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ABSTRACT. Coactions of Hopf C∗-bimodules simultaneously generalize coac-
tions of Hopf C∗-algebras and actions of groupoids. Following an approach
of Baaj and Skandalis, we construct reduced crossed products and establish
a duality for fine coactions. Examples of coactions arise from Fell bundles
on groupoids and actions of a groupoid on bundles of C∗-algebras. Continu-
ous Fell bundles on an étale groupoid correspond to coactions of the reduced
groupoid algebra, and actions of a groupoid on a continuous bundle of C∗-
algebras correspond to coactions of the function algebra.
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1. INTRODUCTION AND PRELIMINARIES

Actions of quantum groupoids that simultaneously generalize actions of
quantum groups and actions of groupoids have been studied in various settings,
including that of weak Hopf algebras or finite quantum groupoids [24], [25], Hopf
algebroids or algebraic quantum groupoids [7], [13], and Hopf–von Neumann bi-
modules or measured quantum groupoids [10], [11], [30]. In this article, we intro-
duce and investigate coactions of Hopf C∗-bimodules or reduced locally compact
quantum groupoids within the framework developed in [28], [27].

In the first part of this article, we construct reduced crossed products and
dual coactions, and show that the bidual of a fine coaction is Morita equivalent to
the initial coaction. These constructions apply to pairs of Hopf C∗-bimodules that
appear as the left and the right leg of a (weak) C∗-pseudo-Kac system, which con-
sists of a C∗-pseudo-multiplicative unitary [27] and an additional symmetry. We
associate such a C∗-pseudo-Kac system to every groupoid and to every compact
C∗-quantum groupoid and expect that the same can be done for every reduced
locally compact quantum groupoid once this concept has been defined properly.
The constructions in this part generalize corresponding constructions of Baaj and
Skandalis [3] for coactions of Hopf C∗-algebras.
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Coactions of the Hopf C∗-bimodules associated to a locally compact Haus-
dorff groupoid — the function algebra on one side and the reduced groupoid
algebra on the other — are studied in detail in the second part of this article. We
show that actions of the groupoid on continuous bundles of C∗-algebras corre-
spond to coactions of the first Hopf C∗-bimodule, and that continuous Fell bun-
dles on G naturally yield coactions of the second Hopf C∗-bimodule. Generaliz-
ing results of Quigg [22] and Baaj and Skandalis [2] from groups to groupoids, we
show that if the groupoid is étale, every coaction of the reduced groupoid algebra
arises from a Fell bundle.

This article is organized as follows. The first part is concerned with coac-
tions of Hopf C∗-bimodules and associated reduced crossed products.

Section 2 summarizes the relative tensor product of C∗-modules and the
fiber product of C∗-algebras over C∗-bases [28] which are fundamental to every-
thing that follows, and introduces coactions of Hopf C∗-bimodules.

Section 3 is concerned with C∗-pseudo-Kac systems. Every C∗-pseudo-Kac
system gives rise to two Hopf C∗-bimodules, called the legs of the system, which
are dual to each other in a suitable sense. Coactions of these legs on C∗-algebras,
associated reduced crossed products, dual coactions and a duality theorem con-
cerning iterated crossed products are discussed in Section 4.

Section 5 gives the construction of the C∗-pseudo-Kac system of a locally
compact Hausdorff groupoid G. The associated Hopf C∗-bimodules are the func-
tion algebra on one side and the reduced groupoid C∗-algebra of G on the other
side. The second part of the article relates coactions of these Hopf C∗-bimodules
to well-known notions.

Section 6 shows that actions of a groupoid G on continuous bundles of C∗-
algebras correspond to certain fine coactions of the function algebra of G.

Section 7 contains preliminaries on Fell bundles, their morphisms and mul-
tipliers.

Section 8 shows that continuous Fell bundles on G give rise to coactions of
the reduced groupoid C∗-algebra of G, and Section 9 gives a reverse construction
that associates to every sufficiently nice coaction of the groupoid algebra a Fell
bundle provided that the groupoid G is étale.

We use the following notation. Given a subset Y of a normed space X, we
denote by [Y] ⊂ X the closed linear span of Y. All sesquilinear maps like inner
products of Hilbert spaces are assumed to be conjugate-linear in the first com-
ponent and linear in the second one. Given a Hilbert space H, we use the ket-
bra notation and define for each ξ ∈ H operators |ξ〉 : C → H, λ 7→ λξ, and
〈ξ| = |ξ〉∗ : H → C, ξ ′ 7→ 〈ξ|ξ ′〉. Given a C∗-algebra A and a subspace B ⊂ A,
we denote by A ∩ B′ the relative commutant {a ∈ A : [a, B] = 0}.

We shall make extensive use of (right) Hilbert C∗-modules; see [16]. In par-
ticular, we use the internal tensor product and the KSGNS-construction. Let E
be a Hilbert C∗-module over a C∗-algebra A, let F be a Hilbert C∗-module over
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a C∗-algebra B, and let φ : A → L(F) be a completely positive map. We de-
note by E =φ F the Hilbert C∗-module over B which is the closed linear span of
elements η =φ ξ, where η ∈ E and ξ ∈ F are arbitrary, and 〈η =φ ξ|η′ =φ ξ ′〉 =
〈ξ|φ(〈η|η′〉)ξ ′〉 and (η =φ ξ)b = η =φ ξb for all η, η′ ∈ E, ξ, ξ ′ ∈ F, and b ∈ B. If
φ is a ∗-homomorphism, this is the usual internal tensor product; if F = B, this
is the KSGNS-construction. If S ∈ L(E) and T ∈ L(F) ∩ φ(A)′, then there exists
a unique operator S =φ T ∈ L(E =φ E) such that (S =φ T)(η =φ ξ) = Sη =φ Tξ
for all η ∈ E, ξ ∈ F; see Proposition 1.34 in [9]. We sloppily write “=A” or
“=” instead of “=φ” if no confusion may arise. We also define a flipped product
Fφ<E as follows. We equip the algebraic tensor product F � E with the struc-
ture maps 〈ξ � η|ξ ′ � η′〉 := 〈ξ|φ(〈η|η′〉)ξ ′〉, (ξ � η)b := ξb � η, form the sep-
arated completion, and obtain a Hilbert C∗-module Fφ<E over B which is the
closed linear span of elements ξφ<η, where η ∈ E and ξ ∈ F are arbitrary,
and 〈ξφ<η|ξ ′φ<η′〉 = 〈ξ|φ(〈η|η′〉)ξ ′〉 and (ξφ<η)b = ξbφ<η for all η, η′ ∈ E,
ξ, ξ ′ ∈ F, and b ∈ B. Again, we sloppily write “A<” or “<” instead of “φ<” if

no confusion may arise. Evidently, there exists a unitary Σ : F = E
∼=−→ E < F,

η = ξ 7→ ξ < η.

2. HOPF C∗-BIMODULES AND COACTIONS

A groupoid differs from a group in the non-triviality of its unit space. In
almost every approach to quantum groupoids, the unit space is replaced by a
nontrivial algebra, and a relative tensor product of modules and a fiber prod-
uct of algebras over that algebra become fundamentally important. We shall use
the corresponding constructions for C∗-algebras introduced in [28] and briefly
summarize the main definitions and results below. For additional details and
motivation, see [28], [27].

2.1. THE RELATIVE TENSOR PRODUCT. A C∗-base is a triple (K,B,B†) consisting
of a Hilbert space K and two commuting nondegenerate C∗-algebras B,B† ⊆
L(K). It should be thought of as a C∗-algebraic counterpart to pairs consisting of
a von Neumann algebra and its commutant. Let b = (K,B,B†) be a C∗-base. Its
opposite is the C∗-base b† := (K,B†,B).

A C∗-b-module is a pair Hα = (H, α), where H is a Hilbert space and α ⊆
L(K, H) is a closed subspace satisfying [αK] = H, [αB] = α, and [α∗α] = B ⊆
L(K). If Hα is a C∗-b-module, then α is a Hilbert C∗-module over B with inner
product (ξ, ξ ′) 7→ ξ∗ξ ′ and there exist isomorphisms

α =K→ H, ξ = ζ 7→ ξζ; K< α→ H, ζ < ξ 7→ ξζ;(2.1)

and a nondegenerate representation

ρα : B† → L(H), ρα(b†)(ξζ) = ξb†ζ for all b† ∈ B†, ξ ∈ α, ζ ∈ K.
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A semi-morphism between C∗-b-modules Hα and Kβ is an operator T ∈ L(H, K)
satisfying Tα ⊆ β. If additionally T∗β ⊆ α, we call T a morphism. We de-
note the set of all (semi-)morphisms by L(s)(Hα, Kβ). If T ∈ Ls(Hα, Kβ), then
Tρα(b†) = ρβ(b†)T for all b† ∈ B†, and if additionally T ∈ L(Hα, Kβ), then left
multiplication by T defines an operator in L(α, β) which we again denote by T.

We shall use the following notion of C∗-bi- and C∗-n-modules. Let b1, . . . , bn
be C∗-bases, where bi = (Ki,Bi,B†

i ) for each i. A C∗-(b1, . . . , bn)-module is a
tuple (H, α1, . . . , αn), where H is a Hilbert space and (H, αi) is a C∗-bi-module
for each i such that [ραi (B

†
i )αj] = αj whenever i 6= j. In the case n = 2, we

abbreviate α Hβ := (H, α, β). If (H, α1, . . . , αn) is a C∗-(b1, . . . , bn)-module, then
[ραi (B

†
i ), ραj(B

†
j )] = 0 whenever i 6= j. The set of (semi-)morphisms between C∗-

(b1, . . . , bn)-modulesH = (H, α1, . . . , αn) andK = (K, β1, . . . , βn) isL(s)(H,K) :=
n⋂

i=1
L(s)(Hαi , Kβi ) ⊆ L(H, K).

Let b = (K,B,B†) be a C∗-base, Hβ a C∗-b-module, and Kγ a C∗-b†-module.
The relative tensor product of Hβ and Kγ is the Hilbert space

Hβ⊗
b

γK := β =K< γ.

It is spanned by elements ξ = ζ < η, where ξ ∈ β, ζ ∈ K, η ∈ γ, and the inner
product is given by 〈ξ = ζ < η|ξ ′ = ζ ′ < η′〉 = 〈ζ|ξ∗ξ ′η∗η′ζ ′〉 = 〈ζ|η∗η′ξ∗ξ ′ζ ′〉 for
all ξ, ξ ′ ∈ β, ζ, ζ ′ ∈ K, η, η′ ∈ γ. Obviously, there exists a unitary flip

Σ : Hβ⊗
b

γK → Kγ⊗
b†

β H, ξ = ζ < η 7→ η = ζ < ξ.

Using the unitaries in (2.1) on Hβ and Kγ, respectively, we shall make the follow-
ing identifications without further notice:

Hρβ
<γ ∼= Hβ⊗

b
γK ∼= β =ργ K, ξζ < η ≡ ξ = ζ < η ≡ ξ = ηζ.

For all S ∈ ρβ(B
†)′ and T ∈ ργ(B)′, we have operators

S < id ∈ L(Hρβ
<γ) = L(Hβ⊗

b
γK), id =T ∈ L(β =ργ K) = L(Hβ⊗

b
γK).

If S ∈ Ls(Hβ) or T ∈ Ls(Kγ), then (S < id)(ξ = ηζ) = Sξ = ηζ or (id =T)(ξζ <
η) = ξζ < Tη, respectively, for all ξ ∈ β, ζ ∈ K, η ∈ γ, so that we can define

S⊗
b

T := (S < id)(id =T) = (id =T)(S < id) ∈ L(Hβ⊗
b

γK)

for all (S, T) ∈ (Ls(Hβ)× ργ(B)′) ∪ (ρβ(B
†)′ ×Ls(Kγ)).

For each ξ ∈ β and η ∈ γ, there exist bounded linear operators

|ξ〉1 : K → Hβ⊗
b

γK, ω 7→ ξ = ω, |η〉2 : H → Hβ⊗
b

γK, ω 7→ ω < η,

whose adjoints 〈ξ|1 := |ξ〉∗1 and 〈η|2 := |η〉∗2 are given by

〈ξ|1 : ξ ′ = ω 7→ ργ(ξ
∗ξ ′)ω, 〈η|2 : ω < η′ 7→ ρβ(η

∗η′)ω.
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We write |β〉1 := {|ξ〉1 : ξ ∈ β} ⊆ L(K, Hβ⊗
b

γK) and similarly define 〈β|1, |γ〉2,

and 〈γ|2.
LetH = (H, α1, . . . , αm, β) be a C∗-(a1, . . . , am, b)-module and K = (K, γ, δ1,

. . . , δn) a C∗-(b†, c1, . . . , cn)-module, where ai = (Hi,Ai,A†
i ) and cj = (Lj,Cj,C†

j )

are C∗-bases for all i, j. We define

αi / γ := [|γ〉2αi] ⊆ L(Hi, Hβ⊗
b

γK), β . δj := [|β〉1δj] ⊆ L(Lj, Hβ⊗
b

γK)

for all i, j. Then (Hβ⊗
b

γK, α1 / γ, . . . , αm / γ, β . δ1, . . . , β . δn) is a C∗-(a1, . . . , am,

c1, . . . , cn)-module, called the relative tensor product of H and K and denoted by
H⊗

b
K. For all i, j and a† ∈ A†

i , c† ∈ C†
j ,

ρ(αi/γ)(a†) = ραi (a†)⊗
b

id, ρ(β.δj)
(c†) = id⊗

b
ρδj(c

†).

The relative tensor product is functorial in the following sense. Let H̃ =

(H̃, α̃1, . . . , α̃m, β̃) be a C∗-(a1, . . . , am, b)-module, let K̃ = (K̃, γ̃, δ̃1, . . . , δ̃n) be a C∗-
(b†, c1, . . . , cn)-module, and let S ∈ L(s)(H, H̃), T ∈ L(s)(K, K̃). Then there exists
a unique operator S⊗

b
T ∈ L(s)(H⊗

b
K, H̃ ⊗

b
K̃) satisfying (S⊗

b
T)(ξ = ζ < η) =

Sξ = ζ < Tη for all ξ ∈ β, ζ ∈ K, η ∈ γ.
Finally, the relative tensor product is associative in the following sense. Let

d, e1, . . . , el be C∗-bases, K̂ = (K, γ, δ1, . . . , δn, ε) a C∗-(b†, c1, . . . , cn, d)-module and
L = (L, φ, ψ1, . . . , ψl) a C∗-(d†, e1, . . . , el)-module. Then there exists a canonical
isomorphism

aH,K,L : (Hβ⊗
b

γK)β.ε⊗
d

φL→ β =ργ Kρε< φ→ Hβ⊗
b

γ/φ(Kε⊗
d

φL)(2.2)

which is an isomorphism of the C∗-(a1, . . . , am, c1, . . . , cn, e1, . . . , el)-modules (H⊗
b

K̂)⊗
d
L and H⊗

b
(K̂ ⊗

d
L). From now on, we identify the Hilbert spaces in (2.2)

and denote them by Hβ⊗
b

γKε⊗
d

φL.

2.2. THE FIBER PRODUCT OF C∗-ALGEBRAS. Let b1, . . . , bn be C∗-bases, where
bi = (Ki,Bi,B†

i ) for each i. A (nondegenerate) C∗-(b1, . . . , bn)-algebra consists of
a C∗-(b1, . . . , bn)-module (H, α1, . . . , αn) and a (nondegenerate) C∗-algebra A ⊆
L(H) such that ραi (B

†
i )A is contained in A for each i. We shall only be interested

in the cases n = 1, 2, where we abbreviate Aα
H := (Hα, A), Aα,β

H := (α Hβ, A).
Given a C∗-(b1, . . . , bn)-algebra A = ((H, α1, . . . , αn), A), we identify M(A) with
a C∗-subalgebra of L([AH]) ⊆ L(H) and obtain C∗-(b1, . . . , bn)-algebra M(A) =
((H, α1, . . . , αn), M(A)).

We need several notions of a morphism. Let A = (H, A) and C = (K, C) be
C∗-(b1, . . . , bn)-algebras, where H = (H, α1, . . . , αn) and K = (K, γ1, . . . , γn). A
∗-homomorphism π : A → C is called a jointly (semi-)normal morphism or briefly
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(semi-)morphism from A to C if [Lπ
(s)(H,K)αi] = γi for each i, where

Lπ
(s)(H,K) = {T ∈ L(s)(H,K) : Ta = π(a)T for all a ∈ A}.

One easily verifies that every (semi-)morphism π between C∗-b-algebras Aα
H and

Cγ
K satisfies π(ρα(b†)) = ργ(b†) for all b† ∈ B†.

We construct a fiber product of C∗-algebras over C∗-bases as follows. Given
Hilbert spaces H, K, a closed subspace E ⊆ L(H, K), and a C∗-algebra A ⊆ L(H),
we define a C∗-algebra

IndE(A) := {T ∈ L(K) : TE ⊆ [EA] and T∗E ⊆ [EA]} ⊆ L(K).

Let b be a C∗-base, Aβ
H a C∗-b-algebra, and Bγ

K a C∗-b†-algebra. The fiber product
of Aβ

H and Bγ
K is the C∗-algebra

Aβ∗
b

γB := Ind|β〉1(B) ∩ Ind|γ〉2(A) ⊆ L(Hβ⊗
b

γK).

To define coactions, we also need to consider the C∗-algebra

Aβ∗
b

γB := Ind[|β〉1B](B) ∩ Ind|γ〉2(A) ⊆ L(Hβ⊗
b

γK),

which evidently contains Aβ∗
b

γB. If A and B are unital, so is Aβ∗
b

γB, but oth-

erwise, Aβ∗
b

γB and Aβ∗
b

γB may be degenerate. Clearly, conjugation by the flip

Σ : Hβ⊗
b

γK → Kγ⊗
b†

β H yields an isomorphism

AdΣ : Aβ∗
b

γB→ Bγ ∗
b†

β A.

If a, c are C∗-bases, Aα,β
H is a C∗-(a, b)-algebra and Bγ,δ

K a C∗-(b†, c)-algebra, then

Aα,β
H ∗b Bγ,δ

K := (α Hβ ⊗
b

γKδ, Aβ∗
b

γB)

is a C∗-(a, c)-algebra, called the fiber product of Aα,β
H and Bγ,δ

K ; see Proposition 3.15
in [28]. Likewise, (αHβ ⊗

b
γKδ, Aβ∗

b

γB) is a C∗-(a, c)-algebra.

The fiber product need not be associative, but in this article, it will only
appear as the target of a comultiplication or coaction whose coassociativity will
compensate the non-associativity of the fiber product.

More importantly, the fiber product is functorial in the following sense. Let
φ be a (semi-)morphism of C∗-(a, b)-algebras A = Aα,β

H and C = Cκ,λ
l , and ψ a

(semi-)morphism of C∗-(b†, c)-algebras B = Bγ,δ
K andD = Dµ,ν

M . Then there exists
a unique (semi-)morphism of C∗-(a, c)-algebras φ ∗ ψ from (α Hβ ⊗

b
γKδ, Aβ∗

b

γB)

to (κ Lλ ⊗
b

µ Mν, Cλ∗
b

µD) such that

(φ ∗ ψ)(x)R = Rx for all x ∈ Aβ∗
b

γB and R ∈ IM JH + Jl IK,



COACTIONS OF HOPF C∗ -BIMODULES 25

where IX = Lφ(H, L)⊗
b

idX , JY = idY ⊗
b
Lψ(K, M) for X ∈ {K, M}, Y ∈ {H, L},

and φ ∗ ψ restricts to a (semi-)morphism from Aα,β
H ∗b Bγ,δ

K to Cκ,λ
l ∗

b
Dµ,ν

M ; see The-

orem 3.19 in [28]. The proof uses the following result, which essentially is Lem-
ma 3.18 in [28].

LEMMA 2.1. Let c be a C∗-base, π a semi-morphism of C∗-b-algebras Aβ
H , Cλ

l , and
γKδ a C∗-(b†, c)-module. Let I := Lπ

s (Hβ, Lλ)⊗
b

id ⊆ L(Hβ⊗
b

γK, Lλ⊗
b

γK) and

X := (I∗ I)′ ⊆ L(Hβ⊗
b

γK), Y := (I I∗)′ ⊆ L(Lλ⊗
b

γK).

