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INTRODUCTION

Development of the theory of integration for measures u with the values in
Dedekind complete Riesz spaces has inspired the study of (bo)-complete lattice-
normed spaces L (u) (see, for example, 6.1.8 of [7]). Note that, if the measure y
satisfies the Maharam property, then the spaces L? (1) are Banach—Kantorovich
spaces.

The existence of center-valued traces on finite von Neumann algebras nat-
urally leads to a study of the integration for traces with the values in a complex
Dedekind complete Riesz space Fr = F ¢ iF. For commutative von Neumann
algebras, the development of Fc-valued integration is a part of the study of the
properties of order continuous positive maps of Riesz spaces, for which we refer
to the treatise by A.G. Kusraev [7]. The operators possessing the Maharam prop-
erty provide important examples of such mappings, while the LP-spaces associ-
ated with such operators are non-trivial examples of Banach—-Kantorovich Riesz
spaces.

Let M be a non-commutative von Neumann algebra, let Fc be a von Neu-
mann subalgebra in the center of M, and let & : M — F¢ be a trace such that
®(zx) = z®P(x) for all z € Fg, x € M. Then the non-commutative LP-space
LP(M, @) is a Banach—Kantorovich space [1], [6], and the trace @ satisfies the Ma-
haram property, thatis, if 0 < z < &(x), z € F¢, 0 < x € M, then there exists
y € M, 0 <y < x such that ®(y) = z (compare with 3.4.1 of [7]).
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In [2], a faithful normal trace ¢ on M with the values in an arbitrary com-
plex Dedekind complete Riesz space was considered. In particular, a complete
description of such traces in the case when @ is a Maharam trace was given. In
the same paper, utilizing the locally measure topology on the algebra S(M) of all
measurable operators affiliated with M, the Banach-Kantorovich space L' (M, ®)
C S(M) was constructed and a version of Radon-Nikodym-type theorem for
Maharam traces was established.

In the present article, we define a new class of Banach—-Kantorovich spaces,
non-commutative Ly-spaces LV (M, ®) associated with a Maharam trace; also, we
give a description of their dual spaces.

We use the terminology and results of the theory of von Neumann alge-
bras [10], [11], the theory of measurable operators [9], [8], and of the theory of
Dedekind complete Riesz space and Banach-Kantorovich spaces [7].

1. PRELIMINARIES

Let X be a vector space over the field C of complex numbers, and let F be
a Riesz space. A mapping || - || : X — F is said to be a vector (F-valued) norm if it
satisfies the following axioms:
@ flx[ >0, [|x[| = 0= x =0 (x € X);
(i) [[Ax] = [A[llx] A € C, x € X);
(i) fx +yll < lIxll +llyll ey € X).
A norm || - || is called decomposable if the following property holds:

PROPERTY 1. If f1, fo > 0 and ||x|| = f1 + f2, then there exist x1,x; € X
such that x = x1 + xp and ||x¢|| = fr (k =1,2).

If property 1 is valid only for disjoint elements fi, f» € F, the norm is called
disjointly decomposable or, briefly, d-decomposable.

The pair (X, || - ||) is called a lattice-normed space (shortly, LNS). If the norm
Il - |l is decomposable (d-decomposable), then so is the space (X, || - ||)-

A net {xy}peca C X (bo)- converges to x € X if the net {||xo — x||}aca (0)-
converges to zero in the Riesz space F. A net {x, },c4 is said to be a (bo)- Cauchy

net if sup ||xo — x| | 0. An LNS is called (bo)- complete if any (bo)-Cauchy net
w,p>y
(bo)-converges. A Banach-Kantorovich space (shortly, BKS) is a d-decomposable

(bo)-complete LNS. It is well known that every BKS is a decomposable LNS.

Let F be a Dedekind complete Riesz space with a weak identity 1r, and let
Fc = F @iF be the complexification of F. If z = a +if € F¢, a,f € F, then
Z:=wa —ip, and |z| := sup{Re(el’z) : 0 < 6 < 27} (see 1.3.13 of [7]).

Let (X, || - ||x) be the BKS over F. A linear operator T : X — Fc is said to
be F-bounded if there exists 0 < ¢ € F such that |T(x)| < c||x||x forall x € X.
For any F-bounded operator T, define the element || T|| = sup{|T(x)| : x € X,
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|lx||x < 1}, which is called the abstract F-norm of the operator T ([7], 4.1.3). It is
known that |T(x)| < ||T|| ||x]|x for all x € X ([7], 4.1.1).

The set X* of all F-bounded linear mappings from X into F¢ is called the
F-dual space to the BKS X. For T,S € X*, weset (T+S)(x) = Tx+ Sx, (AT)(x) =
ATx, where x € X, A € C. Itis clear that X* is a linear space with respect to the
introduced algebraic operations. Moreover, (X*, || - ||) is a BKS ([7], 4.2.6).

Let H be a Hilbert space, let B(H) be the x-algebra of all bounded linear
operators on H, and let 1 be the identity operator on H. Given a von Neumann
algebra M acting on H, denote by Z(M) the center of M and by P(M) the lattice
of all projections in M. Let Py, (M) be the set of all finite projections in M.

A densely-defined closed linear operator x (possibly unbounded) affiliated
with M is said to be measurable if there exists a sequence {p, };> ; C P(M) such
that p, 1 1, po(H) C D(x) and p; = 1— py € Pgn(M) for every n = 1,2,...
(here D(x) is the domain of x). Let us denote by S(M) the set of all measurable
operators.

Let x, y be measurable operators. Then x 4+ y, xy and x* are densely-defined
and preclosed. Moreover, the closures x +y (strong sum), Xy (strong product)
and x* are also measurable, and S(M) is a *-algebra with respect to the strong
sum, strong product, and the adjoint operation (see [9]). For any subset E C S(M)
we denote by Ej, (respectively E. ) the set of all self-adjoint (respectively positive)
operators from E.

