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INTRODUCTION

Development of the theory of integration for measures µ with the values in
Dedekind complete Riesz spaces has inspired the study of (bo)-complete lattice-
normed spaces Lp(µ) (see, for example, 6.1.8 of [7]). Note that, if the measure µ
satisfies the Maharam property, then the spaces Lp(µ) are Banach–Kantorovich
spaces.

The existence of center-valued traces on finite von Neumann algebras nat-
urally leads to a study of the integration for traces with the values in a complex
Dedekind complete Riesz space FC = F ⊕ iF. For commutative von Neumann
algebras, the development of FC-valued integration is a part of the study of the
properties of order continuous positive maps of Riesz spaces, for which we refer
to the treatise by A.G. Kusraev [7]. The operators possessing the Maharam prop-
erty provide important examples of such mappings, while the Lp-spaces associ-
ated with such operators are non-trivial examples of Banach–Kantorovich Riesz
spaces.

Let M be a non-commutative von Neumann algebra, let FC be a von Neu-
mann subalgebra in the center of M, and let Φ : M → FC be a trace such that
Φ(zx) = zΦ(x) for all z ∈ FC, x ∈ M. Then the non-commutative Lp-space
Lp(M, Φ) is a Banach–Kantorovich space [1], [6], and the trace Φ satisfies the Ma-
haram property, that is, if 0 6 z 6 Φ(x), z ∈ FC, 0 6 x ∈ M, then there exists
y ∈ M, 0 6 y 6 x such that Φ(y) = z (compare with 3.4.1 of [7]).
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In [2], a faithful normal trace Φ on M with the values in an arbitrary com-
plex Dedekind complete Riesz space was considered. In particular, a complete
description of such traces in the case when Φ is a Maharam trace was given. In
the same paper, utilizing the locally measure topology on the algebra S(M) of all
measurable operators affiliated with M, the Banach–Kantorovich space L1(M, Φ)
⊂ S(M) was constructed and a version of Radon–Nikodym-type theorem for
Maharam traces was established.

In the present article, we define a new class of Banach–Kantorovich spaces,
non-commutative Lp-spaces Lp(M, Φ) associated with a Maharam trace; also, we
give a description of their dual spaces.

We use the terminology and results of the theory of von Neumann alge-
bras [10], [11], the theory of measurable operators [9], [8], and of the theory of
Dedekind complete Riesz space and Banach–Kantorovich spaces [7].

1. PRELIMINARIES

Let X be a vector space over the field C of complex numbers, and let F be
a Riesz space. A mapping ‖ · ‖ : X → F is said to be a vector (F-valued) norm if it
satisfies the following axioms:

(i) ‖x‖ > 0, ‖x‖ = 0⇔ x = 0 (x ∈ X);
(ii) ‖λx‖ = |λ|‖x‖ (λ ∈ C, x ∈ X);

(iii) ‖x + y‖ 6 ‖x‖+ ‖y‖ (x, y ∈ X).

A norm ‖ · ‖ is called decomposable if the following property holds:

PROPERTY 1. If f1, f2 > 0 and ‖x‖ = f1 + f2, then there exist x1, x2 ∈ X
such that x = x1 + x2 and ‖xk‖ = fk (k = 1, 2).

If property 1 is valid only for disjoint elements f1, f2 ∈ F, the norm is called
disjointly decomposable or, briefly, d-decomposable.

The pair (X, ‖ · ‖) is called a lattice-normed space (shortly, LNS). If the norm
‖ · ‖ is decomposable (d-decomposable), then so is the space (X, ‖ · ‖).

A net {xα}α∈A ⊂ X (bo)- converges to x ∈ X if the net {‖xα − x‖}α∈A (o)-
converges to zero in the Riesz space F. A net {xα}α∈A is said to be a (bo)- Cauchy
net if sup

α,β>γ

‖xα − xβ‖ ↓ 0. An LNS is called (bo)- complete if any (bo)-Cauchy net

(bo)-converges. A Banach–Kantorovich space (shortly, BKS) is a d-decomposable
(bo)-complete LNS. It is well known that every BKS is a decomposable LNS.

Let F be a Dedekind complete Riesz space with a weak identity 1F, and let
FC = F ⊕ iF be the complexification of F. If z = α + iβ ∈ FC, α, β ∈ F, then
z := α− iβ, and |z| := sup{Re(eiθz) : 0 6 θ < 2π} (see 1.3.13 of [7]).

Let (X, ‖ · ‖X) be the BKS over F. A linear operator T : X → FC is said to
be F-bounded if there exists 0 6 c ∈ F such that |T(x)| 6 c‖x‖X for all x ∈ X.
For any F-bounded operator T, define the element ‖T‖ = sup{|T(x)| : x ∈ X,
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‖x‖X 6 1F}, which is called the abstract F-norm of the operator T ([7], 4.1.3). It is
known that |T(x)| 6 ‖T‖ ‖x‖X for all x ∈ X ([7], 4.1.1).

The set X∗ of all F-bounded linear mappings from X into FC is called the
F-dual space to the BKS X. For T, S ∈ X∗, we set (T + S)(x) = Tx + Sx, (λT)(x) =
λTx, where x ∈ X, λ ∈ C. It is clear that X∗ is a linear space with respect to the
introduced algebraic operations. Moreover, (X∗, ‖ · ‖) is a BKS ([7], 4.2.6).

Let H be a Hilbert space, let B(H) be the ∗-algebra of all bounded linear
operators on H, and let 1 be the identity operator on H. Given a von Neumann
algebra M acting on H, denote by Z(M) the center of M and by P(M) the lattice
of all projections in M. Let Pfin(M) be the set of all finite projections in M.

A densely-defined closed linear operator x (possibly unbounded) affiliated
with M is said to be measurable if there exists a sequence {pn}∞

n=1 ⊂ P(M) such
that pn ↑ 1, pn(H) ⊂ D(x) and p⊥n = 1 − pn ∈ Pfin(M) for every n = 1, 2, . . .
(here D(x) is the domain of x). Let us denote by S(M) the set of all measurable
operators.

Let x, y be measurable operators. Then x + y, xy and x∗ are densely-defined
and preclosed. Moreover, the closures x + y (strong sum), xy (strong product)
and x∗ are also measurable, and S(M) is a ∗-algebra with respect to the strong
sum, strong product, and the adjoint operation (see [9]). For any subset E ⊂ S(M)
we denote by Eh (respectively E+ ) the set of all self-adjoint (respectively positive)
operators from E.

For x ∈ S(M) let x = u|x| be the polar decomposition, where |x| = (x∗x)1/2,
u is a partial isometry in B(H) such that u∗u is a right support of x. Then u ∈ M
and |x| ∈ S(M). If x ∈ Sh(M) and {Eλ(x)} are the spectral projections of x, then
{Eλ(x)} ⊂ P(M).

Let M be a commutative von Neumann algebra. Then M is ∗-isomorphic to
the ∗-algebra L∞(Ω, Σ, µ) of all essentially bounded complex measurable func-
tions with the identification almost everywhere, where (Ω, Σ, µ) is a measurable
space. In addition S(M) ∼= L0(Ω, Σ, µ), where L0(Ω, Σ, µ) is the ∗-algebra of all
complex measurable functions with the identification almost everywhere [9].