(i) X := (Hβ⊗
b

γKδ, X) and Y := (Lλ⊗
b

γKδ, Y) are C∗-c-algebras.

(ii) There exists a semi-morphism Ind|γ〉2(π) : X →Y such that (Ind|γ〉2(π))(x)z=
zx for all x ∈ X and z ∈ I.

(iii) If Bγ
K is a C∗-b†-algebra, then Aβ∗

b
γB ⊆ Aβ∗

b

γB ⊆ X, (Ind|γ〉2(π))(Aβ∗
b

γB) ⊆
Cλ ∗

b
γB and (Ind|γ〉2(π))(Aβ∗

b

γB) ⊆ Cλ∗
b

γB.

(iv) [|γ〉2 A〈γ|2] ⊆ X and (Ind|γ〉2(π))([|γ〉2 A〈γ|2]) = [|γ〉2π(A)〈γ|2].

2.3. HOPF C∗-BIMODULES AND COACTIONS. The notion of a Hopf C∗-bimodule
was introduced in [27].

DEFINITION 2.2. Let b = (K,B,B†) be a C∗-base. A Hopf C∗-bimodule over b
is a C∗-(b†, b)-algebra Aβ,α

H with a morphism ∆ from Aβ,α
H to Aβ,α

H ∗b Aβ,α
H satisfying

(δ ∗ id) ◦ δ = (id ∗∆) ◦ δ as maps from A to L(Hα⊗
b

β Hα⊗
b

βH).

Let (A, ∆) be a Hopf C∗-bimodule, where A = Aβ,α
H .

A coaction of (A, ∆) consists of a C∗-b-algebra Cγ
K and a semi-morphism δ

from (Kγ, C) to (Kγ ⊗
b

β Hα, Cγ∗
b

β A) such that (δ ∗ id) ◦ δ = (id ∗∆) ◦ δ as maps

from C to L(Kγ⊗
b

β Hα⊗
b

β H). We call such a coaction (Cγ
K, δ)

(i) left-full if [δ(C)|γ〉1 A] = [|γ〉1 A], and right-full if [δ(C)|β〉2] = [|β〉2C];
(ii) fine if δ is injective, a morphism, and right-full, and if [ργ(B†)C] = C;

(iii) very fine if it is fine and if δ−1 : δ(C) → C is a morphism of C∗-b-algebras
from (Kγ⊗

b
β Hα, δ(C)) to (Kγ, C).

A morphism between coactions (Cγ
K, δC) and (Dε

l , δD) is a semi-morphism ρ

from Cγ
K to M(D)ε

l satisfying [ρ(C)D] = D and δD(d) · (ρ ∗ id)(δC(c)) = δD(dρ(c))
for all d ∈ D, c ∈ C. We denote the category of all coactions of (A, ∆) by
Coact(A,∆).

Examples of Hopf C∗-bimodules and coactions will be discussed in detail in
Sections 5, 6, and 8.
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3. WEAK C∗-PSEUDO-KAC SYSTEMS

To form a reduced crossed product for a coaction of a Hopf C∗-bimodule
(A, ∆) and to equip this reduced crossed product with a dual coaction, one needs
a second Hopf C∗-bimodule (Â, ∆̂) that is dual to (A, ∆) in a suitable sense. We
shall see that a good notion of duality is that (A, ∆) and (Â, ∆̂) are the legs of
a weak C∗-pseudo-Kac system, which is a generalization of the balanced multi-
plicative unitaries and Kac systems introduced by Baaj and Skandalis [1], [3].

3.1. C∗-PSEUDO-MULTIPLICATIVE UNITARIES. A weak C∗-pseudo-Kac system is
a well-behaved C∗-pseudo-multiplicative unitary V together with a symmetry U
satisfying a number of axioms. Before we state these axioms, we recall the notion
of a C∗-pseudo-multiplicative unitary and the construction of the associated Hopf
C∗-bimodules from [27].

Let b be a C∗-base. A C∗-pseudo-multiplicative unitary over b consists of a
C∗-(b†, b, b†)-module (H, β̂, α, β) and a unitary V : H

β̂
⊗
b†

αH → Hα⊗
b

β H such that

V(α / α)=α . α, V(β̂ . β)= β̂ / β, V(β̂ . β̂)=α . β̂, V(β / α)=β / β,(3.1)

in L(K, Hα⊗
b

βH) and V12V13V23 = V23V12 in the sense that the following diagram

H
β̂
⊗
b†

α H
β̂
⊗
b†

α H
V12 //

V23
��

Hα⊗
b

β H
β̂
⊗
b†

α H
V23 // Hα⊗

b
β Hα⊗

b
βH,

H
β̂
⊗
b†

α.α(Hα⊗
b

β H)
V13 //(H

β̂
⊗
b†

α H)α/α⊗
b

βH

V12
OO

(3.2)

commutes, where Vij is the leg notation for the operator that acts like V on the ith
and jth factor in the relative tensor product; see [27].

Let V be a C∗-pseudo-multiplicative unitary as above, let

Â = ÂV =[〈β|2V|α〉2] ⊆ L(H), ∆̂= ∆̂V : Â→ L(H
β̂
⊗
b†

α H), â 7→ V∗(1⊗
b

â)V,

A = AV =[〈α|1V|β̂〉1] ⊆ L(H), ∆=∆V : A→ L(Hα⊗
b

β H), a 7→ V(a⊗
b†

1)V∗,

and let Â = Âα,β̂
H and A = Aβ,α

H . We call V well-behaved if (Â, ∆̂) and (A, ∆) are
Hopf C∗-bimodules. This happens for example if V is regular in the sense that
[〈α|1V|α〉2] = [αα∗] ⊆ L(H); see Theorem 4.5 in [27].

The opposite of V is the C∗-pseudo-multiplicative unitary

Vop := ΣV∗Σ : Hβ⊗
b†

α H Σ−→ Hα⊗
b

β H V∗−→ H
β̂
⊗
b†

α H Σ−→ Hα⊗
b

β̂
H.

If V is well-behaved or regular, then the same is true for Vop, and then

ÂVop = AV , ∆̂Vop = AdΣ ◦∆V , AVop = ÂV , ∆Vop = AdΣ ◦∆̂V .(3.3)
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Let (H, α̂, β̂, α, β) be a C∗-(b, b†, b, b†)-module and U ∈ L(α̂H
β̂
, α Hβ) a sym-

metry, that is, U = U∗ = U−1. Then Uα̂ = α, Uβ̂ = β, and the diagram

Hα̂⊗
b

β̂
H oo

(1 ⊗
b(†)

U)Σ

//

OO
(U ⊗

b(†)
1)Σ

��

hh

((

H
β̂
⊗
b†

α H
OO
(1 ⊗

b(†)
U)Σ

��

66

vv
Hβ⊗

b†
α̂ H oo

(U ⊗
b(†)

1)Σ
// Hα⊗

b
β H

commutes, where each arrow can be read in both directions and the diagonal
maps are U ⊗

b(†)
U. We use the leg notation and write U1 for U ⊗

b(†)
1 and U2 for

1 ⊗
b(†)

U.

For each T ∈ L(H
β̂
⊗
b†

α H, Hα⊗
b

β H), let

Ť := Σ(1⊗
b

U)T(1⊗
b†

U)Σ : Hα̂⊗
b

β̂
H → H

β̂
⊗
b†

α H,

T̂ := Σ(U ⊗
b

1)T(U ⊗
b†

1)Σ : Hα⊗
b

β H → Hβ⊗
b†

α̂ H.

Switching from (b, H, α̂, β̂, α, β) to (b†, H, β, α̂, β̂, α) or to (b†, H, β̂, α, β, α̂), respec-
tively, we can iterate the assignments T 7→ Ť and T 7→ T̂, and obtain

ˇ̌̌
T = T̂, ˇ̌T = (U ⊗

b
U)T(U ⊗

b†
U) = ̂̂T, Ť =

̂̂̂
T.(3.4)

DEFINITION 3.1. A balanced C∗-pseudo-multiplicative unitary (V, U) on a C∗-
(b, b†, b, b†)-module (H, α̂, β̂, α, β) consists of a symmetry U ∈ L(α̂ H

β̂
, αHβ) and a

C∗-pseudo-multiplicative unitary V : H
β̂
⊗
b†

α H → Hα⊗
b

β H such that V̌ and V̂ are

C∗-pseudo-multiplicative unitaries again.

Note that in this definition, (V̌, U) is a C∗-pseudo-multiplicative unitary if
and only if (V̂, U) is one because V̌ = (U ⊗

b†
U)V̂(U ⊗

b
U).

Let (V, U) be a balanced C∗-pseudo-multiplicative unitary as above.

REMARK 3.2. (i) One easily verifies that (V̌, U), (V̂, U), (Vop, U) are bal-
anced C∗-pseudo-multiplicative unitaries again. We call them the predual, dual,
and opposite of (V, U), respectively.

(ii) The relations (3.1) for the unitaries V̌, V̂ read as follows:

β̂ / β̂
V̌−→ β̂ . β̂, α̂ . α

V̌−→ α̂ / α, α̂ . α̂
V̌−→ β̂ . α̂, α / β̂

V̌−→ α / α,

β / β
V̂−→ β . β, α . α̂

V̂−→ α / α̂, α . α
V̂−→ β . α, α̂ / β

V̂−→ α̂ / α̂,
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where X W−→ Y means WX = Y. They furthermore imply

β̂ . α̂
V−→ α . α̂, α̂ . β

V̌−→ β̂ . β, α . β̂
V̂−→ β . β̂,

α̂ / α
V−→ α̂ / β, β / β̂

V̌−→ β / α, β̂ / β
V̂−→ β̂ / α̂.

(iii) The spaces Â and A are contained in L(Hα̂) since [Âα̂] = [〈β|2V|α〉2α̂] =

[〈β|2|β〉2α̂] = [ρα(B†)α̂] = α̂ and similarly [Aα̂] = [〈α|1V|β̂〉1α̂] = α̂.

LEMMA 3.3. V13V23V̌12 = V̌12V13 and V̂23V12V13 = V13V̂23, that is, the dia-
grams

(Hα̂⊗
b

β̂
H)

β̂/β̂
⊗
b†

α H
V13 //

V̌12
��

(Hα̂⊗
b

β̂
H)

α/β̂
⊗
b

β H
V̌12 //(H

β̂
⊗
b†

α H)α/α⊗
b

βH,

H
β̂
⊗
b†

αH
β̂
⊗
b†

α H
V23 //H

β̂
⊗
b†

α.α(Hα⊗
b

β H)

V13
OO

(3.5)

H
β̂
⊗
b†

α.α(Hα⊗
b

β H)
V̂23 //

V13
��

H
β̂
⊗
b†

β.α(Hβ⊗
b†

α̂ H)
V13 // Hα⊗

b
β.β(Hβ⊗

b†
α̂ H)

(H
β̂
⊗
b†

αH)α/α⊗
b

β H
V12 // Hα⊗

b
β Hα⊗

b
βH

V̂23
OO

(3.6)

commute.

Proof. Let W := ΣVΣ. We insert the relation V̌ = U1WU1 into the equation
V̌12V̌13V̌23 = V̌23V̌12 and obtain U1W12U1 · U1W13U1 · V̌23 = V̌23 · U1W12U1 and
hence W12W13V̌23 = V̌23W12. Renumbering the legs of the operators according
to the permutation (1, 2, 3) 7→ (2, 3, 1), we find V13V23V̌12 = V̌12V13. A similar
calculation shows that V̂23V12V13 = V13V̂23.

PROPOSITION 3.4. We have:

ÂV̌ = UAVU, ∆̂V̌ = Ad(U⊗
b

U) ◦∆V ◦AdU , AV̌ = ÂV , ∆V̌ = ∆̂V ,

and

AV̂ = UÂVU, ∆V̂ = Ad(U⊗
b†

U) ◦∆̂V ◦AdU , ÂV̂ = AV , ∆̂V̂ = ∆V .

Proof. By definition,

AV̌ = [〈β̂|1ΣU2VU2Σ|α̂〉1] = [〈Uβ̂|2V|Uα̂〉2] = [〈β|2V|α〉2] = ÂV .
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Let â = 〈ξ ′|2V|ξ〉2 ∈ ÂV , where ξ ′ ∈ β, ξ ∈ α. Then ∆V̌(â) = V̌(â ⊗
b

1)V̌∗ =

V∗(1⊗
b

â)V = ∆̂V(â) because the diagram

H
β̂
⊗
b†

αH
V̌∗

//

|ξ〉3

��

Hα̂⊗
b

β̂
H

â⊗
b

1
//

|ξ〉3��

Hα̂⊗
b

β̂
H

V̌
// H

β̂
⊗
b†

α H

(Hα̂⊗
b

β̂
H)

β̂/β̂
⊗
b†

α H
V13

//(Hα̂⊗
b

β̂
H)

α/β̂
⊗
b

β H

V̌12 ))

〈ξ ′ |3
OO

H
β̂
⊗
b†

αH
β̂
⊗
b†

α H
V12

))

V13V23 //
V̌∗12

55

(H
β̂
⊗
b†

α H)α/α⊗
b

βH

〈ξ ′ |3

��

〈ξ ′ |3

OO

Hα⊗
b

βH
β̂
⊗
b†

α H
V23 // Hα⊗

b
β Hα⊗

b
β H

V∗12 55

〈ξ ′ |3��
H

β̂
⊗
b†

αH V //

|ξ〉3

OO

Hα⊗
b

β H
1⊗
b

â
//

|ξ〉3 OO

Hα⊗
b

β H V∗ // H
β̂
⊗
b†

α H

commutes. Since elements of the form like â are dense in ÂV , we can conclude
∆V̌ = ∆̂V̌ . The proof of the remaining assertions is similar.

COROLLARY 3.5. If V is well-behaved, then also V̌ and V̂ are well-behaved.

3.2. WEAK C∗-PSEUDO-KAC SYSTEMS. Let (V, U) as above.

LEMMA 3.6. For each â ∈ Â and a ∈ A, we have equivalences

(1⊗
b†

â)V̂ = V̂(1⊗
b

â) ⇔ (UâU ⊗
b

1)V = V(UâU ⊗
b†

1) ⇔ [UâU, Â] = 0,

(a⊗
b†

1)V̌ = V̌(a⊗
b

1) ⇔ (1⊗
b

UaU)V = V(1⊗
b†

UaU) ⇔ [UaU, A] = 0.

These equivalent conditions hold for all â ∈ Â and a ∈ A if and only if V23V̂12 = V̂12V23
and V̌23V12 = V12V̌23 in the sense that the following diagrams commute:

Hα⊗
b

β H
β̂
⊗
b†

αH
V̂12

//

V23
��

Hβ⊗
b†

α̂H
β̂
⊗
b†

α H

V23
��

Hα⊗
b

β Hα⊗
b

βH
V̂12 // Hβ⊗

b†
α̂ Hα⊗

b
β H,

H
β̂
⊗
b†

αHα̂⊗
b

β̂
H

V12

//

V̌23��

Hα⊗
b

β Hα̂⊗
b

β̂
H

V̌23��
H

β̂
⊗
b†

αH
β̂
⊗
b†

α H
V12 // Hα⊗

b
β H

β̂
⊗
b†

α H.

Proof. This is straightforward, for example, V23V̂12 = V̂12V23 holds if and
only if 〈ξ ′|3V23V̂12|ξ〉3 = 〈ξ ′|3V̂12V23|ξ〉3 for all ξ ∈ α, ξ ′ ∈ β and hence if and
only if (1⊗

b†
â)V̂ = V̂(1⊗

b
â) for all â ∈ Â.
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DEFINITION 3.7. We call (V, U) a weak C∗-pseudo-Kac system if V is well-
behaved and if the equivalent conditions in Lemma 3.6 hold, and a C∗-pseudo-Kac-
system if V, V̌, V̂ are regular and additionally (Σ(1⊗

b
U)V)3 = id, where Σ(1⊗

b

U)V : H
β̂
⊗
b†

α H → H
β̂
⊗
b†

α H.

REMARK 3.8. In leg notation, the equation (Σ(1⊗
b

U)V)3 = 1 can be rewrit-

ten as (ΣU2V)3 = 1. Conjugating by Σ or V, we see that this condition is equiva-
lent to the relation (U2VΣ)3 = 1 and to the relation (VΣU2)

3 = 1.

LEMMA 3.9. (ΣU2V)3 = 1 if and only if V̂VV̌ = U1Σ.

Proof. U1U2(ΣU2V)3U2Σ = ΣU1VU1Σ ·V · ΣU2VU2Σ = V̂ ·V · V̌.

PROPOSITION 3.10. Every C∗-pseudo-Kac system is a weak C∗-pseudo-Kac sys-
tem.

Proof. Let (V, U) be a C∗-pseudo-Kac system. Then V, V̌, V̂ are regular and
therefore well-behaved. Using diagrams (3.2) and (3.5), we find

V12V̌12Σ12V23 = V12V̌12V13Σ12 = V12V13V23V̌12Σ12 = V23V12V̌12Σ12.

By Lemma 3.9, V12V̌12Σ12 = V̂∗12U1 and hence V̂∗12U1V23 = V23V̂∗12U1. Since V̂12

is unitary and U1V23 = V23U1, we can conclude V̂12V23 = V23V̂12. A similar
argument shows that V̌23V12 = V12V̌23.

The following result is crucial for the duality presented in the next section.

PROPOSITION 3.11. Let (V, U) be a C∗-pseudo-Kac system. Then [AÂ] = [α̂α̂∗].

Proof. The relation [α̂∗ Â] = α̂∗ (Remark 3.2(iii)), regularity of V, and the
relations V∗ = ΣU2VΣU2VΣU2 and [V|α〉2 Â] = [|β〉2 Â] (see Remark 4.7 in [27])
imply

[α̂α̂∗] = [Uαα∗UÂ] = [U〈α|2V∗|α〉1UÂ] = [U〈α|2ΣU2VΣU2VΣU2|α〉1UÂ]

= [〈α|1VΣU2V|α〉2 Â] = [〈α|1VΣU2|β〉2 Â] = [〈α|1V|β̂〉1 Â] = [AÂ].

LEMMA 3.12. Let (V, U) be a (weak) C∗-pseudo-Kac system. Then also (V̌, U),
(V̂, U), and (Vop, U) are (weak) C∗-pseudo-Kac systems.

Proof. If (V, U) is a weak C∗-pseudo-Kac system, then the tuples above are
balanced C∗-pseudo-multiplicative unitaries by Remark 3.2(i), and the remaining
necessary conditions follow easily from Proposition 3.4 and equation (3.3).

If (V, U) is a C∗-pseudo-Kac system, then equation (3.4), the relation ˇ(Vop)

= U1V∗U1 = (V̂)op, and the fact that Vop is regular, imply that the tuples above
satisfy the regularity condition in Definition 3.7. To check that they also satisfy
the second condition, we use Remark 3.8 and calculate (ΣU2V̂)3 = (VΣU2)

3 = 1,
(V̌ΣU2)

3 = (ΣU2V)3 = 1, (U2VopΣ)3 = (U2ΣV∗)3 = ((VΣU2)
3)∗ = 1.
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3.3. THE C∗-PSEUDO-KAC SYSTEM OF A COMPACT C∗-QUANTUM GROUPOID. In
[26], we introduced compact C∗-quantum groupoids and associated to each such
object a regular C∗-pseudo-multiplicative unitary V. We now recall this construc-
tion and define a symmetry U such that (V, U) is a C∗-pseudo-Kac system.

A compact C∗-quantum graph consists of a unital C∗-algebra B with a faithful
KMS-state µ, a unital C∗-algebra A with unital embeddings r : B → A and s :
Bop → A such that [r(B), s(Bop)] = 0, and faithful conditional expectations φ :
A → r(B) ∼= B and ψ : A → s(Bop) ∼= Bop such that the compositions ν := µ ◦ φ

and ν−1 := µop ◦ ψ are KMS-states related by some positive invertible element
δ ∈ A ∩ r(B)′ ∩ s(Bop)′ via the formula ν−1(a) = ν(δ1/2aδ1/2), valid for all a ∈
A. An involution for such a compact C∗-quantum graph is a ∗-antiisomorphism
R : A → A such that R ◦ R = idA, R(r(b)) = s(bop) and φ(R(a)) = ψ(a)op for all
b ∈ B, a ∈ A.

