J. OPERATOR THEORY © Copyright by THETA, 2012
68:1(2012), 19-66

COACTIONS OF HOPF C*-BIMODULES

THOMAS TIMMERMANN

Communicated by Serban Stratild

ABSTRACT. Coactions of Hopf C*-bimodules simultaneously generalize coac-
tions of Hopf C*-algebras and actions of groupoids. Following an approach
of Baaj and Skandalis, we construct reduced crossed products and establish
a duality for fine coactions. Examples of coactions arise from Fell bundles
on groupoids and actions of a groupoid on bundles of C*-algebras. Continu-
ous Fell bundles on an étale groupoid correspond to coactions of the reduced
groupoid algebra, and actions of a groupoid on a continuous bundle of C*-
algebras correspond to coactions of the function algebra.
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1. INTRODUCTION AND PRELIMINARIES

Actions of quantum groupoids that simultaneously generalize actions of
quantum groups and actions of groupoids have been studied in various settings,
including that of weak Hopf algebras or finite quantum groupoids [24], [25], Hopf
algebroids or algebraic quantum groupoids [7], [13], and Hopf-von Neumann bi-
modules or measured quantum groupoids [10], [11], [30]. In this article, we intro-
duce and investigate coactions of Hopf C*-bimodules or reduced locally compact
quantum groupoids within the framework developed in [28], [27].

In the first part of this article, we construct reduced crossed products and
dual coactions, and show that the bidual of a fine coaction is Morita equivalent to
the initial coaction. These constructions apply to pairs of Hopf C*-bimodules that
appear as the left and the right leg of a (weak) C*-pseudo-Kac system, which con-
sists of a C*-pseudo-multiplicative unitary [27] and an additional symmetry. We
associate such a C*-pseudo-Kac system to every groupoid and to every compact
C*-quantum groupoid and expect that the same can be done for every reduced
locally compact quantum groupoid once this concept has been defined properly.
The constructions in this part generalize corresponding constructions of Baaj and
Skandalis [3] for coactions of Hopf C*-algebras.
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Coactions of the Hopf C*-bimodules associated to a locally compact Haus-
dorff groupoid — the function algebra on one side and the reduced groupoid
algebra on the other — are studied in detail in the second part of this article. We
show that actions of the groupoid on continuous bundles of C*-algebras corre-
spond to coactions of the first Hopf C*-bimodule, and that continuous Fell bun-
dles on G naturally yield coactions of the second Hopf C*-bimodule. Generaliz-
ing results of Quigg [22] and Baaj and Skandalis [2] from groups to groupoids, we
show that if the groupoid is étale, every coaction of the reduced groupoid algebra
arises from a Fell bundle.

This article is organized as follows. The first part is concerned with coac-
tions of Hopf C*-bimodules and associated reduced crossed products.

Section 2 summarizes the relative tensor product of C*-modules and the
fiber product of C*-algebras over C*-bases [28] which are fundamental to every-
thing that follows, and introduces coactions of Hopf C*-bimodules.

Section 3 is concerned with C*-pseudo-Kac systems. Every C*-pseudo-Kac
system gives rise to two Hopf C*-bimodules, called the legs of the system, which
are dual to each other in a suitable sense. Coactions of these legs on C*-algebras,
associated reduced crossed products, dual coactions and a duality theorem con-
cerning iterated crossed products are discussed in Section 4.

Section 5 gives the construction of the C*-pseudo-Kac system of a locally
compact Hausdorff groupoid G. The associated Hopf C*-bimodules are the func-
tion algebra on one side and the reduced groupoid C*-algebra of G on the other
side. The second part of the article relates coactions of these Hopf C*-bimodules
to well-known notions.

Section 6 shows that actions of a groupoid G on continuous bundles of C*-
algebras correspond to certain fine coactions of the function algebra of G.

Section 7 contains preliminaries on Fell bundles, their morphisms and mul-
tipliers.

Section 8 shows that continuous Fell bundles on G give rise to coactions of
the reduced groupoid C*-algebra of G, and Section 9 gives a reverse construction
that associates to every sufficiently nice coaction of the groupoid algebra a Fell
bundle provided that the groupoid G is étale.

We use the following notation. Given a subset Y of a normed space X, we
denote by [Y] C X the closed linear span of Y. All sesquilinear maps like inner
products of Hilbert spaces are assumed to be conjugate-linear in the first com-
ponent and linear in the second one. Given a Hilbert space H, we use the ket-
bra notation and define for each { € H operators ) : C — H, A — A¢, and
(€| =1&)* : H— C, & — (Z|&"). Given a C*-algebra A and a subspace B C A,
we denote by A N B’ the relative commutant {a € A : [a, B] = 0}.

We shall make extensive use of (right) Hilbert C*-modules; see [16]. In par-
ticular, we use the internal tensor product and the KSGNS-construction. Let E
be a Hilbert C*-module over a C*-algebra A, let F be a Hilbert C*-module over
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a C*-algebra B, and let ¢ : A — L(F) be a completely positive map. We de-
note by E Sy F the Hilbert C*-module over B which is the closed linear span of
elements 17 Gy ¢, where 17 € E and ¢ € F are arbitrary, and (17 G¢ &|’ G4 &') =
(Cle((nln'))¢") and (1 Gy §)b = y g ¢bforally,n’ € E, §,¢' € F,and b € B. If
¢ is a *-homomorphism, this is the usual internal tensor product; if F = B, this
is the KSGNS-construction. If S € L(E) and T € L(F) N¢(A)’, then there exists
a unique operator S Sy T € L(E Sy E) such that (SS¢ T)(11 Sy &) = Sy Sy TC
forall ¥ € E, ¢ € F; see Proposition 1.34 in [9]. We sloppily write “©4” or
“©” instead of “©4” if no confusion may arise. We also define a flipped product
FyoE as follows. We equip the algebraic tensor product F © E with the struc-
ture maps (€ ©yle' 1) == (&lg((yly"))&), (€ )b := &b © 1, form the sep-
arated completion, and obtain a Hilbert C*-module Fy&E over B which is the
closed linear span of elements ¢y©7, where 7 € E and { € F are arbitrary,
and (&pen|eson’) = (Elp((nln'))E and (Epem)b — &by for all n,y' € E,
¢,¢' € F,and b € B. Again, we sloppily write “4©” or “©” instead of Yo" if

no confusion may arise. Evidently, there exists a unitary X : FS E = EoF,

Neg— Cor.

2. HOPF C*-BIMODULES AND COACTIONS

A groupoid differs from a group in the non-triviality of its unit space. In
almost every approach to quantum groupoids, the unit space is replaced by a
nontrivial algebra, and a relative tensor product of modules and a fiber prod-
uct of algebras over that algebra become fundamentally important. We shall use
the corresponding constructions for C*-algebras introduced in [28] and briefly
summarize the main definitions and results below. For additional details and
motivation, see [28], [27].

2.1. THE RELATIVE TENSOR PRODUCT. A C*-base is a triple (&, ‘B, Bt consisting
of a Hilbert space £ and two commuting nondegenerate C*-algebras B, Bt C
L(R). It should be thought of as a C*-algebraic counterpart to pairs consisting of
a von Neumann algebra and its commutant. Let b = (R, ‘B, %*) be a C*-base. Its
opposite is the C*-base b := (&, BT, B).

A C*-b-module is a pair Hy, = (H,«), where H is a Hilbert space and a C
L(8, H) is a closed subspace satisfying [a&] = H, [#B] = a, and [a*a] = B C
L(8K). If Hy is a C*-b-module, then « is a Hilbert C*-module over B with inner
product (&, ¢’) — ¢*& and there exist isomorphisms

(2.1) aGR—H, (c(—{ RKRea—H, (©f—
and a nondegenerate representation

pa BT = L(H), pa(bN)(EQ) =&bT¢ forallb’ € BT, ca,f c &
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A semi-morphism between C*-b-modules H, and Kj is an operator T € L(H, K)
satisfying Ta C B. If additionally T*8 C a, we call T a morphism. We de-
note the set of all (semi-)morphisms by C(S)(H,X,Kﬁ). IfT € Es(Ha,Kﬁ), then

Toa(b%) = pﬁ(bJr)T for all bt € 8%, and if additionally T € L(Hy, Kg), then left
multiplication by T defines an operator in £(«, B) which we again denote by T.

We shall use the following notion of C*-bi- and C*-n-modules. Let by, ..., by
be C*-bases, where b; = (Ri,EBZ-,SB:-r) for each i. A C*-(by,...,by,)-module is a
tuple (H,aq,...,a,), where H is a Hilbert space and (H, «;) is a C*-b;-module
for each i such that [p,xl.(%:-r)ocj} = a; whenever i # j. In the case n = 2, we
abbreviate ,Hg := (H,a,B). If (H,aq,...,an) is @ C*-(by,...,b,)-module, then
[0a; (BT), Ox; (%;)] = 0 whenever i # j. The set of (semi-)morphisms between C*-
(by,...,by)-modules™ = (H,aq,...,ay) and K = (K, B1,...,Bn) is E(S)(’H,IC) =
n
N £ (Hu, Kp,) € L(H,K).
i=

Letb = (&, B, ‘B*) be a C*-base, Hg a C*-b-module, and K, a C*-bt-module.
The relative tensor product of Hg and K, is the Hilbert space

Hﬁ(%)ryK =BOROY.

It is spanned by elements { © { ©#, where { € B, { € £, 1 € 7, and the inner
product is given by (( & @ nl¢' & d' @n') = (CI¢*¢'n ') = (Cln*n'¢*¢'") for
all¢, &' € B,¢, 0 € & 1,4' € . Obviously, there exists a unitary flip

Z:Hﬁ(%yK—)KW%[;H, fofeon—neled.

Using the unitaries in (2.1) on Hg and K, respectively, we shall make the follow-
ing identifications without further notice:

Hp v = Hﬁ%'ngﬁ(@pA, K, dteon=5iclon=28omd.
Forall S € pg(B") and T € p,(B)’, we have operators
Seid € L(Hp,ov) = E(Hﬁ%yK), ideT € L(Bcp, K) = E(H,;%YK).

If S € Ls(Hg) or T € Ls(Ky), then (S©id)(en) = SEenlor (ideT) (i e
) = ¢¢ e Ty, respectively, forall ¢ € B, { € R, 57 € 7, so that we can define

S % T:=(Seid)(ideT) = (ideT)(Seid) € £(Hﬁ<§71<)
forall (S, T) € (Ls(Hp) x py(B)') U (pp(BT) x Ls(K,)).
For each ¢ € B and 5 € v, there exist bounded linear operators
|€)1: K — Hﬁ%7K, w—E¢Gw, |y)p:H-— H5<}§>7K, w—wor,
whose adjoints (|1 := |§)} and (y7|» := |n); are given by
(Ch:dewrm p(E78)w, (1l wen' = ey )w.
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We write |B)1 := {|¢)1: { € B} C E(K,Hﬁ(%A,K) and similarly define (8|1, |7)2,

and (7|p.

LetH = (H,aq,...,am, B) bea C*~(ay,...,ay,b)-module and K = (K, v, 41,
...,0n)a C*—(h*,cl,...,cn)—module, where a; = (£, ‘211-,9[:?) and ¢; = (£j, ¢, Qi;r)
are C*-bases for all 7, j. We define

a; <9y = [|7)20] € L(9;, Hﬁ%’vK)r B ;= [|B)16j] € ﬁ(ﬂerﬁ%%K)

for all i,j. Then (Hﬁ®7K,oq QY e, 0y 1Y, O, B> Oy) isa Co-(ay, ..., ap,
b

¢1,--.,¢x)-module, called the relative tensor product of H and K and denoted by
H ® K. For all i, j and at e QL:T, cte Q;-‘,
b

0y (@") = pa; (a¥) ®id, P(pooy(cT) = id %P&j(c+)-

The relative tensor product is functorial in the following sense. Let H =
(ﬁ,&'l, e, B, ,E) bea C*-(ay,...,ay, b)-module, let K= (K, Y, 51, ., gn) bea C*-
(6%, ¢1,...,¢cy)-module, and let S € L) (H,H), T e L) (K, K). Then there exists
a unique operator S (% Te L (H %) K,H %) K) satisfying (S (% T)({cCon) =
S¢oceTnforall¢ € B, L€ R €Y.

Finally, the relative tensor product is associative in the following sense. Let
0,¢1,...,¢ be C*-bases, K= (K,7,61,...,60,€)aC*-(b%,¢c1,...,¢n, 0)-module and
L= (L P1,..., ) aC*(d%,¢1,...,¢)-module. Then there exists a canonical
isomorphism

22)  ankc: (Hﬁ%’YK)/Sbs%@(pL = BpCp, Kp.© ¢ — Hﬁ%w(p(Ke?qJL)

which is an isomorphism of the C*-(ay, ..., au,¢1,..., ¢, 1,..., ¢ )-modules (H ®
b

K)® £ and H ® (K ® £). From now on, we identify the Hilbert spaces in (2.2)
0 b 0
and denote them by Hg®,K,®@¢L.
b’ D

2.2. THE FIBER PRODUCT OF C*-ALGEBRAS. Let by,..., b, be C*-bases, where
b; = (8,8, %:f) for each i. A (nondegenerate) C*-(by, ..., b,)-algebra consists of
a C*-(by,...,by)-module (H,aq,...,a,) and a (nondegenerate) C*-algebra A C
L(H) such that p,, (B}) A is contained in A for each i. We shall only be interested
in the cases n = 1,2, where we abbreviate A}, := (H,, A), Agﬁ = (,XHﬁ,A).
Givena C*-(by,...,by)-algebra A = ((H,ay,...,a,), A), we identify M(A) with
a C*-subalgebra of L([AH]) C L(H) and obtain C*-(by, ..., b,)-algebra M(A) =
((H,a1,...,an), M(A)).

We need several notions of a morphism. Let 4 = (H, A) and C = (K,C) be
C*-(by,...,by)-algebras, where H = (H,ay,...,ay) and K = (K, y1,...,7n). A
*-homomorphism 77 : A — C is called a jointly (semi-)normal morphism or briefly
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(semi-)morphism from A to C if [ﬁsz) (H, K)a;] = v, for each i, where
E@(’H,IC) ={T € L(5)(H,K): Ta = r(a)T foralla € A}.

One easily verifies that every (semi-)morphism 77 between C*-b-algebras A%; and
CY satisfies 7t(pa (%)) = p, (b7) for all bT € BT,

We construct a fiber product of C*-algebras over C*-bases as follows. Given
Hilbert spaces H, K, a closed subspace E C £(H,K), and a C*-algebra A C L(H),
we define a C*-algebra

Indg(A) :={T € L(K) : TE C [EA]and T*E C [EA]} C L(K).
Let b be a C*-base, AI’i a C*-b-algebra, and B} a C*-b'-algebra. The fiber product
of Ag and B is the C*-algebra
A/;>[I1<7B = Il‘ld|‘5>1(B) ﬂll‘ldh)z (A) - L(Hﬁ(%)ryK)

To define coactions, we also need to consider the C*-algebra

A.BEWB = IndelB](B) N Il’ld\,ﬂz (A) - E(H}g(%’yK),

which evidently contains Aﬁta,B. If A and B are unital, so is A ,B?;'YB’ but oth-
erwise, Algsz and Al;:"YB may be degenerate. Clearly, conjugation by the flip
X : Hp®,K — K, ®pH yields an isomorphism

b bt

Ady : Ag*yB — B, x gA.
Aty 7 P

If a, c are C*-bases, A?{”g isa C*-(a, b)-algebra and BZ"S a C*-(b", ¢)-algebra, then

B grd
Ayt *By":= (aHp © K5, ApxyB)

is a C*-(a, c)-algebra, called the fiber product of A'zﬁ and BIZ’(S ; see Proposition 3.15
in [28]. Likewise, (,Hpg % +Ks, A/pg"YB) isa C*-(a, c)-algebra.

The fiber product need not be associative, but in this article, it will only
appear as the target of a comultiplication or coaction whose coassociativity will
compensate the non-associativity of the fiber product.

