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ABSTRACT. We obtain Gaussian upper bounds for heat kernels of higher or-
der differential operators with Dirichlet boundary conditions on bounded do-
mains in RN . The bounds exhibit explicitly the nature of the spatial decay of
the heat kernel close to the boundary as well as the long-time exponential de-
cay implied by the spectral gap. We make no smoothness assumptions on our
operator coefficients which we assume only to be bounded and measurable.
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INTRODUCTION

Off-diagonal Gaussian upper bounds for higher order differential operators
with bounded measurable coefficients were first obtained by Davies [4]. The op-
erators considered in that exposition were of order 2m on L2(RN) with 2m > N.
The higher order operators, expressed as:

(0.1) H f (x) := ∑
|α|6m, |β|6m

(−1)|α|Dα(aα,β(x)Dβ f (x))

were shown to have heat kernels with off-diagonal bounds demonstrated in the
inequality:

(0.2) |k(t, x, y)| 6 c1t−N/2m exp
(
− c2
|x− y|2m/(2m−1)

t1/(2m−1)
+ c3t

)
.

Subsequently Barbatis and Davies [2] were able to obtain optimal values for the
constants c2 and c3 in terms of the ellipticity ratio and dimension.
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In this paper we address the question of upper bounds on heat kernels gen-
erated by uniformly elliptic differential operators with Dirichlet boundary con-
ditions on bounded regions of RN . We make the same assumptions of the coeffi-
cients as in [4], namely that they are measurable and bounded, and consequently
find it more convenient to carry out the analysis with greater focus on the corre-
sponding quadratic forms. We do however assume that the quadratic forms, on
a bounded region Ω ⊂ RN , satisfy the ellipticity condition:

c−1‖(−∆)m/2 f ‖2
2 6 Q( f ) 6 c‖(−∆)m/2 f ‖2

2

for each f ∈ C∞
c (Ω) and c strictly positive.

Although estimate (0.2) holds for operators on bounded regions with Dirich-
let boundary conditions, the bounds do not reflect either the spatial decay near
the boundary or the long-time asymptotics. We extract the manner in which

k(t, x, y)→ 0 as x, y→ ∂Ω

and show that the heat kernel has off-diagonal bounds demonstrated in the in-
equality:

|k(t, x, y)| 6 c1

(
1− N + 2γ

2m

)−1
t−(N+2γ)/2m d(x, ∂Ω)γ d(y, ∂Ω)γ

exp
(
− c2
|x− y|2m/(2m−1)

t1/(2m−1)
− st

)
where 0 6 γ < m− N/2 and s is the spectral gap.

The techniques we employ are close to those employed in [4], but we give
more emphasis to the analysis of spatial derivatives of the heat kernel. Moreover
the exponential time decay is deduced by exploiting the spectral gap.

Sharp off diagonal heat kernel bounds were also obtained by Barbatis [1]
in terms of a non-euclidean metric based on the coefficients of the operator, re-
placing the term |x− y| in (0.2) by d(x, y). In the case of bounded regions, an off
diagonal bound was obtained for highly non-convex regions for the uniformly el-
liptic operator by Owen [6], in which he used the geodesic distance but boundary
behaviour was not the focus of that analysis.

Throughout this paper we will assume that c and ci represent strictly posi-
tive constants.

1. NOTATION

Given α ∈ RN representing the multi-index (α1, α2, α3, . . .) where

|α| := α1 + α2 + α3 + · · ·+ αN

we define the corresponding operator

Dα f :=
∂|α| f

∂α1 x1∂α2 x2∂α3 x3 · · · ∂αN xN
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and the set Vα such that

Vα = {r : ri 6 αi for all i}.

Moreover given any multi-index r in Vα we define the vector factorial as(
α
r

)
:=
(

α1
r1

)(
α2
r2

)(
α3
r3

)
· · ·
(

αN
rN

)
.

The directional derivative of order m of an appropriately smooth function along
a vector v in RN is expressed as

∂m f
∂vm := · · · ∇(∇(∇ f · v) · v) · v.