For x € S(M) let x = u|x| be the polar decomposition, where |x| = (x*x)
u is a partial isometry in B(H) such that u*u is a right support of x. Then u € M
and |x| € S(M).If x € §;,(M) and {E, (x)} are the spectral projections of x, then
{Ex(x)} C P(M).

Let M be a commutative von Neumann algebra. Then M is *-isomorphic to
the x-algebra L*((2, X, u) of all essentially bounded complex measurable func-
tions with the identification almost everywhere, where (02, X, jt) is a measurable
space. In addition S(M) = L%(Q, X, u), where L%(Q, X, 1) is the x-algebra of all
complex measurable functions with the identification almost everywhere [9].

The locally measure topology t(M) on L°((2, X, u) is by definition the linear
(Hausdorff) topology whose base of neighborhoods of zero is given by

1/2
4

W(B,¢,6) ={f € LO(Q, X, u): thereexistsaset E € X, such that E C B,
W(B\E) <9, fxe € L(QZ,n), [IfxEll w5 p) < €}

Here ¢, 6 run over all strictly positive numbers and B € X, j(B) < oo. It is known
that (S(M), t(M)) is a complete topological *-algebra.

It is clear that zero neighborhoods W(B,¢,6) are closed and have the fol-
lowing property: if f € W(B,e0), 8 € L*(Q,Z, 1), [Igllreo(rzu) < 1, then
gf € W(B,g,9).

Anet {f,} converges locally in measure to f (notation: f t(—MZ f)if and only
if foxB converges in y-measure to fxp for each B € X with y(B) < oo.
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Let now M be an arbitrary finite von Neumann algebra, @) : M — Z(M)
be a center-valued trace on M ([10], 7.11). Let Z(M) = L*((, X, u). The locally
measure topology {(M) on S(M) is the linear (Hausdorff) topology whose base
of neighborhoods of zero is given by

V(B,¢,8) = {x € S(M) : thereexists p € P(M),z € P(Z(M))
such that xp € M, ||xp||m < &,z € W(B,¢,0), Par(zpt) < ez},

where || - ||p is the C*-norm in M. It is known that (S(M),t(M)) is a complete
topological *-algebra [13].

From Section 3.5 of [8], we have the following criterion for convergence in
the topology t(M).

PROPOSITION 1.1. A net {xa}yca C S(M) converges to zero in the topology
t(M) if and only if @p(Ey (|x«|) t(ﬂg 0 for any A > 0.

Let M be an arbitrary von Neumann algebra, and let F be a Dedekind com-
plete Riesz space. An Fc-valued trace on the von Neumann algebra M is a linear
mapping ¢ : M — Fc with &(x*x) = @(xx*) > 0 for all x € M. It is clear that
&(My) C F, ®(M4) C Fy = {a € F:a > 0}. A trace @ is said to be faith-
ful if the equality ®(x*x) = 0 implies x = 0, normal if &(x,) T P(x) for every
Xu, X € My, x4 T x.

If M is a finite von Neumann algebra, then its canonical center-valued trace
@) 2 M — Z(M) is an example of a Z(M)-valued faithful normal trace.

Let us list some properties of the trace @ : M — F¢.

PROPOSITION 1.2 ([2]). (i) Let x,y,a,b € M. Then

O(x") = @(x), (xy) = @(yx), @(|x*[) = @(|x]),
| ®(axb)| < [lallml[bllm®(|x]);

(if) If @ is a faithful trace, then M is finite;

(iii) If x4, x € M and ||x, — x||pr — O, then |®(x,) — ®(x)| relative uniform con-
verges to zero;

(iv) @([x +y|) < D(|x]) + P(|y]) for all x,y € M.

The trace  : M — F¢ possesses the Maharam property if for any x €
My, 0 < f < @(x), f € F, there exists y € My, y < x such that &(y) = f.
A faithful normal F¢-valued trace @ with the Maharam property is called a Ma-
haram trace (compare with III, 3.4.1 of [7]). Obviously, any faithful finite numerical
trace on M is a C-valued Maharam trace.

Let us give another examples of Maharam traces. Let M be a finite von
Neumann algebra, let A be a von Neumann subalgebra in Z(M), and let T :
Z(M) — A be a linear positive normal operator, T(x*x) = 0 < x = 0. If
f € S(A) is a reversible positive element, then @(T, f)(x) = fT(Ppm(x)) is an
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S(A)-valued faithful normal trace on M. In addition, if T(ab) = aT(b) for all
a€ Abe Z(M), then (T, f) is a Maharam trace on M.

If T is a faithful normal finite numerical trace on M and dim(Z(M)) > 1,
then @(x) = 7(x)1is a Z(M)-valued faithful normal trace, which does not pos-
sess the Maharam property (see [2]).

Let F have a weak order unit 1r. Denote by B(F) the complete Boolean alge-
bra of unitary elements with respect to 1r, and let Q be the Stone compact space
of the Boolean algebra B(F). Let Coo (Q) be the Dedekind complete Riesz space of
all continuous functions a : Q — [—oo, +00] such that a~!({£c0}) is a nowhere
dense subset of Q. We identify F with the order-dense ideal in Co (Q) containing
algebra C(Q) of all continuous real functions on Q. In addition, 1f is identified
with the function equal to 1 identically on Q ([7], 1.4.4).

We need the following theorem from [2].

THEOREM 1.3. Let @ be an Fc-valued Maharam trace on a von Neumann algebra
M. Then there exists a von Neumann subalgebra A in Z(M), a x-isomorphism  from A
onto the x-algebra C(Q)c, a positive linear normal operator £ from Z(M) onto A with
E() =1, £% = &, such that:

(i) @(x) = (1) P(E(Ppm(x))) forall x € M;
(i) @(zy) = ©(zE(y)) forall z,y € Z(M);
(iii) @(zy) = P(2)P(y) forallz € A,y € M.

Due to Theorem 1.3, the x-algebra B = C(Q)c is a commutative von Neu-
mann algebra, and *-algebra Ce(Q)( is identified with the x-algebra S(B). It is
clear that the *-isomorphism ¢ from A onto B can be extended to a *-isomor-
phism from S(A) onto S(B). We denote this mapping also by ¢.