The locally measure topology t(M) on L0(Ω, Σ, µ) is by definition the linear
(Hausdorff) topology whose base of neighborhoods of zero is given by

W(B, ε, δ) = { f ∈ L0(Ω, Σ, µ) : there exists a set E ∈ Σ, such that E ⊆ B,

µ(B \ E) 6 δ, f χE ∈ L∞(Ω, Σ, µ), ‖ f χE‖L∞(Ω,Σ,µ) 6 ε}.

Here ε, δ run over all strictly positive numbers and B ∈ Σ, µ(B) < ∞. It is known
that (S(M), t(M)) is a complete topological ∗-algebra.

It is clear that zero neighborhoods W(B, ε, δ) are closed and have the fol-
lowing property: if f ∈ W(B, ε, δ), g ∈ L∞(Ω, Σ, µ), ‖g‖L∞(Ω,Σ,µ) 6 1, then
g f ∈W(B, ε, δ).

A net { fα} converges locally in measure to f (notation: fα
t(M)−→ f ) if and only

if fαχB converges in µ-measure to f χB for each B ∈ Σ with µ(B) < ∞.
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Let now M be an arbitrary finite von Neumann algebra, ΦM : M → Z(M)
be a center-valued trace on M ([10], 7.11). Let Z(M) ∼= L∞(Ω, Σ, µ). The locally
measure topology t(M) on S(M) is the linear (Hausdorff) topology whose base
of neighborhoods of zero is given by

V(B, ε, δ) = {x ∈ S(M) : there exists p ∈ P(M), z ∈ P(Z(M))

such that xp ∈ M, ‖xp‖M 6 ε, z⊥ ∈W(B, ε, δ), ΦM(zp⊥) 6 εz},

where ‖ · ‖M is the C∗-norm in M. It is known that (S(M), t(M)) is a complete
topological ∗-algebra [13].

From Section 3.5 of [8], we have the following criterion for convergence in
the topology t(M).

PROPOSITION 1.1. A net {xα}α∈A ⊂ S(M) converges to zero in the topology

t(M) if and only if ΦM(E⊥λ (|xα|)
t(M)−→ 0 for any λ > 0.

Let M be an arbitrary von Neumann algebra, and let F be a Dedekind com-
plete Riesz space. An FC-valued trace on the von Neumann algebra M is a linear
mapping Φ : M → FC with Φ(x∗x) = Φ(xx∗) > 0 for all x ∈ M. It is clear that
Φ(Mh) ⊂ F, Φ(M+) ⊂ F+ = {a ∈ F : a > 0}. A trace Φ is said to be faith-
ful if the equality Φ(x∗x) = 0 implies x = 0, normal if Φ(xα) ↑ Φ(x) for every
xα, x ∈ Mh, xα ↑ x.

If M is a finite von Neumann algebra, then its canonical center-valued trace
ΦM : M→ Z(M) is an example of a Z(M)-valued faithful normal trace.

Let us list some properties of the trace Φ : M→ FC.

PROPOSITION 1.2 ([2]). (i) Let x, y, a, b ∈ M. Then

Φ(x∗) = Φ(x), Φ(xy) = Φ(yx), Φ(|x∗|) = Φ(|x|),
|Φ(axb)| 6 ‖a‖M‖b‖MΦ(|x|);

(ii) If Φ is a faithful trace, then M is finite;
(iii) If xn, x ∈ M and ‖xn − x‖M → 0, then |Φ(xn)− Φ(x)| relative uniform con-

verges to zero;
(iv) Φ(|x + y|) 6 Φ(|x|) + Φ(|y|) for all x, y ∈ M.

The trace Φ : M → FC possesses the Maharam property if for any x ∈
M+, 0 6 f 6 Φ(x), f ∈ F, there exists y ∈ M+, y 6 x such that Φ(y) = f .
A faithful normal FC-valued trace Φ with the Maharam property is called a Ma-
haram trace (compare with III, 3.4.1 of [7]). Obviously, any faithful finite numerical
trace on M is a C-valued Maharam trace.

Let us give another examples of Maharam traces. Let M be a finite von
Neumann algebra, let A be a von Neumann subalgebra in Z(M), and let T :
Z(M) → A be a linear positive normal operator, T(x∗x) = 0 ⇔ x = 0. If
f ∈ S(A) is a reversible positive element, then Φ(T, f )(x) = f T(ΦM(x)) is an
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S(A)-valued faithful normal trace on M. In addition, if T(ab) = aT(b) for all
a ∈ A, b ∈ Z(M), then Φ(T, f ) is a Maharam trace on M.

If τ is a faithful normal finite numerical trace on M and dim(Z(M)) > 1,
then Φ(x) = τ(x)1 is a Z(M)-valued faithful normal trace, which does not pos-
sess the Maharam property (see [2]).

Let F have a weak order unit 1F. Denote by B(F) the complete Boolean alge-
bra of unitary elements with respect to 1F, and let Q be the Stone compact space
of the Boolean algebra B(F). Let C∞(Q) be the Dedekind complete Riesz space of
all continuous functions a : Q → [−∞,+∞] such that a−1({±∞}) is a nowhere
dense subset of Q. We identify F with the order-dense ideal in C∞(Q) containing
algebra C(Q) of all continuous real functions on Q. In addition, 1F is identified
with the function equal to 1 identically on Q ([7], 1.4.4).

We need the following theorem from [2].

THEOREM 1.3. Let Φ be an FC-valued Maharam trace on a von Neumann algebra
M. Then there exists a von Neumann subalgebraA in Z(M), a ∗-isomorphism ψ fromA
onto the ∗-algebra C(Q)C, a positive linear normal operator E from Z(M) onto A with
E(1) = 1, E2 = E , such that:

(i) Φ(x) = Φ(1)ψ(E(ΦM(x))) for all x ∈ M;
(ii) Φ(zy) = Φ(zE(y)) for all z, y ∈ Z(M);

(iii) Φ(zy) = ψ(z)Φ(y) for all z ∈ A, y ∈ M.

Due to Theorem 1.3, the ∗-algebra B = C(Q)C is a commutative von Neu-
mann algebra, and ∗-algebra C∞(Q)C is identified with the ∗-algebra S(B). It is
clear that the ∗-isomorphism ψ from A onto B can be extended to a ∗-isomor-
phism from S(A) onto S(B). We denote this mapping also by ψ.

Let Φ be a S(B)-valued Maharam trace on a von Neumann algebra M. A
net {xα} ⊂ S(M) converges to x ∈ S(M) with respect to the trace Φ (notation:

xα
Φ−→ x) if Φ(E⊥λ (|xα − x|)) t(B)−→ 0 for all λ > 0.

PROPOSITION 1.4 ([2]). xα
Φ−→ x if and only if xα

t(M)−→ x.

An operator x ∈ S(M) is said to be Φ-integrable if there exists a sequence

{xn} ⊂ M such that xn
Φ→ x and ‖xn − xm‖Φ

t(B)−→ 0 as n, m→ ∞.
Let x be a Φ-integrable operator from S(M). Then there exists a Φ̂(x) ∈ S(B)

such that Φ(xn)
t(B)−→ Φ̂(x). In addition Φ̂(x) does not depend on the choice of a

sequence {xn} ⊂ M, for which xn
Φ−→ x, Φ(|xn − xm|)

t(B)−→ 0 [2]. It is clear that
each operator x ∈ M is Φ-integrable and Φ̂(x) = Φ(x).