More importantly, the fiber product is functorial in the following sense. Let
¢ be a (semi-)morphism of C*-(a, b)-algebras A = Agﬁ and C = C{(’/\, and ¢ a
(semi-)morphism of C*-(b*, ¢)-algebras B = Blz"s and D = DK/'IV. Then there exists
a unique (semi-)morphism of C*-(a, ¢)-algebras ¢ * ¢ from (,Hp (% +Ks, A/;?:VB )

to (xLy ® uMy, Cyg”D) such that
b

(¢p*¢)(x)R=Rx forallx € AﬁZ7B and R € IyJy + 1k,
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where Ix = L?(H,L) ®idy, Jy = idy @ L¥(K, M) for X € {K,M},Y € {H, L},
b b

and ¢ * i restricts to a (semi-)morphism from Ag’g * Bz"s to qw\ * D?/’IV ; see The-
orem 3.19 in [28]. The proof uses the following result, which essentially is Lem-
ma 3.18 in [28].

LEMMA 2.1. Let ¢ bea C*-base, 7t a semi-morphism of C*-b-algebras AP, Cf‘, and
vKs a C*-(b%, ¢)-module. Let I := LT (Hg, L)) %id C £(H5<§>7K, L,\%)WK) and

X:=(I'I) C L(Hp®,K), Y:= (II*) C L(Ly®,K).
b b

i) X = (Hﬁ%ﬂ((g, X)and Y = (L,\%)VK& Y) are C*-c-algebras.

(ii) There exists a semi-morphism Ind|., () : X — Y such that (Ind ., (7)) (x)z=
zx forallx € Xand z € 1.
(iii) If BY, is a C*-b'-algebra, then Aﬁ’[’;“rB C AﬁzﬂB CX, <Ind|“r>z(n))(A5t“YB> -

Cy * +Band (Ind|7>2(7f))(Aﬁ>[t’<7B) C CA;WB.
(i) [[7)2A(7]2] € X and (Ind),, (7)) ([[7)2A(7]2]) = [[7)27t(A){7]2]-

2.3. HOPF C*-BIMODULES AND COACTIONS. The notion of a Hopf C*-bimodule
was introduced in [27].

DEFINITION 2.2. Let b = (&, 9B, B") be a C*-base. A Hopf C*-bimodule over b
isa C*-(b', b)-algebra A%’X with a morphism A from A%‘X to A%’X x A%’x satisfying
(0 %id) 06 = (id *A) 0 6 as maps from A to L(Hy@pHy®pH).

b b

Let (A, A) be a Hopf C*-bimodule, where A = A%‘X.
A coaction of (A, A) consists of a C*-b-algebra C} and a semi-morphism &
from (K,,C) to (Ky ® ﬁHa,ngﬁA) such that (6 *id) 0§ = (id *A) o § as maps
b

from C to L(K,®gH,®gH). We call such a coaction (Cy, )
b b

() left-full if [6(C)|7)1A] = [|7)1A], and right-full if [6(C)|B)2] = [|B)2C];
(ii) fine if ¢ is injective, a morphism, and right-full, and if [p(B")C] = C;
(iii) very fine if it is fine and if 6~! : §(C) — C is a morphism of C*-b-algebras
from (KW(%)ﬁHa,é(C)) to (K, C).

A morphism between coactions (Cy, d¢c) and (Df,dp) is a semi-morphism p
from C to M (D) satisfying [0(C)D] = D and ép(d) - (o *id)(éc(c)) = dp(dp(c))
foralld € D, c € C. We denote the category of all coactions of (A, A) by
Coact y 5)-

Examples of Hopf C*-bimodules and coactions will be discussed in detail in
Sections 5, 6, and 8.
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3. WEAK C*-PSEUDO-KAC SYSTEMS

To form a reduced crossed product for a coaction of a Hopf C*-bimodule
(A, A) and to equip this reduced crossed product with a dual coaction, one needs
a second Hopf C*-bimodule (4, A) that is dual to (A, A) in a suitable sense. We
shall see that a good notion of duality is that (A, A) and (A, A) are the legs of
a weak C*-pseudo-Kac system, which is a generalization of the balanced multi-
plicative unitaries and Kac systems introduced by Baaj and Skandalis [1], [3].

3.1. C*-PSEUDO-MULTIPLICATIVE UNITARIES. A weak C*-pseudo-Kac system is
a well-behaved C*-pseudo-multiplicative unitary V together with a symmetry U
satisfying a number of axioms. Before we state these axioms, we recall the notion
of a C*-pseudo-multiplicative unitary and the construction of the associated Hopf
C*-bimodules from [27].

Let b be a C*-base. A C*-pseudo-multiplicative unitary over b consists of a
C*_(b‘r, b, b*)-module (H, B, «,B) and a unitary V : HggaH — Hlx(%)ﬁH such that

G.1) V(a<a)=ava, V(B>p)=p<p, V(B>B)=a>p, V(Baa)=p<p,
in L(&, Hy®pH) and V15V13V3 = Va3V in the sense that the following diagram
b

1% V;
(3.2) H;@aHy@uH —> Hy®gH;@0 H —> Hy@pHa®gH,
‘Bb+ an‘f b ﬂb"' b b
¢/V23 V]Z’T

Vi3

Hg%aw(an%ﬁH) (HES?aH)aqa%ﬁH
commutes, where V;; is the leg notation for the operator that acts like V on the ith
and jth factor in the relative tensor product; see [27].

Let V be a C*-pseudo-multiplicative unitary as above, let

A= Ay=[(BaV|a)2] C L(H), A=Ay:A— L(Hg&oH), @ V(1 2@V,
b

A=Ay=[(a|1V|B)1] C L(H), A=Ay:A— z:(H@ﬁH), am V@)V,
b
and let A = g”lﬁlﬁ and A = A%’X. We call V well-behaved if (A, A) and (A, A) are
Hopf C*-bimodules. This happens for example if V is regular in the sense that
[{(a]1V]a)z] = [aa*] C L(H); see Theorem 4.5 in [27].
The opposite of V is the C*-pseudo-multiplicative unitary

VOP = EV*E: Hy@,H = Hy@pH > Hy@,H = H, GH.
ot b ot b

B

If V is well-behaved or regular, then the same is true for VP, and then

(33) A\VOp = Av, A\Vop = Adz OAv, Avop = gv, Avop = Adz OE\/.
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Let (H,&, B, a, B) be a C*-(b,b", b, b*)—modAule and U € L(3Hg, «Hp) a sym-
metry, thatis, U = U* = UL, Then UR = &, Up = B, and the diagram

(1o Uz
t

(1)
H@®3H<b—>HB®aH

gzl > qugus

Hyo3H <~ Hy@gH
Pt (e nz “DF
b

commutes, where each arrow can be read in both directions and the diagonal

maps are U ® U. We use the leg notation and write U; for U ® 1 and U, for
) b

1® U

()
Foreach T € C(H/§®NH, Ha®/5H), let
bt b

T:=X(1eoU)T1laU)X: Ha®ﬁH—>Hﬁ®aH

b pt
T:=X(UeN)T(U®1)X: He@gH — Hg@zH
b pt b bt

Switching from (b, H, &, B, «, B) to (b%, H, B, &, B, ) or to (b, H, B, a, B, &), respec-
tively, we can iterate the assignments T + T and T ~ T, and obtain

=T, T=UeWTUU) =T, T=
b bt

~Je
5

(3.4)

DEFINITION 3.1. A balanced C*-pseudo-multiplicative unitary (V,U) ona C*-
(b,6%,b,6%)-module (H,&, B, &, B) consists of a symmetry U € L(z ﬁ,aH/g) and a

C*-pseudo-multiplicative unitary V : H; ﬁ®,xH — H ,X® pH such that V and V are
C*-pseudo-multiplicative unitaries again.

Note that in this definition, (V,U) isa C “-pseudo-multiplicative unitary if
and only if (V,U) is one because V = (U ® uyvu ® u).

Let (V, U) be a balanced C*-pseudo- mult1p11cat1ve unitary as above.

REMARK 3.2. (i) One easily verifies that (V,U), (V,U), (V°P,U) are bal-
anced C*-pseudo-multiplicative unitaries again. We call them the predual, dual,
and opposite of (V,U), respectively.

(ii) The relations (3.1) for the unitaries V, V read as follows:

B« 31)3 B, ava L aqn, av &1)3 oc<1[§1>zx<10c,
14 ~V ~ ~ Vs o
B<p — B>pB, ap® — adn, ocl>zx—>ﬁ XAp — n<x,
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where X % Y means WX =Y. They furthermore imply

Bra Lava, arpLpop, avpSpep
&qzxiaqﬁ, ﬁ<1/§1>/3<11x, B« ﬁLE .

(iii) The spaces A and A are contained in £(Hy) since L AR) = [(Bl2V|a)28] =
[(Bl21B)28] = [p(B")@] = @ and similarly [A&] = [(a|V|B)12] = &

LEMMA 3.3. V13V23‘V/12 = ‘712V13 and ‘723V12V13 = V13V23, that is, the dia-
grams

‘712
(3.5) (Ha%)g )ﬁ<ﬁ®aH*>(Ha<%gH)mg%ﬁH*>( ﬁ®txH)1x<ux®ﬁH
‘712¢

Hp@uHp@aH

r? Vi3

Va3
Hggabtx(Ha (%‘BH)

‘723 V13
(36) HB%“D“(H”‘@[?ﬁH) - Hﬁgﬁba(HﬁgaH) — Ha%ﬁbﬁ(HﬁgaH)

V13¢ 7\‘723
V2
(HﬁgﬂH)ﬂNa%ﬁH HM%;;H,X(%)‘BH

commute.

Proof. Let W := XV X. We insert the relation V = U; WU into the equation
V12V13V23 = Vzg,‘v/]z and obtain U1W12U1 . U1W13U1 . Vzg = Vzg, . U1W12U1 and
hence Wi, WisVaz = VazWis. Renumbering the legs of the operators according
to the permutation (1,2,3) — (2,3,1), we find Vi3Va3Viy = VipVi3. A similar
calculation shows that V23 ViaViz = Vi3 V23 |

PROPOSITION 3.4. We have:

~

A\V = UAyU, A\V = Ad(u%u) oAy o Ady, Af/ =Ay, A

<«
I
B>)

N

and
Ay =UAyU, Ay= Ad(ugu) oAyoAdy, Ap=Ay, Ay=Ay.
b
Proof. By definition,

7 = [(BhiZWVILE[@)] = [(UB2V|UR):] = [(Bl2V]a)2] = Ay.
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Let@ = (¢'|aV[€)2 € Ay, where & € B, & € a. Then Ay(d) = V(@@ 1)V* =
V*(1®a)V = Ay(@) because the diagram
b

ﬁ®aH > Hg@H ————> H3@sH —— > H;0, H

“p a1 P 1% Byt
W ° (&'l p
2)s (Ha®g )ﬁqﬁgochi(H&%ﬁH)mg%ﬁH @l
/Wz ‘%
HB HE®NH V13 Va3 ( ﬁ®aH)a<a®ﬁH
bt Via Vi b
V;
2)s Ha®pHp@uH —> Ha@pHapH (@3
Pyt b b
\C 3\ 108 ¢<f§’\3
Hy@.H Ho@pH ° Ho®pH Hp&aH

commutes. Since elements of the form like @ are dense in Ay, we can conclude
Ay = Ayr. The proof of the remaining assertions is similar. I

COROLLARY 3.5. If V is well-behaved, then also V and V are well-behaved.
3.2. WEAK C*-PSEUDO-KAC SYSTEMS. Let (V,U) as above.
LEMMA 3.6. Foreacha € Aanda € A, we have equivalences

1ea)V=V1ea < (UﬁU@l)VzV(UﬁU@l) & [uau,A] =0,
b +

b“r
@1)V=Vaxl) < (1®UaU)V V(leUal) < [UalU,A]=0.
bt b bt

These equivalent conditions hold for all @ € Aanda € A if and only if V3 Vip = ViaVas
and Vo3 Vip = Vi5Vas in the sense that the following diagrams commute:

Ho@pHp@aH — = Hy@aHp@uH  Hp@aHz@pH — = HudgHa@pH

P V2
v st R y V23 y Vs v Vs

\%
Ha%ﬁHa<§>ﬁHi>Hﬁ@;aH@ﬁH, ,3®KH/5®“H*>H“®5H;3®“H
b

Proof. This is straightforward, for example, V23‘712 = \712 V>3 holds if and
only if (¢'[3Va3V12|8)s = (&'|3V12Vas|é)3 for all ¢ € &, &’ € B and hence if and
onlyif (1®a)V =V(1®a)forallaec A. 1

bt b
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DEFINITION 3.7. We call (V,U) a weak C*-pseudo-Kac system if V is well-
behaved and if the equivalent conditions in Lemma 3.6 hold, and a C*-pseudo-Kac-
system if V,V,V are regular and additionally (X(1® U)V)3 = id, where (1 ®

b b

bt bt

REMARK 3.8. In leg notation, the equation (X(1® U)V)3 = 1 can be rewrit-
b

ten as (XU, V)3 = 1. Conjugating by X or V, we see that this condition is equiva-
lent to the relation (U;VX)? = 1 and to the relation (VZU,)3 = 1.

LEMMA 39. (ZU,V)? = 1ifand only if VVV = U, Z.
Proof. UyUp(ZULV )P ULE = SUZVULE -V -SLVILE =V -V-V.

PROPOSITION 3.10. Every C*-pseudo-Kac system is a weak C*-pseudo-Kac sys-
tem.

Proof. Let (V,U) be a C*-pseudo-Kac system. Then V, V, V are regular and
therefore well-behaved. Using diagrams (3.2) and (3.5), we find

ViaV12Z15Vas = Via V12 Vi3 10 = ViaVi3VasVia Z1p = VasVia Vi .

By Lemma 3.9, ViaVipZpp = \71*2U1 and hence 171*2u1 Vo = V23\71*2U1. Since 1712
is unitary and U; Vo3 = Va3ll, we can conclude V12V23 = V23\712. A similar
argument shows that Vs Vip = VioVas. 1

The following result is crucial for the duality presented in the next section.
PROPOSITION 3.11. Let (V,U) be a C*-pseudo-Kac system. Then [AA] = [a&*].

Proof. The relation [&*A] = @* (Remark 3.2(iii)), regularity of V, and the
relations V* = XU, VEU,VEU, and [V|a)2A] = [|B)2A] (see Remark 4.7 in [27])
imply

@a*] = [Uaa*UA] = [U(a|aV*[a) UA] = [U(a|,ZUnVEU,VEU|a); UA]
= (a1 VEUV |0)o A] = [(&1 VEW|B)2A] = [([1V|B)1A] = [AA].

LEMMA 3.12. Let (V,U) be a (weak) C*-pseudo-Kac system. Then also (V,U),
(\7, u), and (V°P,U) are (weak) C*-pseudo-Kac systems.

Proof. If (V,U) is a weak C*-pseudo-Kac system, then the tuples above are
balanced C*-pseudo-multiplicative unitaries by Remark 3.2(i), and the remaining
necessary conditions follow easily from Proposition 3.4 and equation (3.3).

If (V,U) is a C*-pseudo-Kac system, then equation (3.4), the relation (V°P)
= U V*U; = (V)°P, and the fact that VP is regular, imply that the tuples above
satisfy the regularity condition in Definition 3.7. To check that they also satisfy
the second condition, we use Remark 3.8 and calculate (ZU,V)? = (VEU,)® =1,
(VEW)? = (ZULV)3 =1, (UL VPE)3 = (LLZV*)3 = (VEUR)3)* =1. ¥
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3.3. THE C*-PSEUDO-KAC SYSTEM OF A COMPACT C*-QUANTUM GROUPOID. In
[26], we introduced compact C*-quantum groupoids and associated to each such
object a regular C*-pseudo-multiplicative unitary V. We now recall this construc-
tion and define a symmetry U such that (V, U) is a C*-pseudo-Kac system.