Let @ be a S(B)-valued Maharam trace on a von Neumann algebra M. A
net {x,} C S(M) converges to x € S(M) with respect to the trace ¢ (notation:

B
xo -2 1) if D(EL (12 — 1)) "L 0 forall A > 0.

M
PROPOSITION 1.4 ([2]). x4 2y x if and only if x, “—2 X.
An operator x € S(M) is said to be P-integrable if there exists a sequence

{xn} C M such that x, 2 xand Iy — 2xm || @ Oasn,m— .
Let x be a $-integrable operator from S(M). Then there existsa @(x) € S(B)

such that ®(x,) @ ®(x). In addition ®(x) does not depend on the choice of a

sequence {x,} C M, for which x, 25 x, D(|xy — xm) ﬂ 0 [2]. Tt is clear that
each operator x € M is ®-integrable and ®(x) = ®(x).

Denote by L'(M, @) the set of all @-integrable operators from S(M). If x €
S(M) then x € L'(M,®) if and only if |x| € L'(M,®), in addition |®(x)| <
®(|x|) [2]. For any x € L' (M, ®), set ||x||;.o = P(|x|). It is known that L' (M, @)
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is a linear subspace of S(M), MLY(M, ®)M C LY(M, ®), and x* € L'(M, ®) for
all x € L1(M, @) [2]. Moreover, the following theorem is true.

THEOREM 1.5 ([2]). (i) (L}Y(M, @), || - ||1,¢) is @ Banach-Kantorovich space;
(i) S(A)LY(M, @) c LYM,®), in addition (zx) = ¢(z)®(x) for all z €
S(A), x € LY(M, ®).

2. Lp-SPACES ASSOCIATED WITH A MAHARAM TRACE

Let B be a commutative von Neumann algebra, which is *-isomorphic to
a von Neumann subalgebra A in Z(M), and let & : M — S(B) be a Maharam
trace on M (see Theorem 1.3). For any p > 1, set LP(M, @) = {x € S(M) : |x|F €
LY (M, ®)} and ||x| 0 = @(|x|P)/P. It is clear that M C LP(M, ®).

Let e be a nonzero projection in 5, and put @.(a) = ®(a)e, a € M. A map-
ping @, : M — S(Be) is a normal (not necessarily faithful) S(Be)-valued trace on
M. Denote by s(®,) := 1 —sup{p € P(M) : ®.(p) = 0} the support of the trace
®,. It is clear that s(®,) € P(Z(M)) and @.(a) = P(as(P.)) is a faithful normal
S(Be)-valued trace on Ms(®,) (compare 5.15 of [10]). Moreover @, possesses the
Maharam property.

If e and g are orthogonal nonzero projections in P(B), then @, (s(Pe)) =
D(s(Pe))g = Pe(1)g = P(1)eg = 0, i.e. s(Pe)s(Pg) = 0. Let {e; }ics be a family
of nonzero mutually orthogonal projections in P(B) with supe; = 13, where 13

iel
is the unit of the algebra B.If z = 1 — sup s(®,) then ®(z)e; = P,,(z) = 0 for all
i€l
i € I. Therefore ®(z) = 0,i.e.z =0, or sups(P,;) = 1.
icl
Further, we need the following

PROPOSITION 2.1. Let x € S(M) and let {e;};c; be the family of nonzero mutu-
ally orthogonal projections in P(B) with sup e; = 1. Then x € LV (M, @) if and only
i€l

if xs(Pe) € LP(Ms(De;), De,) for all i € I. In addition ||x||, e; = || xs(Pe;) Py,
Proof. Let x € LP(M,®), a, = E,(|x|P)|x|? where E,(|x|P) is the spectral
projection of |x|P corresponding to the interval (—oo,n]. It is clear that a, 2,
@,
|x|P and @(|a, — an)) @ 0 as n,m — oo. Hence, a,s(Pe;) — |x|Ps(Py,) (see
Proposition 1.4). In addition, from the inequality @, (|a,s(Pe;) — ams(Pe;)|) =
t(Be;
D(|lay — am|s(Pe;)) < P(|an — am|), we have D, (|ans(Pe;) — ams(Pe;)|) B g,
This means that |xs(®,,) [P = |x|Ps(P,,) € L1 (Ms(D,), ;) and ||xs(P,) pbe, =
B, (|x[Ps(Pe;)) /P = (B(|x|P)er) /P = ||x]| ;-
Conversely, let xs(®,, )€L? (Ms (P, ), e,) foralli€ I.Seta, ; = E,(|xs(P;)|P)
|xs(Pe,;)|P. It is clear that a,; T |xs(P,,)|P = |x|Ps(P;) as 1 — oo for any fixed
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t(Ms(De; Be:
i € I. Therefore a,; ( L;l)) |x|Ps(De,), Pe, (|1 — amil) B () as n,m — oo.
Since 0 < D (/i j/0n;i) = P(Anim;) < |amjl|MP(@ni) = 1am,;llMP(ani)e;
and @(a,,i0,,j) < ||an,ilMP(ayj)ej, we have @(a, a,,;) = 0. Hence, a,,;a,,; = 0
for all n,m, i # j.Since 0 < a,; < ns(P,,), s((Dgl.)s(cbej) = 0,1 # j, there is an

Xn € My such that x,s(®,) = a,;. Using the equality sup s(&P,;) = 1, we obtain
icl

B
Xn oy |x|? ([16]), moreover @ (|x, — xm|) 1B 0. Therefore x € LV (M, ®). 1

Similar to the case of the space L!(M, @), the subset LP (M, ®) is invariant
with respect to the action of involution in S(M). The following proposition is
devoted to this fact.