Denote by L1(M, Φ) the set of all Φ-integrable operators from S(M). If x ∈
S(M) then x ∈ L1(M, Φ) if and only if |x| ∈ L1(M, Φ), in addition |Φ̂(x)| 6
Φ̂(|x|) [2]. For any x ∈ L1(M, Φ), set ‖x‖1,Φ = Φ̂(|x|). It is known that L1(M, Φ)
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is a linear subspace of S(M), ML1(M, Φ)M ⊂ L1(M, Φ), and x∗ ∈ L1(M, Φ) for
all x ∈ L1(M, Φ) [2]. Moreover, the following theorem is true.

THEOREM 1.5 ([2]). (i) (L1(M, Φ), ‖ · ‖1,Φ) is a Banach–Kantorovich space;
(ii) S(A)L1(M, Φ) ⊂ L1(M, Φ), in addition Φ̂(zx) = ψ(z)Φ̂(x) for all z ∈

S(A), x ∈ L1(M, Φ).

2. Lp-SPACES ASSOCIATED WITH A MAHARAM TRACE

Let B be a commutative von Neumann algebra, which is ∗-isomorphic to
a von Neumann subalgebra A in Z(M), and let Φ : M → S(B) be a Maharam
trace on M (see Theorem 1.3). For any p > 1, set Lp(M, Φ) = {x ∈ S(M) : |x|p ∈
L1(M, Φ)} and ‖x‖p,Φ = Φ̂(|x|p)1/p. It is clear that M ⊂ Lp(M, Φ).

Let e be a nonzero projection in B, and put Φe(a) = Φ(a)e, a ∈ M. A map-
ping Φe : M→ S(Be) is a normal (not necessarily faithful) S(Be)-valued trace on
M. Denote by s(Φe) := 1− sup{p ∈ P(M) : Φe(p) = 0} the support of the trace
Φe. It is clear that s(Φe) ∈ P(Z(M)) and Φe(a) = Φ(as(Φe)) is a faithful normal
S(Be)-valued trace on Ms(Φe) (compare 5.15 of [10]). Moreover Φe possesses the
Maharam property.

If e and g are orthogonal nonzero projections in P(B), then Φg(s(Φe)) =
Φ(s(Φe))g = Φe(1)g = Φ(1)eg = 0, i.e. s(Φe)s(Φg) = 0. Let {ei}i∈I be a family
of nonzero mutually orthogonal projections in P(B) with sup

i∈I
ei = 1B , where 1B

is the unit of the algebra B. If z = 1− sup
i∈I

s(Φei ) then Φ(z)ei = Φei (z) = 0 for all

i ∈ I. Therefore Φ(z) = 0, i.e. z = 0, or sup
i∈I

s(Φei ) = 1.

Further, we need the following

PROPOSITION 2.1. Let x ∈ S(M) and let {ei}i∈I be the family of nonzero mutu-
ally orthogonal projections in P(B) with sup

i∈I
ei = 1B . Then x ∈ Lp(M, Φ) if and only

if xs(Φe) ∈ Lp(Ms(Φei ), Φei ) for all i ∈ I. In addition ‖x‖p,Φei = ‖xs(Φei )‖p,Φei
.

Proof. Let x ∈ Lp(M, Φ), an = En(|x|p)|x|p where En(|x|p) is the spectral

projection of |x|p corresponding to the interval (−∞, n]. It is clear that an
Φ−→

|x|p and Φ(|an − am|)
t(B)−→ 0 as n, m → ∞. Hence, ans(Φei )

Φei−→ |x|ps(Φei ) (see
Proposition 1.4). In addition, from the inequality Φei (|ans(Φei ) − ams(Φei )|) =

Φ(|an − am|s(Φei )) 6 Φ(|an − am|), we have Φei (|ans(Φei ) − ams(Φei )|)
t(Bei)−→ 0.

This means that |xs(Φei )|p = |x|ps(Φei ) ∈ L1(Ms(Φei ), Φei ) and ‖xs(Φei )‖p,Φei
=

Φ̂ei (|x|ps(Φei ))
1/p = (Φ̂(|x|p)ei)

1/p = ‖x‖p,Φei.
Conversely, let xs(Φei )∈Lp(Ms(Φei ), Φei ) for all i∈ I. Set an,i =En(|xs(Φei )|p)

|xs(Φei )|p. It is clear that an,i ↑ |xs(Φei )|p = |x|ps(Φei ) as n → ∞ for any fixed
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i ∈ I. Therefore an,i
t(Ms(Φei ))−→ |x|ps(Φei ), Φei (|an,i − am,i|)

t(Bei)−→ 0 as n, m → ∞.
Since 0 6 Φ(

√an,iam,j
√an,i) = Φ(an,iam,j) 6 ‖am,j‖MΦ(an,i) = ‖am,j‖MΦ(an,i)ei

and Φ(an,iam,j) 6 ‖an,i‖MΦ(am,j)ej, we have Φ(an,iam,j) = 0. Hence, an,iam,j = 0
for all n, m, i 6= j. Since 0 6 an,i 6 ns(Φei ), s(Φei )s(Φej) = 0, i 6= j, there is an
xn ∈ M+ such that xns(Φei ) = an,i. Using the equality sup

i∈I
s(Φei ) = 1, we obtain

xn
t(M)−→ |x|p ([16]), moreover Φ(|xn − xm|)

t(B)−→ 0. Therefore x ∈ Lp(M, Φ).

Similar to the case of the space L1(M, Φ), the subset Lp(M, Φ) is invariant
with respect to the action of involution in S(M). The following proposition is
devoted to this fact.

PROPOSITION 2.2. If x∈Lp(M, Φ), then x∗∈Lp(M, Φ) and ‖x‖p,Φ =‖x∗‖p,Φ.

Proof. Let x = u|x| be the polar decomposition of x. Since an algebra M
has a finite type, we can suppose that u is a unitary operator in M. For each
y ∈ S(M), we set U(y) = uyu∗. Then the mapping U : S(M) → S(M) is a ∗-
isomorphism, and therefore U(ϕ(y)) = ϕ(U(y)) for any continuous function
ϕ : [0,+∞) → [0,+∞) and y ∈ S+(M) [16]. If ϕ(t) = tp, p > 1, t > 0,
and y ∈ S+(M) then uypu∗ = (uyu∗)p. In particular, we obtain the equality
|x∗|p = u|x|pu∗. Hence, x∗ ∈ Lp(M, Φ). Moreover ‖x∗‖p,Φ = Φ̂(|x∗|p)1/p =

Φ̂(u|x|pu∗)1/p = Φ̂(|x|p)1/p = ‖x‖p,Φ.

Now we need a version of the Hölder inequality for Maharam traces. In the
proof of this inequality for numerical traces, properties of decreasing rearrange-
ments of integrable operators are used [5]. For Maharam traces such theory of
decreasing rearrangements does not exist. Therefore we use another approach
connected with the concept of a bitrace on a C∗-algebra.

Let N be a C∗-algebra. A function s : N ×N → C is called a bitrace on N
([3], 6.2.1) if the following relations hold:

(i) s(x, y) is a positively defined sesquilinear Hermitian form on N ;
(ii) s(x, y) = s(y∗, x∗) for all x, y ∈ N ;

(iii) s(zx, y) = s(x, z∗y) for all x, y, z ∈ N ;
(iv) for any z ∈ N , the mapping x → zx is continuous on (N , ‖ · ‖s) where
‖x‖s =

√
s(x, x), x ∈ N ;

(v) the set {xy : x, y ∈ N} is dense in (N , ‖ · ‖s).