Let (B, µ, A, r, s, φ, ψ) be a compact C∗-quantum graph with involution R.
We denote by (Hµ, ζµ, Jµ) and (Hν, ζν, Jν) the GNS-spaces, canonical cyclic vec-
tors, and modular conjugations for the KMS-states µ and ν, respectively, and let
ζν−1 = δ1/2ζν. As usual, we have representations Bop → L(Hµ), bop 7→ Jµb∗ Jµ,
and Aop → L(Hν), aop 7→ Jνa∗ Jν. Using the isometries

ζφ : Hµ → Hν, bζµ 7→ r(b)ζν, ζψ : Hµop → Hν, bopζµop 7→ s(bop)ζν−1 ,

we define subspaces α̂, β̂, α, β ⊆ L(Hµ, Hν) by α̂ := [Aζφ], β̂ := [Aζψ], β :=
[Aopζφ], β := [Aopζψ]. Let H = Hν and b = (K,B,B†), where K = Hµ, B = B ⊆
L(Hµ), B† = Bop ⊆ L(Hµ). Then (H, α̂, β̂, α, β) is a C∗-(b, b†, b, b†)-module and

A := Aβ,α
H a C∗-(b†, b)-algebra [26].

A compact C∗-quantum groupoid consists of a compact C∗-quantum graph
with involution as above and a morphism A → A ∗

b
A of C∗-(b†, b)-algebras

satisfying the following conditions:
(i) (∆ ∗ id) ◦∆ = (id ∗∆) ◦∆ as maps from A to L(Hα⊗

b
β Hα⊗

b
β H);

(ii) 〈ζφ|2∆(a)|ζφ〉2 = ρβ(φ(a)) and 〈ζψ|1∆(a)|ζψ〉1 = ρα(ψ(a)) for all a ∈ A;
(iii) [∆(A)|α〉1] = [|α〉1 A] = [∆(A)|ζψ〉1 A] and similarly [∆(A)|β〉2] = [|β〉2 A]

= [∆(A)|ζφ〉2 A];
(iv) R(〈ζψ|1∆(a)(dop ⊗

b
1)|ζψ〉1) = 〈ζψ|1(aop ⊗

b
1)∆(d)|ζψ〉1 for all a, d ∈ A.

Given a compact C∗-quantum groupoid as above, there exists a regular C∗-
pseudo-multiplicative unitary V : H

β̂
⊗
b†

α H → Hα⊗
b

β H such that V|aζψ〉1 =

∆(a)|ζψ〉1 for all a ∈ A; see Theorem 5.4 in [26]. Denote by J = Jν the modu-
lar conjugation for ν, by I : H → H the antiunitary given by Iaζν−1 = R(a)∗ζν for
all a ∈ A, and let U = I J ∈ L(H).

PROPOSITION 3.13. (V, U) is a C∗-pseudo-Kac system.

Proof. First, U2 = I J I J = I J J I = I I = idH because I J = J I, and Uζφ = ζψ,
Uζν = ζν−1 , Uα̂ = Iβ = α, Uβ̂ = Iα = β by Lemma 2.7 and Proposition 3.8 in
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[26]. The relation (Jα⊗
Jµ

β I)V(Jα⊗
Jµ

β I) = V∗ (see Theorem 5.6 in [26]) implies

V̌ = Σ(1⊗
b

J I)V(1⊗
b†

J I)Σ = (Jα⊗
Jµ

β̂
J)Σ(Jα⊗

Jµ
β I)V(Jα⊗

Jµ
β I)Σ(Jα̂⊗

Jµ
β̂

J)

= (Jα⊗
Jµ

β̂
J)ΣV∗Σ(Jα̂⊗

Jµ
β̂

J) = (Jα⊗
Jµ

β̂
J)Vop(Jα̂⊗

Jµ
β̂

J).

But Vop is a regular C∗-pseudo-multiplicative unitary, so V̌ is regular as well. In
particular, (V, U) is a balanced C∗-pseudo-multiplicative unitary. We shall show
that V̂V = U1ΣV̌∗, and then the claim follows from Lemma 3.9. Let a, b ∈ A and
ω = V̂V(aζψ = Ubζν−1). By Proposition 3.4, ∆(a) = V̂∗(1⊗

b†
a)V̂ and hence

ω = V̂∆(a)(ζψ = Ubζν−1) = (1⊗
b†

a)V̂(ζψ = Ubζν−1)

= Σ(U ⊗
b

1)(UaU ⊗
b

1)V(bζν−1 < ζψ) = Σ(U ⊗
b

1)(UaU ⊗
b

1)∆(b)(ζψ = ζν−1).

Since UaU = J IaI J = R(a)op and [UaU ⊗
b

1, ∆(b)] ∈ [Aop ⊗
b

1, Aα∗
b

β A] = 0,

ω=Σ(U ⊗
b

1)∆(b)(UaUζψ = ζν−1)=(U ⊗
b†

1)Σ(U ⊗
b

U)∆(b)(U ⊗
b

U)(aUζψ = ζν).

By Proposition 3.4, V̌∗(1⊗
b†

UbU)V̌ = (U ⊗
b

U)∆(b)(U ⊗
b

U) and hence

ω = (U ⊗
b†

1)ΣV̌∗(1⊗
b†

UbU)V̌(aUζψ = ζν)

= (U ⊗
b†

1)ΣV̌∗(1⊗
b†

UbU)Σ(1⊗
b

U)V(ζν < UaUζψ).

Finally, by Proposition 5.5 in [26], V(ζν < UaUζψ) = ζν < UaUζφ, whence

ω = (U ⊗
b†

1)ΣV̌∗(1⊗
b†

UbU)(aUζφ = ζν) = (U ⊗
b†

1)ΣV̌∗(aζψ = Ubζν−1).

4. REDUCED CROSSED PRODUCTS AND DUALITY

Let (V, U) be a weak C∗-pseudo-Kac system and let (A, ∆), (Â, ∆̂) be the
Hopf C∗-bimodules associated to V as in the preceding section. Generalizing the
corresponding constructions and results for coactions of Hopf C∗-algebras [3],
we now associate to every coaction of one of these Hopf C∗-bimodules a reduced
crossed product that carries a dual coaction of the other Hopf C∗-bimodule, and
prove a duality theorem concerning the iteration of this construction.

4.1. REDUCED CROSSED PRODUCTS FOR COACTIONS OF (A, ∆). Let δ be a coac-
tion of the Hopf C∗-bimodule (A, ∆) on a C∗-b-algebra C = Cγ

K and let (the nota-
tion C or Â is consistent with [3] but not with [10], where C or A is used instead):

C or Â := [δ(C)(1⊗
b

Â)] ⊆ L(Kγ⊗
b

βH), C or Â := (Kγ⊗
b

β H
β̂
, C or Â).
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PROPOSITION 4.1. (i) [δ(C)(γ . β̂)] ⊆ γ . β̂ with equality if δ is left-full.
(ii) C or Â is a C∗-algebra and C or Â is a C∗-b†-algebra.

(iii) There exist nondegenerate ∗-homomorphisms C→M(Cor Â) and Â→ M(Cor

Â), given by c 7→ δ(c) and â 7→ 1⊗
b

â, respectively.

Proof. (i) The relation β̂ = [Aβ̂] (see Proposition 3.2 (ii) in [27]) implies that
[δ(C)|γ〉1 β̂] = [δ(C)|γ〉1 Aβ̂] ⊆ [|γ〉1 Aβ̂] = [|γ〉1 β̂].

(ii) We first show that [(1⊗
b

Â)δ(C)] ⊆ [δ(C)(1⊗
b

Â)]. Let δ(2) := (id ∗∆) ◦

δ = (δ ∗ id) ◦ δ : C → L(Kγ⊗
b

β Hγ⊗
b

β H). By definition of Â and ∆,

[(1⊗
b

Â)δ(C)]= [〈β|3(1⊗
b

V)|α〉3δ(C)] = [〈β|3(1⊗
b

V)(δ(C)⊗
b†

1)|α〉3]

= [〈β|3δ(2)(C)(1⊗
b

V)|α〉3]⊆ [δ(C)〈β|3(1⊗
b

V)|α〉3]= [δ(C)(1⊗
b

Â)].

Consequently, Cor Â is a C∗-algebra. By Proposition 3.2(i) in [27], [Âρ
β̂
(B)] = Â,

and hence [(Cor Â)ρ(γ.β̂)(B)] = [δ(C)(1⊗
b

Âρ
β̂
(B))] = [δ(C)(1⊗

b
Â)] = Cor Â.

(iii) Immediate.

THEOREM 4.2. There exists a unique coaction δ̂ of (Â, ∆̂) on C or Â such that
δ̂(δ(c)(1⊗

b
â)) = (δ(c)⊗

b†
1)(1⊗

b
∆̂(â)) for all c ∈ C, â ∈ Â. If ∆̂ is a fine coaction,

then δ̂ is a very fine coaction. If δ is left-full, then δ̂ is left-full.

Proof. Define δ̂ : C or Â → L(Kγ⊗
b

β H
β̂
⊗
b†

α H) by x 7→ (1⊗
b

V̌)(x ⊗
b

1)(1⊗
b

V̌∗). Then δ̂ is injective and satisfies δ̂(δ(c)(1⊗
b

â)) = (δ(c)⊗
b†

1)(1⊗
b

∆̂(â)) for all

c ∈ C, â ∈ Â because V̌(â⊗
b

1)V̌∗ = ∆̂(â) by Proposition 3.4 and (1⊗
b

V̌)δ(c)(1⊗
b

V̌∗) = δ(c) as a consequence of the relation V̌(a⊗
b

1)V̌∗ = a⊗
b†

1. We show that δ̂

is a coaction of (Â, ∆̂). First, [δ̂(C or Â)|α〉3] ⊆ [|α〉3(C or Â)] because

[(δ(C)⊗
b†

1)(1⊗
b

∆̂(Â))|α〉3]⊆ [(δ(C)⊗
b†

1)|α〉3(1⊗
b

Â)]= [|α〉3δ(C)(1⊗
b

Â)].(4.1)

Next, [δ̂(C or Â)|γ . β̂〉1 Â] ⊆ [|γ . β̂〉1 Â] because by Proposition 4.1(i),

[(1⊗
b

∆̂(Â))(δ(C)⊗
b†

1)|γ . β̂〉1 Â] ⊆ [(1⊗
b

∆̂(Â))|γ . β̂〉1 Â]

= [|γ〉1∆̂(Â)|β̂〉1 Â] ⊆ [|γ〉1|β̂〉1 Â].(4.2)

Furthermore, δ̂(x)(1⊗
b

V̌)|ξ〉3 = (1⊗
b

V̌)|ξ〉3x for each x ∈ C or Â, ξ ∈ β̂, and by

Remark 3.2(ii), [(1⊗
b

V̌)|β̂〉3(γ . β̂)] = γ . β̂ . β̂ and [〈β̂|3(1⊗
b

V̌)∗(γ . β̂ . β̂)] =

γ . β̂. The maps (δ̂ ∗ id) ◦ δ̂ and (id ∗∆̂) ◦ δ̂ from Cor Â to L(Kγ⊗
b

β H
β̂
⊗
b†

α H
β̂
⊗
b†

α H)
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are given by δ(c)(1⊗
b

â) 7→ (δ(c)⊗
b†

1⊗
b†

1)(1⊗
b

∆̂(2)(â)) for all c ∈ C, â ∈ Â, where

∆̂(2) := (∆̂ ∗ id) ◦ ∆̂ = (id ∗∆̂) ◦ ∆̂. Thus, (C or Â, δ̂) is a coaction of (Â, ∆̂). If
the coactions ∆̂ is fine, then the inclusion (4.1) is an equality and in any case
[〈β̂|3(1⊗

b
V̌)∗(γ . β̂ . β̂)] = γ . β̂, whence δ̂ will be very fine. If δ is left-full, then

the inclusion (4.2) is an equality by Proposition 4.1(i) and hence δ̂ is left-full.

DEFINITION 4.3. We call C or Â the reduced crossed product and (C or Â, δ̂)
the reduced dual coaction of (C, δ).

The construction of reduced dual coactions is functorial in the following
sense:

PROPOSITION 4.4. Let ρ be a morphism between coactions (C, δC) and (D, δD) of
(A, ∆). Then there exists a unique morphism ρor id from (Cor Â, δ̂C) to (Dor Â, δ̂D)
such that (ρ or id)((1⊗

b
â)δC(c)) · δD(d)(1⊗

b
â′) = (1⊗

b
â)δD(ρ(c)d)(1⊗

b
â′) for all

c ∈ C, d ∈ D, â, â′ ∈ Â.

Proof. The semi-morphism Ind|β〉2(ρ) of Lemma 2.1 evidently restricts to a
semi-morphism ρ or id from C or Â to M(D or Â) which satisfies the formula
given above, and this formula implies that ρ or id is a morphism of coactions as
claimed.

COROLLARY 4.5. There exists a functor −or Â : Coact(A,∆) → Coact(Â,∆̂)

given by (C, δ) 7→ (C or Â, δ̂) and ρ 7→ ρ or id.

4.2. REDUCED CROSSED PRODUCTS FOR COACTIONS OF (Â, ∆̂). The construction
in the preceding paragraph carries over to coactions of the Hopf C∗-bimodule
(Â, ∆̂) as follows. Let δ be a coaction of (Â, ∆̂) on a C∗-b†-algebra C = Cγ

K and let

C or A := [δ(C)(1⊗
b†

UAU)] ⊆ L(Kγ⊗
b†

α H), C or A = (Kγ⊗
b†

α Hα̂, C or A).

Using straightforward modifications of the preceding proofs, one shows:

PROPOSITION 4.6. (i) [δ(C)(γ . α̂)] ⊆ γ . α̂ with equality if δ is fine.
(ii) C or A is a C∗-algebra and C or A is a C∗-b-algebra.

(iii) There exist nondegenerate ∗-homomorphisms C→M(C or A) and A→M(C or
A), given by c 7→ δ(c) and a 7→ 1⊗

b†
a, respectively.

THEOREM 4.7. There exists a unique coaction (C or A, δ̂) of (A, ∆) such that
δ̂(δ(c)(1⊗

b†
UaU)) = (δ(c)⊗

b
1)(1⊗

b†
Ad(U⊗

b
1) ∆(a)) for all c ∈ C, a ∈ A. If ∆ is a fine

coaction, then δ̂ is a very fine coaction. If δ is left-full, then δ̂ is left-full.

DEFINITION 4.8. Let (C, δ) be a coaction of (Â, ∆̂). Then we call C or A the
reduced crossed product and (C or A, δ̂) the reduced dual coaction of (C, δ).
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PROPOSITION 4.9. Let ρ be a morphism between coactions (C, δC) and (D, δD) of
(Â, ∆̂). Then there exists a unique morphism ρor id from (CorA, δ̂C) to (DorA, δ̂D)
such that (ρor id)((1⊗

b†
UaU)δC(c)) · δD(d)(1⊗

b†
Ua′U) = (1⊗

b†
UaU)δD(ρ(c)d)(1⊗

b†

Ua′U) for all c ∈ C, d ∈ D, a, a′ ∈ A.

COROLLARY 4.10. There exists a functor −or A : Coact(Â,∆̂) → Coact(A,∆)

given by (C, δ) 7→ (C or A, δ̂) and ρ 7→ ρ or id.

4.3. THE DUALITY THEOREM. The preceding constructions yield for each coac-

tion (C, δC) of (A, ∆) and each coaction (D, δD) of (Â, ∆̂) a bidual (CorÂorA, ̂̂δC)
and (DorAor Â, ̂̂δD), respectively. The following generalization of the Baaj–
Skandalis duality theorem [3] identifies these biduals in the case where (V, U)
is a C∗-pseudo-Kac system and the initial coactions are fine. Morally, it says that
up to Morita equivalence, the functors −or Â and −or A implement an equiv-
alence of the categories Coact f

(A,∆) and Coact f
(Â,∆̂)

.

THEOREM 4.11. Assume that (V, U) is a C∗-pseudo-Kac system.
(i) Let (C, δ) be a (very) fine coaction of (A, ∆), where C = Cγ

K. Then there exists
an isomorphism Φ : C or Â or A → [|β〉2C〈β|2] ⊆ L(Kγ⊗

b
β H) such that Φ−1 is an

(iso)morphism from (Kγ⊗
b

β Hα̂, [|β〉2C〈β|2]) to C or Âor A and ̂̂δ ◦ Φ−1 = (Φ−1 ∗
id) ◦Ad(1⊗

b
ΣV̂) ◦ Ind|β〉2(δ).

(ii) Let (D, δ) be a (very) fine coaction of (Â, ∆̂), where D = Dε
l . Then there exists

an isomorphism Φ : D or A or Â ∼= [|α〉2D〈α|2] ⊆ L(Lε⊗
b†

αH) such that Φ−1 is an

(iso)morphism from (Lε⊗
b†

α H
β̂
, [|α〉2D〈α|2]) to D or Aor Â and ̂̂δ ◦ Φ−1 = (Φ−1 ∗

id) ◦Ad(1⊗
b†

ΣV) ◦ Ind|α〉2(δ).

Proof. We only prove (i); then (ii) follows after replacing (V, U) by (V̌, U).
By Proposition 3.4 and Proposition 3.11, applied to the C∗-pseudo-Kac system
(V̌, U), we have [Â AdU(A)] = [AV̌ ÂV̌ ] = [ββ∗], and since δ is fine,

[|β〉2C〈β|2] = [δ(C)(1⊗
b

ββ∗)] = [δ(C)(1⊗
b

Â AdU(A))].

One easily verifies that the ∗-homomorphism Ind|β〉2(δ) (see Lemma 2.1) yields
an (iso)morphism of C∗-b-algebras

Ind|β〉2(δ) : (Kγ⊗
b

β Hα̂, [|β〉2C〈β|2])→ (Kγ⊗
b

β Hα⊗
b

β Hα̂, [|β〉2δ(C)〈β|2]).

Denote by Ψ the composition of this (iso)morphism with Ad(1⊗
b

V∗) and let δ(2) =

(δ ∗ id) ◦ δ = (id ∗∆) ◦ δ. Let x = δ(c)(1⊗
b

âUaU) ∈ [|β〉2C〈β|2], where c ∈ C, â ∈
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Â, a ∈ A. By Lemma 3.6,

Ψ(x) = Ad(1⊗
b

V∗)(δ
(2)(c)(1⊗

b
1⊗

b
âUaU)) = (δ(c)⊗

b†
1)(1⊗

b
∆̂(â))(1⊗

b
1⊗
b†

UaU).

Consequently, Ψ([|β〉2C〈β|2]) = C or Â or A. Next, the relations C or Âor A =

(Kγ⊗
b

β H
β̂
⊗
b†

α Hα̂, Cor Âor A) and (1⊗
b

V∗)(γ . α . α̂) = γ . β̂ . α̂ imply that Ψ is a

morphism of C∗-b-algebras as claimed. Using the definition of ̂̂δ, Proposition 3.4,
and Lemma 3.6, we find̂̂δ(Ψ(x)) = (δ(c)⊗

b†
1⊗

b
1)(1⊗

b
∆̂(â)⊗

b
1)(1⊗

b
1⊗
b†

Ad(U⊗
b

1)(∆(a)))

= Ad(1⊗
b

V∗⊗
b

1)((δ
(2)(c)⊗

b
1)(1⊗

b
1⊗

b
â⊗

b
1)(1⊗

b
1⊗

b
Ad(U⊗

b
1)(∆(a))))

= (Ψ ∗ id)((δ(c)⊗
b

1)(1⊗
b

â⊗
b

1)(1⊗
b

Ad(U⊗
b

1)(∆(a))))

= (Ψ ∗ id)((1⊗
b

ΣV̂)δ(2)(c)(1⊗
b

1⊗
b

âUaU)(1⊗
b

V̂∗Σ))

= (Ψ ∗ id)((1⊗
b

ΣV̂)(Ind|β〉2(δ)(x))(1⊗
b

V̂∗Σ)).