2. QUADRATIC FORM

It is helpful to give an indicative though a non-rigorous formulation of the
family of higher order operators that we focus on in this paper. The operator is
defined more completely through its quadratic form. Given a bounded domain
Ω in RN we express the operator of order 2m > N as

(2.1) H f (x) := ∑
|α|6m, |β|6m

(−1)|α|Dα(aα,β(x)Dβ f (x))

where aα,β are complex bounded measurable functions. The associated quadratic
form Q

(2.2) Q( f ) := ∑
|α|6m, |β|6m

∫
Ω

aα,β(x)Dβ f (x)Dα f (x)

defined with domain equal to the Sobolev space Wm,2
0 (Ω) will be assumed to

satisfy the ellipticity condition with a strictly positive constant c

(2.3) c−1‖(−∆)m/2 f ‖2
2 6 Q( f ) 6 c‖(−∆)m/2 f ‖2

2.

We define the spectral gap

s = inf
f∈C∞

c (Ω)

Q( f )
‖ f ‖2

2
.

Since we have made the assumption that N/2m < 1, it will be informative to
track the dependency on this constraint by defining the quantity 0 < ε 6 1−
N/2m and

γ := m(1− ε)− N
2

.

For a given point x in Ω we define its distance from the boundary ∂Ω

dx := d(x, ∂Ω) = inf
y∈∂Ω

|x− y|.
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We define the function g̃(t) such that

(2.4) g̃(t) :=

{
se−2st t > 1

s ,
1
t e−st−1 t 6 1

s .

3. BOUNDARY BEHAVIOUR

Having imposed Dirichlet boundary conditions on our operator we expect
the heat kernel k(t, x, y) to vanish at the boundary. The precise nature of this
decay can be deduced by application of the Sobolev embedding theorem:

Wm,2
0 (Ω) ↪→ Cγ

0 (Ω).

We consider the norm on Cγ
0 (Ω) to be defined as

‖ f ‖Cγ
0

:= ∑
|α|6n

‖Dα f ‖∞ + sup
x,y∈Ω

|Dα f (y)− Dα f (x)|
|(y− x)|κ

where n and κ are the integer and the fractional parts of γ respectively.

LEMMA 3.1. There is a strictly positive constant c such that for all f ∈Wm,2
0 (Ω)

and any unit vector v in RN

(3.1)
∣∣∣∂n f (x)

∂vn

∣∣∣ 6 c√
ε

dκ
x Q( f )(1−ε)/2 ‖ f ‖ε

2

for all x ∈ Ω.

Proof. By applying Fourier transform to ∂n f /∂vn we have for all x in Ω

sup
y∈RN

∣∣∣ ∂n f (x)
∂vn − ∂n f (y)

∂vn

∣∣∣
|(y− x)|κ 6 c

∫
RN

|ξ|γ | f̂ (ξ)|dξ

and consequently ∣∣∣∂n f (x)
∂vn

∣∣∣ 6 c dκ
x

∫
RN

|ξ|γ | f̂ (ξ)|dξ

hence for a positive µ∣∣∣∂n f (x)
∂vn

∣∣∣2 6 cd2κ
x

( ∫
RN

(µ + |ξ|2)(γ−m)/2(µ + |ξ|2)m/2| f̂ (ξ)|dNξ
)2

.

It then follows from Cauchy–Schwartz that∣∣∣∂n f (x)
∂vn

∣∣∣2 6 c d2κ
x

( ∫
RN

(µ + |ξ|2)m| f̂ (ξ)|2dNξ
)( ∫

RN

1
(µ + |ξ|2)m−γ

dNξ
)

6
c
ε

d2κ
x (µm(1−ε)‖ f ‖2

2 + µ−mεQ( f )).
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Optimizing over µ to find the following that completes the proof:

µm =
ε

1− ε

Q( f )
‖ f ‖2

2
.

We proceed to find an upper bound for the heat kernel by applying Lem-
ma 3.1 to ft := e−Ht f but first we need a more comprehensive upper bound for∣∣∣∂n ft(x)/∂vn

∣∣∣ by applying the Spectral Theorem.

LEMMA 3.2. If ft is e−Ht f for some f in L2(Ω) then

(3.2) Q( ft) 6 g̃(t) ‖ f ‖2
2.

Proof. The inequality follows from

Q( ft) 6 ‖He−Ht‖ ‖e−Ht‖ ‖ f ‖2
2

and an application of the Spectral Theorem.

