice that in the case of Lemma 3.15, σap(Tsz
1
, . . . , Tsz

n) consists of the point
(0, . . . , 0) and a closed curve that is homeomorphic to T. Thus, the two distinct
cases described in Corollary 3.14 and Lemma 3.15 lead to joint approximate point
spectra that are not homeomorphic to each other.

The preceding investigations fully determine the possible shapes of the joint
approximate point spectrum of two operators from {Tsz : 0 < s < 1}. To con-
sider three or more operators, one must investigate a larger number of possible
relationships between ln(s1), ln(s2), . . . , ln(sn), and the determination of the joint
approximate spectrum requires the full version of Kronecker’s Theorem. Even
for three operators, the calculations quickly become quite complicated.

3.3. CALCULATING σap(Wχα1
, . . . , Wχαn ). Due to the complexity of the joint ap-

proximate point spectra, it appears impractical to determine directly the struc-
ture of the inverse limit of all joint approximate point spectra of finite subsets of
{Tsz : 0 < s < 1}. Instead, we will build a similar framework for Toeplitz oper-
ators on H2(R) and determine the desired inverse limit by connecting the spec-
tral results for the two collections of operators and recalling that the structure of
C∗({Wχα : α ∈ R+}), modulo its commutator ideal, is described by Theorem 2.4.

For these purposes, we want to understand the joint approximate point
spectra of finite subsets of {Wχα : α ∈ R+}. We begin with a result of Dash that
identifies the joint approximate point spectrum of any finite collection of multi-
plication operators on L2(R).

THEOREM 3.16 ([16], Theorems 5.2, 5.3). If n ∈ N and ϕ1, ϕ2, . . . , ϕn ∈ L∞(R),
then

σap(Mϕ1 , . . . , Mϕn) = Em(ϕ1, . . . , ϕn).

To use Theorem 3.16 in our setting, we apply the methods used in the proof
of Theorem 1 in [9] to multiple operators to prove the following lemma. In the
statement of the lemma, we restrict to maps ϕ1, . . . , ϕn ∈ L∞(R) ∩ H2(R) since
the joint approximate point spectrum is only defined for collections of commut-
ing operators. We could have alternately considered ϕ1, . . . , ϕn ∈ L∞(R) with
ϕ1, . . . , ϕn ∈ H2(R).

LEMMA 3.17. Let n ∈ N and ϕ1, ϕ2, . . . , ϕn ∈ H2(R) ∩ L∞(R). Then

σap(Mϕ1 , . . . , Mϕn) ⊆ σap(Wϕ1 , . . . , Wϕn).
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Proof. By replacing ϕj with ϕj − λj, it suffices to show that if (0, . . . , 0) ∈
σap(Mϕ1 , . . . , Mϕn), then (0, . . . , 0) ∈ σap(Wϕ1 , . . . , Wϕn). For 1 6 j 6 n, consider
the net of operators {Bj,α}α∈R+ in B(L2(R)) defined by

Bj,α = M∗χα
Wϕj Pm Mχα = M∗χα

Pm Mχα M∗χα
Mϕj Pm Mχα

= (M∗χα
Pm Mχα)Mϕj(M∗χα

Pm Mχα).

In [9], Coburn and Douglas showed that, for all j ∈ {1, . . . , n}, the net {Bj,α}α∈R+

converges to Mϕj in the strong operator topology on B(L2(R)). They also showed
that {M∗χα

Pm Mχα}α∈R+ converges strongly to I, the identity operator on L2(R).
Suppose (0, . . . , 0) ∈ σap(Mϕ1 , . . . , Mϕn). Let ε > 0 be given. Then there

exists a unit vector f ∈ L2(R) such that

‖Mϕj f ‖2 <
ε

4
for all 1 6 j 6 n. Since {Bj,α}α∈R+ converges strongly to Mϕj , there exists, for
each 1 6 j 6 n, a number αj,0 ∈ R+ such that if α > αj,0, then

(3.13) ‖Wϕj Pm Mχα f ‖2 = ‖M∗χα
Wϕj Pm Mχα f ‖2 = ‖Bj,α f ‖2 <

ε

2
.