If N has a unit, then condition (v) holds automatically.
Let us list examples of bitraces associated with the Maharam trace.
Let M be a von Neumann algebra, let Φ : M → S(B) be a Maharam trace

and let Q = Q(P(B)) be the Stone compact space of the Boolean algebra P(B).
We claim that s(Φ(1)) = 1B . If it is not the case, then e = 1B − s(Φ(1)) 6= 0
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and z = ψ−1(e) 6= 0 where ψ is a ∗-isomorphism from Theorem 1.3. By The-
orem 1.5(ii), we haves Φ(z) = eΦ(1) = 0, which contradicts to the faithful-
ness of the trace Φ. Thus, s(Φ(1)) = 1B , and therefore the following elements
are defined: (Φ(1))−1 ∈ S+(B) and (Φ(1))−1Φ(x) ∈ C(Q) where x ∈ M.
For any t ∈ Q, set ϕt(x) = (Φ(1)−1Φ(x))(t). It is clear that ϕt is a finite nu-
merical trace on M. The function st(x, y) = ϕt(y∗x) = ϕt(xy∗) is a bitrace on
M. In fact, the conditions (i)–(iii) are obvious; (iv) follows from the inequality
‖zx‖st =

√
ϕt((zx)∗(zx)) =

√
ϕt(x∗z∗zx) 6 ‖z‖M‖x‖st .

Let s(x, y) be an arbitrary bitrace on a von Neumann algebra M. Set Ns =
{x ∈ M : s(x, x) = 0}. It follows from 6.2.2 of [3], that Ns is a self-adjoint two-
sided ideal in M. We consider the factor-space M/Ns with the scalar product
([x], [y])s = s(x, y) where [x], [y] are the equivalence classes from M/Ns with rep-
resentatives x and y, respectively. Denote by (Hs, (·, ·)s) the Hilbert space which
is the completion of (M/Ns, (·, ·)s). By the formula πs(x)([y]) = [xy], x, y ∈ M,
one defines a ∗-homomorphism πs : M→ B(Hs). In addition πs(1M) = 1B(Hs).

Denote by Us(M) the von Neumann subalgebra in B(Hs) generated by op-
erators πs(x), i.e. Us(M) is the closure of the ∗-subalgebra πs(M) in B(Hs) with
respect to the weak operator topology. According to 6.2 of [4], there exists a
faithful normal semifinite numerical trace τs on (Us(M))+ such that τs(π(x2)) =
([x], [x]) = s(x, x) for all x ∈ M+. If ϕ is a trace on M and s(x, y) = ϕ(y∗x) then
τs(πs(x2)) = ϕ(x2) for all x ∈ M+. This means that τs(πs(x)) = ϕ(x) for any
x ∈ M+. In addition, if ϕ(1M) < ∞, then τs(1B(Hs)) < ∞. Consequently, τs is a
faithful normal finite trace on Us(M).

THEOREM 2.3. Let Φ be a S(B)-valued Maharam trace on the von Neumann
algebra M, p, q > 1, 1/p + 1/q = 1. If x ∈ Lp(M, Φ), y ∈ Lq(M, Φ), then xy ∈
L1(M, Φ) and ‖xy‖1,Φ 6 ‖x‖p,Φ‖y‖q,Φ.

Proof. We consider the bitrace st(x, y) = ϕt(y∗x) on M where ϕt(x) =
((Φ(1))−1Φ(x))(t), t ∈ Q(P(B)). Denote by τt a faithful normal finite trace on
(Ust(M))+ such that τt(πst(x)) = ϕt(x) for all x ∈ M+. Since the trace τt is finite,
τt(πst(x)) = ϕt(x) for any x ∈ M. Let Lp(Ust(M), τt) be the non-commutative
Lp-space associated with the numerical trace τt. It follows from [5] that

τt(|πst(xy)|) 6 τt(|πst(x)|p)1/pτt(|πst(y)|q)1/q.

Since πst(|x|) = |πst(x)|, x ∈ M, we get πst(|x|p) = (πst(|x|))p ([3], 1.5.3).
Thus, ϕt(|xy|) 6 ϕt(|x|p)1/p ϕt(|y|q)1/q, or

(Φ(1))−1Φ(|xy|)(t) 6 [((Φ(1))−1Φ(|x|p))(t)]1/p[((Φ(1))−1Φ(|y|q))(t)]1/q

for all t ∈ Q(P(B)). This means that

(Φ(1))−1Φ(|xy|) 6 [((Φ(1))−1Φ(|x|p))]1/p[((Φ(1))−1Φ(|y|q))]1/q.

Multiplying this inequality by Φ(1), we get ‖xy‖1,Φ 6 ‖x‖p,Φ‖y‖q,Φ.
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Let now x ∈ Lp
+(M, Φ), y ∈ Lq

+(M, Φ). We claim that xy ∈ L1(M, Φ). Set
an = En(x)x, bn = En(y)y. We have an, bn ∈ M+ and an ↑ x, bn ↑ y, in par-

ticular, an
Φ−→ x, bn

Φ−→ y. Hence, anbn ∈ M and anbn
Φ−→ xy. In addition,

‖anbn− ambm‖1,Φ 6 ‖an‖p,Φ‖bn− bm‖q,Φ + ‖an− am‖p,Φ‖bm‖q,Φ. Since ‖an‖p,Φ 6

‖x‖p,Φ, ‖bm‖q,Φ 6 ‖y‖q,Φ, and for n > m, ‖an − am‖p
p,Φ = Φ̂(xpEn(x)E⊥m(x))

t(B)−→

0, ‖bn − bm‖q
q,Φ = Φ̂(yqEn(y)E⊥m(y))

t(B)−→ 0, we get ‖anbn − ambm‖1,Φ
t(B)−→ 0 as

n, m → ∞. This means that xy ∈ L1(M, Φ) and ‖anbn − xy‖1,Φ
t(B)−→ 0. The in-

equality |‖xy‖1,Φ − ‖anbn‖1,Φ| 6 ‖xy− anbn‖1,Φ implies ‖anbn‖1,Φ
t(B)−→ ‖xy‖1,Φ.

Since

‖anbn‖1,Φ 6 ‖an‖p,Φ‖bn‖q,Φ
t(B)−→ ‖x‖p,Φ‖y‖q,Φ,

we obtain ‖xy‖1,Φ 6 ‖x‖p,Φ‖y‖q,Φ.
If x ∈ Lp(M, Φ) is arbitrary, y ∈ Lq

+(M, Φ) and x = u|x| is the polar de-
composition of x with the unitary u ∈ M, then xy = u(|x|y) ∈ L1(M, Φ) and
‖xy‖1,Φ = ‖|x|y‖1,Φ 6 ‖x‖p,Φ‖y‖q,Φ.

Let now x ∈ Lp(M, Φ), y ∈ Lq(M, Φ) be arbitrary and let y∗ = v|y∗| be the
polar decomposition of y∗ with the unitary v ∈ M. According to Proposition 2.2,
|y∗| ∈ Lq(M, Φ) and ‖y∗‖q,Φ = ‖y‖q,Φ. Therefore xy = (x|y∗|)v∗ ∈ L1(M, Φ) and
‖xy‖1,Φ = ‖x|y∗|‖1,Φ 6 ‖x‖p,Φ‖y‖q,Φ.