We can now combine Lemmas 3.1 and 3.2 to yield our upper bound for the
heat kernel.

LEMMA 3.3. The heat kernel k(t, x, y) generated by the differential operator H
satisfies the inequalities:

|k(t, x, y)| 6 c
(

1− N + 2γ

2m

)−1
t−(N+2γ)/2m dγ

x dγ
y when t <

2
s

,

|k(t, x, y)| 6 c
(

1− N + 2γ

2m

)−1
e−st dγ

x dγ
y when t >

2
s

.

Proof. If ft := e−Ht f then from Lemma 3.1 we have∣∣∣∂n ft(x)
∂vn

∣∣∣ 6 c√
ε

dκ
x Q( ft)

(1−ε)/2 ‖ ft‖ε
2.

Choosing v appropriately and integrating yields∣∣∣ ∫
Ω

k(t, x, u) f (u) dNu
∣∣∣ 6 c√

ε
dγ

x g̃(t)(1−ε)/2 ‖ f ‖1−ε
2 ‖ ft‖ε

2

6
c√
ε

dγ
x g̃(t)(1−ε)/2e−stε ‖ f ‖2.

This inequality gives us a bound for the L2 norm of k(t, y, ·)

‖k(t, y, ·)‖2 6
c√
ε

dγ
x g̃(t)(1−ε)/2e−stε

which can then be applied to obtain the required bounds:

|k(t, x, y)| =
∣∣∣ ∫

Ω

k( t
2 , x, u)k( t

2 , u, y) dNu
∣∣∣ 6 ‖k( t

2 , x, ·)‖2‖k( t
2 , y, ·)‖2

6
c
ε

dγ
x dγ

y g̃( t
2 )

1−εe−stε.
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4. GAUSSIAN BOUNDS

Gaussian bounds exhibiting boundary decay can be given by interpolation
between the bounds found in Lemma 3.3 and those obtained in Davies [4]. The
drawback of this method however, is that the presence of the term c3t does not
imply the long-time exponential decay that we expect and would like to show.
Dirichlet boundary conditions imply a positive spectral gap and hence exponen-
tial time decay. We give bounds that more concisely exhibit this behaviour.

One of the key features of hypothesis (2.3) is that many required operator
inequalities can be reduced to proving the corresponding inequalities for polyno-
mial symbols by applying Fourier transforms.

Barbatis and Davies [2] make a stronger assumption on the operator coeffi-
cients. They assume that for a strictly positive q

(4.1) q−1 ∑
|α|=m, |β|=m

a0,αβξαξβ6 ∑
|α|=m, |β|=m

aαβ(x)ξαξβ6q ∑
|α|=m, |β|=m

a0,αβξαξβ

almost everywhere in Ω and the non-negative coefficient matrix A0 = a0,αβ sat-
isfies

(4.2) 〈(−∆)m f , g〉 =
∫
Ω

a0,αβDα f DβgdN x

for all functions f , g ∈ C∞
c (Ω). They obtained the necessary estimates for the

polyharmonic operator by way of Fourier transforms and an application of the
polarization identity on the co-efficient matrix. We do not make this assumption
here.

5. TWISTED QUADRATIC FORM INEQUALITY

Given x0 in Ω and a unit vector a in RN , we define the bounded function
ψx0,a on Ω

(5.1) ψx0,a(x) := 〈x− x0, a〉.

Moreover given a real number λ and dropping the subscripts on ψx0,a we define
the multiplicative operator eλψ

eλψ : L2(Ω)→ L2(Ω),

(eλψ f )(x) := eλψ(x) f (x)

eλψ is a homeomorphism on L2(Ω). The twisted operator Hλψ is then defined as
follows:

Hλψ f := e−λψHeλψ f

with
Dom(Hλψ) = {e−λψ f : f ∈ Dom(H)}.
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More importantly we define the twisted quadratic form, Qλψ as follows:

Qλψ( f ) := Q(eλψ f , e−λψ f )

= ∑
α,β

∫
Ω

aα,β(x)(Dα(eλψ f ))(Dβ(e−λψ f ))dN x

= ∑
α,β

∫
Ω

aα,β(x)(e−λψDα(eλψ f ))(eλψDβ(e−λψ f ))dN x.