We set α0 := max
16j6n

{αj,0}. Similarly, since the net {M∗χα
Pm Mχα}α∈R+ converges

strongly to I and f is a unit vector, there exists β0 ∈ R+, such that if α > β0, then

(3.14) ‖Pm Mχα f ‖2 = ‖M∗χα
Pm Mχα f ‖2 >

1
2

.

Combining (3.13) and (3.14), we find that if γ > α0 + β0, then

‖Wϕj Pm Mχα f ‖2 <
ε

2
< ε‖Pm Mχα f ‖2.

Thus, we can construct a sequence { f`}∞
`=1 of unit vectors in H2(R) that satis-

fies ‖Wϕj f`‖H2(µ) → 0 as ` → ∞ for all 1 6 j 6 n. Therefore, (0, . . . , 0) ∈
σap(Wϕ1 , . . . , Wϕn).

We now restrict our attention to the Toeplitz operators on H2(R) induced
by the maps in {χα : α ∈ R+}.

THEOREM 3.18. Let n ∈ N and α1, α2, . . . , αn ∈ R+ with αj 6= αk if j 6= k. Then

σap(Wχα1
, . . . , Wχαn ) = {(χα1(y), . . . , χαn(y)) : y ∈ R}.

Proof. By Theorem 3.16 and Lemma 3.17,

Em(χα1 , . . . , χαn) ⊆ σap(Wχα1
, . . . , Wχαn ).

The reverse inclusion can be proved by repeating the arguments of the proof of
Lemma 3.5. Since the functions χα1 , . . . , χαn are continuous on R,

Em(χα1 , . . . , χαn) = {(χα1(y), . . . , χαn(y)) : y ∈ R}.
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4. THE STRUCTURE OF C∗({Cϕs : 0 < s < 1}) MODULO THE COMMUTATOR IDEAL

We will use the results from the previous section to show a connection be-
tween the set {Tsz

1
, . . . , Tsz

n} in B(H2(µ)) and a collection {Wχα1
, . . . , Wχαn } in

B(H2(R)). This relationship will be a key ingredient in identifying the structure
of C∗({Cϕs : 0 < s < 1}) modulo its commutator ideal.

THEOREM 4.1. Let n ∈ N and α1, α2, . . . , αn ∈ R+ with αj 6= αk if j 6= k. Then

σap(e−α1/2Te−α1z , . . . , e−αn/2Te−αnz) = {(0, . . . , 0)} ∪ σap(Wχα1
, . . . , Wχαn ).

Proof. By Theorem 3.11, σap(Te−α1z , . . . , Te−αnz) equals

{(0, . . . , 0)} ∪ {(e−α1(−1/2+iy), . . . , e−αn(−1/2+iy)) : y ∈ R}.

Then by simple arguments and Theorem 3.18,

σap(e−α1/2Te−α1z , . . . , e−αn/2Te−αnz) = {(0, . . . , 0)} ∪ {(e−α1iy, . . . , e−αniy) : y ∈ R}

= {(0, . . . , 0)}∪{(χα1(y), . . . , χαn(y)) : y∈R}
= {(0, . . . , 0)} ∪ σap(Wχα1

, . . . , Wχαn ).

We will now construct two inverse limit systems. Consider the set P+
fin of

all non-empty finite subsets of R+, which is partially ordered by inclusion. For
clarity of notation, if F ∈ P+

fin has n elements, then we write F = {α1, α2, . . . , αn},
where α1 < α2 < · · · < αn.

For F = {α1, α2, . . . , αn} ∈ P+
fin, we define two sets:

σF = σap(Wχα1
, . . . , Wχαn ) and σ̃F = σap(e−α1/2Te−α1z , . . . , e−αn/2Te−αnz).

Notice that, for all F ∈ P+
fin, σ̃F = {(0, . . . , 0)} ∪ σF. We consider these sets as

topological spaces in the relative topology from C|F|. We first investigate the
connections between the open sets in the spaces.

LEMMA 4.2. Let F ∈ P+
fin. Then the collections of open sets in σF and σ̃F are

related in the following way:

{W : W is open in σ̃F}={E : E is open in σF}∪{E∪{(0, . . . , 0)} : E is open in σF}.
Proof. Let W be an open set in σ̃F. Then W = V ∩ σ̃F, where V is an open

subset of C|F|, so V ∩ σF is open in σF. But V ∩ σ̃F = (V ∩ σF)∪ (V ∩ {(0, . . . , 0)}).
Thus, W=V ∩σF if (0, . . . , 0) /∈W, and W=(V ∩σF)∪{(0, . . . , 0)} if (0, . . . , 0)∈W.