5. THE C∗-PSEUDO-KAC SYSTEM OF A GROUPOID

For the remainder of this article, we fix a locally compact, Hausdorff, sec-
ond countable groupoid G with a left Haar system λ. In [27], we associated to
such a groupoid a regular C∗-pseudo-multiplicative unitary V and identified the
underlying C∗-algebras of the Hopf C∗-bimodules (Â, ∆̂) and (A, ∆) of V with
the function algebra C0(G) and the reduced groupoid C∗-algebra C∗r (G), respec-
tively. We now recall this construction and define a symmetry U such that (V, U)
becomes a C∗-pseudo-Kac system. For background on groupoids, see [20], [23].

Denote by λ−1 the right Haar system associated to λ and let µ be a measure
on the unit space G0 with full support. We denote the range and the source map
of G by r and s, respectively, let Gu := r−1(u) and Gu := s−1(u) for each u ∈ G0,
and define measures ν, ν−1 on G such that∫

G

f dν =
∫

G0

∫
Gu

f (x)dλu(x)dµ(u),
∫
G

f dν−1 =
∫

G0

∫
Gu

f (x)dλ−1
u (x)dµ(u)

for all f ∈ Cc(G). We assume that µ is quasi-invariant in the sense that ν and
ν−1 are equivalent, and denote by D :=

∫
dν/

∫
dν−1 the Radon–Nikodym de-

rivative. One can choose D such that it is a Borel homomorphism (see page 89 in
[20]), and we do so.

We identify functions in Cb(G0) and Cb(G) with multiplication operators
on the Hilbert spaces L2(G0, µ) and L2(G, ν), respectively, and let K = L2(G0, µ),
B = B† = C0(G0) ⊆ L(K), b = (K,B,B†) = b, H = L2(G, ν).
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Pulling functions on G0 back to G along r or s, we obtain representations r∗ :
C0(G0)→ Cb(G) ↪→ L(H) and s∗ : C0(G0)→ Cb(G) ↪→ L(H). We define Hilbert
C∗-C0(G0)-modules L2(G, λ) and L2(G, λ−1) as the respective completions of the
pre-C∗-module Cc(G), the structure maps being given by

〈ξ ′|ξ〉(u) =
∫

Gu

ξ ′(x)ξ(x)dλu(x), ξ f = r∗( f )ξ in the case of L2(G, λ),

〈ξ ′|ξ〉(u) =
∫

Gu

ξ ′(x)ξ(x)dλ−1
u (x), ξ f = s∗( f )ξ in the case of L2(G, λ−1)

respectively, for all ξ, ξ ′ ∈ Cc(G), u ∈ G0, f ∈ C0(G0). Then there exist isometric
embeddings j : L2(G, λ)→ L(K, H) and ĵ : L2(G, λ−1)→ L(K, H) such that

(j(ξ)ζ)(x) = ξ(x)ζ(r(x)), ( ĵ(ξ)ζ)(x) = ξ(x)D−1/2(x)ζ(s(x))

for all ξ ∈ Cc(G), ζ ∈ Cc(G0). Let α = β := j(L2(G, λ)) and α̂ = β̂ :=
ĵ(L2(G, λ−1)). Then (H, α̂, β̂, α, β) is a C∗-(b, b†, b, b†)-module, ρα = ρβ = r∗

and ρα̂ = ρ
β̂

= s∗, and j(ξ)∗ j(ξ ′) = 〈ξ|ξ ′〉 and ĵ(η)∗ ĵ(η′) = 〈η|η′〉 for all

ξ, ξ ′ ∈ L2(G, λ), η, η′ ∈ L2(G, λ−1); see Section 2.3 in [27].
The Hilbert spaces H

β̂
⊗
b†

α H and Hα⊗
b

βH can be described as follows. Define

measures ν2
s,r on Gs×rG and ν2

r,r on Gr×rG such that∫
Gs×rG

f
∫

dν2
s,r =

∫
G0

∫
Gu

∫
Gs(x)

f (x, y)dλs(x)(y)dλu(x)dµ(u),

∫
Gr×rG

g
∫

dν2
r,r =

∫
G0

∫
Gu

∫
Gu

g(x, y)dλu(y)dλu(x)dµ(u)
(5.1)

for all f ∈ Cc(Gs×rG), g ∈ Cc(Gr×rG). Then there exist unitaries

Φ : H
β̂
⊗
b†

α H → L2(Gs×rG, ν2
s,r) and Ψ : Hα⊗

b
β H → L2(Gr×rG, ν2

r,r)

such that for all η, ξ ∈ Cc(G), ζ ∈ Cc(G0),

Φ( ĵ(η)= ζ < j(ξ))(x, y) = η(x)D−1/2(x)ζ(s(x))ξ(y),

Ψ(j(η)= ζ < j(ξ))(x, y) = η(x)ζ(r(x))ξ(y).

From now on, we use these isomorphisms without further notice.

THEOREM 5.1. There exists a C∗-pseudo-Kac system (V, U) on (H, α̂, β̂, α, β)
such that for all ω ∈ Cc(Gs×rG), (x, y) ∈ Gr×rG, ξ ∈ Cc(G), z ∈ G,

(Vω)(x, y) = ω(x, x−1y) and (Uξ)(x) = ξ(x−1)D(x)−1/2.(5.2)

Proof. By Theorem 2.5 and Example 4.3(ii) in [27], there exists a regular
C∗-pseudo-multiplicative unitary V as claimed. The second formula in (5.2) de-
fines a unitary U ∈ L(H) by definition of the Radon–Nikodym derivative D =
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dν/dν−1, and U2 = id because (U2ξ)(x) = (Uξ)(x−1)D(x)−1/2 = ξ(x)D(x)1/2

D(x)−1/2 = ξ(x) for all ξ ∈ Cc(G) and x ∈ G. The unitary V̂ = ΣU1VU1Σ is
equal to Vop = ΣV∗Σ because

(U1VU1ω)(x, y) = (VU1ω)(x−1, y)D(x)−1/2 = (U1ω)(x−1, xy)D(x)−1/2

= ω(x, xy)D(x−1)−1/2D(x)−1/2 = ω(x, xy)

for all ω ∈ Cc(Gr×rG), (x, y) ∈ Gs×rG. In particular, V̂ is a regular C∗-pseudo-
multiplicative unitary. It remains to show that the map Z := ΣU2V : H

β̂
⊗
b†

α H →

H
β̂
⊗
b†

αH satisfies Z3 = 1. But for all ω ∈ Cc(Gs×rG) and (x, y) ∈ Gs×rG,

(Zω)(x, y)=(Vω)(y, x−1)D(x)−1/2 = ω(y, y−1x−1)D(x)−1/2,

(Z3ω)(x, y)=(Z2ω)(y, y−1x−1)D(x)−1/2=(Zω)(y−1x−1, xyy−1)(D(x)D(y))−1/2

= ω(x, x−1xy)(D(x)D(y)D(y−1x−1))−1/2 = ω(x, y).

The Hopf C∗-bimodules (Â, ∆̂) and (A, ∆) associated to V can be described
as follows; see Theorem 3.16 in [27]. Given g ∈ Cc(G), define L(g) ∈ C∗r (G) ⊆
L(H) by

(L(g) f )(x) =
∫

Gr(x)

g(z) f (z−1x)D−1/2(z)dλr(x)(z)

for all x ∈ G, f ∈ Cc(G) ⊆ L2(G, ν) = H. Then

Â=C0(G) ⊆ L(H), (∆̂( f )ω)(x, y) = f (xy)ω(x, y),(5.3)

A=C∗r (G), (∆(L(g))ω′)(x′, y′)=
∫

Gu′

g(z)D−1/2(z)ω′(z−1x′, z−1y′)dλu′(z)

for all f ∈ C0(G), ω ∈ Cc(Gs×rG), (x, y) ∈ Gs×rG and g ∈ Cc(G), ω′ ∈
Cc(Gr×rG), (x′, y′) ∈ Gr×rG, where u′ = r(x′) = r(y′). We shall loosely refer
to C0(G) and C∗r (G) as Hopf C∗-bimodules, having in mind (Â, ∆̂) and (A, ∆),
respectively.

6. ACTIONS OF G AND COACTIONS OF C0(G)

Let G be a groupoid and consider C0(G) as a Hopf C∗-bimodule as in the
preceding section. Then coactions of C0(G) can be related to actions of G as fol-
lows. Let us say that a tuple (F, G, η, ε) is an embedding of a category C into a category
D as a full and coreflective subcategory if F : C → D is a full and faithful functor
and G : D → C is a faithful right adjoint to F, where η : idC → GF is the unit
and ε : FG → idD is the counit of the adjunction; see also Section IV.3 in [18]. In
this section, we construct such an embedding of the category of actions of G on
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continuous C0(G0)-algebras into the category of certain admissible coactions of
C0(G). We keep the notation introduced in the preceding section.

6.1. C0(G0)-ALGEBRAS AND C∗-b-ALGEBRAS. We shall embed the category of
admissible C0(G0)-algebras into the category of admissible C∗-b-algebras as a full
and coreflective subcategory.

Recall that a C0(X)-algebra, where X is some locally compact Hausdorff
space, is a C∗-algebra C with a fixed nondegenerate ∗-homomorphism of C0(X)
into the center of the multiplier algebra M(C) [6], [14]. We denote the fiber of a
C0(X)-algebra C at a point x ∈ X by Cx and write the quotient map px : C → Cx
as c 7→ cx. Recall that C is a continuous C0(X)-algebra if the map X → R given by
x 7→ ‖cx‖ is continuous for each c ∈ C. A morphism of C0(X)-algebras C, D is a
nondegenerate ∗-homomorphism π : C → M(D) such that π( f c) = f π(c) for all
f ∈ C0(X), c ∈ C.

DEFINITION 6.1. We call a C0(G0)-algebra C admissible if it is continuous
and if Cu 6= 0 for each u ∈ G0, and we call a C∗-b-algebra Cγ

K admissible if
[ργ(C0(G0))C] = C and [Cγ] = γ. A morphism between admissible C∗-b-algebras
Cγ

K, Dε
l is a semi-morphism π from Cγ

K to M(D)ε
l that is nondegenerate in the

sense that [π(C)D] = D. Denote by C0(G0)-alga the category of all admissible
C0(G0)-algebras, and by C∗-b-alga the category of all admissible C∗-b-algebras.

LEMMA 6.2. (i) Let Cγ
K be an admissible C∗-b-algebra. Then C is an admissible

C0(G0)-algebra with respect to ργ.
(ii) Let π be a morphism between admissible C∗-b-algebras Cγ

K and Dε
l . Then π is a

morphism of C0(G0)-algebras from (C, ργ) to (D, ρε).

Proof. (i) First, note that ργ(C0(G0)) ⊆ M(C) is central because C ⊆ L(Kγ)

⊆ ργ(C0(G0))′. The map C ↪→ L(Kγ) ∼= L(γ) is a faithful field of representations
in the sense of Theorem 3.3 in [6], and therefore C is a continous C0(G0)-algebra.
We have Cu 6= 0 for each u ∈ G0 because otherwise C = [CIu], where Iu =
C0(G0 \ {u}), and then [γ∗γ] = [γ∗Cγ] = [γ∗ IuCγ] = [γ∗γIu] = Iu 6= C0(G0),
contradicting the fact that Kγ is a C∗-b-module.

(ii) This is Lemma 3.4 in [28].

We embed C0(G0)-alga into C∗-b-alga using a KSGNS-construction for the
following kind of weights.

DEFINITION 6.3. A C0(G0)-weight on a C0(G0)-algebra C is a C0(G0)-linear,
positive map φ : C → C0(G0). We denote the set of all such weights byW(C).

Let C be an admissible C0(G0)-algebra. The results in [4] imply:

LEMMA 6.4.
⋂

φ∈W(C)
ker φ = {0} and

[ ⋃
φ∈W(C)

φ(C)
]
= C0(G0).
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Let φ ∈ W(C). Then φ is completely positive by Theorem 3.9 in [21] and
bounded by Lemma 5.1 in [16]. Let Eφ = C =φ K (see Section 1) and define ηφ :
C → L(Eφ) and lφ : C → L(K, Eφ) by ηφ(c)(d =φ ζ) = cd =φ ζ and lφ(c)ζ = c =φ ζ

for all c, d ∈ C, ζ ∈ K. One easily verifies that for all c, d ∈ C, f ∈ C0(G0), ζ ∈ K,

lφ(c)∗lφ(d) = φ(c∗d), lφ(c) f = lφ(c f ),

ηφ(c)(d =φ f ζ) = cd f =φ ζ = ηφ(c f )(d =φ ζ).
(6.1)

The universal C0(G0)-representation ηC : C → L(EC) of C is the direct sum of the
representations ηφ : C → L(Eφ), where φ ∈ W(C). Denote by lC ⊆ L(K, EC) the
closed linear span of all maps lφ(c) : K→ Eφ ↪→ EC, where c ∈ C, φ ∈ W(C).

LEMMA 6.5. ηC(C)
lC
EC

is an admissible C∗-b-algebra and ηC is an isomorphism of
C0(G0)-algebras from C to (ηC(C), ρlC ).

Proof. The definition of lC, the equations (6.1) and Lemma 6.4 imply that

[lCK] =
⊕
φ

Eφ = EC, [l∗ClC] =
[⋃

φ
φ(C)

]
= C0(G0) and [lCC0(G0)] = lC, whence

(EC, lC) is a C∗-b-module, and that [ηC(C)ρlC (C0(G0))] = [ηC(CC0(G0))] = ηC(C)
and [ηC(C)lC] = lC, whence ηC(C)

lC
EC

is an admissible C∗-b-algebra. Lemma 6.4
implies that ηC is injective and hence an isomorphism of C onto ηC(C), and
the last equation in (6.1) implies that ηC(c)ργ( f ) = ηC(c f ) for all c ∈ C, f ∈
C0(G0).

THEOREM 6.6. There exists an embedding as a full and coreflective subcategory
(F, G, η, ε) of C0(G0)-alga into C∗-b-alga such that the following conditions hold:

(i) F is given by C 7→ ηC(C)
lC
EC

on objects and by Fπ : ηC(c) 7→ ηD(π(c)) for each
morphism π between objects C, D in C0(G0)-alga;

(ii) G is given by Cγ
K 7→ (C, ργ) on objects and π 7→ π on morphisms;

(iii) ηC is defined as above for each object C in C0(G0)-alga;
(iv) εC = η−1

GC for each object C in C∗-b-alga.

Proof. The functor G : C∗-b-alga → C0(G0)-alga is well defined by Lem-
ma 6.2 and evidently faithful.

Let C be an admissible C0(G0)-algebra,D = Dγ
K an admissible C∗-b-algebra,

and π : C → GD a morphism in C0(G0)-alga. We claim that π ◦ η−1
C is a mor-

phism from FC to D in C∗-b-alga. Let ξ ∈ γ. Then the map φ : C → C0(G0) ⊆
L(K) given by c 7→ ξ∗π(c)ξ is a C0(G0)-weight, and there exists an isometry
S : Eφ → K such that S(c =φ ζ) = π(c)ξζ for all c ∈ C, ζ ∈ K. Denote by
P : EC → Eφ the natural projection. Then [SPlC] = [Slφ(C)] = [π(C)ξ] lies in γ
and contains ξ, and SPηC(c) = Sηφ(c) = π(c) for each c ∈ C. Since ξ ∈ γ was
arbitrary, the claim follows.
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Using Lemma 6.5, we conclude that F is well defined and that η is a natural
isomorphism from id to GF. Indeed, if π : C → D is a morphism in C0(G0)-alga,
then Fπ = ηD ◦ π ◦ η−1

C is a morphism from FC to FD by the argument above.
Finally, let D be an admissible C∗-b-algebra. The argument above, applied

to the identity on GD, yields a morphism εD from FGD to D in C∗-b-alga such

that the composition GD ηGD−−→GFGD GεD−−→GD is the identity. Since η is a natural
transformation, also ε : FG → id is one. For each admissible C0(G0)-algebra

C, the composition FC
FηC−−→ FGFC

εFC−−→ FC is the identity by construction. From
Theorem 2 of Section IV.1 in [18], we can conclude that F is a left adjoint to G
such that η and ε form the unit and counit, respectively, of the adjunction. Since
η is a natural isomorphism, F is full and faithful by Theorem 1 of Section IV.3 in
[18].

6.2. ACTIONS OF G AND COACTIONS OF C0(G). We next embed the category of
admissible actions of G as a full and coreflective subcategory into the category of
all admissible coactions of C0(G).

The definition of an action of G requires the following preliminaries. Given
C0(G0)-algebras (C, ρ) and (D, σ), where D is commutative, we denote by Cρ �σ

D the C0(G0)-tensor product [5], and drop the subscript ρ or σ if this map is
understood. Given a C0(G0)-algebra C and a continuous surjection t : G → G0,
we consider C0(G) as a C0(G0)-algebra via t∗ : C0(G0) → M(C0(G)) and let
t∗C := C �t∗ C0(G), which is a C0(G)-algebra in a natural way. Each morphism
π of C0(G0)-algebras C, D induces a morphism of t∗π of C0(G)-algebras from
t∗C to t∗D via c � f 7→ π(c) � f . An action of G on a C0(G0)-algebra C is an
isomorphism σ : s∗C → r∗C of C0(G)-algebras such that the restrictions of σ to
the fibers satisfy σx ◦ σy = σxy for all (x, y) ∈ Gs×rG [17]. A morphism between
actions (C, σC) and (D, σD) of G is a morphism of C0(G0)-algebras π from C to D
satisfying σD ◦ s∗π = r∗π ◦ σC.

DEFINITION 6.7. We call an action (C, σ) of G admissible if the C0(G0)-algebra
C is admissible, and we call a coaction (Cγ

K, δ) of C0(G) admissible if Cγ
K is an ad-

missible C∗-b-algebra and [δ(C)(1⊗
b

C0(G))] = C⊗
b

C0(G) in L(Kγ⊗
b

α H).

REMARK 6.8. If σ is an action of G on a continuous C0(G0)-algebra, then the
subset Y := {u ∈ G0 : Cu 6= 0} ⊆ G0 is open, C is an admissible C0(Y)-algebra,
and σ restricts to an action of the subgroupoid G|Y :={x∈G : r(x), s(x)∈Y}⊆G.

LEMMA 6.9. Let Cγ
K and Dε

l be admissible C∗-b-algebras, where D is commutative.
Then there exists an isomorphism Cργ �ρε D → Cγ⊗

b
εD, c � d 7→ c⊗

b
d.

Proof. Use Lemma 2.7 in [5] and apply Proposition 4.1 in [5] to the field of
representations C ↪→ L(Kγ) ∼= L(γ), noting that γ =ρε D ∼= [|γ〉1D] as a Hilbert
C∗-D-module via ξ = d 7→ |ξ〉1d and that (Cγ⊗

b
εD)[|γ〉1D] ⊆ [|γ〉1D].
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We use the isomorphism above without further notice.

PROPOSITION 6.10. (i) Let (Cγ
K, δ) be an admissible coaction of C0(G). There

exists a unique action σδ of G on (C, ργ) given by c � f 7→ δ(c)(1⊗
b

f ).

(ii) Let (C, σ) be an admissible action of G. There exists a unique admissible, injective
coaction δσ of C0(G) on FC given by ηC(c) 7→ (r∗ηC)(σ(c � 1)).

Proof. (i) Since δ(C) and 1⊗
b

C0(G) commute, there exists a unique ∗-homo-

morphism σ̃ from the algebraic tensor product C� C0(G) to r∗C such that σ̃(c�
f ) = δ(c)(1 ⊗

b
f ) for all c ∈ C, f ∈ C0(G). Since δ is a coaction, δ(cργ(g)) =

δ(c)ρ(γ.β̂)(g) = δ(c)(1⊗
b

s∗(g)) for all g ∈ C0(G0). From Lemma 2.7 in [5], we can

conclude that σ̃ factorizes to a ∗-homomorphism σ = σδ : s∗C → r∗C satisfying
the formula in (i). This σ is surjective because [δ(C)(1⊗

b
C0(G))] = C ⊗

b
C0(G).