THEOREM 2.4. Let Φ, M, p, and q be the same as in Theorem 2.3. If x ∈ S(M),
xy ∈ L1(M, Φ) for all y ∈ Lq(M, Φ) and the set D(x) = {|Φ̂(xy)| : y ∈ Lq(M, Φ),
‖y‖q,Φ 6 1B} is bounded in Sh(B), then x ∈ Lp(M, Φ) and ‖x‖p,Φ = sup D(x).

Proof. Let x 6= 0, and let x = u|x| be the polar decomposition of x with the
unitary u ∈ M. Set yn = |x|p−1En(|x|)E⊥1/n(|x|)u

∗, n = 1, 2, . . . It is clear that
yn ∈ M and

xyn = u|x|pEn(|x|)E⊥1/n(|x|)u
∗ = uEn(|x|)E⊥1/n(|x|)|x|

pEn(|x|)E⊥1/n(|x|)u
∗ > 0.

On the other hand,

|yn|2 = uEn(|x|)E⊥1/n(|x|)|x|
2p−2En(|x|)E⊥1/n(|x|)u

∗

= uEn(|x|)E⊥1/n(|x|)|x|
2p/qEn(|x|)E⊥1/n(|x|)u

∗,

and therefore 0 6 |yn|q = (|yn|2)q/2 = xyn, in particular, ‖yn‖q,Φ = Φ(xyn)1/q.

Since xyn
t(M)−→ u|x|pu∗ 6= 0, we have xyn 6= 0 for all n > n0. Set en =

s(Φ(xyn)) as n > n0. Since Sh(B) = C∞(Q(P(B))), there exists a unique bn ∈
S+(B)en such that bnΦ(xyn) = en. It is clear that b1/q

n Φ1/q(xyn) = en. If zn =

ψ−1(en), an = ψ−1(b1/q
n ) ∈ S(Azn), then by Theorem 1.5(ii), anyn ∈ Lq(M, Φ)

and ‖anyn‖q
q,Φ = Φ̂(aq

n|yn|q) = bnΦ̂(xyn) = en 6 1B . Hence, |Φ̂(anxyn)| =
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|Φ̂(x(anyn))| 6 sup D(x) for all n > n0. On the other hand,

Φ̂(anxyn) = b1/q
n Φ̂(xyn) = (bnΦ̂(xyn))

1/qΦ̂(xyn)
1−1/q = Φ̂(xyn)

1/p

= Φ̂(u|x|pEn(|x|)E⊥1/n(|x|)u
∗)1/p = Φ̂(|x|pEn(|x|)E⊥1/n(|x|))

1/p.

Since (|x|pEn(|x|)E⊥1/n(|x|)) ↑ |x|
p, |x|p(En(|x|)E⊥1/n(|x|)) ∈ M+ and Φ̂(|x|pEn

(|x|)E⊥1/n(|x|)) 6 (sup D(x))p, we have |x|p ∈ L1(M, Φ) and Φ̂(|x|p) = sup
n>1

Φ̂

(|x|pEn(|x|)E⊥1/n(|x|)) [15]. This means that x ∈ Lp(M, Φ) and ‖x‖p,Φ6sup D(x).
Theorem 2.3 implies sup D(x) 6 ‖x‖p,Φ, and therefore ‖x‖p,Φ = sup D(x).

With the help of Theorem 2.4, it is not difficult to show that Lp(M, Φ) is
disjointly decomposable LNS over Sh(B) for all p > 1.

THEOREM 2.5. (i) Lp(M, Φ) is a linear subspace in S(M), and ‖ · ‖p,Φ is the
disjointly decomposable Sh(B)-valued norm on Lp(M, Φ);

(ii) MLp(M, Φ)M ⊂ Lp(M, Φ), and ‖axb‖p,Φ 6 ‖a‖M‖b‖M‖x‖p,Φ for all a, b ∈
M, x ∈ Lp(M, Φ);

(iii) If 0 6 x 6 y ∈ Lp(M, Φ), x ∈ S(M), then x ∈ Lp(M, Φ) and ‖x‖p,Φ 6
‖y‖p,Φ.

Proof. (i) It is clear that λx ∈ Lp(M, Φ) and ‖λx‖p,Φ = |λ|‖x‖p,Φ for all
x ∈ Lp(M, Φ), λ ∈ C. Moreover, ‖x‖p,Φ > 0 and Φ̂(|x|p) = ‖x‖p

p,Φ = 0 if and
only if x = 0.

We claim that x + y ∈ Lp(M, Φ) and ‖x + y‖p,Φ 6 ‖x‖p,Φ + ‖y‖p,Φ for
each x, y ∈ Lp(M, Φ). By theorem 2.3, (x + y)z = xz + yz ∈ L1(M, Φ) for all
z ∈ Lq(M, Φ), in addition

|Φ̂((x + y)z)| 6 |Φ̂(xz)|+ |Φ̂(yz)|.

If ‖z‖q,Φ 6 1B , then by Theorem 2.4,

|Φ̂((x + y)z)| 6 ‖x‖p,Φ + ‖y‖p,Φ.

Using Theorem 2.4 again, we obtain x+ y ∈ Lp(M, Φ) and ‖x+ y‖p,Φ 6 ‖x‖p,Φ +
‖y‖p,Φ. Thus, Lp(M, Φ) is a linear subspace in S(M), and ‖ · ‖p,Φ is a Sh(B)-valued
norm on Lp(M, Φ).

Let us now show that the norm ‖ · ‖p,Φ is d-decomposable. It is known
([2]) that, if x ∈ L1(M, Φ), ‖x‖1,Φ = f1 + f2, where f1, f2 ∈ S+(B), f1 f2 = 0,
then, setting xi = xpi for pi = ψ−1(s( fi)), i = 1, 2, we get x = x1 + x2 and
‖xi‖Φ = fi, i = 1, 2.

Let y ∈ Lp
+(M, Φ), ‖y‖p,Φ = g1 + g2 where g1, g2 ∈ S+(B), g1g2 = 0,

i.e. ‖yp‖1,Φ = ‖y‖p
p,Φ = gp

1 + gp
2 . Set qi = ψ−1(s(gp

i )) ∈ P(A) ⊂ P(Z(M)) and

yi = yqi. Then yp
i = ypqi and using [2] for x = yp, fi = gp

i , i = 1, 2 we obtain that
ypq1 + ypq2 = yp and ‖yqi‖p,Φ = gi, i = 1, 2. Since q1q2 = 0, q1, q2 ∈ P(Z(M)),
we have yq1 + yq2 = y.
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Let now y be an arbitrary element from Lp(M, Φ) and let y = u|y| be the
polar decomposition of y with the unitary u ∈ M. Let ‖|y|‖p,Φ = ‖y‖p,Φ = f1 + f2

where f1, f2 ∈ S+(B), f1 f2 = 0. It follows from above that for qi = ψ−1(s( f p
i )) ∈

P(A), we have |y| = |y|q1 + |y|q2 and ‖|y|qi‖p,Φ = fi. Consequently, y = u|y| =
yq1 + yq2 and ‖yqi‖p,Φ = ‖|y|qi‖p,Φ = fi, i = 1, 2.