Let E be an open set in σF. Then E = U ∩ σF for some open set U in C|F|. Let
∆1/4(0) be the open polydisk in C|F| centered at 0 with radius 1

4 . Then E = U ∩
(C \∆1/4(0)) ∩ σF = U ∩ (C \∆1/4(0)) ∩ σ̃F because all components of elements
in σF have modulus 1. Hence E is open in σ̃F. Also, E ∪ {(0, . . . , 0)} = (U ∪
∆1/4(0)) ∩ σ̃F, so E ∪ {(0, . . . , 0)} is open in σ̃F as well.
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For F, G ∈ P+
fin with F ⊆ G, we define the map πFG : σG → σF as the

projection onto the coordinates coming from the elements of F. This map is well-
defined and surjective due to the properties of the joint approximate point spec-
trum. The map π̃FG : σ̃G → σ̃F is defined equivalently. Note that if F ⊆ G and
z ∈ σ̃G, then π̃FG(z) = πFG(z) for z ∈ σG and π̃FG(z) = (0, . . . , 0) ∈ C|F| for
z = (0, . . . , 0) ∈ C|G|.

The maps πFG and π̃FG are clearly continuous. If F ∈ P+
fin, then πFF and

π̃FF are the identity transformations. Also if F, G, and H are in P+
fin with F ⊆

G ⊆ H, then πFGπGH = πFH and π̃FGπ̃GH = π̃FH . Thus, {{σF}, {πFG}} and
{{σ̃F}, {π̃FG}} are both inverse limit systems of topological spaces over P+

fin.
We can construct the inverse limits of these systems as subspaces of ap-

propriate product spaces. Recall that if we have a collection of topological spaces
{Xα}α∈Λ, then the product space ∏

Λ
Xα is the space of all functions f : Λ→ ⋃

a∈Λ
Xα

that satisfy f (α) ∈ Xα for all α ∈ Λ. For ease of notation, we will write elements
of ∏

Λ
Xα as nets {xα}, where xα = f (α) for all α ∈ Λ, instead of writing them as

functions. A basis for the product topology on ∏
Λ

Xα is

{
∏
Λ

Uα : Uα is open in Xα for all α ∈ Λ,

all but finitely many of the Uα are equal to Xα

}
.

We construct the spaces

a(W) :=
{
{xF} ∈∏

P+
fin

σF : πFG(xG) = xF ∀F ⊆ G
}

and

a(T ) :=
{
{x̃F} ∈∏

P+
fin

σ̃F : π̃FG(x̃G) = x̃F ∀F ⊆ G
}

.

Then, by standard facts about inverse limit systems of topological spaces, we
have that a(W) = lim

←
σF and a(T ) = lim

←
σ̃F, where lim

←
indicates the inverse limit

taken over P+
fin. The spaces a(T ) and a(W) are non-empty, compact Hausdorff

spaces in the relative topologies from the product topologies on ∏
P+

fin

σF and ∏
P+

fin

σ̃F,

respectively. For these and other facts about inverse limit systems of topological
spaces, see [21].

Notice that the net {x̃F}, where x̃F = (0, . . . , 0) ∈ C|F| for all F ∈ P+
fin, is

an element of a(T ). For clarity, we denote this element by {(0, . . . , 0)F} to distin-
guish it from the singleton set {(0, . . . , 0)} contained in an individual σ̃F.

THEOREM 4.3. Let a(W) and a(T ) be defined as above. Then

(4.1) a(T ) = {(0, . . . , 0)F} ∪ a(W).
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The open sets in a(T ) are the sets of the form V and {(0, . . . , 0)F} ∪ V, where V is an
open set in a(W).

Proof. Let {xF} ∈ a(W). Then xF ∈ σF ⊂ σ̃F for all F ∈ P+
fin. If F ⊆ G, then

π̃FG(xG) = πFG(xG) = xF. So {xF} ∈ a(T ). Also, as noted above, {(0, . . . , 0)F} ∈
a(T ).