PROPOSITION 2.2. If x € LV (M, @), then x* € LP (M, @) and || x|| 0 = || x* || p, -

Proof. Let x = ulx| be the polar decomposition of x. Since an algebra M
has a finite type, we can suppose that u is a unitary operator in M. For each
y € S(M), we set U(y) = uyu*. Then the mapping U : S(M) — S(M) is a *-
isomorphism, and therefore U(¢(y)) = ¢(U(y)) for any continuous function
¢ @ [0,400) — [0,4) and y € Sy (M) [16]. If (t) = tV, p > 1, t > 0,
and y € S(M) then uy?u* = (uyu*)?. In particular, we obtain the equality
[x*|P = u|x|Pu*. Hence, x* € LP(M,®). Moreover ||x*|,o = ®(|x*|P)/P =
B (ulx[u) /7 = B(|x[")7 = |x] 0.

Now we need a version of the Holder inequality for Maharam traces. In the
proof of this inequality for numerical traces, properties of decreasing rearrange-
ments of integrable operators are used [5]. For Maharam traces such theory of
decreasing rearrangements does not exist. Therefore we use another approach
connected with the concept of a bitrace on a C*-algebra.

Let N be a C*-algebra. A functions : N x N' — C is called a bitrace on N
([3], 6.2.1) if the following relations hold:

(i) s(x,y) is a positively defined sesquilinear Hermitian form on \;
(i) s(x,y) = s(y*,x*) forall x,y € N;
(iii) s(zx, y) = s(x,z*y) forall x,y,z € N;
(iv) for any z € N, the mapping x — zx is continuous on (N, || - ||s) where

lxlls = V/s(x,x), x € N;

(v) theset {xy : x,y € N'}isdensein (N, || - |s).

If N has a unit, then condition (v) holds automatically.

Let us list examples of bitraces associated with the Maharam trace.

Let M be a von Neumann algebra, let ® : M — S(3) be a Maharam trace
and let Q = Q(P(B)) be the Stone compact space of the Boolean algebra P(B).
We claim that s(®(1)) = 1. If it is not the case, then ¢ = 15 — s(P(1)) # 0
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and z = ¢~ !(e) # 0 where ¢ is a *-isomorphism from Theorem 1.3. By The-
orem 1.5(ii), we haves ®(z) = e®(1) = 0, which contradicts to the faithful-
ness of the trace ®@. Thus, s(®(1)) = 13, and therefore the following elements
are defined: (®(1))~! € Sy (B) and (®(1)) '@(x) € C(Q) where x € M.
For any t € Q, set ¢¢(x) = (@(1)71d(x))(t). It is clear that ¢ is a finite nu-
merical trace on M. The function s¢(x,y) = ¢:(y*x) = ¢@¢(xy*) is a bitrace on
M. In fact, the conditions (i)—(iii) are obvious; (iv) follows from the inequality
lzxlls, = /(@) @) = vz z) < lizlmllxlls.

Let s(x,y) be an arbitrary bitrace on a von Neumann algebra M. Set N; =
{x € M : s(x,x) = 0}. It follows from 6.2.2 of [3], that Nj is a self-adjoint two-
sided ideal in M. We consider the factor-space M/N; with the scalar product
([x], [v])s = s(x,y) where [x], [y] are the equivalence classes from M/ N; with rep-
resentatives x and y, respectively. Denote by (Hs, (-, -)s) the Hilbert space which
is the completion of (M/N, (-, -)s). By the formula 7r5(x)([y]) = [xy], x,y € M,
one defines a *-homomorphism 7ts : M — B(H;). In addition 7t5(1pm) = 1p(g,)-

Denote by U;(M) the von Neumann subalgebra in B(Hs) generated by op-
erators 77s(x), i.e. Us(M) is the closure of the *-subalgebra 7t;(M) in B(H;) with
respect to the weak operator topology. According to 6.2 of [4], there exists a
faithful normal semifinite numerical trace 7; on (Us(M)); such that 75 (71(x?)) =
([x],[x]) = s(x,x) forall x € M. If ¢ is a trace on M and s(x,y) = ¢(y*x) then
T5(715(x?)) = @(x?) for all x € M. This means that 7;(7t5(x)) = ¢(x) for any
x € M;. In addition, if ¢(1m) < oo, then T5(1p(y,)) < oo. Consequently, T is a
faithful normal finite trace on Us(M).

THEOREM 2.3. Let & be a S(B)-valued Maharam trace on the von Neumann
algebra M, p,q > 1,1/p+1/q = 1. Ifx € LP(M,®), y € L1(M, D), then xy €
LY (M, @) and |[xyllro0 < [|Ix]lp,0]Yllq0-

Proof. We consider the bitrace s;(x,y) = ¢:(y*x) on M where ¢;(x) =
(1)) '@ (x))(t), t € Q(P(B)). Denote by 7 a faithful normal finite trace on
(Us, (M) )+ such that 7 (775, (x)) = ¢¢(x) for all x € M. Since the trace T; is finite,
T (75, (x)) = ¢i(x) for any x € M. Let LP(Us, (M), 7¢) be the non-commutative
LP-space associated with the numerical trace ;. It follows from [5] that

(1705, (xy)]) < (1725, (0)1P) P (|72, () 1)1,

Since 715, (|x|) = |715,(x)], x € M, we get 715, (|x[P) = (71, (|x|))? ([3], 1.5.3).
Thus, ¢ (|xy|) < @¢(|x[7)YP(Jy|1)1/9, or

(@(1) (1)) (1) < [(S(1) (117 (OPL((S(1) L b(lyl)) (1)
forall t € Q(P(B)). This means that
(@(1)) ' @(|xy]) < [((@(1) T (|x[P)]P[((@(1) " D (|y]| ")),
Multiplying this inequality by @ (1), we get ||xy||1 ¢ < ||x||p<p\|y||qq>
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Let now x € LE (M, @), y € L] (M, ®). We claim that xy € L'(M, ®). Set
ay = En(x)x, by = E,(y)y. We have a,, b, € M4 and a, T x, b, T y, in par-
ticular, a, i> x, by i) y. Hence, a,b, € M and a,b, i> xy. In addition,
||unbn — Ay 1, < Han PP |bn — by q,® + Han —Am||p,® |bm q,@-Since Haan,@ <