A compact C*-quantum graph consists of a unital C*-algebra B with a faithful
KMS-state y, a unital C*-algebra A with unital embeddings v : B — A and s :
B°? — A such that [r(B),s(B°P)] = 0, and faithful conditional expectations ¢ :
A —r(B) 2 Band ¢ : A — s(B°P) = B°P such that the compositions v := p o ¢
and v~! := u°P o ¢ are KMS-states related by some positive invertible element
5 € Anr(B) Ns(B°P)’ via the formula v='(a) = v(6'/2a6'/2), valid for all a €
A. An involution for such a compact C*-quantum graph is a *-antiisomorphism
R: A — Asuchthat RoR =idg, R(r(b)) = s(b°P) and ¢(R(a)) = ¢(a)°P for all
b€ B,ac A.

Let (B,u, A,r,s,¢,9) be a compact C*-quantum graph with involution R.
We denote by (Hy, {y, Ju) and (Hy, v, Jv) the GNS-spaces, canonical cyclic vec-
tors, and modular conjugations for the KMS-states y and v, respectively, and let
{1 = 51/2@. As usual, we have representations B°? — £(Hy), boP — [, b* ]y,
and A°°? — L(H,), a°® — J,a*],. Using the isometries

QP : HV — H,, bgy — T’(b)gv, glp : Hyop — H,, bopgﬂop — S(bop)év—l,

-~

we define subspaces &,B,zx,ﬁ C L(Hy, Hy) by @ := [Aly], B := [Alyl, B =
[A°PZ], B := [A°P(y]. Let H = H, and b = (&, %B,B"), where 8 = H,,, B = B C
L(Hy,), Bt = BoP C L(H,). Then (H,7, E, w,B) is a C*-(b,b%,b,b")-module and
A= A%a a C*-(b*, b)-algebra [26].

A compact C*-quantum groupoid consists of a compact C*-quantum graph
with involution as above and a morphism A — A x A of C*-(b",b)-algebras

satisfying the following conditions:
(i) (Axid) o A = (id *A) o Aas maps from A to L(H,®pgHa®gH);
b b

(ii) (pl2A(a)|Cg)2 = pp(P(a)) and (Typ1A(a)[Cy)1 = pa(yp(a)) foralla € A;

(iii) [A(A)|a)1] = [la)1A] = [A(A)[Cy)1A] and similarly [A(A)[B)2] = [|B)2A4]
= [A(A)[Cp)2Al;

() R({Gyl1A(@) (d® @1)[8y)1) = (Gyl1(a” ©1)Ad)|Zy)1 foralla,d € A.

Given a compact C*-quantum groupoid as above, there exists a regular C*-

pseudo-multiplicative unitary V : H/§®"‘H — Hy®gH such that V]aly); =
bf b

A(a)|Cy)1 for all a € A; see Theorem 5.4 in [26]. Denote by | = ], the modu-
lar conjugation for v, by I : H — H the antiunitary given by Ia{, 1 = R(a)*(, for
alla € A,andletU = I] € L(H).

PROPOSITION 3.13. (V,U) is a C*-pseudo-Kac system.

Proof. First, U? = IJI] = IJ]JI = II = idy because I] = JI, and Uy = Ty,
Ugy = ¢,1, Ua = I = a, UB = Ia = B by Lemma 2.7 and Proposition 3.8 in
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[26]. The relation (J a(}@ pl )V(],X}@ pl ) = V* (see Theorem 5.6 in [26]) implies
n 1

V=2(1e VAR INE = (J«@))Z(Ju@pD)V (Ju@p1) Z(Jz25))
b bt Ju Ju Ju I
= -~ * -~ -~ = ~ Op ~ ~
Un0pD ZV" 2(J395]) = (e @5))VF (Jap))

But VP is a regular C*-pseudo-multiplicative unitary, so V is regular as well. In
particular, (V,U) is a balanced C*-pseudo-multiplicative unitary. We shall show
that VV = U, ZV*, and then the claim follows from Lemma 3.9. Let a,b € A and
w= ?V(aéw & Ub{,-1). By Proposition 3.4, A(a) = V*(1 % )V and hence

w = VA(a)(Zy o UbZ, 1) = (1 g%a)V(Cw e UbZ, 1)
=X(U (? 1)(Uald (%) DV(bZ,-1©y) = Z(U %) 1)(Ual (? DAb)(Zyp ©Cy1).
Since UalU = JIal] = R(a)°P and [UalU (% 1,A(b)] € [A°P %) 1, AatﬁA] =0,

w=Z(U & 1AD)(Ualigy &8,1)=(U & 1)U 9 UAD)(U © U)(aUly &)

By Proposition 3.4, V*(1 ® UbU)V = (U ® U)A(b)(U ® U) and hence
bt b b
w=(Ug 1)ZV*(1 2 ubU)V(algy  gy)
b b
= (U1EV (16 UBL)Z(1 @ U)V (G © Ualigy).
b b

Finally, by Proposition 5.5 in [26], V({, © Ual{y) = {, © Ually, whence
w= (U ® 1HZV*(1 ® unl)(alle & y) = (U ® )XV*(aly o UbZ,1). W
b b b

4. REDUCED CROSSED PRODUCTS AND DUALITY

Let (V,U) be a weak C*-pseudo-Kac system and let (A4, A), (A, A) be the
Hopf C*-bimodules associated to V as in the preceding section. Generalizing the
corresponding constructions and results for coactions of Hopf C*-algebras [3],
we now associate to every coaction of one of these Hopf C*-bimodules a reduced
crossed product that carries a dual coaction of the other Hopf C*-bimodule, and
prove a duality theorem concerning the iteration of this construction.

4.1. REDUCED CROSSED PRODUCTS FOR COACTIONS OF (A, A). Let é be a coac-
tion of the Hopf C*-bimodule (4, A) on a C*-b-algebra C = C}, and let (the nota-

tion C x A is consistent with [3] but not with [10], where C %, A is used instead):

Cx A= [5(C)(1 ® A)] C L(Ky@pH), € A= (Ky@gHg, C s A).
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PROPOSITION 4.1. (i) [6(C)(y> B)] C v > B with equality if & is left-full.
(i) C x; A is a C*-algebra and C x, A is a C*-b*-algebra.
(iii) There exist nondegenerate x-homomorphisms C — M(C Xy A ) and A—M (C Xy
A), given by ¢ — 6(c) and @ — 1 ® a, respectively.

Proof i) The relation ﬁ [A ﬁ] (see Proposition 3.2 (if) in [27]) implies that

[6(C)[1)18] = [6(C)|1)1AB] C [IM)14B] = [[yhBl.
(ii) We first show that [(1 (%A)é(C)] C [6(O)(1 (%A)]. Let 62 := (id *A) o

d=(0xid)od:C — L(Ky®gH,®4H). By definition of Aand A,
b b

(e A)s(0)]=[(pls(1 2V)a)30(C)] = [(Bls(1® V)(3(C) @ 1)]a)s]

=[<ﬁ|35(2)(c)(1<§‘/)\“>3]Q[5(C)</3|3(1<%V)|0<>3]=[5(C)( %A)]
Consequently, C x; A is a C*-algebra. By Proposition 3.2(i) in [27], [Ap 3( )] = A4,
and hence [(C xr A)p ., 5 (B)] = [5(C)(1<§2P3(%))] =pO)e g)] Cxr A,

(iii) Immediate. 1

-~

THEOREM 4.2. There exists a unique coaction 5 of (A, A) on C %, A such that
5(6(c)1®a)) = (6(c) ®1) (1@ A@)) forallc € C, @ € A\ If A'is a fine coaction,
b bt b

then & is a very fine coaction. If & is left-full, then §is left-full.

Proof. Define 6 : C x; A — E(KW(%),SHBS?,XH) by x — (1 ® V) (x ®1)(1 ®
V*). Then § is injective and satisfies 3(8(c)(1 (%) a)) = (8(c) g) 1)(1 ® Aa )) for all
c € C,a € Abecause V(ﬁ(}é) 1)V* = A(@) by Proposition 3.4 and (1 %@ V)s(e)(1 (%)
V*) = &(c) as a consequence of the relation V(a ® 1)V = ® 1. We show that §
is a coaction of (A, A). First, [5(C x; A)|a)s] C [|a> (C x A)] because
(4.1) [(5(C)<§1)(1®A( )|a)3] € [(5(C)®1)|w> (1® A)]=1a)36(C) (1 /T)]-

~ -~ PN

Next, [6(C x; A)|y>B)1A] C [|7> B)1A] because by Proposition 4.1(i),
[(1<§AA(A))(5( )@ Dly>pna] € [(1®A( A))ly > BnAl

(4.2) = [[7148(A)|B)1A] C [Im)1]B)1A].
Furthermore,é( )(1 %) V)|&)s = (1 (%) V)|&)3x for each x € C Xy A, e E/ and by
Remark 3.2(ii), [(1® ‘7)|3> (y>B)] = y>PBrpand [(Bla(1 ® V) (yeBrB)] =
d)o

> B. The maps (5A odand (id #A) 0 4 from C %, A to £(K7®,5Hﬁ®aH ®uH)

P ot
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are given by é(c)(1 ®a) — (6(c) ® 1 ® 1)(1® A®(@)) forallc € C,a € A, where
b b b b

A® = (Axid) oA = (id*A) o A. Thus, (C x; A,) is a coaction of (A, A). If

the coactions A is fine, then the inclusion (4.1) is an equality and in any case

[(Bl3(1® V)*(y> B B)] = 7> B, whence 6 will be very fine. If § is left-full, then
b

the inclusion (4.2) is an equality by Proposition 4.1(i) and hence  is left-full.

-~

DEFINITION 4.3. We call C x, A the reduced crossed product and (C xx A, J)
the reduced dual coaction of (C,9).

The construction of reduced dual coactions is functorial in the following
sense:

PROPOSITION 4.4. Let p be a morphism between coactions (C, ¢
(A, A). Then there exists a unique morphism p X, id from (C xr A, dc)
such that (p 3 id)((1®2)éc(c)) - op()(1® @) = (1©2)s ( (c)d

ceCdeD,ai cA.

)and (D, 5D)of
to (D . A, ép)
)(1 (%ﬁ’)for all

Proof. The semi-morphism Ind‘ 5>2( ) of Lemma 2.1 evidently restricts to a

semi-morphism p %, id from C x; A to M(D x, A) which satisfies the formula
given above, and this formula implies that p x, id is a morphism of coactions as
claimed. &

COROLLARY 4.5. There exists a functor — i, A : Coact(y4 4 — Coact(
given by (C,8) — (C x; A, 8) and p — p x, id.

AA)

4.2. REDUCED CROSSED PRODUCTS FOR COACTIONS OF (A, A). The construction
in the preceding paragraph carries over to coactions of the Hopf C*-bimodule
(A, A) as follows. Let & be a coaction of (A, A) on a C*-b'-algebra C = C}} and let

Cxr A= [6(C) (1@ UAU)] € L(Ky@uH), C A= (Ky@uHy, C xr A).
b b b

Using straightforward modifications of the preceding proofs, one shows:

PROPOSITION 4.6. (i) [6(C)(y>®)] C >« with equality if J is fine.
(ii) C 1y Aisa C*-algebra and C x, A is a C*-b-algebra.
(iii) There exist nondegenerate x-homomorphisms C — M(C xy A) and A— M(C X,
A), given by c — 6(c) and a — 1 S%)u, respectively.

THEOREM 4.7. There exists a unique coaction (C x; A,8) of (A, A) such that
0(6(c) (1@ Uall)) = (6(c) ®1)(1® Ad g1y Ala)) forallc € C,a € A. If Ais a fine
bt b bt b
coaction, then & is a very fine coaction. If § is left-full, then & is left-full.

DEFINITION 4.8. Let (C,4) be a coaction of (A, A). Then we call C x; A the
reduced crossed product and (C xr A, 6) the reduced dual coaction of (C,9).
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PROPOSITION 4.9. Let p be a morphism between coactions (C d¢) and (D, 59) of

(A, A). Then there exists a unique morphism p X, id from (C x; A, d¢) to (D x1 A, dp)

such that (p x,id)((1 ® Uall)de(c)) - op(d)(1 ® Ua'll) = (1 ® Uall)dp(p(c)d)(1 ®
b b b b

Ua'U) forallc € C,d € D, a,a’ € A.

COROLLARY 4.10. There exists a functor — X A : Coact ;7 — Coacty )
given by (C,8) — (C x; A, 8) and p — p . id.

4.3. THE DUALITY THEOREM. The preceding constructions yield for each coac-
tion (C,6¢) of (A, A) and each coaction (D, 6p) of (A, A) a bidual (Cx Ax A, o)
and (D Ax;A,dp), respectively. The following generalization of the Baaj—
Skandalis duality theorem [3] identifies these biduals in the case where (V,U)
is a C*-pseudo-Kac system and the initial coactions are fine. Morally, it says that
up to Morita equivalence, the functors — x; A and — x; A implement an equiv-

; f f
alence of the categories Coact( A and Coact (A

THEOREM 4.11. Assume that (V,U) is a C*-pseudo-Kac system.
(i) Let (C,0) be a (very) fine coaction of (A,A), where C = CJ. Then there exists
an isomorphism @ : C xt; A 3, A — [|B)2C(B|2] € L(Ky®gH) such that @~ is an
b
(iso)morphism from (K, ®gHg, [|B)2C(B|2]) to C x; Ax  Aand 5o d 1 = (o1«
b
id) o Ad(l@g:‘?) oIndg), (0).

o~ o~

(i) Let (D, ) be a (very) fine coaction of (A, A), where D = Df. Then there exists
an isomorphism @ : D x; A x; A = [|a),D(aly] C (LE%XH) such that @1 is an
(iso)morphism from (LE%XHA, [|a)2D(als]) to D x; A x; A and Sod !l = (1«
id) o Adg ) o Indy, (9).

Proof. We only prove (i); then (ii) follows after replacing (V,U) by (V,U).

By Proposition 3.4 and Proposition 3.11, applied to the C*-pseudo-Kac system
(V,U), we have [A Ady(A)] = [AyAy] = [BB*], and since ¢ is fine,

[1B)2C(Bl2] = [6(C)(1 @ pp™)] = [6(C)(1 @ AAdy(A)))-

One easily verifies that the x-homomorphism Ind g, (6) (see Lemma 2.1) yields
an (iso)morphism of C*-b-algebras

Iy, (6) ¢ (Ky@pH, [1B)2CB) = (Ky@pHapHs, [1B)25(CH(BR)).
Denote by ¥ the composition of this (iso)morphism with Ad ;5 y+) and let 6 2 =
b

(6xid) 0 d = (id xA) 0 4. Let x = §(c) (1 @ alall) € [|B)2C(B|2], wherec € C,a €
b
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g,a € A. By Lemma 3.6,

¥ (x) = Ad ey (6@ (c)(1 @1 allall)) = (6(c) ®1)(1 ® A@))(1 ©1& Ual).
b b b

Consequently, ¥ ([|8)2C(Bl2]) = C x; A x; A. Next, the relations C x; A x, A =

(Ky®pH;@aHg, C xr Aty A)and (1© V*)(y>ab®) = y>B>a imply that Pisa

b bt b

morphism of C*-b-algebras as claimed. Using the definition of 5, Proposition 3.4,

and Lemma 3.6, we find

~

b
V)(Indg, (6)(x)) (1@ V*E)).

5. THE C*-PSEUDO-KAC SYSTEM OF A GROUPOID

For the remainder of this article, we fix a locally compact, Hausdorff, sec-
ond countable groupoid G with a left Haar system A. In [27], we associated to
such a groupoid a regular C*-pseudo-multiplicative unitary V and identified the
underlying C*-algebras of the Hopf C*-bimodules (A4, A) and (A, A) of V with
the function algebra Cy(G) and the reduced groupoid C*-algebra C;(G), respec-
tively. We now recall this construction and define a symmetry U such that (V, U)
becomes a C*-pseudo-Kac system. For background on groupoids, see [20], [23].

Denote by A~! the right Haar system associated to A and let u be a measure
on the unit space G with full support. We denote the range and the source map
of G by r and s, respectively, let G* := r(u) and G, := s’l(u) foreach u € GY,
and define measures v,v~! on G such that

/fdv—//f ) dA* (x) dpt(u /fdv_l—//f YA (%) dpe(u)

GO G* GO Gy

for all f € Cc(G). We assume that y is quasi-invariant in the sense that v and
v~ ! are equivalent, and denote by D := [dv/ [ dv~! the Radon-Nikodym de-
rivative. One can choose D such that it is a Borel homomorphism (see page 89 in
[20]), and we do so.