In particular, σx is surjective for each x ∈ G. We claim that σx ◦ σy = σxy for
all (x, y) ∈ Gs×rG. Define r1 : Gs×rG → G0 by (x, y) 7→ r(x). By Lemma
6.9, we have isomorphisms Cγ⊗

b
αC0(G)

β̂
⊗
b

αC0(G) ∼= C �r∗ C0(G)s∗ �r∗ C0(G) ∼=
C �r∗1

C0(Gs×rG) ∼= r∗1C. Using formula (5.3), we find

σx ◦ σy ◦ ps(y) = σx ◦ py ◦ δ = p(x,y) ◦ (δ ∗ id) ◦ δ,

σxy ◦ ps(y) = pxy ◦ δ = p(x,y) ◦ (id ∗∆̂) ◦ δ,
(6.2)

and the claim follows. Finally, σu = idCu for each u ∈ G0 because σu is surjective
and idempotent, and σx is injective for each x ∈ G because σs(x) = σx−1 ◦ σx is
injective. Therefore, σ is injective.

(ii) Let D := ηC(C)lC⊗
b

αC0(G). Then D := ((EC)lC⊗
b

α H
β̂
, D) is an admis-

sible C∗-b-algebra. Define δ : C → D by c 7→ (r∗ηC)(σ(c � 1)). Let c ∈ C,
g ∈ C0(G0). Then cg � 1 = c � s∗(g) in M(C �s∗ C0(G)) and therefore δ(cg) =
δ(c)(1 ⊗

b
s∗(g)) = δ(c)ρ(lC.β̂)(g). Consequently, δ is a morphism of C0(G0)-

algebras from C to (D, ρlC.β̂
) = GD. By definition of F and ε, the morphism

δσ := εD ◦ Fδ : FC → FGD → D satisfies δσ ◦ ηC = δ, and a similar calculation
as in (6.2) shows that (δσ ∗ id) ◦ δσ = (id ∗∆̂) ◦ δσ. Consequently, δσ is a coaction
of (Â, ∆̂). Since σ is injective, so are δ and δσ. Finally, δσ is admissible because
[δσ(ηC(C))(1⊗

b
C0(G))] = (r∗ηC)(σ(s∗C)) = r∗ηC(C) = [ηC(C)⊗

b
C0(G)].

COROLLARY 6.11. Every admissible coaction of C0(G) is injective, left-full, and
right-full.

Proof. If (Cγ
K, δ) is an admissible coaction, then the relations [C0(G)α] = α

and [Cγ] = γ imply [δ(C)|α〉2] = [δ(C)(1⊗
b

C0(G))|α〉2] = [(C ⊗
b

C0(G))|α〉2] =
[|α〉2C] and [δ(C)|γ〉1C0(G)] = [δ(C)(1 ⊗

b
C0(G))|γ〉1] = [(C ⊗

b
C0(G))|γ〉1] =
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[|γ〉1C0(G)]. Finally, δ is injective because σδ is injective and δ(c) = σδ(c � 1) for
all c ∈ C.

PROPOSITION 6.12. Let (C, δC), (D, δD) be admissible coactions with associated
actions σC = σδC , σD = σδD , and let π ∈ C∗-b-alga(C,D) = C0(G0)-alga

(GC, GD).
Then (π ∗ id) ◦ δC = δD ◦ π if and only if r∗π ◦ σC = σD ◦ s∗π.

Proof. Write C = Cγ
K. The assertion holds because for all c ∈ C and f ∈

C0(G),

((π ∗ id)(δC(c)))(1⊗
b

f ) = (π ∗ id)(δC(c)(1⊗
b

f )) = (r∗π ◦ σC)(c � f ),

δD(π(c))(1⊗
b

f ) = σD(π(c) � f ) = (σD ◦ s∗π)(c � f ).

We denote by G-acta and Coacta
C0(G) the categories of all admissible actions

of G and all admissible coactions of C0(G), respectively.

THEOREM 6.13. There exists an embedding as a full and coreflective subcategory
(F̂, Ĝ, η̂, ε̂) of G-acta into Coacta

C0(G), where

(i) F̂ is given by (C, σ) 7→ (FC, δσ) on objects and π 7→ Fπ on morphisms;
(ii) Ĝ is given by (C, δ) 7→ (GC, σδ) on objects and π 7→ Gπ = π on morphisms;

(iii) η̂(C,σ) = ηC and ε̂(C,δ) = εC for all objects (C, σ) and (C, δ).

Proof. The assignments Ĝ and F̂ are well defined on objects and morphisms
by Propositions 6.10 and 6.12. For each admissible action (C, σ), we have ηC ∈
G-acta((C, σ), ĜF̂(C, σ)) because σδσ

(ηC(c)� f ) = δσ(ηC(c))(1⊗
b

f )= r∗ηC(σ(c�

f )) for all c ∈ C, f ∈ C0(G), and Proposition 6.12 implies that εC = η−1
GC ∈

Coacta
C0(G)(F̂Ĝ(C, δ), (C, δ)) for each admissible coaction (C, δ). Now, the asser-

tion follows from Theorem 6.6.

6.3. COMPARISON OF THE ASSOCIATED REDUCED CROSSED PRODUCTS. The re-
duced crossed product for an action (C, σ) of G is defined as follows [17]. The
subspace Cc(G; C, σ) := Cc(G)r∗C ⊆ r∗C carries the structure of a ∗-algebra and
the structure of a pre-Hilbert C∗-module over C such that

(ab)x =
∫

Gr(x)

ayσy(by−1x)dλr(x)(y), (a∗)x = σx(a∗x−1),

〈a|b〉u =
∫

Gu

σy((ay−1)∗by−1)dλu(y) = (a∗b)u, (ac)x = axσx(cs(x))

for all a, b ∈ Cc(G; C, σ), u ∈ G0 and c ∈ C, x ∈ G. Denote the completion
of this pre-Hilbert C∗-module by L2(G, λ−1; C, σ). Using the relation 〈a|bd〉u =
(abd)u = 〈b∗a|d〉u, which holds for all a, b, d ∈ Cc(G; C, σ), u ∈ G0, and a routine
norm estimate, one verifies the existence of a ∗-homomorphism π : Cc(G; C, σ)→
L(L2(G, λ−1; C, σ)) such that π(b)d = bd for all b, d ∈ Cc(G; C, σ). Then the
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reduced crossed product of (C, σ) is the C∗-algebra C oσ,r G := [π(Cc(G; C, σ))] ⊆
L(L2(G, λ−1; C, σ)).

PROPOSITION 6.14. Let (Cγ
K, δ) be an admissible coaction of C0(G), consider C as

a C0(G0)-algebra via ργ, and let σ = σδ. Then there exists an isomorphism C oσδ ,r G →
C or C∗r (G) given by π(c � f ) 7→ δ(c)(id⊗

b
UL( f )U) for all c ∈ C, f ∈ Cc(G).

Proof. Let δU := Ad(id⊗
b

U) ◦δ : C → L(Kγ⊗
b

α̂ H). We equip Cc(G; C, σ) with

the structure of a pre-Hilbert C∗-module over C such that (ac)x = axcs(x) and
〈a|b〉u =

∫
Gu

(ax)∗bx dλ−1
u (x) for all a, b ∈ Cc(G; C, σ), c ∈ C, u ∈ G0, and denote

by L2(G, λ−1; C) the completion. One easily checks that there exists a unique
unitary Φ : L2(G, λ−1; C) → [|α̂〉2C] = [δU(C)|α̂〉2〉] given by c � f 7→ | ĵ( f )〉2c,
and that for all c ∈ C, f ∈ Cc(G), y ∈ G,

Φ−1(δU(c)| ĵ( f )〉2)y = σy−1(cr(y)) f (y).

Hence, there exists a unitary Ψ : L2(G, λ−1; C, σ) → [δU(C)|α̂〉2〉] given by c �
f 7→ δU(c)| ĵ( f )〉2. Let c, d ∈ C, f , g ∈ Cc(G) and ω = Φ−1(Ψ(c � f )). Then
δU(d)(id⊗

b
L(g))Ψ = Ψπ(d � g) because for all x ∈ G,

Φ−1(δU(d)(id⊗
b

L(g))Φ(ω))x =
∫

Gu

σx−1(dr(x))g(xy−1)ωy dλ−1
u (y)

=
∫

Gu

σx−1(dr(xy−1)g(xy−1)σxy−1(cr(y)) f (y))dλ−1
u (y)

= Φ−1(Ψ(π(d � g)(c � f )))x.

Since d ∈ C and g ∈ Cc(G) were arbitrary, the assertion follows.

7. FELL BUNDLES ON GROUPOIDS

We now gather preliminaries on Fell bundles that are needed in Sections 8
and 9. We use the notion of a Banach bundle and standard notation; see [8].

7.1. FELL BUNDLES ON GROUPOIDS AND THEIR C∗-ALGEBRAS. We first recall the
notion of a Fell bundle on G and the definition of the associated reduced C∗-
algebra [15]. Given an upper semicontinuous Banach bundle p : F → G, denote
by F 0 the restriction of F to G0, by F sp×rpF the restriction of F ×F to Gs×rG,
by Fx for each x ∈ G the fiber at x, by Γc(F ) the space of continuous sections of
F with compact support, and by Γ0(F 0) the space of continuous sections of F 0

that vanish at infinity in norm.
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DEFINITION 7.1. A Fell bundle on G is an upper semicontinuous Banach
bundle p : F → G with a continuous multiplication F sp×rpF → F and a con-
tinuous involution ∗ : F → F such that for all e ∈ F , (e1, e2) ∈ F sp×rpF ,
(x, y) ∈ Gs×rG,

(i) p(e1e2) = p(e1)p(e2) and p(e∗) = p(e)−1;
(ii) the map Fx × Fy → Fxy, (e′1, e′2) 7→ e′1e′2, is bilinear and the map Fx →

Fx−1 , e′ 7→ e′∗, is conjugate linear;
(iii)(e1e2)e3 = e1(e2e3), (e1e2)

∗ = e∗2e∗1 , and (e∗)∗ = e;
(iv) ‖e1e2‖ 6 ‖e1‖‖e2‖, ‖e∗e‖ = ‖e‖2, and e∗e > 0 in the C∗-algebra Fs(p(e)).

We call F saturated if [FxFy] = Fxy for all (x, y) ∈ Gs×rG, and admissible if
Γ0(F 0) is an admissible C0(G0)-algebra with respect to the pointwise operations.

Let F be a Fell bundle on G. The associated reduced C∗-algebra is defined
as follows. The space Γc(F ) is a ∗-algebra with respect to the multiplication and
involution given by

(cd)(x) =
∫

Gr(x)

c(y)d(y−1x)dλr(x)(y) =
∫

Gs(x)

c(xz−1)d(z)dλ−1
s(x)(z)(7.1)

and c∗(x) = c(x−1)∗, respectively, and a pre-Hilbert C∗-module over Γ0(F 0) with
respect to the structure maps

〈c|d〉(u) =
∫

Gu

c(x)∗d(x)dλ−1
u (x) = (c∗d)(u), (ce)(x) = c(x)e(s(x)),

where c, d ∈ Γc(F ), e ∈ Γ0(F 0), x ∈ G. Denote by Γ2(F , λ−1) the completion of
this pre-Hilbert C∗-module. Then there exists a ∗-homomorphism

LF : Γc(F )→ L(Γ2(F , λ−1)), LF (a)b = ab for all a, b ∈ Γc(F ),

and C∗r (F ) := [LF (Γc(F ))] ⊆ L(Γ2(F , λ−1)) is the reduced C∗-algebra of F . We
identify Γc(F ) with LF (Γc(F )) ⊆ C∗r (F ) via LF .

We equip Γc(F ) with the inductive limit topology; thus, a net converges if it
converges uniformly and if the supports of its members are contained in some
compact set. We shall use the following result; see Proposition 2.3 in [8].

LEMMA 7.2. Let E be an upper semicontinuous Banach bundle on a locally com-
pact, second countable, Hausdorff space X and let Γ′ ⊆ Γc(E) be a subspace such that

(i) Γ′ is closed under pointwise multiplication with elements of Cc(X);
(ii) { f (x) : f ∈ Γ′} ⊆ Ex is dense for each x ∈ X.

Then Γ′ is dense in Γc(E).
Given f ∈ Γc(F ) and g ∈ Γ0(F 0), define f g, g f ∈ Γc(F ) by ( f g)(x) =

f (x)g(s(x)), (g f )(x) = g(r(x)) f (x) for all x ∈ G. Using the relation [Fx] =
[FxF ∗xFx], where x ∈ G, and Lemma 7.2, we find:

LEMMA 7.3. Γc(F )Γ0(F 0) and Γ0(F 0)Γc(F ) are linearly dense in Γc(F ).
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7.2. THE MULTIPLIER BUNDLE OF A FELL BUNDLE. Given a Fell bundle F on
G, we define a multiplier bundle M(F ) on G, extending the definition in Sec-
tion VIII.2.14 of [12]. Given a subspace C ⊆ G, we denote by F|C the restriction
of F to C.

DEFINITION 7.4. Let x ∈ G. A multiplier ofF of order x is a map T : F|Gs(x) →
F|Gr(x) such that TFy ⊆ Fxy for all y ∈ Gs(x) and such that there exists a map
T∗ : F|Gr(x) → F|Gs(x) such that e∗T f = (T∗e)∗ f for all e ∈ F|Gr(x) , f ∈ F|Gs(x) .
We denote byM(F )x the set of all multipliers of F of order x.

As for adjointable operators of Hilbert C∗-modules, one deduces from the
definition the following simple properties. Let x ∈ G. Then for each T ∈ M(F )x,
the map T∗ is uniquely determined, T∗ ∈ M(F )x−1 , and T∗∗ = T. Moreover,
each T ∈ M(Fx) is fiberwise linear in the sense that T(κe + f ) = κTe + T f for
all κ ∈ C, e, f ∈ Fy, y ∈ Gs(x). The restrictions Ts(x) : Fs(x) → Fx and (T∗)x :
Fx → Fs(x) are adjoint operators of Hilbert C∗-modules over Fs(x), and since
Fy = [Fr(y)Fy] for each y ∈ Gs(x), the mapM(F )x → L(Fs(x),Fx), T 7→ Ts(x),
is a bijection. Clearly, we have a natural embedding Fx ↪→ M(F )x, where each
f ∈ F acts as a multiplier via left multiplication. For each y ∈ Gs(x), we have
M(F )xM(F )y ⊆M(F )xy, and for each f ∈ Fz, z ∈ Gr(x), we let f T := (T∗ f ∗)∗.

DEFINITION 7.5. For each x ∈ G, consider M(F )x as a Banach space via
the identification with L(Fs(x),Fx). Let M(F ) = ä

x∈G
M(F )x and denote by

p̃ : M(F ) → G the natural map. The strict topology on M(F ) is the weakest
topology that makes p̃ and the mapsM(F ) → F of the form c 7→ c · d(s( p̃(c)))
and c 7→ d(r( p̃(c))) · c continuous for each d ∈ Γc(F 0). Denote by Γc(M(F )) the
space of all sections that are strictly continuous, norm-bounded, and compactly
supported.

REMARK 7.6. The bundleM(F ) satisfies all axioms of a Fell bundle except
for the fact that it is no Banach bundle with respect to the strict topology unless
M(F ) = F . Indeed, for each u ∈ G0, the subspace topology on M(F )u ∼=
L(Fu) ∼= M(Fu) is the strict topology and coincides with the norm topology
only if M(Fu) = Fu.

Given f ∈ Γc(M(F )) and g ∈ Γ0(F 0), define f g, g f ∈ Γc(F ) by ( f g)(x) =
f (x)g(s(x)), (g f )(x) = g(r(x)) f (x) for all x ∈ G again.

LEMMA 7.7. (i) Let c ∈ Γc(M(F )) and d ∈ Γc(F ). Then there exists a section
cd ∈ Γc(F ) such that (cd)(x) =

∫
Gr(x)

c(y)d(y−1x)dλr(x)(y) for all x ∈ G.

(ii) Γc(M(F )) carries a structure of a ∗-algebra such that c∗(x) = c(x−1)∗ and
(cd)(x)e =

∫
Gr(x)

c(y)d(y−1x)e dλr(x) for all c, d ∈ Γc(M(F )), x ∈ G, e ∈ Fs(x).
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(iii) There exists a ∗-homomorphism LM(F ) : Γc(M(F )) → M(C∗r (F )) such that
LM(F )(c)LF (d) = LF (cd) for all c ∈ Γc(M(F )), d ∈ Γc(F ).

(iv) Γc(M(F )) is closed under pointwise multiplication with elements of Cc(G).

Proof. (i) Define cd : G → F as above, and let ε > 0. Using Lemma 7.3,
we find a sequence (gn)n in the span of Γ0(F 0)Γc(F ) that converges to d in the
inductive limit topology. Since Γc(M(F ))Γ0(F 0) ⊆ Γc(F ), the map hn : x 7→∫
Gr(x)

c(y)gn(y−1x)dλr(x)(y) lies in Γc(F ) for each n. Using the fact that c has com-

pact support and bounded norm, one easily concludes that (hn)n converges in
the inductive limit topology to cd which therefore is in Γc(F ).

(ii) Note that (cd)(x) is well defined because the map y 7→ d(y−1x)e is in
Γc(F ) and thus (i) applies. Now, the assertion follows from standard arguments.

(iii) One easily sees that there exists a representation LM(F ) : Γc(M(F ))→
L(Γ2(F )) such that LM(F )(c)d = cd for all c ∈ Γc(M(F )), d ∈ Γc(F ), and that
LM(F )(c)LF (d)e = cde = LF (cd)e for all c ∈ Γc(M(F )), d, e ∈ Γc(F ).

(iv) This follows immediately from the fact that Γc(F ) is closed under point-
wise multiplication by elements of Cc(G).

7.3. MORPHISMS BETWEEN FELL BUNDLES. Let F and G be Fell bundles on G.

DEFINITION 7.8. A (fibrewise nondegenerate) morphism from F to G is a con-
tinuous map T : F →M(G) that satisfies the following conditions:

(i) for each x ∈ G, the map T restricts to a linear map Tx : Fx →M(G)x;
(ii) T(e1)T(e2) = T(e1e2) and T(e)∗ = T(e∗) for all (e1, e2) ∈ F sp×rpF , e ∈ F ;

(iii) Gx = [T(Fx)Gs(x)] for each x ∈ G0.

Let T be a morphism from F to G. Then Tu : Fu → M(G)u is a nonde-
generate ∗-homomorphism for each u ∈ G0; in particular, ‖Tu‖ 6 1. One easily
concludes that ‖Tx‖ 6 1 for each x ∈ G. Hence, the formula f 7→ T ◦ f defines
∗-homomorphisms T∗ : Γc(F )→ Γc(M(G)) and T0

∗ : Γ0(F 0)→ M(Γ0(G0)).

PROPOSITION 7.9. (i) T0
∗ : Γ0(F 0)→ M(Γ0(G0)) is nondegenerate.

(ii) T∗(Γc(F ))Γc(G0) is dense in Γc(F ).
(iii) T∗ extends to a nondegenerate ∗-homomorphism T∗ : C∗r (F )→ M(C∗r (G)).