By Leibniz, for each f ∈ C∞
c (Ω) we can expand

(5.2) e−λψDαeλψ f = ∑
r∈Vα

(
α
r

)
λ|α−r|aα−rDr f .

It is then possible to show that the difference per(λ) := Qλψ( f )−Q( f ) is

∑
α,β

∫
Ω

aα,β(x)∑′
(

α
r

)(
β
s

)
λ|(α+β)−(r+s)|aα−raβ−sDr f Ds f

where the summation ∑′ runs over all r in Vα and s in Vβ but where either |r| <
|α| or |s| < |β|. The terms where both r = α and s = β are incorporated in Q( f ).
Since the coefficients of the operator are uniformly bounded we have for c > 0

|per(λ)| 6 c ∑
α,β

∑′ |λ||(α+β)−(r+s)|
∫
Ω

|Dr f ||Ds f |dN x

and applying Cauchy–Schwartz

|per(λ)| 6 ∑
16|α|=|β|6m

∑′ ‖λ|α|−|r|Dr f ‖2‖λ|β|−|s|Ds f ‖2.

From Lemma A.4 we see that for ε < 1

|per(λ)| 6 c ∑
16p6m

∑′ ‖|λ|p−|r|(−∆)|r|/2 f ‖2‖λp−|s|(−∆)|s|/2 f ‖2

6 c ∑
16p6m

ε‖(−∆)p/2 f ‖2
2 + ε1−2pλ2p‖ f ‖2

2.

It follows from Lemma A.5 with ρ = ε1−2m

|per(λ)| 6 c1ε(1 + θ)Q( f ) + c1ε1−2m(1 + θsε2m−1)2mλ2m‖ f ‖2
2

and simplifying

|per(λ)| 6 c1ε(1 + θ)Q( f ) + c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2.

Using

Re[Q( f )−Qλψ( f )] = Q( f )− Re[Qλψ( f )] 6 |Q( f )−Qλψ( f )|
we have

(5.3) [1− c1ε(1 + θ)]Q( f ) 6 ReQλψ( f ) + c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2.
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Moreover

(5.4) |ImQλψ( f )| 6 c1ε(1 + θ)Q( f ) + c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2.

We note from Lemma A.5 that these inequalities are true for all positive θ.

6. SPECTRAL GAP

From the outset we know that H has a positive definite least eigenvalue s.
We define

Ĥ := H − s

similarly

(6.1) Ĥλψ f := e−λψ Heλψ f

and crucially

Q̂λψ( f ) := Qλψ( f )− s‖ f ‖2
2.

It is easy to see that the real and imaginary parts of the newly defined twisted
form, Q̂λψ satisfy

(6.2) [1− c1ε(1 + θ)]Q̂( f ) 6 ReQ̂λψ( f ) + c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2

and

(6.3) |ImQ̂λψ( f )| 6 c1ε(1 + θ)Q̂( f ) + c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2.

7. TWISTED SEMIGROUP INEQUALITIES

LEMMA 7.1. There is a constant k > 0 such that for all c > k and all 0 < p < 1

Q′λ,ψ( f ) := Q̂λψ( f ) + c(1 + p)(1 + s)2mλ2m‖ f ‖2
2

is a sectorial form with vertex at 0 and a semi-angle smaller then π/2. Moreover

p
1 + p

Q̂( f ) 6 ReQ̂λψ( f ) + c(1 + p)(1 + s)2mλ2m‖ f ‖2
2.

Proof. With θ = (2− (1 + p))/(1 + p) and ε = 1/2c1 the second part of the
RHS of (6.3)

c1ε1−2m([1 + θs]λ)2m‖ f ‖2
2

is less than

c2m
1 22m−1(1 + s)2mλ2m‖ f ‖2

2
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hence

p|ImQ′λ,ψ( f )| 6 p
1 + p

Q̂( f ) + pc2m
1 22m−1(1 + s)2mλ2m‖ f ‖2

2

= [1− c1ε(1 + θ)]Q̂ f + pc2m
1 22m−1(1 + s)2mλ2m‖ f ‖2

2

6 ReQ̂λψ( f ) + (1 + p)(c2m
1 22m−1(1 + s)2mλ2m)‖ f ‖2

2

= ReQ̂λψ( f ) + c2(1 + p)(1 + s)2mλ2m‖ f ‖2
2

= ReQ′λ,ψ( f ).