We identify functions in C,(G°) and Cy,(G) with multiplication operators
on the Hilbert spaces L?(G%, 1) and L2(G,v), respectively, and let & = L2(G?, i),
B =B =Cy(G% C L(R), b= (R B,B") =b,H=L*G,v).



COACTIONS OF HOPF C*-BIMODULES 37

Pulling functions on G° back to G along r or s, we obtain representations r* :
Co(G%) — Cp(G) — L(H)and s* : Cy(G®) — Cp(G) — L(H). We define Hilbert
C*-Co(G®)-modules L?(G, A) and L?(G, A1) as the respective completions of the
pre-C*-module C.(G), the structure maps being given by

(€8) (u) = /Wé‘(x) dA*(x),  &f =r*(f)¢ inthecaseof L*(G,A),

@16)(w) = [ TE@EE) AN ), & =5 ()E  in the case of 2(G,A 1)

Gu
respectively, for all &, &' € Cc(G), u € G°, f € Co(GP). Then there exist isometric
embeddings j : L2(G,A) — L£(&,H) and j : L2(G,A~1) — L(&, H) such that
((©)0)(x) = E()5(r(x)), (7€) (x) = E(x)D™2(2)5(s(x))
for all § € Ce(G), ¢ € C(GY). Leta = B := j(I*(G,A)) and @ = B :=
j(L*(G,A71)). Then (H,&,B,a, ) is a C*~(b,b%,b,b%)-module, p, = pg =
and p; = p; = s, and j(§)%(&') = (EI¢) and j(n)*j(n') = (nly') for all

& & € L?(G,A), 1,1 € L2(G,A71); see Section 2.3 in [27].
The Hilbert spaces H 3®"‘H and H,® pH can be described as follows. Define
bt b

measures V2, on G;X:G and v2, on G, %G such that

/f/dvs, ///fxy d)\sx (y) dA*(x) dp(u),

5.1) e e GO G* Gsl(x
/ /dvrr ///gxy ) dA¥ (y) dA* (x) dpe(u)
GO Gu G

forall f € CC(GS X:G), g € Cc(Grx;G). Then there exist unitaries

@ HpouH = L*(Gsx:G,v2,) and V¥ : Ha@pH = L2(Gy %G, v2,)

such that for all 7, & € Cc(G), € C.(GY),
o(j(n) ¢ (@) (xy) = n(x)D"2(x){(s(x))E(y),
¥(ji(n) eoj(@)(xy) =n(x)(r(x)Ey).

From now on, we use these isomorphisms without further notice.

THEOREM b5.1. There exists a C*-pseudo-Kac system (V,U) on (H,®&, ﬁ, a, B)
such that for all w € Co(Gsx:G), (x,y) € Gy x:G, € € Cc(G), z € G,

(5.2) (Vw)(x,y) = w(x,xty) and (UE)(x) = &(x"1)D(x)"1/2
Proof. By Theorem 2.5 and Example 4.3(ii) in [27], there exists a regular

C*-pseudo-multiplicative unitary V as claimed. The second formula in (5.2) de-
fines a unitary U € L(H) by definition of the Radon-Nikodym derivative D =
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dv/dv~!, and U? = id because (U%¢)(x) = (Ug)(x~')D(x)"1/2 = ¢(x)D(x)'/2
D(x)"V/2 = &(x) for all & € Cc(G) and x € G. The unitary V = ZU; VU, X is
equal to VP = XV*X because
(L VU w)(x,y) = (VUw)(x "L y)D(x) V2 = (Uyw) (x 1, xy) D(x) /2
= w(x,xy)D(x~) V2D (x) 2 = w(x, xy)

for all w € Co(Gy %x:G), (x,y) € Gsx,G. In particular, Visa regular C*-pseudo-
multiplicative unitary. It remains to show that the map Z := XU,V : H 5® oH —
bt

Hp@oH satisfies 73 = 1. But forall w € Cc(Gsx:G) and (x,y) € Gsx,G,
b
(Zw)(x,y) = (Vw)(y,x " )D(x) "2 = w(y,y 'x D (x) 72,
(Zw)(x,y) = (Z?w)(y,y~"x")D(x) 2= (Zw)(y "« xyy ) (D(x)D(y)~/?
= w(x,x xy)(D(X)D(y)D(y~ '« 71) 2 = w(x,y).
The Hopf C*-bimodules (A, A) and (A, A) associated to V can be described

as follows; see Theorem 3.16 in [27]. Given g € C.(G), define L(g) € C;(G) C
L(H) by

LN = [ s@fEHD (A ()
Gr(x)
forallx € G, f € C.(G) C L?(G,v) = H. Then

(53) A=Co(G) € L(H), <3<f> )(0y) = fey)w(x,y),
A=C{(G), (ALE)W)(,Y) /g ) @) (2)

for all f € Cy(G), w € Cc(Gs%x:G), (x,y) € Gsx:G and ¢ € C.(G), o' €
Co(Grx:G), (¥',y') € Gy x:G, where u' = r(x’) = r(y’'). We shall loosely refer
to Co(G) and C(G) as Hopf C*-bimodules, having in mind (A4, A) and (A, A),
respectively.

6. ACTIONS OF G AND COACTIONS OF Cy(G)

Let G be a groupoid and consider Cyp(G) as a Hopf C*-bimodule as in the
preceding section. Then coactions of Cy(G) can be related to actions of G as fol-
lows. Let us say thata tuple (F, G, 17, €) is an embedding of a category C into a category
D as a full and coreflective subcategory if F : C — D is a full and faithful functor
and G : D — C is a faithful right adjoint to F, where 77 : idc — GF is the unit
and ¢ : FG — idp is the counit of the adjunction; see also Section IV.3 in [18]. In
this section, we construct such an embedding of the category of actions of G on
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continuous Cy(G?)-algebras into the category of certain admissible coactions of
Co(G). We keep the notation introduced in the preceding section.

6.1. Co(G")-ALGEBRAS AND C*-b-ALGEBRAS. We shall embed the category of
admissible Cy(G)-algebras into the category of admissible C*-b-algebras as a full
and coreflective subcategory.

Recall that a Cy(X)-algebra, where X is some locally compact Hausdorff
space, is a C*-algebra C with a fixed nondegenerate *-homomorphism of Cy(X)
into the center of the multiplier algebra M(C) [6], [14]. We denote the fiber of a
Co(X)-algebra C at a point x € X by C, and write the quotient map py : C — Cx
as ¢ — cy. Recall that C is a continuous Cy(X)-algebra if the map X — R given by
x > ||cx|| is continuous for each ¢ € C. A morphism of Cy(X)-algebras C,D is a
nondegenerate x-homomorphism 7t : C — M(D) such that 7t(fc) = fr(c) for all
fe Co(X),ceC.

DEFINITION 6.1. We call a Cy(G?)-algebra C admissible if it is continuous
and if C, # 0 for each u € G°, and we call a C*-b-algebra Cg admissible if
[04(Co(G%))C] = C and [CY] = 7. A morphism between admissible C*-b-algebras
Cg, Dy is a semi-morphism 7 from C;g to M(D); that is nondegenerate in the
sense that [77(C)D] = D. Denote by Co(G?)-alg” the category of all admissible
Co(G")-algebras, and by C*-b-alg” the category of all admissible C*-b-algebras.

LEMMA 6.2. (i) Let C;g be an admissible C*-b-algebra. Then C is an admissible
Co(GP)-algebra with respect to p..
(ii) Let 7t be a morphism between admissible C*-b-algebras C?( and Dy. Then 7t is a
morphism of Co(G®)-algebras from (C, p) to (D, pe).
Proof. (i) First, note that p,(Co(G®)) € M(C) is central because C C L(Ky)
C p1(Co(GY))". Themap C — L(K,) = L() is a faithful field of representations
in the sense of Theorem 3.3 in [6], and therefore C is a continous Cy(G)-algebra.
We have C, # 0 for each u € G because otherwise C = [CL,], where I, =

Co(G\ {u}), and then [y*9] = [y*Cq] = [v* L.Cy] = [v*7L] = Iu # Co(G?),
contradicting the fact that K, is a C*-b-module.
(ii) This is Lemma 3.4 in [28]. 1

We embed Cp(G)-alg” into C*-b-alg” using a KSGNS-construction for the
following kind of weights.

DEFINITION 6.3. A Co(G?)-weight on a Co(G)-algebra C is a Co(G?)-linear,
positive map ¢ : C — Co(G?). We denote the set of all such weights by W(C).

Let C be an admissible Cy(G)-algebra. The results in [4] imply:

LEMMA 64. ker¢:{o}and[ U ¢(c>}:c0(60).
peW(C) pEW(C)
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Let ¢ € W(C). Then ¢ is completely positive by Theorem 3.9 in [21] and
bounded by Lemma 5.1 in [16]. Let Ey = C Sy £ (see Section 1) and define 7 :
C— ﬁ(E(P) and l(p :C— ,C(.ﬁ, Eq;) by 77¢(C)(d @qj C) =cd ®¢Cand l¢(C)€ = C@qy C
forallc,d € C,{ € R One easily verifies that forallc,d € C, f € Cy(G?), { € &,

61) lp(c)*lp(d) = ¢(c™d), lp(e)f = lp(cf),

Np(e)(d S fO) = cdf ©p & = 19(cf)(d S¢ §)-
The universal Co(GP)-representation yjc : C — L(E¢) of C is the direct sum of the
representations 174 : C — L(Ey), where ¢ € W(C). Denote by Ic € L(R, Ec) the
closed linear span of all maps ly(c) : & = Ey < Ec, wherec € C, ¢ € W(C).

LEMMA 6.5. 7¢(C )écc is an admissible C*-b-algebra and y¢ is an isomorphism of
Co(G®)-algebras from C to (11c(C), py..)-

Proof. The definition of /¢, the equations (6.1) and Lemma 6.4 imply that
Ich] = ?E(p = Ec, [Itlc) = [W(C)] = Co(GY) and [IcCo(GY)] = I, whence

(Ec,Ic) is a C*-b-module, and that [7¢(C) ;. (Co(G?))] = [7c(CCo(G?))] = 1c(C)
and [17¢(C)lc] = Ic, whence nC(C)IECC is an admissible C*-b-algebra. Lemma 6.4
implies that 7 is injective and hence an isomorphism of C onto #¢(C), and
the last equation in (6.1) implies that 57c(c)o,(f) = nc(cf) forallc € C, f €

Co(GO). 1

THEOREM 6.6. There exists an embedding as a full and coreflective subcategory
(F,G,1,¢) of Co(G®)-alg" into C*-b-alg" such that the following conditions hold:
(i) F is given by C +— ’7C(C)€;CC on objects and by Frt : nc(c) — np(7t(c)) for each
morphism 1t between objects C, D in Co(GP)-alg”;
(ii) G is given by C} +— (C, p) on objects and 7t — 7t on morphisms;
(iii) ¢ is defined as above for each object C in Co(GP)-alg";
(iv) e¢ = ¢ for each object C in C*-b-alg’.

Proof. The functor G : C*-b-alg” — Cy(G?)-alg” is well defined by Lem-
ma 6.2 and evidently faithful.

Let C be an admissible Cy(G?)-algebra, D = D} an admissible C*-b-algebra,
and 7 : C — GD a morphism in Co(G?)-alg”. We claim that 7 o 1751 is a mor-
phism from FC to D in C*-b-alg®. Let & € 7. Then the map ¢ : C — Cy(G°) C
L(8) given by ¢ + &*7(c)Z is a Co(G")-weight, and there exists an isometry
S : E; — Ksuch that S(c 5y ) = m(c)¢¢ forallc € C, { € R Denote by
P : Ec — E, the natural projection. Then [SPI¢] = [Sly(C)] = [1(C)¢] lies in «y
and contains ¢, and SPyc(c) = Sng(c) = 7t(c) for each ¢ € C. Since { € y was
arbitrary, the claim follows.
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Using Lemma 6.5, we conclude that F is well defined and that 7 is a natural
isomorphism from id to GF. Indeed, if 7 : C — D is a morphism in Cp(G?)-alg”,
then Ft =npomorn !is a morphism from FC to FD by the argument above.

Finally, let D be an admissible C*-b-algebra. The argument above, applied

to the identity on GD, yields a morphism ¢p from FGD to D in C*-b-alg” such

that the composition GD 16D, GFGD 2, GD is the identity. Since 7 is a natural

transformation, also ¢ : FG — id is one. For each admissible Cy(G’)-algebra

C, the composition FC e, FGFC S FC is the identity by construction. From
Theorem 2 of Section IV.1 in [18], we can conclude that F is a left adjoint to G
such that 77 and € form the unit and counit, respectively, of the adjunction. Since
1 is a natural isomorphism, F is full and faithful by Theorem 1 of Section IV.3 in
[18].

6.2. ACTIONS OF G AND COACTIONS OF Cy(G). We next embed the category of
admissible actions of G as a full and coreflective subcategory into the category of
all admissible coactions of Cy(G).

The definition of an action of G requires the following preliminaries. Given
Co(GY)-algebras (C,p) and (D, o), where D is commutative, we denote by C, X,
D the Co(G")-tensor product [5], and drop the subscript p or ¢ if this map is
understood. Given a Cy(G?)-algebra C and a continuous surjection t : G — G,
we consider Co(G) as a Co(G?)-algebra via t* : Co(G%) — M(Coy(G)) and let
t*C := C Xy Co(G), which is a Cy(G)-algebra in a natural way. Each morphism
7t of Co(GP)-algebras C, D induces a morphism of +*7r of Co(G)-algebras from
t*C to t*D via c X f + 7(c) K f. An action of G on a Co(G®)-algebra C is an
isomorphism ¢ : s*C — r*C of Cy(G)-algebras such that the restrictions of ¢ to
the fibers satisfy oy 0 0y, = 0y for all (x,y) € Gsx:G [17]. A morphism between
actions (C,¢%) and (D, cP) of G is a morphism of Cy(G?)-algebras 7t from C to D
satisfying 0P o s*7t = r*m o €.

DEFINITION 6.7. We call an action (C, o) of G admissible if the Co(G°)-algebra
C is admissible, and we call a coaction (C, ) of Co(G) admissible if C}, is an ad-
missible C*-b-algebra and [§(C)(1® Cp(G))] = C® Co(G) in L(K,®H).
b b b

REMARK 6.8. If ¢ is an action of G on a continuous Cy(G)-algebra, then the
subset Y := {u € G°: C, # 0} C G is open, C is an admissible Cy(Y)-algebra,
and o restricts to an action of the subgroupoid G|y:={xe G : r(x),s(x) €Y} CG.

LEMMA 6.9. Let C;z and Dy be admissible C*-b-algebras, where D is commutative.
Then there exists an isomorphism Cp, Wy, D — Cy®¢D, c ¥ d — c @ d.
b b

Proof. Use Lemma 2.7 in [5] and apply Proposition 4.1 in [5] to the field of
representations C — L(Ky) = L(7), noting that v &,, D = [|)1D] as a Hilbert
C*-D-module via ¢ ©d — |§)1d and that (C,®¢D)[|7)1D] C [|7)1D].

b
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We use the isomorphism above without further notice.

PROPOSITION 6.10. (i) Let (CY,8) be an admissible coaction of Co(G). There
exists a unique action o5 of G on (C,p,) given by c X f — 6(c)(1® f).
b

(ii) Let (C, o) be an admissible action of G. There exists a unique admissible, injective
coaction &, of Co(G) on FC given by njc(c) — (r*nc)(o(c X 1)).