~ B
porand for n > m, ay — a? o = B(xVEy (x)ES (1)) 2

[ES

q,@é\ly
~ tB t(B
0, 1w — bl = BHIEEL(Y) "2 0, we get [lauby — anbullo "> 0 as

p,@t ||bm

B
n,m — oo. This means that xy € L'(M,®) and |anb, — xyl|1 ¢ L; 0. The in-

. o KB
equality |[[xy|l1,e — |anbnll1,e] < ||xy — anbu|l1,e implies |lanbyll1,0 15 lxyll1,0-
Since

HB
lanbull,e < anllpollonllge 25 [1x]lp0 |1y ]lg0r

we obtain [|xy|l1,e0 < [|x]lp0yllge-

If x € LP(M, ®) is arbitrary, y € L] (M, ®) and x = ulx| is the polar de-
composition of x with the unitary u € M, then xy = u(|x|y) € L'(M, ®) and
Ixvlio = eyl < Ixlp0l7lqe

Let now x € LP(M, @), y € L1(M, ®) be arbitrary and let y* = v|y*| be the
polar decomposition of y* with the unitary v € M. According to Proposition 2.2,
ly*| € L7(M, @) and ||y*[|5,0 = I|y|lq,o- Therefore xy = (x|y*|)v* € L'(M, @) and
Iyl o = 145" o < [polylge. 1

THEOREM 2.4. Let @, M, p, and q be the same as in Theorem 2.3. If x € S(M),
xy € LY (M, ®) forall y € LI(M, ) and the set D(x) = {|®(xy)| : y € LI(M, ),
llyllge < 1p} is bounded in Sy, (B), then x € LV (M, @) and ||x||,¢ = sup D(x).

Proof. Let x # 0, and let x = u|x| be the polar decomposition of x with the
unitary 4 € M. Sety, = |x|P’1En(|x|)Ef-/n(|x|)u*, n = 1,2,... Itis clear that
Yn € M and

xyn = u|x|PEn(|x|)Eq;, (|x)u* = uEn(|x|)Eq;,, (|x]) |x[PEn(|x]) Efy, (Jx)u* > 0.
On the other hand,
yul* = uEa(|x[)Eqy,, (1x)x P72 En (|x]) Efy,, () u*
uEy (|x[)Eiy,, (|x]) |x[*/9E, (|x[) i, (|x])u*,

and therefore 0 < |yu|7 = (|yu|*)7/? = xyy, in particular, ||y, |qe = P(xy,)'/9.
Since xyy M ulx|Pu* # 0, we have xy, # 0 for all n > ny. Set e,
s(P(xyn)) as n = ng. Since S, (B) = Coo(Q(P(B))), there exists a unique b,
S+ (B)ey such that b, P(xy,) = ey. It is clear that bz/qcbl/‘?(xyn) = e, If z,
v (en), an = ¢_1(b,11/q) € S(Azy), then by Theorem 1.5(ii), any, € L1(M, P
and ||anyn||g,q> = ®(allya|") = by®(xy,) = ey < 1z. Hence, |®(a,xyy)|

N m

~—
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|®(x(anys))| < sup D(x) for all n > ng. On the other hand,
Banxyn) = b 1B (xyn) = (baD(xyn)) 1D (xyn)' T = B(ayn)'
= S (ulx|"En(|x)Eyy(|x))u)" P = S(|x|PEn(|x])Eqy, (|x]))1/7.

Since (|x|En(|x|)Eqy,,(|x])) T [x[P, |27 (En(|x)Ef, (Ix])) € My and &(|x|PEy
(\x\)Ef/n(|x|)) < (sup D(x))?, we have |x|P € LY (M, ®) and &(|x|P) = sup

n>1

(\x\pEn(|x|)Ef/n(|x|)) [15]. This means that x € LP(M, ®) and ||x||,,¢ <sup D(x).
Theorem 2.3 implies sup D(x) < ||x| o, and therefore || x|, o = sup D(x). &

With the help of Theorem 2.4, it is not difficult to show that L? (M, @) is
disjointly decomposable LNS over S;,(B) for all p > 1.

THEOREM 2.5. (i) LV (M, @) is a linear subspace in S(M), and || - ||, is the
disjointly decomposable Sy, (B)-valued norm on L (M, ®);
(ii) MLF(M, )M C LP(M, @), and |axb||p,e < |la|ml|bl|m|x|lp,o foralla,b €
M, x € LP(M, D);
(i) If 0 < x <y € LP(M, @), x € S(M), then x € LP(M,®) and [|x||,,p <
1yllp.o-
Proof. (i) It is clear that Ax € LP(M,®) and [[Ax| ;0 = [All|x][pe for all
x € LPF(M,®), A € C. Moreover, ||x|/,¢ > 0 and o(|x|P) = ||x||5,q> = 0if and
only if x = 0.
We claim that x +y € LP(M,®) and [|x + yllp0 < [xlp0 + [lyllpe for
each x,y € LF(M,®). By theorem 2.3, (x +y)z = xz +yz € L'(M, ®) for all
z € L1(M, @), in addition

|B((x +y)2)| < [ (xz)| +|D(y2)].
If ||z]| 5,0 < 15, then by Theorem 2.4,

D((c+)2)| < lIxllpo + ylpe-

Using Theorem 2.4 again, we obtain x +y € LV (M, @) and ||x +y|[ 0 < [|x] p0 +
lly|lp,- Thus, LY (M, @) is a linear subspace in S(M), and || - || ,,¢ is a S, (B)-valued
norm on L (M, ®).

Let us now show that the norm | - [[,,¢ is d-decomposable. It is known
([2]) that, if x € Ll(M, QD), HX”L@ = fl +f2, where fler € S+(B), f1f2 =0,
then, setting x; = xp; for p; = ¥~ 1(s(f;)), i = 1,2, we get x = x; + x, and
Ixille = fi, i=1,2.