This then implies that
|ImQ′λ,ψ f |
ReQ′λ,ψ f

6
1
p

and consequently

|Arg Q′λ,ψ( f )| 6 tan−1( 1
p ) <

π

2
.

We define the operator H′λ,ψ

H′λ,ψ := Ĥλ,ψ + c(1 + s)2mλ2m

where c > 0 is such that
|Arg〈H′λ,ψ f , f 〉| < π

2
.

We recall the following corollary from Kato [5].

COROLLARY 7.2. Let β be angle such that π/4 < β < π/2 and set

p =
1

tan β

Then e−H′λ,ψz is an analytic semigroup in the sector

Sβ = {z : |Arg(z)| < β};

moreover
‖e−H′λ,ψz‖ 6 1.

For the proof see p. 492 of [5].
From Theorem 2.38 of [3] it is evident that there is a positive constant cp

such that

(7.1) ‖H′λ,ψe−H′λ,ψz‖ 6
cp

Re z
for all z ∈ Sβ.

In the following estimates we let Ĥλψ be defined by (6.1).

LEMMA 7.3. There is a positive constant c such that

(7.2) ‖e−Ĥλψt‖ 6 exp[c(1 + s)2mλ2mt].
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Proof. Let f ∈ L2(Ω) and define ft := e−Ĥλψt f , then solving

d
dt
‖ ft‖2

2 = 〈−Ĥλψ ft, ft〉+ 〈 ft,−Ĥλψ ft〉 = −2ReQ̂λψ( ft)

6 2c(1 + s)2mλ2m‖ ft‖2
2

proves the claim.

LEMMA 7.4. Whenever β > 0, there is a positive constant c2 such for any 0 <
α < 1 we have

(7.3) ‖Ĥλψe−Ĥλψt‖+ β(1 + s)2mλ2m ‖e−Ĥλψt‖ 6 c2

αt
ec(1+α)(1+s)2mλ2mt.

Proof. Applying the triangle inequality gives us

‖Ĥλψe−Ĥλψt‖e−c(1+s)2mλ2mt 6 ‖H′λ,ψe−H′λψt‖+ c(1 + s)2mλ2m‖e−H′λψt‖

and it follows from (7.1) and Lemma 7.3

‖Ĥλψe−Ĥλψt‖ 6 c1

t
ec(1+s)2mλ2mt + c(1 + s)2mλ2mec(1+s)2mλ2mt.

Then the LHS of (7.3) is bounded above by

(7.4)
c1

t
ec(1+s)2mλ2mt + c(1 + β)(1 + s)2mλ2mec(1+s)2mλ2mt.

For positive real x we can re-write xext as

1
α

e(1+α)xt · xαe−αxt

for some α > 0. We can then observe that

xext 6
e(1+α)xt

α
· e−1

t
and see that similarly

c(1 + s)2mλ2mec(1+s)2mλ2mt 6
e−1

αt
e(1+α)c(1+s)2mλ2mt.

Substitution into (7.4) attains the claimed inequality.

LEMMA 7.5. Let f ∈ L2(Ω) and define f̂t := e−Ĥλψt f then there are positive
constants c1 and c2 such that

(7.5) Q̂( f̂t) 6
c1

αt
ec2(1+s)2mλ2mt‖ f ‖2

2.

Proof. From Lemma 7.1 we have that for some positive constants c1 and c2

Q̂( f̂t) 6 c1Re Q̂λψ( f̂t) + c2(1 + s)2mλ2m‖ f̂t‖2
2

6 c1‖Ĥλψ f̂t‖2 ‖ f̂t‖2 + c2(1 + s)2mλ2m‖ f̂t‖2
2.
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By using Lemma 7.4 we can see that for 0 < α < 1

Q̂( f̂t) 6
c1

αt
ec(1+α)(1+s)2mλ2mt‖ f ‖2 ‖ f̂t‖2

6
c1

αt
e2c(1+α)(1+s)2mλ2mt‖ f ‖2

2.

COROLLARY 7.6. There are positive constants c1 and c2 such that

Q(e−Hλψt f ) 6
c1

αt
ec2(1+s)2mλ2mt−2st‖ f ‖2

2.