Proof. (i) Since §(C) and 1 ® Cy(G) commute, there exists a unique *-homo-
b

morphism ¢ from the algebraic tensor product C ® Cy(G) to r*C such that ¢(c ©®
f) =6d(c)1®f)forallc € C, f € Cy(G). Since ¢ is a coaction, 6(cp,(g)) =
b

(5(c)p(w5) (g) =4d(c)(1 (%) s*(g)) forall g € Cy(G). From Lemma 2.7 in [5], we can

conclude that ¢ factorizes to a *-homomorphism ¢ = o5 : s*C — r*C satisfying
the formula in (i). This ¢ is surjective because [6(C)(1® Cy(G))] = C @ Co(G).
b b
In particular, oy is surjective for each x € G. We claim that oy 0 0, = 0y for
all (x,y) € Gsx;G. Define r; : Gsx;G — G° by (x,y) — r(x). By Lemma
6.9, we have isomorphisms C7®,XC0(G)B®,XC0(G) = CXyp Cp(G)s Ky Cp(G) =
b b

CX, Co(GsxG) = r{C. Using formula (5.3), we find

62) Uxoayops(y):Uxopyodzp(x,y)o((%kid)o(s,
. Txy © Ps(y) = Pxy ©0 = P(yy) © (id +4) 0,

and the claim follows. Finally, 0;, = id¢, for each u € GY because 0y, is surjective
and idempotent, and oy is injective for each x € G because 05,y = 0,1 00y is
injective. Therefore, o is injective.

(ii) Let D := 3¢ (C);. (%aCQ(G). Then D := ((EC)ZC<§aH§/D) is an admis-
sible C*-b-algebra. Define § : C — D by ¢ — (r*5c)(c(c X 1)). Letc € C,
g € Co(GY). Then cg X1 = cXs*(g) in M(C Ky Co(G)) and therefore 6(cg) =
d(c)(1 %) s*(g)) = 5(c)p(lcl>3) (g). Consequently, ¢ is a morphism of Cy(G)-
algebras from C to (D'plC>E> = GD. By definition of F and ¢, the morphism
6y :=epoFd : FC — FGD — D satisfies 6, o jc = J, and a similar calculation
as in (6.2) shows that (J, *id) 0 8, = (id *A) o 6,. Consequently, &, is a coaction
of (.AT, 3) Since o is injective, so are ¢ and J,. Finally, J, is admissible because

100 (1 (C)) (1 ® Co(G))] = (r*1c) (e (s°C)) = r*c(C) = [1c(C) © Go(G)].
COROLLARY 6.11. Every admissible coaction of Co(G) is injective, left-full, and
right-full.

Proof. 1f (CY,6) is an admissible coaction, then the relations [Co(G)a] = a
and [Cy] = 7 imply [5(C)[a)2] = [5(C)(1 & Co(G))la)2] = [(C & Co(G))la)2] =

[l4)2C] and [5(C)[11Co(G)] = [6(C) 1 @ Go(G))lrh] = [(C® Co(G))[7)1]
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[|7)1Co(G)]. Finally, ¢ is injective because 0} is injective and d(c) = o5(c X 1) for
allceC. 1

PROPOSITION 6.12. Let (C,6€), (D, 6P) be admissible coactions with associated
actions 0¢ = a5e, 0P = o5p, and let T € C*-b-alg®(C, D) = Co(G?)-alg"(GC, GD).
Then (71 xid) 0 8¢ = 6P o rwifand only if r*7r 0 0¢ = 0P os* .

Proof. Write C = Cy. The assertion holds because for all c € C and f €
Co(G),

(1)@ (€)1 8 f) = (r+id) ()1 @ )) = ("o 0C) B f),
P ()16 f) = P (n(e) K f) = (P o5 M) EL f).

We denote by G-act” and Coact‘éo(c) the categories of all admissible actions
of G and all admissible coactions of Cy(G), respectively.

THEOREM 6.13. There exists an embedding as a full and coreflective subcategory
(F, G, rz,g) of G-act” into Coact‘éO(G), where
(i) F is given by (C, o) +— (FC, d) on objects and 1t — ¥t on morphisms;
(ii) G is given by (C,8) — (GC, 05) on objects and 1t — Gt = 7T on morphisms;
(ii) 7(c,o) = 11c and € (¢ 5y = ec for all objects (C, o) and (C,6).

Proof. The assignments G and F are well defined on objects and morphisms
by Propositions 6.10 and 6.12. For each admissible action (C, ), we have 17c €
G-act’((C, o), GF(C,0)) because oy, (17¢(c) M f) = d¢(17¢(c))(1 (%f) =r*ne(o(cX

f)) forallc € C, f € Cy(G), and Proposition 6.12 implies that e = ’7(_3(12 €
Coact‘éo(c) (FG(C,6),(C,0)) for each admissible coaction (C,4). Now, the asser-
tion follows from Theorem 6.6. 1

6.3. COMPARISON OF THE ASSOCIATED REDUCED CROSSED PRODUCTS. The re-
duced crossed product for an action (C,0) of G is defined as follows [17]. The
subspace C.(G;C,0) := Co(G)r*C C r*C carries the structure of a x-algebra and
the structure of a pre-Hilbert C*-module over C such that

(@) = [ ayey(b, 1)) (@) = oxla),
Gr®)

(alb)u = / 0y((ay1) by ) dAMY) = (@), (a0)y = a0u(cyn)
Gll

for all a,b € C.(G;C,0), u € G%and ¢ € C, x € G. Denote the completion
of this pre-Hilbert C*-module by L2(G,A71C,0). Using the relation (a|bd), =
(abd), = (b*a|d),, which holds for all a,b,d € C.(G;C,0), u € G°, and a routine
norm estimate, one verifies the existence of a *-homomorphism 7 : C.(G;C,0) —
L(L?(G,A71;C,0)) such that 7w(b)d = bd for all b,d € C.(G;C,o). Then the



44 THOMAS TIMMERMANN

reduced crossed product of (C, o) is the C*-algebra C Xy G := [1(Cc(G;C,0))] C
L(L*>(G,A7LC,0)).
PROPOSITION 6.14. Let (CY, 8) be an admissible coaction of Co(G), consider C as

a Co(GP)-algebra via p, and let ¢ = 0. Then there exists an isomorphism C X g, G —
C %, C}(G) given by t(c X f) — 5(c) id QUL(f)U) forall c € C, f € Cc(G).
b

Proof. Let 6y := Ad(jg gy 06 : C — L(Ky®zH). We equip Cc(G; C, o) with
b b

the structure of a pre-Hilbert C*-module over C such that (ac)x = axcy(,) and
(alb)y = f ay)*bydA; 1 (x) for alla,b € C.(G;C,0),c € C,u € G°, and denote

by L2(G, )t 1;C) the completion. One easily checks that there exists a “unique
unitary @ : L2(G,A~15C) — [[@)2C] = [6u(C)[@)2)] given by ¢ K f > |(f))ac
and thatforallc € C, f € C.(G),y € G,

@1 0u(Q)[[()2)y = 71 (cry) ) F(W)-

Hence, there exists a unitary ¥ : L?(G,A~1;C,0) — [0y(C)[a),)] given by ¢ X
f = ou(e)j(f)a Letc,d € C, f,g € Co(G) and w = &1 (¥(c X f)). Then
Ou(d)(id®L(g))¥ = ¥m(d X g) because forall x € G,

b

@7 (6u(d) (id ©L(g)) D cw))x = / 1 ()8 (™ Deoy dAg ()

= /(T 1y (xy-1)8 (xy~ ) xy—l( )f(y))dA;l(y)

Gy
= o (F(n(d R g)(c B f)))x.

Since d € C and g € C.(G) were arbitrary, the assertion follows. 1

7. FELL BUNDLES ON GROUPOIDS

We now gather preliminaries on Fell bundles that are needed in Sections 8
and 9. We use the notion of a Banach bundle and standard notation; see [8].

7.1. FELL BUNDLES ON GROUPOIDS AND THEIR C*-ALGEBRAS. We first recall the
notion of a Fell bundle on G and the definition of the associated reduced C*-
algebra [15]. Given an upper semicontinuous Banach bundle p : 7 — G, denote
by F 0 the restriction of F to GY, by FspxrpF the restriction of 7 x F to Gsx;G,
by Fx for each x € G the fiber at x, by I'.(F) the space of continuous sections of
F with compact support, and by Iy(F?) the space of continuous sections of F°
that vanish at infinity in norm.
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DEFINITION 7.1. A Fell bundle on G is an upper semicontinuous Banach
bundle p : 7 — G with a continuous multiplication s, xpF — F and a con-
tinuous involution * : F — F such that for alle € F, (e,e5) € FspXepF,
(x,y) € Gsx:G,

() plerea) = pler)p(ea) and ple*) = ple)
(i) the map Fy x F; — Fuy, (€], €5) > eje), is bilinear and the map F, —
F.1,€ — €*, is conjugate linear;
(ili)(ere2)es = e1(e2e3), (e162)* = e3e], and (e*)* =¢;
(iv) |lereall < llexllllezll, lle*el| = |le||?, and e*e > 0 in the C*-algebra Fs(ple))-

We call F saturated if [FxJFy] = Fyy forall (x,y) € Gsx:G, and admissible if

Iy (FY) is an admissible Cy(G")-algebra with respect to the pointwise operations.

Let F be a Fell bundle on G. The associated reduced C*-algebra is defined
as follows. The space I(F) is a *-algebra with respect to the multiplication and
involution given by

7))@= [ cay HOE) = [ R )

G'(%) Gs(x)

and c*(x) = c(x~1)*, respectively, and a pre-Hilbert C*-module over Iy (F°) with
respect to the structure maps

{c|d) (u) = /C(X)*d(X) dA (x) = () (u),  (ce)(x) = c(x)e(s(x)),
e

where ¢,d € I.(F), e € IH(F°), x € G. Denote by I'’>(F,A!) the completion of
this pre-Hilbert C*-module. Then there exists a *-homomorphism

Lr:To(F) = L(T*(F,A7Y), Lz(a)b=abforalla,b € I.(F),

and C}(F) := [Lr(I(F))] C L(I'*(F,A71)) is the reduced C*-algebra of F. We
identify I'.(F) with Ly (I(F)) € Cf(F) via Lg.

We equip I.(F) with the inductive limit topology; thus, a net converges if it
converges uniformly and if the supports of its members are contained in some
compact set. We shall use the following result; see Proposition 2.3 in [8].

LEMMA 7.2. Let € be an upper semicontinuous Banach bundle on a locally com-
pact, second countable, Hausdorff space X and let I C I.(E) be a subspace such that
(i) I is closed under pointwise multiplication with elements of Co(X);
(i) {f(x): f € I'"} C & is dense for each x € X.
Then I'" is dense in T, (E).

Given f € I.(F) and g € Iy(FY), define fg,¢f € I.(F) by (fg)(x) =
f(x)g(s(x)), (gf)(x) = g(r(x))f(x) for all x € G. Using the relation [Fy]
[FxFiFx], where x € G, and Lemma 7.2, we find:

LEMMA 7.3. To(F)Io(FP) and IH(FO)I.(F) are linearly dense in To(F).
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7.2. THE MULTIPLIER BUNDLE OF A FELL BUNDLE. Given a Fell bundle F on
G, we define a multiplier bundle M (F) on G, extending the definition in Sec-
tion VIIL.2.14 of [12]. Given a subspace C C G, we denote by F|c the restriction
of F to C.

DEFINITION 7.4. Letx € G. A multiplier of F of order xisamap T : F|;5x) —
F|rx) such that TF, C Fy, forally € G°%) and such that there exists a map
T* - ]—"|G,(x) — ]:|GS<X> such that e*Tf = (T*e)*f forall e € ]:|Gr<x)'f € ]-"|Gs<x).
We denote by M (F)y the set of all multipliers of F of order x.

As for adjointable operators of Hilbert C*-modules, one deduces from the
definition the following simple properties. Let x € G. Then for each T € M (F)y,
the map T* is uniquely determined, T* € M(F),1, and T** = T. Moreover,
each T € M(Fy) is fiberwise linear in the sense that T(xe + f) = xTe + Tf for
allxk € C,e,f € Fyy € G5(%). The restrictions Ty(x) * Fo(x) = Frand (T)y :
Fx — Fy() are adjoint operators of Hilbert C*-modules over F ), and since
Fy = [Fry)Fy) foreachy € G*(), the map M(F)y — L(Fsixy, Fx)r T = Ty,
is a bijection. Clearly, we have a natural embedding Fy — M|(F),, where each
f € F acts as a multiplier via left multiplication. For each y € G**), we have
M(F)xM(F)y € M(F)xy, and foreach f € F;,z € Gy, welet fT := (T*f*)*.

DEFINITION 7.5. For each x € G, consider M(F)y as a Banach space via
the identification with £(F(), Fx). Let M(F) = ]I M(F)x and denote by
xeG

p: M(F) — G the natural map. The strict topology on M (F) is the weakest
topology that makes p and the maps M (F) — F of the form ¢ — ¢ -d(s(p(c)))
and ¢ — d(r(p(c))) - c continuous for each d € I'.(F°). Denote by I'.(M(F)) the
space of all sections that are strictly continuous, norm-bounded, and compactly
supported.

REMARK 7.6. The bundle M (F) satisfies all axioms of a Fell bundle except
for the fact that it is no Banach bundle with respect to the strict topology unless
M(F) = F. Indeed, for each u € G, the subspace topology on M (F), =
L(Fy) = M(Fy,) is the strict topology and coincides with the norm topology
only if M(Fy,) = Fu.

Given f € I.(M(F)) and g € IH(F?), define fg,gf € I.(F) by (fg)(x) =
f(x)8(s(x)), (8f)(x) = g(r(x))f(x) forall x € G again.

LEMMA 7.7. (i) Let ¢ € I.(M(F)) and d € I.(F). Then there exists a section
cd € I.(F) such that (cd)(x) = [ c(y)d(y'x)dA ™) (y) forall x € G.
Gr()
(i) T.(M(F)) carries a structure of a *-algebra such that c*(x) = c(x~1)* and
(cd)(x)e = [ c(y)d(y " x)edA™ forallc,d € T(M(F)),x €G,e € F(x)-
Gr(x)
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(iii) There exists a x-homomorphism Ly ry : Ic(M(F)) — M(C{(F)) such that
Lag(r)(c)LF(d) = Lr(cd) forall c € IL(M(F)), d € I(F).
(iv) I (M(F)) is closed under pointwise multiplication with elements of Cc(G).

Proof. (i) Define c¢d : G — F as above, and let ¢ > 0. Using Lemma 7.3,
we find a sequence (g, ), in the span of Iy(F°)I.(F) that converges to d in the
inductive limit topology. Since It.(M(F))IH(F) C I.(F), the map hy : x

[ cy)gn(ytx) dA"™ (y) lies in I'.(F) for each n. Using the fact that ¢ has com-
Gr®)
pact support and bounded norm, one easily concludes that (h,), converges in
the inductive limit topology to cd which therefore is in I'.(F).

(ii) Note that (cd)(x) is well defined because the map y — d(y~'x)e is in
I.(F) and thus (i) applies. Now, the assertion follows from standard arguments.

(iii) One easily sees that there exists a representation L () : [c(M(F)) —
L(I'*(F)) such that Ly(z)(c)d = cd for all ¢ € I.(M(F)),d € I(F), and that
Lag(r)(c)Lr(d)e = cde = Ly(cd)e forall c € I(M(F)), d, e € I(F).

(iv) This follows immediately from the fact that I'.(F) is closed under point-
wise multiplication by elements of C.(G). 1

7.3. MORPHISMS BETWEEN FELL BUNDLES. Let F and G be Fell bundles on G.

DEFINITION 7.8. A (fibrewise nondegenerate) morphism from F to G is a con-
tinuous map T : F — M (G) that satisfies the following conditions:
(i) for each x € G, the map T restricts to a linear map Ty : Fx — M(G),;
(ii) T(e1)T(e2) = T(ere2) and T(e)* = T(e*) forall (e1,e2) € FspXrpF, e € F;
(iii) Gx = [T(Fx)Gs(x)] for each x € GO

Let T be a morphism from F to G. Then T, : F, — M(G), is a nonde-
generate *-homomorphism for each u € GY; in particular, ||T,|| < 1. One easily
concludes that || Tx|| < 1 for each x € G. Hence, the formula f — T o f defines

s-homomorphisms T, : I.(F) — I(M(G)) and T? : I(F°) — M(IH(G%)).