Let {x̃F} ∈ a(T ). Suppose x̃F 6= (0, . . . , 0) for all F ∈ P+
fin. Then x̃F ∈ σF

for all F ∈ P+
fin. Also if F ⊆ G, then πFG(x̃G) = π̃FG(x̃G) = x̃F. Thus {x̃F} ∈

a(W). Now suppose there exists a set F ∈ P+
fin such that x̃F = (0, . . . , 0). For all

G ∈ P+
fin, all elements of σ̃G either have all components being zero or all non-zero

components. Since {x̃F} ∈ a(T ), it follows that x̃F = (0, . . . , 0) for all F ∈ P+
fin

by the definitions of the maps π̃FG. Hence {x̃F} = {(0, . . . , 0)F}. Thus, we have
shown (4.1).

The relationship between the open sets of the two spaces is easy to show by
using the bases for the topologies on the spaces and Lemma 4.2.

COROLLARY 4.4. Let a(T ) and a(W) be defined as above. Then the map ψ̃ :
C(a(T )) → C(a(W)) ⊕ C defined by ψ̃( f ) = ( f |a(W), f ({(0, . . . , 0)F})) is an iso-
metric ∗-isomorphism.

Proof. Since a(W) can be viewed as a subspace of a(T ) with the relative
topology, it is clear that ψ̃ is well-defined. It is simple to show that ψ̃ is linear,
multiplicative, ∗-preserving, and isometric. We just need to check that ψ̃ maps
C(a(T )) onto C(a(W))⊕C. If ( f , c)∈C(a(W))⊕C, then define g : a(T )→C by

g({x̃F}) =
{

f ({x̃F}) if {x̃F} 6= {(0, . . . , 0)F},
c if {x̃F} = {(0, . . . , 0)F}.

If V is an open set in C, then g−1(V) is equal to either f−1(V) or f−1(V) ∪
{(0, . . . , 0)F}, both of which are open sets in a(T ) since f ∈ C(a(W)). Hence
g ∈ C(a(T )), and ψ̃(g) = ( f , c). Therefore, ψ̃ is surjective.

We now combine our results to prove our main theorem:

THEOREM 4.5. For 0 < s < 1, let ϕs(z) = sz + (1 − s). Let C denote the
commutator ideal of C∗({Cϕs : 0 < s < 1}). Then there exists a ∗-homomorphism
ψ : C∗({Cϕs : 0 < s < 1})→ AP(R)⊕C such that

0→ C ↪→ C∗({Cϕs : 0 < s < 1}) ψ→ AP(R)⊕C→ 0

is a short exact sequence.

Proof. Let a(W) and a(T ) be defined as above. Since a(W) and a(T ) are
inverse limits of {{σF}, {πF}} and {{σ̃F}, {π̃F}}, respectively, a(W) and a(T )
are homeomorphic to σap({Wχα : α ∈ R+}) and σap({e−α/2Te−αz : α ∈ R+}),
respectively. Thus, by Corollary 4.4,

C(σap({e−α/2Te−αz : α ∈ R+})) ∼= C(σap({Wχα : α ∈ R+}))⊕C.



600 KATIE S. QUERTERMOUS

Let CW and CT denote the commutator ideals of C∗({Wχα : α ∈ R+}) and
C∗({e−α/2Te−αz : α ∈ R+}), respectively. Then, by Theorem 3.2,

C∗({e−α/2Te−αz : α ∈ R+})/CT ∼= C(σap({e−α/2Te−αz : α ∈ R+}))
∼= (C∗({Wχα : α ∈ R+})/CW )⊕C.

Applying Theorem 2.4, we obtain

C∗({e−α/2Te−αz : α ∈ R+})/CT ∼= AP(R)⊕C.

Hence, by Theorem 2.1,

C∗({Cϕs : 0 < s < 1})/C ∼= AP(R)⊕C.

We can explicitly describe how the ∗-homomorphism ψ acts on the gener-
ators of C∗({Cϕs : 0 < s < 1}). For 0 < s < 1, ψ(Cϕs) = (s−1/2+iy, 0), and
ψ(I) = (1, 1). Using this description, we can obtain spectral information for a
dense set of operators in C∗({Cϕs : 0 < s < 1}). To simplify notation in the
following result, we extend the definition of Cϕs to include Cϕ1 = I. Then every
word in the generators of C∗({Cϕs : 0 < s < 1}) can be written in the form

(4.2) Cϕs1
C∗ϕs2

Cϕs3
· · ·C∗ϕsm

,

where m is a positive, even integer, s1, sm ∈ (0, 1], and s2, s3, . . . , sm−1 ∈ (0, 1).
Note that a word of form (4.2) is the identity operator if and only if m = 2 and
s1 = s2 = 1.