Lety € LL(M, @), |[ylpo = g1+ 82 where g1,8 € 5(B), 182 = 0,
ie [y le = lyll,e = & +&b-Setqi = ¢~ (s(g])) € P(A) C P(Z(M)) and
yi = yq;. Then yf = yPq; and using [2] for x = y*, f; = gf, i = 1,2 we obtain that
yPq1 +yPq2 = yP and ||ygillpe = gi, i = 1,2. Since g1q2 = 0, 41,42 € P(Z(M)),
we have ygq1 +yq = .
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Let now y be an arbitrary element from LV (M, ®) and let y = uly| be the
polar decomposition of y with the unitary u € M. Let |||y||[,,0 = |yllp,0 = fi + f2
where f1, f» € S4(B), fif = 0. It follows from above that for q; = ¢~1(s(f/)) €
P(A), we have [y| = |ylg1 + [y|q2 and |[[yl4:[p,e = fi- Consequently, y = uly| =
yq1 +yq2 and [[ygillp,e = [[lylgillpe = fi, i=1,2.

(ii) Let v be a unitary operator in M, x € LP(M, ®). Then |ox| = (x*v*vx)!/?
= |x|, and therefore vx € L¥(M, ®@). Since any operator a € M is a linear combi-
nation of four unitary operators, we have ax € L¥ (M, @), due to (i).

We claim that [|ax|[p,e < |a|mlx]lpe fora € M, x € LF(M, ®). Let v be a
faithful normal semifinite numerical trace on B. If for some a € M, x € LP (M, ®)
the previous inequality is not true, then there are ¢ > 0, 0 # e € P(B), v(e) < o
such that

ellax

po = ellallmllx|lpe + e

By the formula
T(b) = v(ed(b) (15 + ®(1) + @(|x|P)) 1), b Ms(P,)
one defines a faithful normal finite numerical trace on Ms(®,). If z = p~1(e) €
P(A), then @,(1—2z) = (15 —e)e®(1) = 0, i.e. s(P,) < z. Since P(z —s(P,)) =
D(z(1—5(P,))) = eP(1 —5(P,)) = 0, we get z = s(P,). We consider the LP-
space LP (Ms(®,), T) associated with the numerical trace 7, and let us show that
(Pe

Xz € LF’( s(®,), 7). Let x, = E,(|x|)|x|. It is clear that 0 < xhz 1 |x|Pz and
7(xhz) < v(e) < oo. Hence, |xz|P = |x|Pz € L'(Ms(®,), 1) and ||xz||5,T =
lim Ixhz||h e = v(ed ®(|x|Pz) (15 + (1) + @(|x|P))~1). Thus, if a € M then axz €

L”(Ms(@e) T), in addition

lallmllxzll},e > laxzllhe = v(ed(jaxz|P) (15 + (1) + S(|x[")) )
= v((ellax|l}, o) (15 + @(1) + (|x[")) ")
> v(e(lalmllxllpe +)F (15 + (1) + D(|x[7) 1) > llallyy [zl

p,Ts

which is not the case. Consequently, ||ax|[,,¢ < ||a||m/x]|p,o-

Ifb € M, x € LP(M,®), then by Proposition 2.2 and from above, we
have b*x* € LP(M, ®). Using Proposition 2.2 again, we obtain xb = (b*x*)* €
LP(M, @) and [|xb|p,0 = [[b*x"[p,0 < [[0%[|lallx"[| o0 = [[l[aa]l %] -

(iii) Let 0 < x <y € LP(M, ®), x € S(M). It follows from Section 2.4 of [8]
that /x = a,/y where a € M with ||a||p < 1. Hence, x = /x(/x)* = aya* €
LP(M, @) and |[x[p,e < lallmlla*[[mlyllpe < [yllpe- W

Using the Holder inequality and the (bo)-completeness of the space
(LY (M, @), ]| - ||¢) we can establish the (bo)-completeness of the space (LP (M, ®),
- llp@)-

THEOREM 2.6. Let @, M, p be the same as in Theorem 2.3. Then (LF(M, ),
|l - llp,@) is a the Banach—Kantorovich space.
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Proof. First, we assume that B is a o-finite von Neumann algebra. Then
there exists a faithful normal finite numerical trace v on B. The numerical function
7(a) = v(®(a)(15 + ®(1)) ') is a faithful normal finite trace on M. Moreover, the
topology t(M) coincides with measure topology ¢ on (S(M), T) ([8], Section 3.5).

Let {xa}aca C (LP(M, @), || - [|5,#) be a (bo)-Cauchy net i.e. by = sup ||x,

a,BZy
— x|l 4 0. According to the Holder inequality, for each x € LF (M, @) we have
x € LY(M,®) and ||x]|1o = P(|x[1) < (@(1))'9||x|| 5, In particular, the set
{llxa (B), and sup |lxy — xg[lLe < (@(1))!/ b,
ap>y
for all v € A. Consequently ([2]), there exists x € L!'(M,®) such that |x, —

tT t'r .
— x and ya = [x4 — x| —> [x — xp|. Since
the function ¢(t) = t? is continuous on [0, o), the operator function y —— y?

is continuous on (S (M),t;) [12]. Hence, 0 < yk N |x — xg|F, in addition
DY) = ||x0 — xlgHz(p < bf;.Using the Fatou’s theorem [15], we obtain |x — x4[V €
LY(M, @) and @(|x — xg|?) < b. Thus, (x — x) € LP(M, @) for all B > 7 and

sup [|x — xg||p,e < by | 0. This means that x € LF(M, @), and [|xy — x[p,0 Q 0.