PROPOSITION 7.9. (i) T? : Iy (F%) — M(I(G)) is nondegenerate.
(ii) Te(Te(F))Ie(GO) is dense in I(F).
(iii) Tx extends to a nondegenerate x-homomorphism Ty : C}(F) — M(C}(G)).
Proof. Assertions (i) and (ii) follow immediately from Lemmas 7.2 and 7.7.
Part (ii) and a straightforward calculation show that there exists a unique uni-
tary ¥ : T2(F, A1) Sro IH(G%) — I'%(G,A71) such that (¥(f ©¢))(x) = Tu(f)g
for all f € TI.(F), g € Ip(G%). The map C;(F) — L(I'*(G,A71)) given by
f = ¥(f oid)¥* is the desired extension. Lemma 7.3 and part (ii) imply that
[T (Te(F)I(9)] = [Tu(Te(F))0(G°)[e(G)] = [[(G)Te(G)] = CE(G). 1
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8. FROM FELL BUNDLES ON G TO COACTIONS OF C; (G)

Let G be a groupoid, V the associated C*-pseudo-multiplicative unitary, and
C;(G) or, more precisely, (A, A) the associated Hopf C*-bimodule as in Section 5.
We relate Fell bundles on G to coactions of C; (G) as follows. Let F be an admissi-
ble Fell bundle F on G. We shall construct a coaction of C; (G) on C; (F) which is
unitarily implemented by a representation of V, and identify the reduced crossed
product of this coaction with the reduced C*-algebra of another Fell bundle. Fi-
nally, we show that this construction is functorial.

A representation of the unitary V is a C*-(b, b")-module +K5 together with a

unitary X : Kz®,H — K,®gH that satisfies X(y<a) = y>a, X(6>p) = 6<B,
y 5 TEB
ot b

X(SD B) =7> ,@, and X1, Xq3Vh3 = Vi3X75; see Section 4 in [29]. We construct a
coaction out of such a representation as follows.

LEMMA 8.1. Let (,Kj, X) be a representation of V, let CY, be a C*-b-algebra such
that [C,pg(‘B)] = 0, define 6 : C — L(Ky®gH) by ¢ — X(c ®1id)X*, and assume
b bt
that [6(C)|y)1A] C [|7)14A] and [6(C)|B)2] C [|B)2C]. Then é is injective, a morphism
from (K, C) to (Ky®pgHy, CytﬁA), and a coaction of (A, A) on C{. If the inclusions
b
above are equalities, then § is left- or right-full, respectively.

Proof. Evidently, ¢ is injective. It is a morphism of C*-b-algebras because
X|&)pc = 8(c)X|E)p for each & € a, ¢ € C and because [X|a)2y] = v>a and
[(X]a)2)*(y>a)] = [(a|2(y <a)] = 7. Finally, for each ¢ € C,

(6#1d)(6(c)) = X12X1301 X713 X7, = X12X13Va301 V3 X135 X7,
= V23X12C1XT2V2*3 = (ld *A)((S(c)),

where c; denotes c acting on the first factor of an iterated relative tensor prod-
uct. 1

8.1. THE REPRESENTATION OF V ASSOCIATED TO F. Denoteby W = W(I(F?))
the set of all Cy(G?)-weights on IH(F°) and let ¢ € W.

LEMMA 8.2. Let ¢,d € I.(F). Then the map x — ¢gy)(c(x)*d(x)) lies in
Ce(G).

Proof. The function G — s*F? given by x + c(x)*d(x) is continuous and
has compact support, and the composition /1 : x = @y (c(x)*d(x)) is continuous

because the map F* — C given by f ¢p(f)(f) is continuous.

Define Hilbert C*-Cy(G®)-modules I'?(F, A; ¢), I'*(F,A~1;¢) and a Hilbert
space Ky = I’ 2(F,v; ¢) as the respective completions of It (F), where forall c,d €
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I.(F), f € Co(GY), the inner product (c|d) and the product cf are given by

us [ g (c(x)'d(x) dA"(x), v cw)f(r(y)) incase of [X(F,Aig),
Gu

ws [ gy (c(x) d(x) A (3), v cv)f(s(v)) incase of I2(F,A7%9),
Gu

and /(/)S x))dv(x) in case of I'*(F,v; ).

LEMMA 8.3. [(E|E)] = [p(Io(F°))] for E € {T2(F, A, ), I2(F, AL ¢)}.

Proof. Assume that (¢(c*c))(u) # 0 for some ¢ € I.(F°), u € G°. Choose
d € I.(F) such that d|go =c. Then the function on G given by x+— ¢y (d(x)*d(x))
is non-negative and nonzero at u, whence (d|d)g(u) # 0. Now, the assertion
follows because [(E|E)] and [¢(I(F?))] are closed ideals in Co(G?). ¥

LetK = @ Ky and identify each K with a subspace of K. Given ¢ € I.(F)
PeW

and f € Co(GY), define fc,cf,cD~/2 € I(F) by
fe:x s f(r(x))e(x), cf :xmc(x)f(s(x)), cDV2:x— c(x)D7V2(x).
Let ¢ € W. Straightforward calculations show that there exist maps
jo: T2H(F,A9) — L(&,Ky) and  jp: T2H(F,A7L5¢) — L(£,Kyp)
such that jy(c)f = fcand ]A(p(c)f = (cD7V2)fforall c € I(F), f € Cc(GY), and
0(0) p(d) = (eld) 2 magy T0(©) To(d) = (eld)arprgy foralle,d € Ie(F).

Denote by ¥ C £(&,K) and 6 C L(8,K) the closed linear span of all subspaces
jp(I*(F,A;¢)) and jA(p(Fz(f,)\’l,'@), respectively, where ¢ € V. Lemmas 6.4
and 8.3 imply:

LEMMA 84. (K5 is a C*-(b, b")-module, and for all f € Co(G®) and (cg)y €
? I(F) € K, we have p(f)(cp)p = (feg)g and p5(f)(cp)p = (cof)p-

For t = s,r, denote by pg’r : G¢x:G — G the projection onto the first compo-
nent, by 77, = (py’)*F the corresponding pull-back of 7, and by I'*(FZ,,vZ,; §)
the Hilbert space that is the completion of It (]—"3,) with respect to the inner prod-
uct

[ buolelen)atey) did ().

GtXrG
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Straightforward calculations show that there exist unitaries

@ : K;0uH — P PA(Forveri9), ¥ Ka@pH = @ (5201205 9),
PeW (IS4

such that forall ¢ € W, c € I(F), f € Cc(G%), g € Cc(G),
D(jp(c) & f©(8)) € T*(Fapiviyi ¢) is givenby (x,y) — ((cD?)f)(x)g(y),
¥(jp(c) o fO(8)) € TX(F2yiviy @) is given by (x,y) — (fe)(x)g(y)-

We shall use the isomorphisms above without further notice. If (T¢)4, is a norm-
bounded family of operators between Hilbert spaces (H,; 1)pand (H )4,, we denote

by Ty € L(DH), D Hz) the operator given by (Cq,)q, — (T¢§¢)¢. Similar
¢ ¢ ¢
arguments as those used for the construction of V in Theorem 2.5 in [27] show:

PROPOSITION 85. If ¢ € W, then exists a unitary X¢ : I*(F2,,v2,;¢) —

I2(F2,,v2,;¢) such that (Xef)(x,y) = f(x,x71y) forall f € I(FZ,), (x,y) €
Gy x+G, and the pair (, K5, @ Xy) is a representation of V.
¢

8.2. THE COACTION OF C;(G) ON C;(F). We apply Lemma 8.1 to the represen-
tation (K}, X) and obtain a coaction of C; (G) on C; (F) as follows.

LEMMA 8.6. Let ¢ € W. There exists a representation my : C;(F) — L(Ky)
such that forall c,d € I.(F), x € G,

(g (c)d)(x) = / c(z)d(z"'x)D ™2 (z) A (z)
G
and 11y (c)jp(d) = jp(cd) and 7y (c)py (f) = 7y (cf) forall c,d € I.(F), f € Co(GP).

Proof. Identify I'?(F,A~1) 6 L2(G% ) with Ky via c & f — ]A(p(c)f for all
¢ € I(F), f € C(GY), and define 7ty by c — c ©pid. ¥

Define 7t : C; (F) — L(K) by ¢ — @ 7y (c). Lemmas 6.4 and 8.6 imply:
¢

LEMMA 8.7. The representation 7t is faithful, 7t(C (F))y is a C*-b-algebra, and
[7(Ci (F))d] = 6.

Define ¢ : 7(C; (F)) — L(K,®gH) by 7t(c) = X(7m(c) @rid)X*. Letc €

b b
C;(F). Then é(nt(c)) = @ (m(c))y and each 6(7t(c))y € L(I?(F?,,v2,;$)) acts
¢

as follows.
LEMMA 8.8. Forallc € I.(F), ¢ € W, d € I.(F?2,), (x,y) € G x:G,
(0(7(c))pd)(x,y) / c(z Ly, z7ly)DV2(2) A" (2).

Gr(A
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Proof. The verification is straightforward and similar to the calculation of
the comultiplication A on C; (G); see Section 3.4 in [27]. 1

THEOREM 8.9. (71(C; (F))%,0) is a very fine and left-full coaction of C; (G).

The proof involves the following two lemmas.

LEMMA 8.10. Let ¢ € W. Then there exist maps

Ty : Te(F2,) = L(Kp, TH(FEV250)),  Sp: Te(F2) = L(H, T (F2, v 9))
that are continuous with respect to the inductive topology on I C(f%r) and the operator
norm, respectively, such that for all c € I.(F?,),d € I.(F), f € Cc(G), (x,y) € Gy x+G,
(DY) = [ @y D V2 ()dv (),
G

(Sp(e)f)(x,y) = / c(x,2)f(z7'y) D (2) AW (z).
G
Proof. Letc,d, Ty(c)d as above. Then

ITp(@dl?= [ [ / / Puto) (A2 1) e(z1,9) e(z2, )z 1))
G grlx) g
: D—1/2(21)D—1/2(z2) dA"®) (1) dAT™) (z1) AAT) (2) / dv(x).

1

We substitute x' = z; "%, z = zy 12,, use the relations D(z;) = D(z;)D(z) and

D 1(z1) AV (z7) /dv(x) =D 1(z;)dA ) (x) /dv z1)

= dAs®) (x /dv (z1) )\;(i,)(zl) /dv(x’

and find
I@d=[ [ [ [ ¢ ey e@zydi"s)
G ) )

Gr(x’) G sz

D V2(2) dN ) (y) ) (2) A L (2 / dv(x
— [ [ b0y d)Re()(=1%)) dV)(z) [ dv() = (dlmp(Re)d) s
G grx)

where R, € I(F) is given by
/ / (z1,y) c(z12,y) dASE) () d)\rfé) (z1) forallz € G.
G§ Zl

Hence, Ty (c) extends to a bounded linear operator of norm || Ty (c) ||* < ||774(Rc)]|-
If (cu)n is a sequence in I (F72,) converging to ¢ in the inductive limit topology,
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then the functions R(._,) defined similarly as Rc converge to 0 in the inductive
limit topology and hence || Ty (c — ¢, ||> < || 7y (R (c—c,)) || converges to 0.

The proof of the assertion concerning Sy is very similar. i

Givenc,d € I.(F) and f € Cc(G), define w4 ¢ € I(F7,) by

()= [ e@dE 0Ty ().
Gr(x)

LEMMA 8.11. The linear span of all elements w, g, ¢ as above is dense in FC(]:rz,r)
with respect to the inductive limit topology.

Proof. Let (x,y) € Gy x:G, e € Fy, let C C G,X;G be a compact neigh-
bourhood of (x,y), and let e > 0. Since [F,(,)Fx] = Fx, we can choose ¢’,d’ €
I.(F) such that ||c’(z)d'(z71x) —e|]| < e for all z in some neighbourhood of
r(x) in G"(®). Next, we can choose I, hg, f € Co(G) such that the elements
c,d € I.(F) given by ¢(z) = ¢/(2)hc(z) and d(z) = d'(z)hy(z) forall z € G
satisfy ||wq,r(x,y) —el| < eand suppw,4s C C. A standard partition of unity
argument concludes the proof.

Proof of Theorem 8.9. We show that Lemma 8.1 applies. Let ¢ € W, ¢, d €
I(F), f,g € Cc(G). Define eq1,ep,e3,e4 € Fz(]-',zl,,v%r;cp) and wq, wy, w3, wy €
I(F7,) by

e = 8(n(@oli(N)2d,  wi(zy) = c(2)f("y) forall (z,y) € Gy x:G,
ez = [j(f))27tp(c)d, wa(z,y) = c(z)f(y) forall (z,y) € Grx:G,

e3 = |jg(c))1L(f)g ws3(x,z) = c(x)f(z) forall (x,z) € G, %G,

eq = 6(7(c))gljp(d)1L(f)g, Wy = Wegf-

Using Lemma 8.8, we find that for all (x,y) € G, %G,

er(xy)= [ cl2)D VA0 f () VO (@) = (Ty(wn)d) (),

Grx)

e2(x,y) =/ c(z)d(z 'x)D2(2) dA™ (2) f(y) = (Tp(w2)d) (x,y),
Gr(x)
es(x,y) =c(x) / f(2)D2(2)g(zy) AW (2) = (Sp(w3)8) (x,y),
Grly)
es(x,y) =/ c(z1)D™ V2 (z1)d(z; 'x) (L(f)g) (21 'y) A" (1)
Gr(x)

:/ / c(z))D VX z0)d (27" 9 f(22) D2 (20) (25 "2y ) dA ) (2)dAT W zy)
Gr(x) gs(z1)
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= [ [ cdt s D A Eb)g( ) dA (25) dAr ) an)
Grlx) Grix)
= (S¢p(wea,f)8) (%, y).

By Lemmas 7.2 and 8.11, sections of the form like w1, wy, w3 or wy, respectively,
are linearly dense in I'.(F7,). Therefore, [6(71(C} (F)))gla)2] = [Tp(Ie(F3))] =

)27y (C; (7)) andsimilarly 8(C; (F)) (@) = | U So(T(F2))] =
[[71C(G)]
Given g, ¢’ € Cc(G), define gy o € Cc(G) by
(8.1) he o (z) = / ¢()g' (z ') dA"®) (y) forallz € G.
G2

LEMMA 8.12. Let ¢ € I(F), 8,8 € Cc(G). Then (j(g)]20(7(c))gli(8"))2
7 (c’), where ¢ (x) = c(x)hg,e (x) forall x € G.

Proof. The operators on both sides map each d € I.(F) to the section

X / / 2)c(z)d(z %) g (z~1y)D2(2) AV (z) AV ().
Gr(x) Grix)

8.3. THE REDUCED CROSSED PRODUCT OF THE COACTION. The bundle ]-"S%r car-
ries the structure of a Fell bundle, and the reduced crossed product 77(C;(F)) X,
Co(G) for the coaction & constructed above can be identified with C; (F2,) as fol-
lows.

Denote by G x G the transformation groupoid for the action of G on it-
self given by right multiplication. Thus, G x G = G %G as a set, (G x G)? =

U O{u} x G" can be identified with G via (r(y),y) = y, the range map 7, the

ucG
source map §, and the multiplication are given by (x,y) ¥ xy, (x,y) > ¥,
and ((x,y), («',y)) — (xx/,y’), respectively, and the topology on G x G is the
weakest topology that makes 7,5 and the map (x,y) — x continuous. We equip
G x G with the right Haar system A~! given by 7\;1 (Cx{y}) = /\r_(;) (C) for all
CC Gy yeG.

The bundle F2, is a Fell bundle on G x G with respect to the multiplication
and involution given by ((f,y), (f',v')) = (ff.y') and (f,y) — (f*,p(f)y).