(ii) Let v be a unitary operator in M, x ∈ Lp(M, Φ). Then |vx| = (x∗v∗vx)1/2

= |x|, and therefore vx ∈ Lp(M, Φ). Since any operator a ∈ M is a linear combi-
nation of four unitary operators, we have ax ∈ Lp(M, Φ), due to (i).

We claim that ‖ax‖p,Φ 6 ‖a‖M‖x‖p,Φ for a ∈ M, x ∈ Lp(M, Φ). Let ν be a
faithful normal semifinite numerical trace on B. If for some a ∈ M, x ∈ Lp(M, Φ)
the previous inequality is not true, then there are ε > 0, 0 6= e ∈ P(B), ν(e) < ∞
such that

e‖ax‖p,Φ > e‖a‖M‖x‖p,Φ + εe.

By the formula

τ(b) = ν(eΦ(b)(1B + Φ(1) + Φ̂(|x|p))−1), b ∈ Ms(Φe)

one defines a faithful normal finite numerical trace on Ms(Φe). If z = ψ−1(e) ∈
P(A), then Φe(1− z) = (1B − e)eΦ(1) = 0, i.e. s(Φe) 6 z. Since Φ(z− s(Φe)) =
Φ(z(1 − s(Φe))) = eΦ(1 − s(Φe)) = 0, we get z = s(Φe). We consider the Lp-
space Lp(Ms(Φe), τ) associated with the numerical trace τ, and let us show that
xz ∈ Lp(Ms(Φe), τ). Let xn = En(|x|)|x|. It is clear that 0 6 xp

nz ↑ |x|pz and
τ(xp

nz) 6 ν(e) < ∞. Hence, |xz|p = |x|pz ∈ L1(Ms(Φe), τ) and ‖xz‖p
p,τ =

lim
n→∞

‖xp
nz‖p

p,τ = ν(eΦ̂(|x|pz)(1B + Φ(1) + Φ̂(|x|p))−1). Thus, if a ∈ M then axz ∈
Lp(Ms(Φe), τ), in addition

‖a‖M‖xz‖p
p,τ > ‖axz‖p

p,τ = ν(eΦ̂(|axz|p)(1B + Φ(1) + Φ̂(|x|p))−1)

= ν((e‖ax‖p
p,Φ)(1B + Φ(1) + Φ̂(|x|p))−1)

> ν(e(‖a‖M‖x‖p,Φ + ε)p(1B + Φ(1) + Φ̂(|x|p))−1) > ‖a‖p
M‖xz‖p

p,τ ,

which is not the case. Consequently, ‖ax‖p,Φ 6 ‖a‖M‖x‖p,Φ.
If b ∈ M, x ∈ Lp(M, Φ), then by Proposition 2.2 and from above, we

have b∗x∗ ∈ Lp(M, Φ). Using Proposition 2.2 again, we obtain xb = (b∗x∗)∗ ∈
Lp(M, Φ) and ‖xb‖p,Φ = ‖b∗x∗‖p,Φ 6 ‖b∗‖M‖x∗‖p,Φ = ‖b‖M‖x‖p,Φ.

(iii) Let 0 6 x 6 y ∈ Lp(M, Φ), x ∈ S(M). It follows from Section 2.4 of [8]
that
√

x = a
√

y where a ∈ M with ‖a‖M 6 1. Hence, x =
√

x(
√

x)∗ = aya∗ ∈
Lp(M, Φ) and ‖x‖p,Φ 6 ‖a‖M‖a∗‖M‖y‖p,Φ 6 ‖y‖p,Φ.

Using the Hölder inequality and the (bo)-completeness of the space
(L1(M, Φ), ‖ · ‖Φ) we can establish the (bo)-completeness of the space (Lp(M, Φ),
‖ · ‖p,Φ).

THEOREM 2.6. Let Φ, M, p be the same as in Theorem 2.3. Then (Lp(M, Φ),
‖ · ‖p,Φ) is a the Banach–Kantorovich space.
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Proof. First, we assume that B is a σ-finite von Neumann algebra. Then
there exists a faithful normal finite numerical trace ν on B. The numerical function
τ(a) = ν(Φ(a)(1B+Φ(1))−1) is a faithful normal finite trace on M. Moreover, the
topology t(M) coincides with measure topology tτ on (S(M), τ) ([8], Section 3.5).

Let {xα}α∈A ⊂ (Lp(M, Φ), ‖ · ‖p,Φ) be a (bo)-Cauchy net i.e. bγ = sup
α,β>γ

‖xα

−xβ‖p,Φ ↓ 0. According to the Hölder inequality, for each x ∈ Lp(M, Φ) we have
x ∈ L1(M, Φ) and ‖x‖1,Φ = Φ̂(|x|1) 6 (Φ(1))1/q‖x‖p,Φ. In particular, the set
{‖xα − xβ‖1,Φ}α,β>γ is bounded in Sh(B), and sup

α,β>γ

‖xα − xβ‖1,Φ 6 (Φ(1))1/qbγ

for all γ ∈ A. Consequently ([2]), there exists x ∈ L1(M, Φ) such that ‖xα −
x‖1,Φ

(o)−→ 0 in particular, xα
tτ−→ x and yα = |xα − xβ|

tτ−→ |x − xβ|. Since
the function ϕ(t) = tp is continuous on [0, ∞), the operator function y 7−→ yp

is continuous on (S+(M), tτ) [12]. Hence, 0 6 yp
α

tτ−→ |x − xβ|p, in addition
Φ̂(yp

α) = ‖xα− xβ‖
p
p,Φ 6 bp

γ. Using the Fatou’s theorem [15], we obtain |x− xβ|p ∈
L1(M, Φ) and Φ̂(|x − xβ|p) 6 bp

γ. Thus, (x − xβ) ∈ Lp(M, Φ) for all β > γ and

sup
β>γ

‖x− xβ‖p,Φ 6 bγ ↓ 0. This means that x ∈ Lp(M, Φ), and ‖xα − x‖p,Φ
(o)−→ 0.

Now let B be an arbitrary von Neumann algebra (not necessarily σ-finite),
and let {xα} ⊂ Lp(M, Φ) be a (bo)-Cauchy net. It follows from the above that

there exists x ∈ L1(M, Φ) such that ‖xα − x‖1,Φ
(o)−→ 0. In particular xα

t(M)−→ x.
Let ν be a faithful normal semifinite numerical trace on B, and let {ei}i∈I be the
family of nonzero mutually orthogonal projections in B such that sup

i∈I
ei = 1B ,

and ν(ei) < ∞ for all i ∈ I. It is clear that {xαs(Φei )}α∈A is a (bo)-Cauchy net in
Lp(Ms(Φei ), Φei ). Since the algebra Bei is σ-finite, from the above there exists xi ∈

Lp(Ms(Φei ), Φei ) such that ‖xi − xαs(Φei )‖p,Φei

(o)−→ 0. In particular, xαs(Φei )
t(M)−→

xi = xis(Φei ). On the other hand, convergence xα
t(M)−→ x implies xαs(Φei )

t(M)−→
xs(Φei ). Thus, xs(Φei ) = xis(Φei ) for all i ∈ I. By Proposition 2.1, we have x ∈

Lp(M, Φ) and ‖x − xα‖p,Φei = ‖xs(Φei )− xαs(Φei )‖p,Φei

(o)−→ 0 for all i ∈ I and

therefore ‖x− xα‖p,Φ
(o)−→ 0.