B=v
Now let B be an arbitrary von Neumann algebra (not necessarily o-finite),
and let {x,} C LP(M, ®) be a (bo)-Cauchy net. It follows from the above that

M
there exists x € L'(M, ®) such that ||x, — x||1.¢ ﬂ 0. In particular x, “—2 X.
Let v be a faithful normal semifinite numerical trace on B, and let {¢; };c; be the

family of nonzero mutually orthogonal projections in B such that supe; = 15,
icl
and v(e;) < oo foralli € I. Itis clear that {x4s(Pe,) }xca is a (bo)-Cauchy net in

LP(Ms(P,,), P, ). Since the algebra Be; is o-finite, from the above there exists x; €
LP(Ms(P,,), Pe,) such that ||x; — xas(dJel.)Hp,@e’_ ﬂ) 0. In particular, x,s(P,) t(—Mg

xi = x;5(Pe;). On the other hand, convergence x, t(ﬂg x implies x,5(Pe;) t(~M2
xs(®Pe,;). Thus, xs(Pe,) = x;5(Pe;) for all i € I. By Proposition 2.1, we have x €

LP(M, @) and [x — xallpoe = [s(e,) — xus(e,)

therefore [|x — x4 || 5,0 (o), 0.

pPe, ), Oforalli € I and

PROPOSITION 2.7. If {xu }aca C L} (M, ®) and x, | O, then ||xa||p,o | 0.

Proof. Let v be a faithful normal semifinite numerical trace on B. If b =
irg [xallp,0 # O, then there are e > 0,0 # e € P(B) with v(e) < oo such that
el|xullp,0 > eb > ee for alla € A. Put @e(x) = e®(x), x € M, and 1(y) =
v(®(y) (15 + (1) + D(x,)) 1), y € Ms(®,), where ay is a fixed element from A.
Let us prove that LP (Ms(®,), T) C LV (Ms(®,), .) and ||x||]gT = (P (|x|P) (15 +
d(1) + <13(x§0))*1) for all x € LP(Ms(®,), T). It is sufficient to consider the case
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where x € L (Ms(®,), 7). Set x, = E,(x)xs(®). It is clear that x, € (Ms(®,))+,

M
xh 1t xP, i i x?, and therefore x/, t(—g xP. Moreover, ®(|x} — x,|) = ®(xPE,(x)

E;:(x)) as m < n. Since ||x}) — xh|l1c = [|XPEn(x)Ep(x)|l1,c — Oasn,m — oo,
B
we get O(|xh — xb|) = ed(|xh — xh|) L; 0. This means that x* € L'(M, ®)
and ®(xh) T ®(xP), ie. x € LP(Ms(P,), P,) and Ix[lp,0, = sup(P(x}))1/P. Us-
n>1

ing the inequality T(x}) < T(x?) we obtain that ®(x?)(15 4+ (1) + @(x,fo))*l €
L1(B,v) and
v(®(xP) (15 + (1) + S(xfy)) ) = sup (xy) = T(xF) = |lx[[pr-
n=1
Let us show that x = x4,5(P;) € LV (Ms(P,), T). As above, we consider x, =
E,(x)x. Since
0 < D(xf) (15 + B(1) + B(xfy)) " 1 B (15 + D(1) + B(x)) " <,

we get 7(x}) < v(e) < co. Consequently, x € L (Ms(®,), 7). The inequality 0 <
Xo < Xy, for a > ag implies x,5(Pe) € LP (Ms(P.), T) (see Theorem 2.5(iii)). Since
x45(®Pe) | 0 and the norm || - ||, 7 is order continuous, we have ||x45(®.)||p,r | 0,
ie. v(e®(xf) (15 + @(1) + ®(xk,)) 1) | 0. Hence, e®(x,)? | 0, which contradicts
the inequality e®(xf) > ePe. ¥

3. DUALITY FOR SPACES L? (M, @)

Let us start with the following property of LP-spaces LV (M, ®).

PROPOSITION 3.1. Ifx € LP(M,®),y € L1(M,®),1/p+1/9=1,p,9 > 1,
then xy,yx € LY(M, ®) and ®(xy) = ®(yx).

Proof. Without loss of generality, we can take x > 0, y > 0. It follows from
Theorem 2.3 that xy € L'(M,®). Hence, yx = y*x* = (xy)* € L}(M,®) and
D(yx) = @((xy)*) = P(xy). Let x, = xE,(x), y» = yEu(y). Using the in-
equalities |B(x) — ()| < [1x — Xallp o lylly 0 + |allp0 |y — yall g0 we ob-
tain @ (x,y,) 1B ®(xy). Since @ (xnyn) = P(\/Xnyny/*n) = 0 for all n, we get

®(xy) > 0. Therefore ®(xy) = ®(xy) = O(yx).

Let LP(M, ®)* be a BKS of all S;( B)-bounded linear mappings from LF(M, )
into S(B), i.e. S;,(B) is the dual space to the BKS L (M, @). It is clear that any
Si(B)-bounded linear operator is a continuous mapping from (L? (M, @), || - || 5,)

into (S(B), t(B)).

PROPOSITION 3.2 (Compare with 5.1.9 of [7]). Let T € LP(M, ®)*, ¢ : S(A)
— S(B) be a x-isomorphism from Theorem 1.5(ii). Then T(ax) = y(a)T(x) for all
ae€S(A), xeLPF(M,P).
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Proof. By Theorem 1.5(ii), for eachz € P(A), x € LP(M, @) we have ||zx| ¢
= &(2[x|P)/7 = p(2)@(|x[P)/P = ¢(2)||x]pe. Since T € LP(M,®)*, |Tx| <
c[[x||,o for some c € S;(B) and all x € LP(M, ®). Hence |T(zx)| < ¢(z)c[x||,,0,
i.e. the support s(T(zx)) is majorized by the projection ¢(z). Multiplying the
equality T(x) = T(zx) + T((1 — z)x) by 1(z), we obtain

¥(2)T(x) = ¥(2)T(zx) = T(zx).

n

If a = Y Ajz; is a simple element from S(A), where A; € C, z; € P(A), i =
i=1

1,...,n, then

Z/\sz (Z)\l[} ) = (a)T(x).

Let a be an arbitrary element from S(.A) and let {a,} be a sequence of simple

elements from S(.A) such that a, A 4. Then 0 < P(lan —al) 1By 0, ¥(an) 1By
P(a), and

~ tH(B
lawx — ax][ o = B(|an — al?|x[P)1? = p(jan — a)||x]| 0 ~22 0.