The convolution product in It (F2,) is given by

(8.2) (cd)(x,y) = / c(xz7 Y, zy)d(z, ) d)\r_(;) (2)

()

forall ¢,d € Ie(FZ,), (x,y) € Gsx:G, because (G X G)gx,y) = Gyy) X {y} and

(x,y)(z,y) "t = (xz71,zy) forall z € Gy(y)-
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PROPOSITION 8.13. There exists a unique isomorphism 7t(Cf(F)) X CO( ) —
C; (F2,) such that 6(7t(c))(1 ® f) + L2 (d) whenever ¢ € I.(F), f € Cc(G), and
4 b S,

d(x,y) = c(x)f(y) forall (x,y) € Gs%x.G.

Let ¢ € W. Then the map r*¢ : Iy ((F2,)°) — Co(G) givenby (r*¢(c))(y) =
@y (c(r(y),y)) forall c € Io((F2,)%) and y € G is a Co(G)-weight. One easily
verifies that there exists a representation Ly¢ : Cf (F2,) — L(T' 2(]:52,?,7\’1 ;1))
such that Ly« (c)d = cd forall ¢, d € I.(FZ,).

LEMMA 8.14. (i) There exists a unique unitary Uy : 1"2(]-'52,,,7\’1;7'*(;7) OH —
T2(F2n viyi¢) © K5@aH such that (Up(e © 8)) (x,y) = e(x,y)8(y)D~'/2(x) for all
pt

e € I(F) 8 € Cc(G), (x,y) € Gsx:G.
(ii) 6(7r(c)) (1@ f) XpUyp = XpUyp(Ly+¢(d) ©id) forall c,d, f as in Proposition 8.13.
b

Proof. (i) For all ¢, g as in above,

lupec )2 = | / Buce) (e, y) el ) gW) P dr L (x) [ dv(y) = lles g

(ii) Letc,d,e, f, g, (x,y) asabove and A(f)y = Xs(1 ®f)X¢ A short calcula-

tion shows that (A(f)(/,llq;(f@g))( y) = f(xy)e(x,y)g(y )D 172(x). Using (8.2),
we find that (7 (c) %id)A(f)(pU(p(e ©g))(x,y) is equal to

/\/_\

[ c@f ez M y)g)D V2D A y) d ) (2)

Gr()
V)e(z,y)3(y)D ™2 (xy) dAL (2)

/ (2:)3)D 2 (xy) AL (2) = (Up(de > ) ().
Gs(x)
¢

So, 6(7t(c)) f)X¢U4> = Xp(mg(c )®1d) A(f)gpXpUp = XpUp(Ly-g(d) ©id).

Proof of Proposition 8.13. Consider the x-homomorphism

O :Ci(F2) — E(K@ﬁH), Ly (d) = @D XpUyp(Lyp(d) ©id)Uj X5
PpeW

By part (ii) of the lemma above, ®(C; (F2,)) contains [5(7t(C(F)))(1 (% Co(G))]

= 11(C} (F)) xr Co(G). The same lemma implies that this inclusion is an equality

because the map a — @ a ©id is continuous with respect to the inductive limit
¢
topology on I'.(FZ,) and sections of the form (x,y) — c(x)f(y), where c € I'(F),
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f € Cc(G), are dense in I.(F2,) by Lemma 7.2. Finally, Lemma 6.4 implies that

{ﬂ ker r*(p} = 0, and therefore @ is injective. &
¢

PROPOSITION 8.15. If F is saturated, then C} (FZ,) = K(I*(F,A71)).

Proof. To simplify notation, let I? = Fz(]-",)t’l), 2= Fz(FSZ,r,X’l), Iy =
I (F0), Iy = Ih((F2,)°). There exists a unitary ¥ : I'> &+ Co(G) — I”? such

that (¥ (ce f))(x,y) = c(xy)f(y) forall ¢ € I.(F), f € Cc(G), (x,y) € Gsx:G,
because

(Flea HIF(E e ) (ry)y) = / c(xy)*c’(xy) dA, () F)f'(y)

Gr(y)

= fW)(clch 2 (sWf(y) = (o fld o f)y)

forallc,c’ € I.(F), f, f' € Cc(G), y € G by right-invariance of A~!. The x-homo-
morphism @ : K(I'?) — L(I?) given by k — ¥ (k &5 id)¥* is injective because

: Co(GY) — L(Cy(G)) is injective, and the claim follows once we have shown
that D(K(I?)) = C}(F2,). Letd,d’ € I.(F) and denote by |d)(d'| € K(I'?) the
operator given by e — d(d’|e). Then for all ¢, f, (x,y) as above,

(F(ld)(d|ce f))(xy) = / d(xy)d'(z)*c(z) f(y) Ay, (2)

Gs(y)

- / d(xy)d' (z)*(F(ce ) (zy " y) C“‘s(y)( 2)
Gs(y)

- /d(xy)d’(Z’w*(‘f’(C@f))( 2, y)dA ) ().
Gry)

Comparing with equation (8. 2) we find that ¥(|d)(d'| ©id)¥* = Lz (e), where
ee 1}(]—"S ») is given by e(xz ,zy) = d(xy)d'(zy)*, or equivalently, by e(x’, 1) =
d(x'y")d' (y')* for all (x/,y") € GsxG. Since F is saturated, Lemma 7.2 implies
that sections of this form are dense in I C(]—"s ») with respect to the inductive limit
topology, and since the map e — L -ngr( e) is continuous with respect to this topol-

ogy, we can conclude that (K (I'?)) = ¥(K(I'?) 0id)¥* = C; (F2,). 1
COROLLARY 8.16. If F is saturated, then 7t(C; (F)) x; Co(G) and Ty(F°) are
Morita equivalent.
Proof. One easily verifies that I'>(F, A1) is full. &
EXAMPLE 8.17. Let ¢ be an action of G on an admissible Cy(G)-algebra

C and let J, be the corresponding coaction of Cy(G) on FC (Proposition 6.10).
Then there exists an admissible Fell bundle C on G with fibre Cx = C,(,) for each
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x € G, continuous sections IH(C) = r*C, and multiplication and involution given
by cd = cox(d), c* = o,-1(c*) forallc € Cy, d € Cy, (x,y) € Gsx;G [15], and
the identity on I.(C) = C.(G)r*C extends to an isomorphism C;(C) — C x; G.

~

One easily verifies that with respect to the isomorphism 7(C}(C)) = C}(C) =
C %y G = FC %, CJ(G) of Proposition 6.14, the coaction of Theorem 8.9 coincides
with the dual coaction on FC x; C(G). Moreover, the Fell bundle C is saturated
and C}(C) xr Co(G) = FC %, C}(G) x; Co(G) is Morita equivalent to I (C°) = C,
as we already know by Theorem 4.11.

REMARK 8.18. The Fell bundle F can be equipped with the structure of an
F2,-Fl-equivalence in the sense of [19] in a straightforward way.

8.4. FUNCTORIALITY OF THE CONSTRUCTION. Let G, F be admissible Fell bun-
dles on G with associated representations ((Kg, vg,0g), Xg), (Kr, vr,0r), XF)
and coactions (nQ(C:(g))zZ,ég), (tr(Cf (.7:))%’;,5;), and let T be a morphism
from G to F.

PROPOSITION 8.19. There exists a unique morphism Ty from (115 (Ci(G) )}z, dg)
to (n;(Cﬁ(]—"))E,J;) that satisfies T.(11g(a)) = 717 (Ti(a)) forall a € To(G).

The proof involves the following construction.

LEMMA 8.20. Let ¢ € W(Io(F?)), f € I(F) and define p € W(IH(G)) by

g+ o(f T23)S)-
(i) There exists an isometry T(J; : Ky — Ky such that ng = T.(g)f forall g €
I.(9)

(i) Tpjg (8) = ip(To(9)f), Tofp(8) = Ty (Tu(g) ), and Ty (g) = (T (9)) T}
forall g € I.(G).
Denote also the map Kg — Ky — Kz given by (Gyr)y — T(J;Cw by T(J;.

(iii) Tj; is a semi-morphism from (Kg,3g,vg) to (Kr,8F,vr) and (qu % id)Xg =

X;(T;fg?id).

(iv) o (707 ()(Ty @ id)dg(1g(8)) = o7 (mz(WT.(9)))(Ty @ id) for all h €
I(F), g € I(G).

Proof. (i) Uniqueness is clear. Existence follows from the fact that for all

8.8 € I(9),
(T()FIT(8) flk, = / b5 () (f(s(x)) " T(g(x)*8 (%)) f(s(x))) / dv(x)

G
= [ #0608 %) [ dv(x) = I3k,
G

(ii) Straightforward.
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(iii) By (ii), T)vg C 77 and Tjdg C o7. Forallw € I+(G2,) and (x,y) €
(e e

(1] i) Xgw) (x,y) = @(x,x M) f(5(x)) = (Xr(Ty Qid)ew)(x,y).
(iv) By parts (ii) and (iii), Xz (7tr(h) ® id)X*f(T£ %) id)Xg(mg(g) ®id)Xg =
bt bt
X7 (rr(hT.()) ®id) X5 (T) ®id) forall g € Ie(G) and h € Ie(F). ¥
bt

Proof of Proposition 8.19. Denote by T C L(Kg, Kx) the closed linear span
of all operators Téj, where ¢ € W(IH(F?)) and f € IH(F°). Then Lemma 8.20

and Proposition 7.9 imply that Stg(g) = mr(T«(g))S forall S € T,g € I.(G)
and that

[Tygl = [Uka* GNN(F))] = [Uﬂp )| =r

By Proposition 7.9, T, extends to a nondegenerate *-homomorphism C;(G) —
M(C;(F)). Henceforth, there exists a semi-morphism T from 7tg(C; (G ))E to
ﬂ;(C;‘(}'))%; such that Ty (77g(g)) = mr(T.(g)) forall g € Ie(G). Forall i €
nr(Ie(F)), 8 € mg(Ie(9)), S €T,

07 (h) - (T. id)(dg(g)) - (S ©1id) = 07 (h)(5 ©id)dg(g) = r(hT(g))(s ®id)

by Lemma 8.20, and therefore 87 (h) - (T, *id)(6g(g)) = 67 (hT(g)).

Denote by Fellf; the category of all admissible Fell bundles on G, and by
Coact(. ) the category of very fine left-full coactions of C; (G).

THEOREM 8.21. The assignments F +— (n;(C;*(}'))zf;,&;) and T — T, form
a faithful functor F : Felll — Coact(. ).

Proof. Functoriality of the constructions is evident. Assume that FS = FT
for some morphisms S, T from F to G in Fell‘é. Then the maps S, Ts : I (F) —
I (M(G)) coincide because 7g is injective. Since {a(x) : a € I.(F)} = Fy for
each x € G and S(a(x)) = (S.«a)(x) = (Twa)(x) = T(a(x)) for each a € I (F),
x € G,wecan concludethatS=T. 1

9. FROM COACTIONS OF C;(G) TO FELL BUNDLES FOR ETALE G

We now assume that the groupoid G is étale in the sense that the set ® of
all open subsets U C G for which the restrictions ry = r|y : U — r(U) and
sy = sly : U — s(U) are homeomorphisms is a cover of G; see [23]. More-
over, we assume that the Haar systems A and A1 are the families of counting
measures. Then the functor F has a right adjoint G and embeds the category of
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admissible Fell bundles into a category of very fine coactions of C;(G) as a full
and coreflective subcategory. The construction of the functor G uses the corre-
spondence between Banach bundles and convex Banach modules developed in

[8].

9.1. THE FELL BUNDLE OF A COACTION OF C;(G). Let J be an injective coac-
tion of C; (G) on a C*-b-algebra C = C}. Since G is étale, pg(B) € C;(G) and
3(C)|7)1 € [|7)1Ci(G)]. For each U € &, we define a closed subspace

Cu = {c € [Coy (Co(s(U)))] = dle] 5(e)la)r € [ hL(COU))]} € €,

denote by sy, @ Co(U) — Co(s(U)) and ry, : Co(U) — Co(r(U)) the push-
forward of functions along s; and rqj, respectively, and consider Cy; as a right
Banach Co(U)-module via the formula ¢ - f := cp, (su«(f)). Denote by I'r(F) the
space of all sections of F that can be written as finite sums of sections in Iy (F|r),
where U € &. Then I'7(F) is a x-algebra with respect to the operations defined
in (7.1), and one has natural inclusions I.(F) C I't(F) C C;(F) of *-algebras.

PROPOSITION 9.1. There exist a continuous Fell bundle F on G and a x-homo-
morphism 1 : T'¢(F) — C such that for each U € &, the map 1 restricts to an isometric
isomorphism 1y : Iy(F|u) — Cy of Banach Co(U)-modules. If (F', 1) is another such
pair, then there exists an isomorphism T : F — F' such that /' o Ty = 1.

The proof requires some preliminaries. First, forall c € C, f € Co(GY),
3(cpy(f)) = 0(0)p(yon) (f) = 8(c) (1 ® pu(f)) = 8(c) (1 D77 (f))-

LEMMA 9.2. Let U,V € &.
() c- f = py(ru«(f))cforeachc € Cyand f € Co(U).
(ii) CvCu € Cyu, (Cu)* = Cy1,and Cy = [CyCo(U)] C Cy if U C V.
(iii) Cy(yy) is a continuous Co(s(U))-algebra.
(iv) Cy is a convex and continuous Banach Co(U)-module.

Proof. (i) Let ¢, f as above. Since L(g)r*(suys«(f)) = r*(ru«(f))L(g) for all
§ € Co(U), we have 5(c- f) = ()1 & r*(sux(f))) = A @1"(ru«(f)))o(c) =

0(p (ru«(f))c) and by injectivity of § also ¢ - f = o (ru«(f))c.
(ii) Clearly, 6(CyCy)|r)1 C |7)1L(Co(VU)). Using (i) twice, we find

CvCu C [Cypy(Co(s(V))Co(r(U)))Cu]
= [Crpy (Co(s(V) Nr(U))Cu)] € [Coy(Co(s(VU)))]-

)
Consequently, CyyCy; € Cyy. By (i) again, we have (Cy)* = [p (Co(r(U)))Cyl* C
[Co,(Co(s(U™1)))], and using the relation 6(Cj;)|v)1 C [|7)1C; (G)], we obtain

Sl € [l {rhd(Cu)™[ )]
C [l L(Co)*(vhiln)a] = [l L(Cou ™).
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If U C V,then Cy C [CyCo(U)] € Cy, and CyCy(U) C Cyy because

5(CvCo(U))[r)1 = 6(Cv)|7)1r*(Co(s(U)))

C [[1L(Co(V))r*(Co(s(U)))] = [I7)1L(Co(U))].

(iii) By (ii), Cy(yy) is a C*-algebra. Consider |7); as a Hilbert C*-module over
#(Co(G?)) 2 Co(GY). Since 8(Cn)|71 € |71 and (e - i)y = 8(c)nrr (f)
forall c € Cgo, f € Co(G?), 7 € 7, the formula c - |); := 6(c)|n); defines a
faithful field of representations Cco — L(]y)1) in the sense of Theorem 3.3 in
[6]. Consequently, Cgo is a continuous Co(G)-algebra and Cs(u) a continuous
Co(s(U))-algebra.

(iv) Let ¢, € Cy and f,f" € Co(U) such that 0 < f,f" and f+ f/ <
1. Then |lc- f+c - f'|> = ||c*c- g> +c*c - g¢ +*c - g'g+ '*c" - ¢'*||, where
¢ = su«(f), & = su«(f'). Since ¢* + ¢¢" + ¢'s +¢'> < land c*c,c'*c,c*c, c'*¢
belong to the continuous Cy(s(U))-algebra C;;-1;;, which is a convex Banach
Co(s(U))-module, we get |[cf + c/f'[|> < max{][c||,||c||}?>. Finally, the norm
lleull?> = |(c*c),-1,|| depends continuously on u € U because C-1; is a con-
tinuous Cy(s(U))-algebra. 1

Proof of Proposition 9.1. Using Lemma 9.2 and [8], one easily verifies that
there exists a continuous Fell bundle 7 on G with an isometric isomorphism
wy : Ip(Fly) — Cy of Banach Cy(U)-modules for each U € & such that for all

U,V € &, the following properties hold. First, the map Iy(F|y) < Io(Flv) Y

Cy is equal to Io(F|y) M, Cy < Cy if U C V, and second, w(f)* =1 (f),

wv(fg) = wi(f)v(g) forall f € Io(Flu), g € To(Flv). Define v : I'r(F) — C

as follows. Given a = Y a; € [((F), where a; € Io(Fly,) and U; € &, let
i

1(a) = Y uy;(a;). Using the preceding two properties of 1, one easily verifies that :

1
is well-defined and a *-homomorphism. &

Denote by po : I't(F) — To(F 0) the restriction.