Proof. By substitution from

Q̂( f̂t) = Q( f̂t)− s‖ f̂t‖2
2 and f̂t = e−Ĥλψt f = e−Hλψte−st f

it can be seen that
Q̂( f̂t) = e2stQ(e−Hλψt f )− s‖ f̂t‖2

2,

hence for 0 < α < 1

Q(e−Hλψt f ) 6 e−2st[Q̂( f̂t) + s‖ f̂t‖2
2] 6 e−2st

[ c1

αt
ec2(1+α)(1+s)2mλ2mt‖ f ‖2

2 + s‖ f̂t‖2
2

]
.

Applying the estimate from Lemma 7.3 completes the proof.

8. HEAT KERNEL BOUNDS

THEOREM 8.1. The integral kernel kλ,ψ(t, x, y) of e−Hλψt satisfies the inequality

(8.1) k|kλ,ψ(t, x, y)| 6 c
εt1−ε

dγ
x dγ

y e[c2(1+s)2mλ2m−s]t

for some positive constants c and c2.

Proof. For f ∈ L2(Ω) we define ft := e−Hλψt f . From Lemma 3.1∣∣∣∂n ft(x)
∂vn

∣∣∣ 6 c√
ε

dκ
x Q( ft)

(1−ε)/2 ‖ ft‖ε
2

and from Corollary 7.6

(8.2)
∣∣∣∂n ft(x)

∂vn

∣∣∣ 6 c
t(1−ε)/2√ε

dκ
xe((1−ε)/2)[c2(1+s)2mλ2m−2s]t‖ f ‖1−ε

2 ‖ ft‖ε
2.

Recalling that ft = e−Hλψt f = e−ste−Ĥλψt f then with Lemma 7.3 we have
the estimate

‖ ft‖ε
2 6 exp(εc2(1 + s)2mλ2mt)e−εst‖ f ‖ε

2.

Substituting this estimate into (8.2)∣∣∣∂n ft(x)
∂vn

∣∣∣ 6 c
t(1−ε)/2√ε

dκ
xe[c2(1+s)2mλ2m−s]t‖ f ‖2.
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Integrating along the path to the boundary∣∣∣ ∫
Ω

kλ,ψ(t, x, u) f (u) dNu
∣∣∣ 6 c

t(1−ε)/2√ε
dγ

x e[c2(1+s)2mλ2m−s]t‖ f ‖2.

Following a similar argument to that in the proof to Lemma 3.3

|kλ,ψ(t, x, y)| 6 ‖kλ,ψ(
t
2 , x, ·)‖2‖kλ,ψ(

t
2 , y, ·)‖2

to yield the upper bound

|kλ,ψ(t, x, y)| 6 c
εt1−ε

dγ
x dγ

y e[c2(1+s)2mλ2m−s]t.

THEOREM 8.2. The integral kernel k(t, x, y) of e−Ht satisfies the inequality

|k(t, x, y)|6 c1

(
1− N+2γ

2m

)−1
t−(N+2γ)/2mdγ

x dγ
y exp

(
− c2
|x−y|2m/(2m−1)

t1/(2m−1)
−st

)
for some positive constants c1 and c2 and where s is the least eigenvalue and 0 6 γ <
m− N/2

Proof. We demonstrate the proof in two stages. Firstly optimising over ψ
and then optimising over λ.

From Lemma B.4 we know that

k(t, x, y) = e−λψ(x)kλ,ψ(t, x, y)eλψ(y)

recalling the definition of ψ from (5.1), for some unit vector a

ψ(y)− ψ(x) = 〈y− x, a〉.

If a is such that

ψ(y)− ψ(x) = −|y− x|

then substitution into the estimate (8.1) yields

(8.3) |k(t, x, y)| 6 c
εt1−ε

dγ
x dγ

y e[c2(1+s)2mλ2m−s]t−λ|x−y|.

Optimising the exponent of the RHS over λ we find

λ2m−1 =
|x− y|

2mc2(1 + s)2mt
.

Substituting back into (8.3) we find there is a positive constant c2

(8.4) |k(t, x, y)| 6 c
ε t1−ε

dγ
x dγ

y exp
(
− c2

|x− y|2m/(2m−1)

((1 + s)2mt)1/(2m−1)
− st

)
.