Since T is continuous, 1[J(an) (x) = T(anx J T(ax). Due to the convergence

4 P(a ), the proof is complete 1
Now we pass to description of the Sj,(B)-dual space L (M, ®)*.

THEOREM 3.3. Let @ be an S(B)-valued Maharam trace on the von Neumann
algebra M, p,q > 1,1/p+1/q=1.
() Ify € L1(M, D), then the linear mapping T,(x) = ®(xy), x € LP(M, ®), is
S(B)-bounded and |\Ty|| = Hqu,q;,.
(i) If T € LP(M, @)*, then there exists a unique y € L1(M, @) such that T = T,.

Proof. (i) By the Holder inequality (Theorem 2.3), xy € L'(M, ®) for all x €
LP(M, @) and |T,(x)| = |@(xy)| < |lyllgellx|lye- Hence, T, is S,(B)-bounded
linear mapping from LP (M, @) into S(B). Due to Proposition 3.1 and Theorem 2.4
we have

1Tyl = sup{|®(yx)| : x € L"(M, @), ||xl|p0 < 15} = |Iyllgo-

(ii) Since s(®(1)) = 13, we can define the element b = (®(1))~' € S, (A).
If &1 (x) = b®(x), x € M, then LP(M, @) = LP(M, @) and ||| 5,0, = b7 ||x]y,0
for all x € LP(M, @). Therefore, one can take ¢(1) = 1.

Let T € LP(M, @)*. We choose a € S (B) with a||T|| = s(||T||). Set T1(x) =
aT(x), x € LP(M,®). It is clear that Ty € LP(M,®)* and ||T1| = a||T| =
s(|T||) < 1p.1If we show that there exists y; € L1(M, @) such that Ty x = @(xy1),
then by virtue of Proposition 3.2, Tx = ||T||Ti(xy1) = T(x(~(|TNy1)) =
T(xy) wherey = ¢~ 1(||T||)y1 € L9(M, ®). Thus, one can also take that || T|| < 15.
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At first, we assume that the algebra B is o-finite. Let v be a faithful nor-
mal finite numerical trace on B. Since |®(x)| < ||x[|mP(1) < ||x||mls, ¥ € M,
we get @(x) € L(B,v). Consider on M the faithful normal finite trace T(x) =
v(®(x)), x € M. Using the same trick as in the proof of Proposition 2.7, we
can show that LP(M, ) C LP(M, ®) and 7(|x|P) = ||x|}. = v(®(|x|P)) for all
x € LP(M, 7). Since |T(x)| < [[x[|p,0 = (@(|x|P))V/?, we have T(x) € L*(B,v) for
allx € LP(M, 7).

We define on L¥(M, 7) the linear C-valued functional f(x) = v(Tx),x €
LP(M, T). Since

F@)I<v(IT () N<o(@(Ix!) 1)< (w(S(x PP (v (1) V1= (15) V7 xllpx

for all x € LP(M, t), we have that f is a bounded linear functional on (LP (M, T),
| - |lp,c). Hence there exists an operator y € LI(M,t) C L(M,®) such that
f(x) = t(xy) for all x € LP(M,7) [14]. We claim that T(xy) = v(®(xy)) for
all x € LP(M, 7). If z € L1 (M, 7), then z'/7 € LF (M, ), and therefore 7(z) =
v(®(z). Hence, 7(z) = v(P(z)) for all z € L'(M,1), in particular, T(xy) =
v(®(xy)) where x € LP(M, 7). Thus, v(T(x)) = f(x) = t(xy) = v(®(xy)) for all
x € LF(M, T).

Let T(x)
element (T (x)

— ®(xy) = v|T(x) — D(xy)| be the polar decomposition of the
— &(xy)) € S(B) and take a = 1 (v*). Since
0 = v(T(ax) — ®(axy)) = v(v"(T(x) - B(xy))) = v(IT(x) — S(xy)]),

we have T(x) = &(xy) forall x € LP(M, ).
Letx € LF (M, ®), x, = xEn(x). Then ||x, — x| p,0 t(—B; 0 and therefore

tB - - tB
T() S8 T(x) and  [B(xay) — B(xy)| < [t — xllpollylgo o2 0.

Since T(x,) = ®(xuy), T(x) = (xy),ie. T = Ty.

If z is another element from L7(M, ®) with T(x) = ®(xz), x € LP(M,d),
then ®(x(y — z)) = 0 for all x € LP(M, ®). Taking x = u* where u is the unitary
operator from the polar decomposition iy — z = u|y — z|, we obtain &(|y — z|) = 0,
iey=z

Now let B be a general (not necessarily a o-finite) von Neumann algebra.
Let v be a faithful normal semifinite numerical trace on BB, and let {e; } ;< be a fam-
ily of nonzero mutually orthogonal projections in B with supe; = 1z and v(e;) <

i€l
oo for all i € I. It is clear that Be; is a o-finite algebra and @, (x) = e;®(x) is
S(Be;)-valued Maharam trace on Ms(®,,). Since T € LV (M, ®)*, Ti(x) = ¢;T(x)
is Sj,(Be;)-bounded linear mapping. By virtue of what we proved above, there
exists the unique y; € L1(Ms(®,,), P,), such that

&;T(x5(®Pe,)) = e, (x5(Pe, )yi) = € P (x5(Pe, )
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forallx € LP(M, ®), i € 1. Moreover, ||y;

.o = | Ti|| = ||T|e;. Since sup s(Pe;) =
iel

1, {s(Pe;) bier C P(Z(M)) and s(P,)s(Pe;) = 0 as i # j, there exists a unique

y € S(M) such that ys(®,;) = y;. We have e;®(|y|7) = ®(|y;]7) = ||T||%; for all

i € I.Hence,y € LY(M, ®) and ||y||;,o = || T|| (see Proposition 2.1). In addition

e;®(xy) = Be; (xs(Pe,)yi) = &iT(xs(Pe;)) = &T(x),
foralli € I,ie. Ty(x) = ®(xy) = T(x), x € LP(M, D). ¥
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