PROPOSITION 2.7. If {xα}α∈A ⊂ Lp
h(M, Φ) and xα ↓ 0, then ‖xα‖p,Φ ↓ 0.

Proof. Let ν be a faithful normal semifinite numerical trace on B. If b =
inf
α∈I
‖xα‖p,Φ 6= 0, then there are ε > 0, 0 6= e ∈ P(B) with ν(e) < ∞ such that

e‖xα‖p,Φ > eb > εe for all α ∈ A. Put Φe(x) = eΦ(x), x ∈ M, and τ(y) =

ν(Φ(y)(1B +Φ(1)+ Φ̂(xp
α0))

−1), y ∈ Ms(Φe), where α0 is a fixed element from A.
Let us prove that Lp(Ms(Φe), τ) ⊂ Lp(Ms(Φe), Φe) and ‖x‖p

p,τ = ν(Φ̂(|x|p)(1B +
Φ(1) + Φ̂(xp

α0))
−1) for all x ∈ Lp(Ms(Φe), τ). It is sufficient to consider the case
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where x ∈ Lp
+(Ms(Φe), τ). Set xn = En(x)xs(Φe). It is clear that xn ∈ (Ms(Φe))+,

xp
n ↑ xp, xp

n
tτ−→ xp, and therefore xp

n
t(M)−→ xp. Moreover, Φ(|xp

n− xp
m|)=Φ(xpEn(x)

E⊥m(x)) as m < n. Since ‖xp
n − xp

m‖1,τ = ‖xpEn(x)E⊥m(x)‖1,τ → 0 as n, m → ∞,

we get Φ(|xp
n − xp

m|) = eΦ(|xp
n − xp

m|)
t(B)−→ 0. This means that xp ∈ L1(M, Φ)

and Φ(xp
n) ↑ Φ̂(xp), i.e. x ∈ Lp(Ms(Φe), Φe) and ‖x‖p,Φe = sup

n>1
(Φ(xp

n))
1/p. Us-

ing the inequality τ(xp
n) 6 τ(xp) we obtain that Φ̂(xp)(1B + Φ(1) + Φ̂(xp

α0))
−1 ∈

L1(B, ν) and

ν(Φ̂(xp)(1B + Φ(1) + Φ̂(xp
α0))

−1) = sup
n>1

τ(xp
n) = τ(xp) = ‖x‖p

p,τ .

Let us show that x = xα0 s(Φe) ∈ Lp(Ms(Φe), τ). As above, we consider xn =
En(x)x. Since

0 6 Φ(xp
n)(1B + Φ(1) + Φ̂(xp

α0))
−1 ↑ Φ̂(xp)(1B + Φ(1) + Φ̂(xp

α0))
−1 6 e,

we get τ(xp
n) 6 ν(e) < ∞. Consequently, x ∈ Lp(Ms(Φe), τ). The inequality 0 6

xα 6 xα0 , for α > α0 implies xαs(Φe) ∈ Lp(Ms(Φe), τ) (see Theorem 2.5(iii)). Since
xαs(Φe) ↓ 0 and the norm ‖ · ‖p,τ is order continuous, we have ‖xαs(Φe)‖p,τ ↓ 0,
i.e. ν(eΦ̂(xp

α)(1B + Φ(1) + Φ̂(xp
α0))

−1) ↓ 0. Hence, eΦ̂(xα)p ↓ 0, which contradicts
the inequality eΦ(xp

α) > εpe.

3. DUALITY FOR SPACES Lp(M, Φ)

Let us start with the following property of Lp-spaces Lp(M, Φ).

PROPOSITION 3.1. If x ∈ Lp(M, Φ), y ∈ Lq(M, Φ), 1/p + 1/q = 1, p, q > 1,
then xy, yx ∈ L1(M, Φ) and Φ̂(xy) = Φ̂(yx).

Proof. Without loss of generality, we can take x > 0, y > 0. It follows from
Theorem 2.3 that xy ∈ L1(M, Φ). Hence, yx = y∗x∗ = (xy)∗ ∈ L1(M, Φ) and
Φ̂(yx) = Φ̂((xy)∗) = Φ̂(xy). Let xn = xEn(x), yn = yEn(y). Using the in-
equalities |Φ̂(xy)−Φ(xnyn)| 6 ‖x− xn‖p,Φ‖y‖q,Φ + ‖xn‖p,Φ‖y− yn‖q,Φ, we ob-

tain Φ(xnyn)
t(B)−→ Φ̂(xy). Since Φ(xnyn) = Φ(

√
xnyn
√

xn) > 0 for all n, we get

Φ̂(xy) > 0. Therefore Φ̂(xy) = Φ̂(xy) = Φ̂(yx).

Let Lp(M, Φ)∗ be a BKS of all Sh(B)-bounded linear mappings from Lp(M, Φ)
into S(B), i.e. Sh(B) is the dual space to the BKS Lp(M, Φ). It is clear that any
Sh(B)-bounded linear operator is a continuous mapping from (Lp(M, Φ), ‖ · ‖p,Φ)
into (S(B), t(B)).

PROPOSITION 3.2 (Compare with 5.1.9 of [7]). Let T ∈ Lp(M, Φ)∗, ψ : S(A)
→ S(B) be a ∗-isomorphism from Theorem 1.5(ii). Then T(ax) = ψ(a)T(x) for all
a ∈ S(A), x ∈ Lp(M, Φ).
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Proof. By Theorem 1.5(ii), for each z ∈ P(A), x ∈ Lp(M, Φ) we have ‖zx‖p,Φ

= Φ̂(z|x|p)1/p = ψ(z)Φ̂(|x|p)1/p = ψ(z)‖x‖p,Φ. Since T ∈ Lp(M, Φ)∗, |Tx| 6
c‖x‖p,Φ for some c ∈ S+(B) and all x ∈ Lp(M, Φ). Hence |T(zx)| 6 ψ(z)c‖x‖p,Φ,
i.e. the support s(T(zx)) is majorized by the projection ψ(z). Multiplying the
equality T(x) = T(zx) + T((1− z)x) by ψ(z), we obtain

ψ(z)T(x) = ψ(z)T(zx) = T(zx).

If a =
n
∑

i=1
λizi is a simple element from S(A), where λi ∈ C, zi ∈ P(A), i =

1, . . . , n, then

T(ax) =
n

∑
i=1

λiT(zix) =
( n

∑
i=1

λiψ(zi)
)

T(x) = ψ(a)T(x).

Let a be an arbitrary element from S(A) and let {an} be a sequence of simple

elements from S(A) such that an
t(A)−→ a. Then 0 6 ψ(|an − a|) t(B)−→ 0, ψ(an)

t(B)−→
ψ(a), and

‖anx− ax‖p,Φ = Φ̂(|an − a|p|x|p)1/p = ψ(|an − a|)‖x‖p,Φ
t(B)−→ 0.

Since T is continuous, ψ(an)T(x) = T(anx)
t(B)−→ T(ax). Due to the convergence

ψ(an)T(x)
t(B)−→ ψ(a)T(x), the proof is complete.

Now we pass to description of the Sh(B)-dual space Lp(M, Φ)∗.