COROLLARY 4.6. Let n ∈ N and c0, c1, . . . , cn ∈ C. For each j ∈ {1, . . . , n}, let
mj be a positive, even integer, and let sj,2, sj,3, . . . , sj,mj−1 ∈ (0, 1) and sj,1, sj,mj ∈ (0, 1],
with either sj,1 6= 1 or sj,mj 6= 1 if mj = 2. Consider the operator

A = c0 I +
n

∑
j=1

cjCϕsj,1
C∗ϕsj,2

Cϕsj,3
· · ·C∗ϕsj,mj

∈ C∗({Cϕs : 0 < s < 1}).

Then

{c0} ∪
{

c0 +
n

∑
j=1

cjs
−1/2+iy
j,1 s−1/2−iy

j,2 s−1/2+iy
j,3 · · · s−1/2−iy

j,mj
: y ∈ R

}
⊆ σ(A).

5. IS C∗({Cϕs : 0 < s < 1}) IRREDUCIBLE?

In this section, we consider the C∗-algebra C∗({T̃sz/(1−z) : 0 < s < 1}) of
operators on H2(µ̃), which is unitarily equivalent to C∗({Cϕs : 0 < s < 1}). The
main reason for using this setting is that µ̃ is a compactly supported measure
on C, which allows us to take advantage of some known facts about subnormal
operators. We begin by recalling these facts.

Let ν be a compactly supported measure on C. Let P2(ν) denote the clo-
sure of the polynomials in L2(ν). We define the operator Sν : P2(ν) → P2(ν) by
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(Sν f )(z) = z f (z) for all f ∈ P2(ν). Note that Sν is a subnormal operator. Let
{Sν}′ denote the commutant of Sν. Then a corollary to a theorem of T. Yoshino
[35] states:

THEOREM 5.1. Let ν be a compactly supported measure on C. Then

{Sν}′ = {Mψ|P2(ν) : ψ ∈ P2(ν) ∩ L∞(ν)},

where Mψ denotes the multiplication operator Mψ f = ψ f on L2(C, ν).

This corollary and other facts about P2(ν) and Sν can be found in [11]. For
our investigations, we will take ν = µ̃. Note that P2(µ̃) = H2(µ̃) [30], and, for
any ψ ∈ P2(µ̃) ∩ L∞(µ̃), Mψ|P2(µ̃) = T̃ψ. Moreover, Sµ̃ = T̃z.

Before we address the question of irreducibility, we establish a lemma about
functions in H2(µ̃) that will play a key role in our arguments.

LEMMA 5.2. If f ∈ H2(µ̃), then Pµ̃ f is a constant function.

Proof. First, let 0 < a, b 6 1. Since U1U∗2 is a unitary operator from H2(µ̃)

onto N with U1U∗2 (ab)z/(1−z) = (ab)z and 1 = K0 ∈ N , we have that

〈az/(1−z), Pµ̃bz/(1−z)〉H2(µ̃) = 〈az/(1−z), bz/(1−z)〉L2(µ̃) = 〈(ab)z/(1−z), 1〉H2(µ̃)

= 〈(ab)z, 1〉N = (ab)0 = 1.(5.1)

Thus,

〈az/(1−z), Pµ̃bz/(1−z) − 1〉H2(µ̃) = 〈az/(1−z), Pµ̃bz/(1−z) − Pµ̃1z/(1−z)〉H2(µ̃) = 0.

Since 0 < a 6 1 was arbitrary and the linear span of {az/(1−z) : 0 < a 6 1} is
dense in H2(µ̃), Pµ̃bz/(1−z) = 1.