Proof. Assertions (i) and (ii) follow immediately from Lemmas 7.2 and 7.7.
Part (ii) and a straightforward calculation show that there exists a unique uni-
tary Ψ : Γ2(F , λ−1) =T0∗

Γ0(G0) → Γ2(G, λ−1) such that (Ψ( f = g))(x) = T∗( f )g
for all f ∈ Γc(F ), g ∈ Γ0(G0). The map C∗r (F ) → L(Γ2(G, λ−1)) given by
f 7→ Ψ( f = id)Ψ∗ is the desired extension. Lemma 7.3 and part (ii) imply that
[T∗(Γc(F ))Γc(G)] = [T∗(Γc(F ))Γ0(G0)Γc(G)] = [Γc(G)Γc(G)] = C∗r (G).
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8. FROM FELL BUNDLES ON G TO COACTIONS OF C∗r (G)

Let G be a groupoid, V the associated C∗-pseudo-multiplicative unitary, and
C∗r (G) or, more precisely, (A, ∆) the associated Hopf C∗-bimodule as in Section 5.
We relate Fell bundles on G to coactions of C∗r (G) as follows. LetF be an admissi-
ble Fell bundle F on G. We shall construct a coaction of C∗r (G) on C∗r (F ) which is
unitarily implemented by a representation of V, and identify the reduced crossed
product of this coaction with the reduced C∗-algebra of another Fell bundle. Fi-
nally, we show that this construction is functorial.

A representation of the unitary V is a C∗-(b, b†)-module γK
δ̂

together with a
unitary X : K

δ̂
⊗
b†

α H → Kγ⊗
b

βH that satisfies X(γ / α) = γ . α, X(δ̂ . β) = δ̂ / β,

X(δ̂ . β̂) = γ . β̂, and X12X13V23 = V23X12; see Section 4 in [29]. We construct a
coaction out of such a representation as follows.

LEMMA 8.1. Let (γK
δ̂
, X) be a representation of V, let Cγ

K be a C∗-b-algebra such
that [C, ρ

β̂
(B)] = 0, define δ : C → L(Kγ⊗

b
β H) by c 7→ X(c⊗

b†
id)X∗, and assume

that [δ(C)|γ〉1 A] ⊆ [|γ〉1 A] and [δ(C)|β〉2] ⊆ [|β〉2C]. Then δ is injective, a morphism
from (Kγ, C) to (Kγ⊗

b
β Hα, Cγ∗

b

β A), and a coaction of (A, ∆) on Cγ
K. If the inclusions

above are equalities, then δ is left- or right-full, respectively.

Proof. Evidently, δ is injective. It is a morphism of C∗-b-algebras because
X|ξ〉2c = δ(c)X|ξ〉2 for each ξ ∈ α, c ∈ C and because [X|α〉2γ] = γ . α and
[(X|α〉2)∗(γ . α)] = [〈α|2(γ / α)] = γ. Finally, for each c ∈ C,

(δ ∗ id)(δ(c)) = X12X13c1X∗13X∗12 = X12X13V23c1V∗23X∗13X∗12

= V23X12c1X∗12V∗23 = (id ∗∆)(δ(c)),

where c1 denotes c acting on the first factor of an iterated relative tensor prod-
uct.

8.1. THE REPRESENTATION OF V ASSOCIATED TO F . Denote byW =W(Γ0(F 0))
the set of all C0(G0)-weights on Γ0(F 0) and let φ ∈ W .

LEMMA 8.2. Let c, d ∈ Γc(F ). Then the map x 7→ φs(x)(c(x)∗d(x)) lies in
Cc(G).

Proof. The function G → s∗F 0 given by x 7→ c(x)∗d(x) is continuous and
has compact support, and the composition h : x 7→ φs(x)(c(x)∗d(x)) is continuous
because the map F 0 → C given by f 7→ φp( f )( f ) is continuous.

Define Hilbert C∗-C0(G0)-modules Γ2(F , λ; φ), Γ2(F , λ−1; φ) and a Hilbert
space Kφ = Γ2(F , ν; φ) as the respective completions of Γc(F ), where for all c, d ∈
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Γc(F ), f ∈ C0(G0), the inner product 〈c|d〉 and the product c f are given by

u 7→
∫

Gu

φs(x)(c(x)∗d(x))dλu(x), y 7→ c(y) f (r(y)) in case of Γ2(F , λ; φ),

u 7→
∫

Gu

φs(x)(c(x)∗d(x))dλ−1
u (x), y 7→ c(y) f (s(y)) in case of Γ2(F , λ−1; φ),

and
∫
G

φs(x)(c(x)∗d(x))dν(x) in case of Γ2(F , ν; φ).

LEMMA 8.3. [〈E|E〉] = [φ(Γ0(F 0))] for E ∈ {Γ2(F , λ, φ), Γ2(F , λ−1; φ)}.
Proof. Assume that (φ(c∗c))(u) 6= 0 for some c ∈ Γc(F 0), u ∈ G0. Choose

d∈Γc(F ) such that d|G0 = c. Then the function on G given by x 7→φs(x)(d(x)∗d(x))
is non-negative and nonzero at u, whence 〈d|d〉E(u) 6= 0. Now, the assertion
follows because [〈E|E〉] and [φ(Γ0(F 0))] are closed ideals in C0(G0).

Let K =
⊕

φ∈W
Kφ and identify each Kφ with a subspace of K. Given c ∈ Γc(F )

and f ∈ C0(G0), define f c, c f , cD−1/2 ∈ Γc(F ) by

f c : x 7→ f (r(x))c(x), c f : x 7→ c(x) f (s(x)), cD−1/2 : x 7→ c(x)D−1/2(x).

Let φ ∈ W . Straightforward calculations show that there exist maps

jφ : Γ2(F , λ; φ)→ L(K, Kφ) and ĵφ : Γ2(F , λ−1; φ)→ L(K, Kφ)

such that jφ(c) f = f c and ĵφ(c) f = (cD−1/2) f for all c ∈ Γc(F ), f ∈ Cc(G0), and

jφ(c)∗ jφ(d) = 〈c|d〉Γ2(F ,λ;φ), ĵφ(c)∗ ĵφ(d) = 〈c|d〉Γ2(F ,λ−1;φ) for all c, d ∈ Γc(F ).

Denote by γ ⊆ L(K, K) and δ̂ ⊆ L(K, K) the closed linear span of all subspaces
jφ(Γ2(F , λ; φ)) and ĵφ(Γ2(F , λ−1; φ)), respectively, where φ ∈ W . Lemmas 6.4
and 8.3 imply:

LEMMA 8.4. γK
δ̂

is a C∗-(b, b†)-module, and for all f ∈ C0(G0) and (cφ)φ ∈⊕
φ

Γc(F ) ⊆ K, we have ργ( f )(cφ)φ = ( f cφ)φ and ρ
δ̂
( f )(cφ)φ = (cφ f )φ.

For t = s, r, denote by pt,r
1 : Gt×rG → G the projection onto the first compo-

nent, by F 2
t,r = (pt,r

1 )∗F the corresponding pull-back of F , and by Γ2(F 2
t,r, ν2

t,r; φ)

the Hilbert space that is the completion of Γc(F 2
t,r) with respect to the inner prod-

uct

〈c|d〉 =
∫

Gt×rG

φs(x)(c(x, y)∗d(x, y))dν2
t,r(x, y).
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Straightforward calculations show that there exist unitaries

Φ : K
δ̂
⊗
b†

α H →
⊕

φ∈W
Γ2(F 2

s,r, ν2
s,r; φ), Ψ : Kγ⊗

b
βH →

⊕
φ∈W

Γ2(F 2
r,r, ν2

r,r; φ),

such that for all φ ∈ W , c ∈ Γc(F ), f ∈ Cc(G0), g ∈ Cc(G),

Φ( ĵφ(c)= f < j(g)) ∈ Γ2(F 2
s,r; ν2

s,r; φ) is given by (x, y) 7→ ((cD−1/2) f )(x)g(y),

Ψ(jφ(c)= f < j(g)) ∈ Γ2(F 2
r,r; ν2

r,r; φ) is given by (x, y) 7→ ( f c)(x)g(y).

We shall use the isomorphisms above without further notice. If (Tφ)φ is a norm-
bounded family of operators between Hilbert spaces (H1

φ)φ and (H2
φ)φ, we denote

by
⊕
φ

Tφ ∈ L(
⊕
φ

H1
φ,

⊕
φ

H2
φ) the operator given by (ξφ)φ 7→ (Tφξφ)φ. Similar

arguments as those used for the construction of V in Theorem 2.5 in [27] show:

PROPOSITION 8.5. If φ ∈ W , then exists a unitary Xφ : Γ2(F 2
s,r, ν2

s,r; φ) →
Γ2(F 2

r,r, ν2
r,r; φ) such that (Xφ f )(x, y) = f (x, x−1y) for all f ∈ Γc(F 2

s,r), (x, y) ∈
Gr×rG, and the pair (γK

δ̂
,
⊕
φ

Xφ) is a representation of V.

8.2. THE COACTION OF C∗r (G) ON C∗r (F ). We apply Lemma 8.1 to the represen-
tation (γK

δ̂
, X) and obtain a coaction of C∗r (G) on C∗r (F ) as follows.

LEMMA 8.6. Let φ ∈ W . There exists a representation πφ : C∗r (F ) → L(Kφ)
such that for all c, d ∈ Γc(F ), x ∈ G,

(πφ(c)d)(x) =
∫

Gr(x)

c(z)d(z−1x)D−1/2(z)dλr(x)(z)

and πφ(c) ĵφ(d) = ĵφ(cd) and πφ(c)ργ( f ) = πφ(c f ) for all c, d ∈ Γc(F ), f ∈ C0(G0).

Proof. Identify Γ2(F , λ−1) =φ L2(G0, µ) with Kφ via c = f 7→ ĵφ(c) f for all
c ∈ Γc(F ), f ∈ Cc(G0), and define πφ by c 7→ c =φ id.

Define π : C∗r (F )→ L(K) by c 7→ ⊕
φ

πφ(c). Lemmas 6.4 and 8.6 imply:

LEMMA 8.7. The representation π is faithful, π(C∗r (F ))
γ
K is a C∗-b-algebra, and

[π(C∗r (F ))δ̂] = δ̂.

Define δ : π(C∗r (F )) → L(Kγ⊗
b

β H) by π(c) 7→ X(π(c) ⊗
b†

id)X∗. Let c ∈

C∗r (F ). Then δ(π(c)) =
⊕
φ

δ(π(c))φ and each δ(π(c))φ ∈ L(Γ2(F 2
r,r, ν2

r,r; φ)) acts

as follows.

LEMMA 8.8. For all c ∈ Γc(F ), φ ∈ W , d ∈ Γc(F 2
r,r), (x, y) ∈ Gr×rG,

(δ(π(c))φd)(x, y) =
∫

Gr(x)

c(z)d(z−1x, z−1y)D−1/2(z)dλr(x)(z).
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Proof. The verification is straightforward and similar to the calculation of
the comultiplication ∆ on C∗r (G); see Section 3.4 in [27].

THEOREM 8.9. (π(C∗r (F ))
γ
K, δ) is a very fine and left-full coaction of C∗r (G).

The proof involves the following two lemmas.

LEMMA 8.10. Let φ ∈ W . Then there exist maps

Tφ : Γc(F 2
r,r)→ L(Kφ, Γ2(F 2

r,r, ν2
r,r; φ)), Sφ : Γc(F 2

r,r)→ L(H, Γ2(F 2
r,r, ν2

r,r; φ))

that are continuous with respect to the inductive topology on Γc(F 2
r,r) and the operator

norm, respectively, such that for all c∈Γc(F 2
r,r), d∈Γc(F ), f ∈Cc(G), (x, y)∈Gr×rG,

(Tφ(c)d)(x, y) =
∫

Gr(x)

c(z, y)d(z−1x)D−1/2(z)dλr(x)(z),

(Sφ(c) f )(x, y) =
∫

Gr(y)

c(x, z) f (z−1y)D−1/2(z)dλr(y)(z).

Proof. Let c, d, Tφ(c)d as above. Then

‖Tφ(c)d‖2 =
∫
G

∫
Gr(x)

∫
Gr(x)

∫
Gr(x)

φs(x)(d(z
−1
1 x)∗c(z1, y)∗c(z2, y)d(z−1

2 x))

· D−1/2(z1)D−1/2(z2)dλr(x)(y)dλr(x)(z1)dλr(x)(z2)
∫

dν(x).

We substitute x′ = z−1
1 x, z = z−1

1 z2, use the relations D(z2) = D(z1)D(z) and

D−1(z1)dλr(x)(z1)
∫

dν(x) = D−1(z1)dλr(z1)(x)
∫

dν(z1)

= dλs(z1)(x′)
∫

dν−1(z1) = dλ−1
r(x′)(z1)

∫
dν(x′),

and find

‖Tφ(c)d =
∫
G

∫
Gr(x′)

∫
Gr(x′)

∫
Gs(z1)

φs(x)(d(x′)∗c(z1, y)∗c(z1z, y)d(z−1x′))

· D−1/2(z)dλs(z1)(y)dλr(x′)(z)dλ−1
r(x′)(z1)

∫
dν(x′)

=
∫
G

∫
Gr(x′)

φs(x′)(d(x′)Rc(z)d(z−1x′))dλr(x′)(z)
∫

dν(x′) = 〈d|πφ(Rc)d〉Kφ
,

where Rc ∈ Γc(F ) is given by

Rc(z) =
∫

Gr(z)

∫
Gs(z1)

c(z1, y)∗c(z1z, y)dλs(z1)(y)dλ−1
r(z)(z1) for all z ∈ G.

Hence, Tφ(c) extends to a bounded linear operator of norm ‖Tφ(c)‖2 6 ‖πφ(Rc)‖.
If (cn)n is a sequence in Γc(F 2

r,r) converging to c in the inductive limit topology,
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then the functions R(c−cn) defined similarly as Rc converge to 0 in the inductive
limit topology and hence ‖Tφ(c− cn)‖2 6 ‖πφ(R(c−cn))‖ converges to 0.

The proof of the assertion concerning Sφ is very similar.

Given c, d ∈ Γc(F ) and f ∈ Cc(G), define ωc,d, f ∈ Γc(F 2
r,r) by

(x, y) 7→
∫

Gr(x)

c(z)d(z−1x) f (z−1y)dλr(x)(z).

LEMMA 8.11. The linear span of all elements ωc,d, f as above is dense in Γc(F 2
r,r)

with respect to the inductive limit topology.

Proof. Let (x, y) ∈ Gr×rG, e ∈ Fx, let C ⊆ Gr×rG be a compact neigh-
bourhood of (x, y), and let ε > 0. Since [Fr(x)Fx] = Fx, we can choose c′, d′ ∈
Γc(F ) such that ‖c′(z)d′(z−1x) − e‖ < ε for all z in some neighbourhood of
r(x) in Gr(x). Next, we can choose hc, hd, f ∈ Cc(G) such that the elements
c, d ∈ Γc(F ) given by c(z) = c′(z)hc(z) and d(z) = d′(z)hd(z) for all z ∈ G
satisfy ‖ωc,d, f (x, y)− e‖ < ε and supp ωc,d, f ⊆ C. A standard partition of unity
argument concludes the proof.

Proof of Theorem 8.9. We show that Lemma 8.1 applies. Let φ ∈ W , c, d ∈
Γc(F ), f , g ∈ Cc(G). Define e1, e2, e3, e4 ∈ Γ2(F 2

r,r, ν2
r,r; φ) and ω1, ω2, ω3, ω4 ∈

Γc(F 2
r,r) by

e1 = δ(π(c))φ|j( f )〉2d, ω1(z, y) = c(z) f (z−1y) for all (z, y) ∈ Gr×rG,

e2 = |j( f )〉2πφ(c)d, ω2(z, y) = c(z) f (y) for all (z, y) ∈ Gr×rG,

e3 = |jφ(c)〉1L( f )g, ω3(x, z) = c(x) f (z) for all (x, z) ∈ Gr×rG,

e4 = δ(π(c))φ|jφ(d)〉1L( f )g, ω4 = ωc,d, f .

Using Lemma 8.8, we find that for all (x, y) ∈ Gr×rG,

e1(x, y)=
∫

Gr(x)

c(z)D−1/2(z)d(z−1x) f (z−1y)dλr(x)(z) = (Tφ(ω1)d)(x, y),

e2(x, y)=
∫

Gr(x)

c(z)d(z−1x)D−1/2(z)dλr(x)(z) f (y) = (Tφ(ω2)d)(x, y),

e3(x, y)= c(x)
∫

Gr(y)

f (z)D−1/2(z)g(z−1y)dλr(y)(z) = (Sφ(ω3)g)(x, y),

e4(x, y)=
∫

Gr(x)

c(z1)D−1/2(z1)d(z−1
1 x)(L( f )g)(z−1

1 y)dλr(x)(z1)

=
∫

Gr(x)

∫
Gs(z1)

c(z1)D−1/2(z1)d(z−1
1 x) f (z2)D−1/2(z2)g(z−1

2 z−1
1 y)dλs(z1)(z2)dλr(x)(z1)
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=
∫

Gr(x)

∫
Gr(x)

c(z1)d(z−1
1 x) f (z−1

1 z′2)D−1/2(z′2)g(z′2
−1y)dλr(x)(z′2)dλr(x)(z1)

= (Sφ(ωc,d, f )g)(x, y).

By Lemmas 7.2 and 8.11, sections of the form like ω1, ω2, ω3 or ω4, respectively,
are linearly dense in Γc(F 2

r,r). Therefore, [δ(π(C∗r (F )))φ|α〉2] = [Tφ(Γc(F 2
r,r))] =

[|α〉2πφ(C∗r (F ))] and similarly [δ(π(C∗r (F )))|γ〉1C∗r (G)] =
[ ⋃

φ∈W
Sφ(Γc(F 2

r,r))
]
=

[|γ〉1C∗r (G)].

Given g, g′ ∈ Cc(G), define hg,g′ ∈ Cc(G) by

hg,g′(z) =
∫

Gr(z)

g(y)g′(z−1y)dλr(z)(y) for all z ∈ G.(8.1)

LEMMA 8.12. Let c ∈ Γc(F ), g, g′ ∈ Cc(G). Then 〈j(g)|2δ(π(c))φ|j(g′)〉2 =
πφ(c′), where c′(x) = c(x)hg,g′(x) for all x ∈ G.

Proof. The operators on both sides map each d ∈ Γc(F ) to the section

x 7→
∫

Gr(x)

∫
Gr(x)

g(y)c(z)d(z−1x)g′(z−1y)D−1/2(z)dλr(x)(z)dλr(x)(y).

8.3. THE REDUCED CROSSED PRODUCT OF THE COACTION. The bundle F 2
s,r car-

ries the structure of a Fell bundle, and the reduced crossed product π(C∗r (F ))or
C0(G) for the coaction δ constructed above can be identified with C∗r (F 2

s,r) as fol-
lows.

Denote by G n G the transformation groupoid for the action of G on it-
self given by right multiplication. Thus, G n G = Gs×rG as a set, (G n G)0 =⋃
u∈G0
{u} × Gu can be identified with G via (r(y), y) ≡ y, the range map r̃, the

source map s̃, and the multiplication are given by (x, y) r̃7→ xy, (x, y) s̃7→ y,
and ((x, y), (x′, y′)) 7→ (xx′, y′), respectively, and the topology on G n G is the
weakest topology that makes r̃, s̃ and the map (x, y) 7→ x continuous. We equip
G n G with the right Haar system λ̃−1 given by λ̃−1

y (C× {y}) = λ−1
r(y)(C) for all

C ⊆ Gr(y), y ∈ G.
The bundle F 2

s,r is a Fell bundle on G n G with respect to the multiplication
and involution given by (( f , y), ( f ′, y′)) 7→ ( f f ′, y′) and ( f , y) 7→ ( f ∗, p( f )y).
The convolution product in Γc(F 2

s,r) is given by

(cd)(x, y) =
∫

Gr(y)

c(xz−1, zy)d(z, y)dλ−1
r(y)(z)(8.2)

for all c, d ∈ Γc(F 2
s,r), (x, y) ∈ Gs×rG, because (G n G)s̃(x,y) = Gr(y) × {y} and

(x, y)(z, y)−1 = (xz−1, zy) for all z ∈ Gr(y).
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PROPOSITION 8.13. There exists a unique isomorphism π(C∗r (F ))or C0(G)→
C∗r (F 2

s,r) such that δ(π(c))(1⊗
b

f ) 7→ LF2
s,r
(d) whenever c ∈ Γc(F ), f ∈ Cc(G), and

d(x, y) = c(x) f (y) for all (x, y) ∈ Gs×rG.