THEOREM 3.3. Let Φ be an S(B)-valued Maharam trace on the von Neumann
algebra M, p, q > 1, 1/p + 1/q = 1.

(i) If y ∈ Lq(M, Φ), then the linear mapping Ty(x) = Φ̂(xy), x ∈ Lp(M, Φ), is
S(B)-bounded and ‖Ty‖ = ‖y‖q,Φ.

(ii) If T ∈ Lp(M, Φ)∗, then there exists a unique y ∈ Lq(M, Φ) such that T = Ty.

Proof. (i) By the Hölder inequality (Theorem 2.3), xy ∈ L1(M, Φ) for all x ∈
Lp(M, Φ) and |Ty(x)| = |Φ̂(xy)| 6 ‖y‖q,Φ‖x‖p,Φ. Hence, Ty is Sh(B)-bounded
linear mapping from Lp(M, Φ) into S(B). Due to Proposition 3.1 and Theorem 2.4
we have

‖Ty‖ = sup{|Φ̂(yx)| : x ∈ Lp(M, Φ), ‖x‖p,Φ 6 1B} = ‖y‖q,Φ.

(ii) Since s(Φ(1)) = 1B , we can define the element b = (Φ(1))−1 ∈ S+(A).
If Φ1(x) = bΦ(x), x ∈ M, then Lp(M, Φ1) = Lp(M, Φ) and ‖x‖p,Φ1 = b1/p‖x‖p,Φ
for all x ∈ Lp(M, Φ). Therefore, one can take Φ(1) = 1B .

Let T ∈ Lp(M, Φ)∗. We choose a ∈ S+(B) with a‖T‖ = s(‖T‖). Set T1(x) =
aT(x), x ∈ Lp(M, Φ). It is clear that T1 ∈ Lp(M, Φ)∗ and ‖T1‖ = a‖T‖ =
s(‖T‖) 6 1B . If we show that there exists y1 ∈ Lq(M, Φ) such that T1x = Φ(xy1),
then by virtue of Proposition 3.2, Tx = ‖T‖T1(xy1) = T(x(ψ−1(‖T‖)y1)) =
T(xy) where y = ψ−1(‖T‖)y1 ∈ Lq(M, Φ). Thus, one can also take that ‖T‖ 6 1B .
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At first, we assume that the algebra B is σ-finite. Let ν be a faithful nor-
mal finite numerical trace on B. Since |Φ(x)| 6 ‖x‖MΦ(1) 6 ‖x‖M1B , x ∈ M,
we get Φ(x) ∈ L1(B, ν). Consider on M the faithful normal finite trace τ(x) =
ν(Φ(x)), x ∈ M. Using the same trick as in the proof of Proposition 2.7, we
can show that Lp(M, τ) ⊂ Lp(M, Φ) and τ(|x|p) = ‖x‖p

p,τ = ν(Φ̂(|x|p)) for all
x ∈ Lp(M, τ). Since |T(x)| 6 ‖x‖p,Φ = (Φ̂(|x|p))1/p, we have T(x) ∈ L1(B, ν) for
all x ∈ Lp(M, τ).

We define on Lp(M, τ) the linear C-valued functional f (x) = ν(Tx), x ∈
Lp(M, τ). Since

| f (x)|6ν(|T(x)|)6ν(Φ̂(|x|p)1/p1B)6(ν(Φ̂(|x|p)))1/p(ν(1B))1/q=(ν(1B))1/q‖x‖p,τ

for all x ∈ Lp(M, τ), we have that f is a bounded linear functional on (Lp(M, τ),
‖ · ‖p,τ). Hence there exists an operator y ∈ Lq(M, τ) ⊂ Lq(M, Φ) such that
f (x) = τ(xy) for all x ∈ Lp(M, τ) [14]. We claim that τ(xy) = ν(Φ̂(xy)) for
all x ∈ Lp(M, τ). If z ∈ L1

+(M, τ), then z1/p ∈ Lp
+(M, τ), and therefore τ(z) =

ν(Φ̂(z). Hence, τ(z) = ν(Φ̂(z)) for all z ∈ L1(M, τ), in particular, τ(xy) =

ν(Φ̂(xy)) where x ∈ Lp(M, τ). Thus, ν(T(x)) = f (x) = τ(xy) = ν(Φ̂(xy)) for all
x ∈ Lp(M, τ).

Let T(x) − Φ̂(xy) = v|T(x) − Φ̂(xy)| be the polar decomposition of the
element (T(x)− Φ̂(xy)) ∈ S(B) and take a = ψ−1(v∗). Since

0 = ν(T(ax)− Φ̂(axy)) = ν(v∗(T(x)− Φ̂(xy))) = ν(|T(x)− Φ̂(xy)|),

we have T(x) = Φ̂(xy) for all x ∈ Lp(M, τ).

Let x ∈ Lp
+(M, Φ), xn = xEn(x). Then ‖xn − x‖p,Φ

t(B)−→ 0 and therefore

T(xn)
t(B)−→ T(x) and |Φ̂(xny)− Φ̂(xy)| 6 ‖xn − x‖p,Φ‖y‖q,Φ

t(B)−→ 0.

Since T(xn) = Φ̂(xny), T(x) = Φ̂(xy), i.e. T = Ty.
If z is another element from Lq(M, Φ) with T(x) = Φ̂(xz), x ∈ Lp(M, Φ),

then Φ̂(x(y− z)) = 0 for all x ∈ Lp(M, Φ). Taking x = u∗ where u is the unitary
operator from the polar decomposition y− z = u|y− z|, we obtain Φ̂(|y− z|) = 0,
i.e. y = z.

Now let B be a general (not necessarily a σ-finite) von Neumann algebra.
Let ν be a faithful normal semifinite numerical trace on B, and let {ei}i∈I be a fam-
ily of nonzero mutually orthogonal projections in B with sup

i∈I
ei = 1B and ν(ei) <

∞ for all i ∈ I. It is clear that Bei is a σ-finite algebra and Φei (x) = eiΦ(x) is
S(Bei)-valued Maharam trace on Ms(Φei ). Since T ∈ Lp(M, Φ)∗, Ti(x) = eiT(x)
is Sh(Bei)-bounded linear mapping. By virtue of what we proved above, there
exists the unique yi ∈ Lq(Ms(Φei ), Φei ), such that

eiT(xs(Φei )) = Φ̂ei (xs(Φei )yi) = eiΦ̂(xs(Φei )yi)
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for all x ∈ Lp(M, Φ), i ∈ I. Moreover, ‖yi‖q,Φ = ‖Ti‖ = ‖T‖ei. Since sup
i∈I

s(Φei ) =

1, {s(Φei )}i∈I ⊂ P(Z(M)) and s(Φei )s(Φej) = 0 as i 6= j, there exists a unique
y ∈ S(M) such that ys(Φei ) = yi. We have eiΦ̂(|y|q) = Φ̂(|yi|q) = ‖T‖qei for all
i ∈ I. Hence, y ∈ Lq(M, Φ) and ‖y‖q,Φ = ‖T‖ (see Proposition 2.1). In addition

eiΦ̂(xy) = Φ̂ei (xs(Φei )yi) = eiT(xs(Φei )) = eiT(x),

for all i ∈ I, i.e. Ty(x) = Φ̂(xy) = T(x), x ∈ Lp(M, Φ).
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