Let f ∈ H2(µ̃). Then there is a sequence of the form
{ Nn

∑
j=1

cn,jb
z/(1−z)
n,j

}∞

n=1

that converges to f in L2(µ̃). Here, each cn,j ∈ C, and each bn,j ∈ (0, 1].
Set γ := 〈 f , 1〉H2(µ̃), and let ε > 0 be given. Then there exists M > 0 such

that if n > M, then
∥∥∥ Nn

∑
j=1

cn,jb
z/(1−z)
n,j − f

∥∥∥
L2(µ̃)

< ε
2 . Thus, for n > M,

∣∣∣γ− Nn

∑
j=1

cn,j

∣∣∣ = ∣∣∣〈 f −
Nn

∑
j=1

cn,jb
z/(1−z)
n,j , 1

〉
H2(µ̃)

∣∣∣ 6 ∥∥∥ f −
Nn

∑
j=1

cn,jb
z/(1−z)
n,j

∥∥∥
L2(µ̃)

<
ε

2

by (5.1) and the fact that µ̃(D) = 1. Also, for n > M,∥∥∥Pµ̃ f−
Nn

∑
j=1

cn,j

∥∥∥
H2(µ̃)

=
∥∥∥Pµ̃ f−Pµ̃

Nn

∑
j=1

cn,jb
z/(1−z)
n,j

∥∥∥
H2(µ̃)

6
∥∥∥ f−

Nn

∑
j=1

cn,jb
z/(1−z)
n,j

∥∥∥
L2(µ̃)

<
ε

2
.

Hence ‖Pµ̃ f − γ‖H2(µ̃) < ε. Since ε was arbitrary, (Pµ̃ f )(z) = γ µ̃-almost every-
where.
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We now return to the question of whether C∗({Cϕs : 0 < s < 1}) is ir-
reducible. We will show that the C∗-algebra is irreducible by showing that the
commutant of C∗({T̃sz/(1−z) : 0 < s < 1}) consists of only scalar multiples of the
identity operator I on H2(µ̃).

THEOREM 5.3. The C∗-algebra C∗({Cϕs : 0 < s < 1}) is irreducible.

Proof. For any f , g ∈ H2(µ̃), we calculate

1∫
0

〈T̃sz/(1−z) f , g〉H2(µ̃)ds =
1∫

0

∫
D

sz/(1−z) f (z)g(z)dµ̃(z)ds

=

∞∫
0

∫
D\{1}

e−te−t(z/(1−z)) f (z)g(z)dµ̃(z)dt(5.2)

=
∫

D\{1}

∞∫
0

e−t/(1−z) f (z)g(z)dtdµ̃(z)(5.3)

=
∫
D

(1− z) f (z)g(z)dµ̃(z) = 〈T̃1−z f , g〉H2(µ̃),

where (5.2) is obtained via the change of variables s = e−t and an application of
the fact that µ̃({1}) = 0. The use of Fubini’s theorem in (5.3) can be justified by
the fact that |e−t/(1−z)| 6 e−t/2 for all t > 0 and z ∈ D \ {1}.

Suppose that A is in the commutant of C∗({T̃sz/(1−z) : 0 < s < 1}). Since A
commutes with T̃sz/(1−z) for all 0 < s < 1, then, for all f , g ∈ H2(µ̃),

〈AT̃1−z f , g〉H2(µ̃) = 〈T̃1−z f , A∗g〉H2(µ̃) =

1∫
0

〈T̃sz/(1−z) f , A∗g〉H2(µ̃)ds

=

1∫
0

〈T̃sz/(1−z) A f , g〉H2(µ̃)ds = 〈T̃1−z A f , g〉H2(µ̃).

Thus, A commutes with T̃1−z and hence T̃z. Since A must also commute with
T̃∗

sz/(1−z) for all 0 < s < 1, A∗ also commutes with T̃z.

Then, by Theorem 5.1, there exists ψ, ρ ∈ H2(µ̃) ∩ L∞(µ̃) such that A = T̃ψ

and A∗ = T̃ρ. Since T̃∗ρ = T̃ρ, we have that T̃ψ = T̃ρ and

‖ψ− Pµ̃ρ‖H2(µ̃) = ‖(T̃ψ − T̃ρ)1‖H2(µ̃) = 0.

But, by Lemma 5.2, there exists γ ∈ C such that (Pµ̃ρ)(z) = γ µ̃-almost every-
where. Therefore, ψ(z) = γ µ̃-almost everywhere, and A = T̃ψ = γI.
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