Let φ ∈ W . Then the map r∗φ : Γ0((F 2
s,r)

0)→ C0(G) given by (r∗φ(c))(y) =
φr(y)(c(r(y), y)) for all c ∈ Γ0((F 2

s,r)
0) and y ∈ G is a C0(G)-weight. One easily

verifies that there exists a representation Lr∗φ : C∗r (F 2
s,r) → L(Γ2(F 2

s,r, λ̃−1; r∗φ))
such that Lr∗φ(c)d = cd for all c, d ∈ Γc(F 2

s,r).

LEMMA 8.14. (i) There exists a unique unitary Uφ : Γ2(F 2
s,r, λ̃−1; r∗φ) = H →

Γ2(F 2
s,r, ν2

s,r; φ) ⊆ K
δ̂
⊗
b†

αH such that (Uφ(e = g))(x, y) = e(x, y)g(y)D−1/2(x) for all

e ∈ Γc(F 2
s,r), g ∈ Cc(G), (x, y) ∈ Gs×rG.

(ii) δ(π(c))(1⊗
b

f )XφUφ =XφUφ(Lr∗φ(d)= id) for all c, d, f as in Proposition 8.13.

Proof. (i) For all e, g as in above,

‖Uφ(e = g)‖2 =
∫
G

∫
Gr(y)

φs(x)(e(x, y)∗e(x, y))|g(y)|2 dλ−1
r(y)(x)

∫
dν(y) = ‖e = g‖2.

(ii) Let c, d, e, f , g, (x, y) as above and ∆̂( f )φ = X∗φ(1⊗
b

f )Xφ. A short calcula-

tion shows that (∆̂( f )φUφ(e = g))(x, y) = f (xy)e(x, y)g(y)D−1/2(x). Using (8.2),
we find that ((πφ(c)⊗

b†
id)∆̂( f )φUφ(e = g))(x, y) is equal to∫

Gr(x)

c(z) f (z−1xy)e(z−1x, y)g(y)D−1/2(z)D−1/2(z−1xy)dλr(x)(z)

=
∫

Gs(x)

c(xz−1) f (zy)e(z, y)g(y)D−1/2(xy)dλ−1
s(x)(z)

=
∫

Gs(x)

d(xz−1, zy)e(z, y)g(y)D−1/2(xy)dλ−1
s(x)(z) = (Uφ(de = g))(x, y).

So, δ(π(c))(1⊗
b

f )XφUφ = Xφ(πφ(c)⊗
b†

id)∆̂( f )φXφUφ = XφUφ(Lr∗φ(d)= id).

Proof of Proposition 8.13. Consider the ∗-homomorphism

Φ : C∗r (F 2
s,r)→ L(Kγ⊗

b
β H), LF2

s,r
(d) 7→

⊕
φ∈W

XφUφ(Lr∗φ(d)= id)U∗φX∗φ.

By part (ii) of the lemma above, Φ(C∗r (F 2
s,r)) contains [δ(π(C∗r (F )))(1⊗

b
C0(G))]

= π(C∗r (F ))or C0(G). The same lemma implies that this inclusion is an equality
because the map a → ⊕

φ
a = id is continuous with respect to the inductive limit

topology on Γc(F 2
s,r) and sections of the form (x, y) 7→ c(x) f (y), where c ∈ Γc(F ),
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f ∈ Cc(G), are dense in Γc(F 2
s,r) by Lemma 7.2. Finally, Lemma 6.4 implies that[⋂

φ
ker r∗φ

]
= 0, and therefore Φ is injective.

PROPOSITION 8.15. If F is saturated, then C∗r (F 2
s,r)
∼= K(Γ2(F , λ−1)).

Proof. To simplify notation, let Γ2 = Γ2(F , λ−1), Γ̃2 = Γ2(F 2
s,r, λ̃−1), Γ0 =

Γ0(F 0), Γ̃0 = Γ0((F 2
s,r)

0). There exists a unitary Ψ : Γ2 =s∗ C0(G) → Γ̃2 such
that (Ψ(c = f ))(x, y) = c(xy) f (y) for all c ∈ Γc(F ), f ∈ Cc(G), (x, y) ∈ Gs×rG,
because

〈Ψ(c = f )|Ψ(c′ = f ′)〉((r(y), y)) =
∫

Gr(y)

c(xy)∗c′(xy)dλ−1
r(y)(x) f (y) f ′(y)

= f (y)〈c|c′〉Γ2(s(y)) f (y) = 〈c = f |c′ = f ′〉(y)

for all c, c′ ∈ Γc(F ), f , f ′ ∈ Cc(G), y ∈ G by right-invariance of λ−1. The ∗-homo-
morphism Φ : K(Γ2) → L(Γ̃2) given by k 7→ Ψ(k =s∗ id)Ψ∗ is injective because
s∗ : C0(G0) → L(C0(G)) is injective, and the claim follows once we have shown
that Φ(K(Γ2)) = C∗r (F 2

s,r). Let d, d′ ∈ Γc(F ) and denote by |d〉〈d′| ∈ K(Γ2) the
operator given by e 7→ d〈d′|e〉. Then for all c, f , (x, y) as above,

(Ψ(|d〉〈d′|c = f ))(x, y) =
∫

Gs(y)

d(xy)d′(z)∗c(z) f (y)dλ−1
s(y)(z)

=
∫

Gs(y)

d(xy)d′(z)∗(Ψ(c = f ))(zy−1, y)dλ−1
s(y)(z)

=
∫

Gr(y)

d(xy)d′(z′y)∗(Ψ(c = f ))(z′, y)dλ−1
r(y)(z

′).

Comparing with equation (8.2), we find that Ψ(|d〉〈d′|= id)Ψ∗ = LF2
s,r
(e), where

e ∈ Γc(F 2
s,r) is given by e(xz−1, zy) = d(xy)d′(zy)∗, or equivalently, by e(x′, y′) =

d(x′y′)d′(y′)∗ for all (x′, y′) ∈ Gs×rG. Since F is saturated, Lemma 7.2 implies
that sections of this form are dense in Γc(F 2

s,r) with respect to the inductive limit
topology, and since the map e 7→ LF2

s,r
(e) is continuous with respect to this topol-

ogy, we can conclude that Φ(K(Γ2)) = Ψ(K(Γ2)= id)Ψ∗ = C∗r (F 2
s,r).

COROLLARY 8.16. If F is saturated, then π(C∗r (F ))or C0(G) and Γ0(F 0) are
Morita equivalent.

Proof. One easily verifies that Γ2(F , λ−1) is full.

EXAMPLE 8.17. Let σ be an action of G on an admissible C0(G0)-algebra
C and let δσ be the corresponding coaction of C0(G) on FC (Proposition 6.10).
Then there exists an admissible Fell bundle C on G with fibre Cx = Cr(x) for each
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x ∈ G, continuous sections Γ0(C) = r∗C, and multiplication and involution given
by cd = cσx(d), c∗ = σx−1(c∗) for all c ∈ Cx, d ∈ Cy, (x, y) ∈ Gs×rG [15], and
the identity on Γc(C) = Cc(G)r∗C extends to an isomorphism C∗r (C) → C or G.
One easily verifies that with respect to the isomorphism π(C∗r (C)) ∼= C∗r (C) ∼=
C or G ∼= FC or C∗r (G) of Proposition 6.14, the coaction of Theorem 8.9 coincides
with the dual coaction on FC or C∗r (G). Moreover, the Fell bundle C is saturated
and C∗r (C)or C0(G) ∼= FC or C∗r (G)or C0(G) is Morita equivalent to Γ0(C0) ∼= C,
as we already know by Theorem 4.11.

REMARK 8.18. The Fell bundle F can be equipped with the structure of an
F 2

s,r-F 0-equivalence in the sense of [19] in a straightforward way.

8.4. FUNCTORIALITY OF THE CONSTRUCTION. Let G, F be admissible Fell bun-
dles on G with associated representations ((KG , γG , δ̂G), XG), ((KF , γF , δ̂F ), XF )
and coactions (πG(C∗r (G))

γG
KG

, δG), (πF (C∗r (F ))
γF
KF

, δF ), and let T be a morphism
from G to F .

PROPOSITION 8.19. There exists a unique morphism T̃∗ from (πG(C∗r (G))
γG
KG

, δG)

to (πF (C∗r (F ))
γF
KF

, δF ) that satisfies T̃∗(πG(a)) = πF (T∗(a)) for all a ∈ Γc(G).

The proof involves the following construction.

LEMMA 8.20. Let φ ∈ W(Γ0(F 0)), f ∈ Γ0(F 0) and define ψ ∈ W(Γ0(G0)) by
g 7→ φ( f ∗T0

∗ (g) f ).
(i) There exists an isometry T f

φ : Kψ → Kφ such that Tφ
f g = T∗(g) f for all g ∈

Γc(G).
(ii) T f

φ jψ(g) = jφ(T∗(g) f ), T f
φ ĵψ(g) = ĵψ(T∗(g) f ), and T f

φ πψ(g) = πφ(T∗(g))T f
φ

for all g ∈ Γc(G).
Denote also the map KG → Kψ ↪→ KF given by (ξψ′)ψ′ 7→ T f

φ ξψ by T f
φ .

(iii) T f
φ is a semi-morphism from (KG , δ̂G , γG) to (KF , δ̂F , γF ) and (T f

φ ⊗
b

id)XG =

XF (T
f

φ ⊗
b†

id).

(iv) δF (πF (h))(T
f

φ ⊗
b

id)δG(πG(g)) = δF (πF (hT∗(g)))(T f
φ ⊗

b
id) for all h ∈

Γc(F ), g ∈ Γc(G).
Proof. (i) Uniqueness is clear. Existence follows from the fact that for all

g, g′ ∈ Γc(G),

〈T∗(g) f |T∗(g′) f 〉Kφ
=

∫
G

φs(x)( f (s(x))∗T(g(x)∗g′(x)) f (s(x)))
∫

dν(x)

=
∫
G

ψs(x)(g(x)∗g′(x))
∫

dν(x) = 〈g|g〉Kψ
.

(ii) Straightforward.
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(iii) By (ii), T f
φ γG ⊆ γF and T f

φ δ̂G ⊆ δ̂F . For all ω ∈ Γc(G2
s,r) and (x, y) ∈

Gr×rG,

((T f
φ ⊗

b
id)XGω)(x, y) = ω(x, x−1y) f (s(x)) = (XF (T

f
φ ⊗

b†
id)ω)(x, y).

(iv) By parts (ii) and (iii), XF (πF (h)⊗
b†

id)X∗F (T
f

φ ⊗
b

id)XG(πG(g)⊗
b†

id)X∗G =

XF (πF (hT∗(g))⊗
b†

id)X∗F (T
f

φ ⊗
b

id) for all g ∈ Γc(G) and h ∈ Γc(F ).

Proof of Proposition 8.19. Denote by T ⊆ L(KG , KF ) the closed linear span
of all operators T f

φ , where φ ∈ W(Γ0(F 0)) and f ∈ Γ0(F 0). Then Lemma 8.20
and Proposition 7.9 imply that SπG(g) = πF (T∗(g))S for all S ∈ T , g ∈ Γc(G)
and that

[T γG ] =
[⋃

φ

jφ(T∗(Γc(G))Γ0(F 0))
]
=

[⋃
φ

jφ(Γc(F ))
]
= γF .

By Proposition 7.9, T∗ extends to a nondegenerate ∗-homomorphism C∗r (G) →
M(C∗r (F )). Henceforth, there exists a semi-morphism T̃∗ from πG(C∗r (G))

γG
KG

to

πF (C∗r (F ))
γF
KF

such that T̃∗(πG(g)) = πF (T∗(g)) for all g ∈ Γc(G). For all h ∈
πF (Γc(F )), g ∈ πG(Γc(G)), S ∈ T ,

δF (h) · (T̃∗ ∗ id)(δG(g)) · (S⊗
b

id) = δF (h)(S⊗
b

id)δG(g) = δF (hT̃∗(g))(S⊗
b

id)

by Lemma 8.20, and therefore δF (h) · (T̃∗ ∗ id)(δG(g)) = δF (hT̃∗(g)).

Denote by Fella
G the category of all admissible Fell bundles on G, and by

Coacta
C∗r (G) the category of very fine left-full coactions of C∗r (G).

THEOREM 8.21. The assignments F 7→ (πF (C∗r (F ))
γF
KF

, δF ) and T 7→ T̃∗ form
a faithful functor F̌ : Fella

G → Coacta
C∗r (G).

Proof. Functoriality of the constructions is evident. Assume that F̌S = F̌T
for some morphisms S, T from F to G in Fella

G. Then the maps S∗, T∗ : Γc(F ) →
Γc(M(G)) coincide because πG is injective. Since {a(x) : a ∈ Γc(F )} = Fx for
each x ∈ G and S(a(x)) = (S∗a)(x) = (T∗a)(x) = T(a(x)) for each a ∈ Γc(F ),
x ∈ G, we can conclude that S = T.

9. FROM COACTIONS OF C∗r (G) TO FELL BUNDLES FOR ÉTALE G

We now assume that the groupoid G is étale in the sense that the set G of
all open subsets U ⊆ G for which the restrictions rU = r|U : U → r(U) and
sU = s|U : U → s(U) are homeomorphisms is a cover of G; see [23]. More-
over, we assume that the Haar systems λ and λ−1 are the families of counting
measures. Then the functor F̌ has a right adjoint Ǧ and embeds the category of
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admissible Fell bundles into a category of very fine coactions of C∗r (G) as a full
and coreflective subcategory. The construction of the functor Ǧ uses the corre-
spondence between Banach bundles and convex Banach modules developed in
[8].

9.1. THE FELL BUNDLE OF A COACTION OF C∗r (G). Let δ be an injective coac-
tion of C∗r (G) on a C∗-b-algebra C = Cγ

K. Since G is étale, ρβ(B) ⊆ C∗r (G) and
δ(C)|γ〉1 ⊆ [|γ〉1C∗r (G)]. For each U ∈ G, we define a closed subspace

CU := {c ∈ [Cργ(C0(s(U)))] : dle| δ(c)|γ〉1 ⊆ [|γ〉1L(C0(U))]} ⊆ C,

denote by sU∗ : C0(U) → C0(s(U)) and rU∗ : C0(U) → C0(r(U)) the push-
forward of functions along sU and rU , respectively, and consider CU as a right
Banach C0(U)-module via the formula c · f := cργ(sU∗( f )). Denote by Γf (F ) the
space of all sections of F that can be written as finite sums of sections in Γ0(F|U),
where U ∈ G. Then Γf (F ) is a ∗-algebra with respect to the operations defined
in (7.1), and one has natural inclusions Γc(F ) ⊆ Γf (F ) ⊆ C∗r (F ) of ∗-algebras.

PROPOSITION 9.1. There exist a continuous Fell bundle F on G and a ∗-homo-
morphism ι : Γf (F ) → C such that for each U ∈ G, the map ι restricts to an isometric
isomorphism ιU : Γ0(F|U)→ CU of Banach C0(U)-modules. If (F ′, ι′) is another such
pair, then there exists an isomorphism T : F → F ′ such that ι′ ◦ T∗ = ι.

The proof requires some preliminaries. First, for all c ∈ C, f ∈ C0(G0),

δ(cργ( f )) = δ(c)ρ(γ.α)( f ) = δ(c)(1⊗
b

ρα( f )) = δ(c)(1⊗
b

r∗( f )).

LEMMA 9.2. Let U, V ∈ G.
(i) c · f = ργ(rU∗( f ))c for each c ∈ CU and f ∈ C0(U).

(ii) CVCU ⊆ CVU , (CU)
∗ = CU−1 , and CU = [CVC0(U)] ⊆ CV if U ⊆ V.

(iii) Cs(U) is a continuous C0(s(U))-algebra.
(iv) CU is a convex and continuous Banach C0(U)-module.

Proof. (i) Let c, f as above. Since L(g)r∗(sU∗( f )) = r∗(rU∗( f ))L(g) for all
g ∈ C0(U), we have δ(c · f ) = δ(c)(1⊗

b
r∗(sU∗( f ))) = (1⊗

b
r∗(rU∗( f )))δ(c) =

δ(ργ(rU∗( f ))c) and by injectivity of δ also c · f = ργ(rU∗( f ))c.
(ii) Clearly, δ(CVCU)|γ〉1 ⊆ |γ〉1L(C0(VU)). Using (i) twice, we find

CVCU ⊆ [CVργ(C0(s(V))C0(r(U)))CU ]

= [CVργ(C0(s(V) ∩ r(U))CU)] ⊆ [Cργ(C0(s(VU)))].

Consequently, CVCU⊆CVU . By (i) again, we have (CU)
∗=[ργ(C0(r(U)))CU ]

∗ ⊆
[Cργ(C0(s(U−1)))], and using the relation δ(C∗U)|γ〉1 ⊆ [|γ〉1C∗r (G)], we obtain

δ(C∗U)|γ〉1 ⊆ [|γ〉1〈γ|1δ(CU)
∗|γ〉1]

⊆ [|γ〉1L(C0(U))∗〈γ|1|γ〉1] = [|γ〉1L(C0(U−1))].
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If U ⊆ V, then CU ⊆ [CVC0(U)] ⊆ CV , and CVC0(U) ⊆ CU because

δ(CVC0(U))|γ〉1 = δ(CV)|γ〉1r∗(C0(s(U)))

⊆ [|γ〉1L(C0(V))r∗(C0(s(U)))] = [|γ〉1L(C0(U))].

(iii) By (ii), Cs(U) is a C∗-algebra. Consider |γ〉1 as a Hilbert C∗-module over
r∗(C0(G0)) ∼= C0(G0). Since δ(CG0)|γ〉1 ⊆ |γ〉1 and δ(c · f )|η〉1 = δ(c)|η〉1r∗( f )
for all c ∈ CG0 , f ∈ C0(G0), η ∈ γ, the formula c · |η〉1 := δ(c)|η〉1 defines a
faithful field of representations CG0 → L(|γ〉1) in the sense of Theorem 3.3 in
[6]. Consequently, CG0 is a continuous C0(G0)-algebra and Cs(U) a continuous
C0(s(U))-algebra.

(iv) Let c, c′ ∈ CU and f , f ′ ∈ C0(U) such that 0 6 f , f ′ and f + f ′ 6
1. Then ‖c · f + c′ · f ′‖2 = ‖c∗c · g2 + c∗c′ · gg′ + c′∗c · g′g + c′∗c′ · g′2‖, where
g = sU∗( f ), g′ = sU∗( f ′). Since g2 + gg′′ + g′g + g′2 6 1 and c∗c, c′∗c′, c∗c′, c′∗c′

belong to the continuous C0(s(U))-algebra CU−1U , which is a convex Banach
C0(s(U))-module, we get ‖c f + c′ f ′‖2 6 max{‖c‖, ‖c′‖}2. Finally, the norm
‖cu‖2 = ‖(c∗c)u−1u‖ depends continuously on u ∈ U because CU−1U is a con-
tinuous C0(s(U))-algebra.

Proof of Proposition 9.1. Using Lemma 9.2 and [8], one easily verifies that
there exists a continuous Fell bundle F on G with an isometric isomorphism
ιU : Γ0(F|U) → CU of Banach C0(U)-modules for each U ∈ G such that for all
U, V ∈ G, the following properties hold. First, the map Γ0(F|U) ↪→ Γ0(F|V)

ιV−→
CV is equal to Γ0(F|U)

ιU−→ CU ↪→ CV if U ⊆ V, and second, ιU( f )∗ = ιU−1( f ∗),
ιUV( f g) = ιU( f )ιV(g) for all f ∈ Γ0(F|U), g ∈ Γ0(F|V). Define ι : Γf (F ) → C
as follows. Given a = ∑

i
ai ∈ Γf (F ), where ai ∈ Γ0(F|Ui ) and Ui ∈ G, let

ι(a) = ∑
i

ιUi (ai). Using the preceding two properties of ι, one easily verifies that ι

is well-defined and a ∗-homomorphism.

Denote by p0 : Γf (F )→ Γ0(F 0) the restriction.

PROPOSITION 9.3. There exists a faithful conditional expectation p from the C∗-
algebra [ι(Γf (F ))] to CG0 satisfying p ◦ ι = ιG0 ◦ p0.