PROPOSITION 9.3. There exists a faithful conditional expectation p from the C*-
algebra [1(I's(F))] to Cgo satisfying p ot = 150 © po.

In the following lemma, fhg e~ denotes the pointwise product of functions
frhge € Ce(G), where hg » was defined in (8.1).

LEMMA 9.4. Let ¢, &' € C.(G),c € C, f € C(G), n,1" € 7. Then:
@ (10(((E) 126 (EN2) 1" )1 = (G(&)28((r116(c) ")) (E))2
(i) (j()2AL())I(E))2 = L(fhee);
(iii) (j()[20(c- )Ij(E"))2 = ¢+ (fhee) ifc € Cyand f € Co(U) for some U € &.

Proof. (i) If d = (j(£)[20(c)|j(&"))2, then &(d) = (j(&)|3(6+id)(5(c))[j(E"))3
= (j(&)[3(id %4)(6(c))|j (")) and (y18(d)[1')1 = (()2A((7118(c)n")1)1i(E"))2-

(ii) This is a special case of Lemma 8.12.
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(iii) Let n,1" € v. Since ¢ € Cy, we have (y]1d(c)|n’')1 = L(g) for some
g € Co(U). Let &" = r*(su«(f))¢ and denote by dy, d, € C the left and the right
hand side of the equation in (iii), respectively. Then d; = (j(&)|20(c)|j(¢"))2, and
by (i) and (i),
(lé(d)]n’ )= ((E)]28((n110(c) ") )1i(E")2=((Z)2L(§)1i(E"))2 = L(ghzr),
(1116(de) ' )1 =18 (c) 1 )17 (sus (fhe ) = L(S)L(su«(fhezr))-

We can conclude that (7]16(d;)|n’')1 = (17]16(dy)|1")1 because for all x € G,
(8he,zr) (x) = g(x) / EWF)E () AV () = g(x) (s (fhger)) (s(2))-

Gr(x)
Since 77,7’ € 7y were arbitrary and ¢ is injective, we must have d} = d;. 1

Proof of Proposition 9.3. Given a subset U C G, denote by xy; its character-
istic function. Using the same formulas as for elements of C.(G), we can de-
fine a map j(¢) : & — H and the function hiz & for the characteristic function
&= ¢ = xgo of G® C G, and then Lemma 9.4 still holds. Define p : C — C
by ¢ > (j(xa0)l26(0)j(xco))2- Then [p]l < [i(xco)|? = 1, and the relation
hxcoxco = Xco and Lemma 9.4 imply that p[c_, = id and p|c, = 0 whenever
U € &and UNGY = @. Using a partition of unity argument and the fact that
GY C G is open and closed, we can conclude that p o 1 = 10 © py.

It remains to show that p is faithful. Using the right-regular representa-
tion of G, one easily verifies that [C}(G)'j(xg0)®] = H. Therefore, the map
q:Ci(G) = L(R),a— j(xco)*aj(xco), is faithful in the sense that g(a*a) # 0 if
a #0.1f ¢ € [((I(F))] and p(c*c) = 0, then *p(c*c)y = q((7"[16(c*e)[n)1) =
and hence (17*[1(c*c)|n)1 = 0 and d(c)|y)1 = 0 for all # € v, whence é(c) = 0
and ¢ = 0 by injectivity of 5. 1

Proposition 9.3 and Fact 3.11 of [15] imply:

COROLLARY 9.5. 1 extends to an embedding C;(F) — C.

We denote the extension above by ¢ again.

PROPOSITION 9.6. If § is fine, then 1 : Cf (F) — C is a x-isomorphism.

Proof. We only need to show that C is equal to the linear span of all Cy,
where U € &. Consider an element d € C of the form d = (j(&)[26(c)|j(&'))2,
where ¢ € C,¢ € C.(V),¢&" € C(V') forsome V, V' € &. Slnce G is étale and
¢ is fine, the closed linear span of all elements of the form like d is equal to
[(a]20(C)|a)a] = [(a]2]a)2C] = C. We show that d € Cyy, where U = VV'~1 € &,
and then the claim follows. Let 77, 57" € y. By Lemma 9.4,

(1hé(d)ln’)1 € ((E) A (G)j(E))2 € [L(C(G)hger)] € L(Co(U)).

Using the relation 6(d)|7)1 C [|7)1C; (G)], we get 6(d)|v)1 S [|7)1(vhd(d)v)] €
[[7)1L(Co(U))]. Moreover, since hzz € Cc(U), we can choose ¢ € Co(U) with
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hc’j,é’g = hC,C" Then L(fh@',;:/)T* (Su* (g)) :/L(fhé,é’) for each f S C()/(u), and
hence (i7]16(dpy (su«(8))) ') = (nhd(d)[n")1r*(sux(g)) = (n16(d)[n")1. Since
J is injective, we can conclude d = dp,(su«(g)) € Cp,(Co(s(U))) and finally
deCy. 1

PROPOSITION 9.7. If J is fine, then F is admissible.

Proof. The proof is similar to the proof of Lemma 6.2(i). By Lemma 9.2(iii),
IH(FP) =2 Co is a continuous Cy(G)-algebra. Let u € G°, denote by I,, C Co(G?)
the ideal of all functions vanishing at u, and assume F,, = 0. Then Iy(F?) =
[Io(F%) L] and [CF (F)] =[G (F)Lo(F°)] = [Cf (F) L], whence C=[Cp, (I)]. De-
fine j(x o) as in the proof of Proposition 9.3. Then [6(C)|y)1C;(G)]=[|7)1C (G)]
and

[ (Co(G))CE (G)] = [(7[1111CE (G)] = [{¥116(ClLu) |71 CE(G)]
= [(Yl )1 (L) G (G)] = [ (1) G (G)],
whence [j(xc0)*Ci (G)j(xc0)] = Iu # Co(GP), a contradiction. &

The construction of the Fell bundle is functorial with respect to the follow-
ing class of morphisms.

DEFINITION 9.8. A morphism p of coactions (CY, 6c) and (Df, ép) of Cf(G)
is strongly nondegenerate if [p(C)D o] = D.

PROPOSITION 9.9. Let 7t be a strongly nondegenerate morphism of fine coactions
(Clz, dc), (Dj,dp) with associated Fell bundles F, G and x-homomorphisms i, Lg.
Then there exists a unique morphism T from F to G such that ig o Ty = o if.

Proof. Let U,V € &. Then 71(Cy;)Dy C Dyy because
6p(7(Cu)Dy)le)1 = ((m xid)(6c(Cu)))ép(Dv)leh
€ ((mr+id)(6c(Cu)))le)1L(Co(V))
C le)1L(Co(U))L(Co(V)) = [e)1 L(Co(UV))
and 77(Cy)Dy < [71(Cpy (Co(s(U))))Dv] S [(C)Dpe(Co(s(UV)))],

where the last inclusion follows similarly as in the proof of Lemma 9.2(ii). Define

amap Suy : To(Flu) x To(Glv) = To(Gluv) by (f,8) = 15" (m(tx(f))ig(8)),
let (x,y) € (U xV)NGsx:G, and denote by I, C Io(Flu), I, € Io(Glv),
Iyy € Io(Gluv) the subspaces of all sections vanishing at x,y, and xy, respec-
tively. Using Lemma 9.2 (i), one easily verifies that Si; v maps Iy x Ip(G|y) and
Iy(Flu) x I into I, Hence, there exists a unique map Sy : Fx X Gy — Gy
such that S,y (f(x),2(y)) = (Su,v(f,g))(xy) for all f € Ty(Flu), g € To(Glv),
and this map depends on (x,y) but not on (U, V). For each x € G and ¢ € Fy,
define T(c) : G|cuw) — Glonw by T(c)d = Sxy(c,d) foreachy € G, d € G,
One easily checks that then T is a continuous map from F to M(G) which sat-
isfies conditions (i) and (ii) of Definition 7.8, and that the representation 77 :=
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igt ooy i Ci(F) — M(C(G)) satisfies 7T(f)g = (T o f)g forall f € I(F),
g € I.(G). We show that T also satisfies condition (iii) of Definition 7.8. Since 7
is strongly nondegenerate, D = [71(C)Dgo], that is, C}(G) = [71(C} (F))IH(G%)]
and hence I'>(G, A~ 1) = [7(C} (F))I(GY)]. In particular, G, = [T(Fx)Gs(x)] for
each x € G because Gy(y) is discrete. 1

9.2. THE UNIT AND COUNIT OF THE ADJUNCTION. Denote by Coactf, s, the

category of very fine left-full coactions of C; (G) with all strongly nondegenerate
morphisms. Then the functor F : Fell&, — Coact’é*(c) constructed in the preced-
ing section actually takes values in Coact{, ©)

LEMMA 9.10. Let T be a morphism of admissible Fell bundles F,G on G. Then
the morphism ¥T from EF to ¥G is strongly nondegenerate.

The proof is immediate from Proposition 7.9(ii).
The constructions in Proposition 9.1 and Proposition 9.9 yield a functor G :
Coact‘és*(c) — Fell;. We now obtain an embedding as a full and coreflective

subcategory (F, G, 7}, &) of Fell into Coact( ).

PROPOSITION 9.11. Let F be an admissible Fell bundle, (n;(C;‘(]-"))?(J;,J;) =
EF the associated fine coaction, and G = GFF and 1g : C}(G) — mr(C}(F)) the Fell
bundle and the x-homomorphism associated to this coaction as above. Then there exists a
unique isomorphism 1jr : F — G such that 1g o (ijr)« = 7TF.

Proof. Let (CY,8) = (nf(Cr*(}"))?(i,(S}-) and U € 6. We show that Cy; =
nr(Io(Flu))- Note that [{hz o : & € Ce(r(U)),&" € Cc(U)}] = Co(U), where the
functions hg & were defined in (8.1). Using Lemma 9.4, we can conclude

Cu = [((Ce(r(U))) 26 (7t (Ie(F)))[j(Ce(U)))2]-
By Lemma 8.12, we have for all § € C.(r(U)), f € I.(F), & € C.(U),

(G@)N26(mr(fNN(E))2 = mr(fhee) € mr(To(Flu)),

where fhg » denotes the pointwise product. Consequently, Cyy = 7wr(Io(Flu))-
Since U € & was arbitrary, we can conclude that there exists an isomorphism
ijr + F — G of Banach bundles such that ig o (ijr)« = mr : [.(F) — C. Using
the fact that (7 £)+ is a *-homomorphism and that G is étale, one easily concludes
that 7j 7 is an isomorphism of Fell bundles. 1

PROPOSITION 9.12. Let (C, 8) be a very fine coaction of C; (G), where C = Cy,
and let F,1: C}(F) — C be the associated Fell bundle and x-isomorphism. Then there
exists a unique strongly nondegenerate morphism & ¢ 5y from (7z(Ci(F ))}’; ,0F) to
(C,6) such that &5 0 tr = L.

LEMMA 9.13. Let U € &, ¢ € Cc(U), 1 € 7, and w = |7)1j(§) € ypa C
ﬁ(ﬁ,Kfy(%/gH)



COACTIONS OF HOPF C*-BIMODULES 63

(i) There exists a Co(G®)-weight ¢ : Ty(F°) — Co(G°) C L(R), f = w*(1(f))w.
(ii) There exists a unique isometry Se, : Ky = I'*(F,v;¢) — K,@gH such that
b

Swip(f) = 6((f))w forall f € I.(F), and Sy (f) = 6(1(f))Sw for all f € Te(F).
(iii) Swj¢( «(F)) Cyra.

Proof. (i) First, w*0(Cgo)w C [a*(7|1]7)1L(Co(G"))a] = [a*(yli]7)1a] =
Co(GY) C L(R ) Second, observe that for all ¢ € Co, f € Co(GP),

pef) = (&) (16 (cf)lm)1j(C)

= J(&)"(hé(e)mar()j(€) = j(§)* (nl16(c)m1j(E) f = ¢(e)f-

(ii) As before, denote by po : Ir(F) — Io(F 0) the restriction. Let U € @&,
f.f' € I(F),and g = f*f'. Using the relation supp hzz C G° and Lemma 9.4,
we find

w*d(u(f)) 0 (u(f))w = (D) 28(L(g)j(E))an™ = n"u(g - he )y

= w"8(1(po(8)))w” = p(po(8)) = (FIf ) r2 (7 11,9)-

The existence of S, follows. Finally, S, 71 (f) = 6(1(f))Sw since Se 7y (f)ﬂp(g) =

Swip(fg) = 0(1(fg))w = 8(:(f))Swip(g) forall f,g € Ie(F).
(iii) Let V € &,f € I(Fly),{ € C(GY), and define ' € L?(G° u) by
Z'(s(x)) = ¢(r(x))D¥?(x) forall x € Vand {'(y) = Oforally € G°\ s(V). Then

(s(x
(p(f)O)(x) = f(x)C(r(x)) = (ﬂp(f)g’)(x) for all x € G and therefore

Swip(F)E = Swip(f)T' = 8((wd’ =(()IMni(E)E
Since f € I.(F|y), there exist f' € L(Cy(V)), ' € <y such that 5(«(f))|n)1 =
[7)1L(f"). Now,
Swip(F)Z = 6((NIMi()T" = [n" )1 L(f)j(E)Z = [n")i(L(f)E)E
because (L(f')j(&){')(z) = 0forz ¢ VU and

(L(i(6)E) (xy)=D "2 (x) f' ()E WG (ry)=F" () (r ()& W) =i (L(F)E)E (xy)
forall (x,y) € (V x U) N Gsx:G. Thus, Swjs(f){ € > a. The claim follows. 1

Proof of Proposition 9.12. Since 7tr is injective, we can define & = ¢ 5) := 10

7'[}1_ We show that § o € is a morphism from 777 (C; (.7-"))%; to 5(C)K%ﬁH.

Co(GY)-weight ¢ on IH(F?), denote by py : Kr — Ky the canonical projection.
Let S C L(Kg, Ky® ﬁH ) be the closed linear span of all operators of the form
b

For each

Swpg, where U, ¢, 1, w, ¢ are as in the lemma above. Then Sa = §(¢(a)) for each
S eS8, ac nr(CHF)),and [Syr]| = [6(«(I(F)))(y>a)] = y>a. The claim

follows. Since J is an isomorphism from C to 6(C )Kgﬁ - we can conclude that &
b
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is a morphism from 7t (C;(F ))Iz’; to C. The relation (£ xid) 0§ = é o & follows
from the fact that

(1(D)0(E(&) - AII(E))2 = &(8) - (fheg)
= &g (fheg)) = £((() 20(mr(2))1i(S))2)
forallU € &, g € I.(Flu), f € Cc(U), ¢, ¢ € Co(G) by Lemma 9.4. 1

COROLLARY 9.14. Every very fine coaction of C;(G) is left-full.

Proof. Let (C,6) be a very fine coaction of C;(G), let (n}-(C;‘(}"))?(i,é]:)
and £ ¢ 5) be as above, and let I := {T € Ls((Kz,7v7), (K, 7)) : Tx = &5 (x)T
forall x € x(C;(F))}. Then vy = [I75] because & ¢ ) is a morphism, and since
O is left-full,

BOITNE(G)]= [ (e *id) (0r (7 (G (F)NUT @ id) 171 G (C)]
= (I@1d)or(m7 (G (F))rrn € (G)]
= [I@id)[yrh G (G)] = [lh G (G))

THEOREM 9.15. (¥, G, 7}, &) is an embedding of Fellf, into Coact(, g as a full
and coreflective subcategory.

Proof. One easily verifies that G is faithful and that the families (ijz) r and
(¢(c,s))(c,6) are natural transformations as desired. Since 7f is a natural isomor-
phism, F is full and faithful; see Theorem IV.3.1in [18]. 1
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