In the following lemma, f hξ,ξ ′ denotes the pointwise product of functions
f , hξ,ξ ′ ∈ Cc(G), where hξ,ξ ′ was defined in (8.1).

LEMMA 9.4. Let ξ, ξ ′ ∈ Cc(G), c ∈ C, f ∈ Cc(G), η, η′ ∈ γ. Then:
(i) 〈η|1δ(〈j(ξ)|2δ(c)|j(ξ ′)〉2)|η′〉1 = 〈j(ξ)|2∆(〈η|1δ(c)|η′〉1)|j(ξ ′)〉2;

(ii) 〈j(ξ)|2∆(L( f ))|j(ξ ′)〉2 = L( f hξ,ξ ′);
(iii) 〈j(ξ)|2δ(c · f )|j(ξ ′)〉2 = c · ( f hξ,ξ ′) if c ∈ CU and f ∈ C0(U) for some U ∈ G.

Proof. (i) If d = 〈j(ξ)|2δ(c)|j(ξ ′)〉2, then δ(d) = 〈j(ξ)|3(δ ∗ id)(δ(c))|j(ξ ′)〉3
= 〈j(ξ)|3(id ∗∆)(δ(c))|j(ξ ′)〉3 and 〈η|1δ(d)|η′〉1 = 〈j(ξ)|2∆(〈η|1δ(c)|η′〉1)|j(ξ ′)〉2.

(ii) This is a special case of Lemma 8.12.
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(iii) Let η, η′ ∈ γ. Since c ∈ CU , we have 〈η|1δ(c)|η′〉1 = L(g) for some
g ∈ C0(U). Let ξ ′′ = r∗(sU∗( f ))ξ and denote by dl, dr ∈ C the left and the right
hand side of the equation in (iii), respectively. Then dl = 〈j(ξ)|2δ(c)|j(ξ ′′)〉2, and
by (i) and (ii),

〈η|1δ(dl)|η′〉1= 〈j(ξ)|2∆(〈η|1δ(c)|η′〉1)|j(ξ ′′)〉2= 〈j(ξ)|2L(g)|j(ξ ′′)〉2 = L(ghξ,ξ ′′),

〈η|1δ(dr)|η′〉1= 〈η|1δ(c)|η′〉1r∗(sU∗( f hξ,ξ ′)) = L(g)L(sU∗( f hξ,ξ ′)).

We can conclude that 〈η|1δ(dl)|η′〉1 = 〈η|1δ(dr)|η′〉1 because for all x ∈ G,

(ghξ,ξ ′′)(x) = g(x)
∫

Gr(x)

ξ(y) f (x)ξ ′(x−1y)dλr(x)(y) = g(x)(sU∗( f hξ,ξ ′))(s(x)).

Since η, η′ ∈ γ were arbitrary and δ is injective, we must have dl = dr.

Proof of Proposition 9.3. Given a subset U ⊆ G, denote by χU its character-
istic function. Using the same formulas as for elements of Cc(G), we can de-
fine a map j(ξ) : K → H and the function hξ,ξ ′ for the characteristic function
ξ = ξ ′ = χG0 of G0 ⊆ G, and then Lemma 9.4 still holds. Define p : C → C
by c 7→ 〈j(χG0)|2δ(c)|j(χG0)〉2. Then ‖p‖ 6 ‖j(χG0)‖2 = 1, and the relation
hχG0 ,χG0 = χG0 and Lemma 9.4 imply that p|CG0 = id and p|CU = 0 whenever
U ∈ G and U ∩ G0 = ∅. Using a partition of unity argument and the fact that
G0 ⊆ G is open and closed, we can conclude that p ◦ ι = ιG0 ◦ p0.

It remains to show that p is faithful. Using the right-regular representa-
tion of G, one easily verifies that [C∗r (G)′ j(χG0)K] = H. Therefore, the map
q : C∗r (G) → L(K), a 7→ j(χG0)∗aj(χG0), is faithful in the sense that q(a∗a) 6= 0 if
a 6= 0. If c ∈ [ι(Γf (F ))] and p(c∗c) = 0, then η∗p(c∗c)η = q(〈η∗|1δ(c∗c)|η〉1) = 0
and hence 〈η∗|1δ(c∗c)|η〉1 = 0 and δ(c)|η〉1 = 0 for all η ∈ γ, whence δ(c) = 0
and c = 0 by injectivity of δ.

Proposition 9.3 and Fact 3.11 of [15] imply:

COROLLARY 9.5. ι extends to an embedding C∗r (F )→ C.

We denote the extension above by ι again.

PROPOSITION 9.6. If δ is fine, then ι : C∗r (F )→ C is a ∗-isomorphism.

Proof. We only need to show that C is equal to the linear span of all CU ,
where U ∈ G. Consider an element d ∈ C of the form d = 〈j(ξ)|2δ(c)|j(ξ ′)〉2,
where c ∈ C, ξ ∈ Cc(V), ξ ′ ∈ Cc(V′) for some V, V′ ∈ G. Since G is étale and
δ is fine, the closed linear span of all elements of the form like d is equal to
[〈α|2δ(C)|α〉2] = [〈α|2|α〉2C] = C. We show that d ∈ CU , where U = VV′−1 ∈ G,
and then the claim follows. Let η, η′ ∈ γ. By Lemma 9.4,

〈η|1δ(d)|η′〉1 ∈ 〈j(ξ)|2∆(C∗r (G))|j(ξ ′)〉2 ⊆ [L(Cc(G)hξ,ξ ′)] ⊆ L(C0(U)).

Using the relation δ(d)|γ〉1⊆ [|γ〉1C∗r (G)], we get δ(d)|γ〉1⊆ [|γ〉1〈γ|1δ(d)|γ〉1] ⊆
[|γ〉1L(C0(U))]. Moreover, since hξ,ξ ′ ∈ Cc(U), we can choose g ∈ C0(U) with
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hξ,ξ ′g = hξ,ξ ′ . Then L( f hξ,ξ ′)r∗(sU∗(g)) = L( f hξ,ξ ′) for each f ∈ C0(U), and
hence 〈η|1δ(dργ(sU∗(g)))|η′〉1 = 〈η|1δ(d)|η′〉1r∗(sU∗(g)) = 〈η|1δ(d)|η′〉1. Since
δ is injective, we can conclude d = dργ(sU∗(g)) ∈ Cργ(C0(s(U))) and finally
d ∈ CU .

PROPOSITION 9.7. If δ is fine, then F is admissible.

Proof. The proof is similar to the proof of Lemma 6.2(i). By Lemma 9.2(iii),
Γ0(F 0)∼=CG0 is a continuous C0(G0)-algebra. Let u ∈ G0, denote by Iu⊂C0(G0)
the ideal of all functions vanishing at u, and assume Fu = 0. Then Γ0(F 0) =
[Γ0(F 0)Iu] and [C∗r (F )]= [C∗r (F )Γ0(F 0)]= [C∗r (F )Iu], whence C=[Cργ(Iu)]. De-
fine j(χG0) as in the proof of Proposition 9.3. Then [δ(C)|γ〉1C∗r (G)]= [|γ〉1C∗r (G)]
and

[r∗(C0(G0))C∗r (G)] = [〈γ|1|γ〉1C∗r (G)] = [〈γ|1δ(CIu)|γ〉1C∗r (G)]

= [〈γ|1|γ〉1r∗(Iu)C∗r (G)] = [r∗(Iu)C∗r (G)],

whence [j(χG0)∗C∗r (G)j(χG0)] = Iu 6= C0(G0), a contradiction.

The construction of the Fell bundle is functorial with respect to the follow-
ing class of morphisms.

DEFINITION 9.8. A morphism ρ of coactions (Cγ
K, δC) and (Dε

l , δD) of C∗r (G)
is strongly nondegenerate if [ρ(C)DG0 ] = D.

PROPOSITION 9.9. Let π be a strongly nondegenerate morphism of fine coactions
(Cγ

K, δC), (Dε
l , δD) with associated Fell bundles F , G and ∗-homomorphisms ιF , ιG .

Then there exists a unique morphism T from F to G such that ιG ◦ T∗ = π ◦ ιF .

Proof. Let U, V ∈ G. Then π(CU)DV ⊆ DUV because

δD(π(CU)DV)|ε〉1 = ((π ∗ id)(δC(CU)))δD(DV)|ε〉1
⊆ ((π ∗ id)(δC(CU)))|ε〉1L(C0(V))

⊆ |ε〉1L(C0(U))L(C0(V)) = |ε〉1L(C0(UV))

and π(CU)DV ⊆ [π(Cργ(C0(s(U))))DV ] ⊆ [π(C)Dρε(C0(s(UV)))],

where the last inclusion follows similarly as in the proof of Lemma 9.2(ii). Define
a map SU,V : Γ0(F|U) × Γ0(G|V) → Γ0(G|UV) by ( f , g) 7→ ι−1

G (π(ιF ( f ))ιG(g)),
let (x, y) ∈ (U × V) ∩ Gs×rG, and denote by Ix ⊆ Γ0(F|U), Iy ⊆ Γ0(G|V),
Ixy ⊆ Γ0(G|UV) the subspaces of all sections vanishing at x, y, and xy, respec-
tively. Using Lemma 9.2 (i), one easily verifies that SU,V maps Ix × Γ0(G|V) and
Γ0(F|U) × Iy into Ixy. Hence, there exists a unique map Sx,y : Fx × Gy → Gxy
such that Sx,y( f (x), g(y)) = (SU,V( f , g))(xy) for all f ∈ Γ0(F|U), g ∈ Γ0(G|V),
and this map depends on (x, y) but not on (U, V). For each x ∈ G and c ∈ Fx,
define T(c) : G|Gs(x) → G|Gr(x) by T(c)d = Sx,y(c, d) for each y ∈ Gs(x), d ∈ Gy.
One easily checks that then T is a continuous map from F to M(G) which sat-
isfies conditions (i) and (ii) of Definition 7.8, and that the representation π̃ :=
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ι−1
G ◦ π ◦ ιF : C∗r (F ) → M(C∗r (G)) satisfies π̃( f )g = (T ◦ f )g for all f ∈ Γc(F ),

g ∈ Γc(G). We show that T also satisfies condition (iii) of Definition 7.8. Since π
is strongly nondegenerate, D = [π(C)DG0 ], that is, C∗r (G) = [π̃(C∗r (F ))Γ0(G0)]
and hence Γ2(G, λ−1) = [π̃(C∗r (F ))Γ0(G0)]. In particular, Gx = [T(Fx)Gs(x)] for
each x ∈ G because Gs(x) is discrete.

9.2. THE UNIT AND COUNIT OF THE ADJUNCTION. Denote by Coactas
C∗r (G) the

category of very fine left-full coactions of C∗r (G) with all strongly nondegenerate
morphisms. Then the functor F̌ : Fella

G → Coacta
C∗r (G) constructed in the preced-

ing section actually takes values in Coactas
C∗r (G):

LEMMA 9.10. Let T be a morphism of admissible Fell bundles F ,G on G. Then
the morphism F̌T from F̌F to F̌G is strongly nondegenerate.

The proof is immediate from Proposition 7.9(ii).
The constructions in Proposition 9.1 and Proposition 9.9 yield a functor Ǧ :

Coactas
C∗r (G) → Fella

G. We now obtain an embedding as a full and coreflective

subcategory (F̌, Ǧ, η̌, ε̌) of Fella
G into Coactas

C∗r (G).

PROPOSITION 9.11. Let F be an admissible Fell bundle, (πF (C∗r (F ))
γF
KF

, δF ) =

F̌F the associated fine coaction, and G = ǦF̌F and ιG : C∗r (G)→ πF (C∗r (F )) the Fell
bundle and the ∗-homomorphism associated to this coaction as above. Then there exists a
unique isomorphism η̌F : F → G such that ιG ◦ (η̌F )∗ = πF .

Proof. Let (Cγ
K, δ) = (πF (C∗r (F ))

γF
KF

, δF ) and U ∈ G. We show that CU =

πF (Γ0(F|U)). Note that [{hξ,ξ ′ : ξ ∈ Cc(r(U)), ξ ′ ∈ Cc(U)}] = C0(U), where the
functions hξ,ξ ′ were defined in (8.1). Using Lemma 9.4, we can conclude

CU = [〈j(Cc(r(U)))|2δ(πF (Γc(F )))|j(Cc(U))〉2].

By Lemma 8.12, we have for all ξ ∈ Cc(r(U)), f ∈ Γc(F ), ξ ′ ∈ Cc(U),

〈j(ξ)|2δ(πF ( f ))|j(ξ ′)〉2 = πF ( f hξ,ξ ′) ∈ πF (Γ0(F|U)),

where f hξ,ξ ′ denotes the pointwise product. Consequently, CU = πF (Γ0(F|U)).
Since U ∈ G was arbitrary, we can conclude that there exists an isomorphism
η̌F : F → G of Banach bundles such that ιG ◦ (η̌F )∗ = πF : Γc(F ) → C. Using
the fact that (η̌F )∗ is a ∗-homomorphism and that G is étale, one easily concludes
that η̌F is an isomorphism of Fell bundles.

PROPOSITION 9.12. Let (C, δ) be a very fine coaction of C∗r (G), where C = Cγ
K,

and let F , ι : C∗r (F ) → C be the associated Fell bundle and ∗-isomorphism. Then there
exists a unique strongly nondegenerate morphism ε̌(C,δ) from (πF (C∗r (F ))

γF
KF

, δF ) to
(C, δ) such that ε̌(C,δ) ◦ πF = ι.

LEMMA 9.13. Let U ∈ G, ξ ∈ Cc(U), η ∈ γ, and ω = |η〉1 j(ξ) ∈ γ . α ⊆
L(K, Kγ⊗

b
β H).
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(i) There exists a C0(G0)-weight φ : Γ0(F 0)→ C0(G0) ⊆ L(K), f 7→ ω∗δ(ι( f ))ω.
(ii) There exists a unique isometry Sω : Kφ = Γ2(F , ν; φ) → Kγ⊗

b
β H such that

Sω ĵφ( f ) = δ(ι( f ))ω for all f ∈ Γc(F ), and Sωπφ( f ) = δ(ι( f ))Sω for all f ∈ Γc(F ).
(iii) Sω jφ(Γc(F )) ⊆ γ . α.

Proof. (i) First, ω∗δ(CG0)ω ⊆ [α∗〈γ|1|γ〉1L(C0(G0))α] = [α∗〈γ|1|γ〉1α] =
C0(G0) ⊆ L(K). Second, observe that for all c ∈ CG0 , f ∈ C0(G0),

φ(c f ) = j(ξ)∗〈η|1δ(c f )|η〉1 j(ξ)

= j(ξ)∗〈η|1δ(c)|η〉1r∗( f )j(ξ) = j(ξ)∗〈η|1δ(c)|η〉1 j(ξ) f = φ(c) f .

(ii) As before, denote by p0 : Γf (F ) → Γ0(F 0) the restriction. Let U ∈ G,
f , f ′ ∈ Γc(F ), and g = f ∗ f ′. Using the relation supp hξ,ξ ⊆ G0 and Lemma 9.4,
we find

ω∗δ(ι( f ))∗δ(ι( f ′))ω = η∗〈j(ξ)|2δ(ι(g))|j(ξ)〉2η∗ = η∗ι(g · hξ,ξ)η

= ω∗δ(ι(p0(g)))ω∗ = φ(p0(g)) = 〈 f | f ′〉Γ2(F ,λ−1,φ).

The existence of Sω follows. Finally, Sωπφ( f ) = δ(ι( f ))Sω since Sωπφ( f ) ĵφ(g) =
Sω ĵφ( f g) = δ(ι( f g))ω = δ(ι( f ))Sω ĵφ(g) for all f , g ∈ Γc(F ).

(iii) Let V ∈ G, f ∈ Γc(F|V), ζ ∈ Cc(G0), and define ζ ′ ∈ L2(G0, µ) by
ζ ′(s(x)) = ζ(r(x))D1/2(x) for all x ∈ V and ζ ′(y) = 0 for all y ∈ G0 \ s(V). Then
(jφ( f )ζ)(x) = f (x)ζ(r(x)) = ( ĵφ( f )ζ ′)(x) for all x ∈ G and therefore

Sω jφ( f )ζ = Sω ĵφ( f )ζ ′ = δ(ι( f ))ωζ ′ = δ(ι( f ))|η〉1 j(ξ)ζ ′.

Since f ∈ Γc(F|V), there exist f ′ ∈ L(C0(V)), η′ ∈ γ such that δ(ι( f ))|η〉1 =
|η′〉1L( f ′). Now,

Sω jφ( f )ζ = δ(ι( f ))|η〉1 j(ξ)ζ ′ = |η′〉1L( f ′)j(ξ)ζ ′ = |η′〉j(L( f ′)ξ)ζ

because (L( f ′)j(ξ)ζ ′)(z) = 0 for z 6∈ VU and

(L( f ′)j(ξ)ζ ′)(xy)=D−1/2(x) f ′(x)ξ(y)ζ ′(r(y))= f ′(x)ζ(r(x))ξ(y)=j(L( f ′)ξ)ζ(xy)

for all (x, y) ∈ (V ×U) ∩ Gs×rG. Thus, Sω jφ( f )ζ ∈ γ . α. The claim follows.

Proof of Proposition 9.12. Since πF is injective, we can define ε̌ = ε̌(C,δ) := ι ◦
π−1
F . We show that δ ◦ ε̌ is a morphism from πF (C∗r (F ))

γF
KF

to δ(C)γ.α
Kγ⊗

b
β H . For each

C0(G0)-weight φ on Γ0(F 0), denote by pφ : KF → Kφ the canonical projection.
Let S ⊆ L(KF , Kγ⊗

b
β H) be the closed linear span of all operators of the form

Sω pφ, where U, ξ, η, ω, φ are as in the lemma above. Then Sa = δ(ε̌(a)) for each
S ∈ S , a ∈ πF (C∗r (F )), and [SγF ] = [δ(ι(Γc(F )))(γ . α)] = γ . α. The claim
follows. Since δ is an isomorphism from C to δ(C)γ.α

Kγ⊗
b

β H , we can conclude that ε̌



64 THOMAS TIMMERMANN

is a morphism from πF (C∗r (F ))
γF
KF

to C. The relation (ε̌ ∗ id) ◦ δ = δ ◦ ε̌ follows
from the fact that

〈j(ξ)|2δ(ε̌(g) · f )|j(ξ ′)〉2 = ε̌(g) · ( f hξ,ξ ′)

= ε̌(g · ( f hξ,ξ ′)) = ε̌(〈j(ξ)|2δ(πF (g))|j(ξ ′)〉2)

for all U ∈ G, g ∈ Γc(F|U), f ∈ Cc(U), ξ, ξ ′ ∈ Cc(G) by Lemma 9.4.

COROLLARY 9.14. Every very fine coaction of C∗r (G) is left-full.

Proof. Let (C, δ) be a very fine coaction of C∗r (G), let (πF (C∗r (F ))
γF
KF

, δF )

and ε̌(C,δ) be as above, and let I := {T ∈ Ls((KF , γF ), (K, γ)) : Tx = ε̌(C,δ)(x)T
for all x ∈ πF (C∗r (F ))}. Then γ = [IγF ] because ε̌(C,δ) is a morphism, and since
δF is left-full,

[δ(C)|γ〉1C∗r (G)]= [(ε̌(C,δ) ∗ id)(δF (πF (C∗r (F ))))(I ⊗
b

id)|γF 〉1C∗r (G)]

= [(I ⊗
b

id)δF (πF (C∗r (F )))|γF 〉1C∗r (G)]

= [(I ⊗
b

id)|γF 〉1C∗r (G)] = [|γ〉1C∗r (G)].

THEOREM 9.15. (F̌, Ǧ, η̌, ε̌) is an embedding of Fella
G into Coactas

C∗r (G) as a full
and coreflective subcategory.

Proof. One easily verifies that Ǧ is faithful and that the families (η̌F )F and
(ε̌(C,δ))(C,δ) are natural transformations as desired. Since η̌ is a natural isomor-
phism, F̌ is full and faithful; see Theorem IV.3.1 in [18].
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