Recalling that ε = 1− (N + 2γ)/2m we have the required estimate.
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Appendix A. POLYNOMIAL AND OPERATOR SYMBOL INEQUALITIES

When perturbing our quadratic form Q, the resulting twisted form Qλ,ψ
generates cross terms of the form λpDα. We can use ellipticity and Fourier trans-
form to estimate these terms with the polyharmonic (−∆)m/2 for m > p + |α|

‖λpDα f ‖2
2 6

∫
RN

(c1|ξ|p+|α| + c2|λ|p+|α|)| f̂ (ξ)|2dNξ

6 c1(‖(−∆)m/2 f ‖2
2 + 1) + c2(1 + λ2m‖ f ‖2

2).

However a more detailed decomposition of these polynomials is required to at-
tain tighter bounds on ‖λpDα f ‖2

2. So that we can show exponential decay of the
heat kernel in long time asymptotics.

LEMMA A.1. If a, b, p and q are all positive constants then

apbq 6 εap+q + cp,qε−p/qbp+q

for all ε > 0 where cp,q := (p/(p + q))p/q − (p/(p + q))1+p/q is strictly positive and
strictly less than 1.

The proof follows from maximising xp − εxp+q and substituting x = a/b.

LEMMA A.2. Given p > q > 0 there is a strictly positive constant cq,p such that
for all f ∈ C∞

c (Ω)

‖(−∆)q f ‖2 < cq,p‖(−∆)p f ‖2.

The proof follows from the Spectral Theorem.

LEMMA A.3. If f ∈ C∞
c (Ω), λ ∈ R and p is a positive integer then whenever r

is a multi-index for which |r| < p

‖λp−|r|Dr f ‖2 6 ε‖(−∆)p/2 f ‖2 + ε−|r|/(p−|r|)|λ|p‖ f ‖2

for any ε > 0.

Proof. From the isometry of the Fourier transform we see that

‖λp−|r|Dr f ‖2
2 =

∫
Ω

λ2(p−|r|) |Dr f |2 dN x =
∫
RN

λ2(p−|r|)|(iξ)r |2 | f̂ (ξ)|2 dNξ

then using |(iξ)r |2 6 |ξ|2|r| and Lemma A.1. it follows that

‖λp−|r|Dr f ‖2
2 6

∫
RN

[ε |ξ|2p + ε−|r|/(p−|r|) |λ|2p ]| f̂ (ξ)|2 dNξ

6 ε‖(−∆)p/2 f ‖2
2 + ε−|r|/(p−|r|) |λ|2p ‖ f ‖2

2.

Rescaling ε recovers the required inequality.
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LEMMA A.4. If r and s are two multi-indicies such that |s| 6 p− 1 and |r| 6 p
where p is a positive integer and λ ∈ R then

‖λp−|r|(−∆)|r|/2 f ‖2 ‖λp−|s|(−∆)|s|/2 f ‖2 6 ε‖(−∆)p/2 f ‖2
2 + 22p−1ε1−2p λ2p ‖ f ‖2

2

for all ε < 2.

Proof. Case |r| = p.
We apply Lemma A.3:

‖λp−|r|(−∆)|r|/2 f ‖2‖λp−|s|(−∆)|s|/2 f ‖2

6 ‖(−∆)p/2 f ‖2(ε‖(−∆)p/2 f ‖2 + ε−|s|/(p−|s|)|λ|p‖ f ‖2)

= ε‖(−∆)p/2 f ‖2
2 + (ε−|s|/(p−|s|) |λ|p ‖ f ‖2 ‖(−∆)p/2 f ‖2).

Using the estimate |ab| < (1/ε)a2 + εb2 we show that the above is

6 ε‖(−∆)p/2 f ‖2
2 +

1
ε
· ε−2|s|/(p−|s|)|λ|2p‖ f ‖2

2 + ε‖(−∆)p/2 f ‖2
2

6 2ε‖(−∆)p/2 f ‖2
2 + ε−(p+|s|)/(p−|s|)|λ|2p‖ f ‖2

2.

Imposing the condition ε < 1 and maximizing ε−(p+|s|)/(p−|s|) over s we have the
inequality

‖λp−|r|(−∆)|r|/2 f ‖2‖λp−|s|(−∆)|s|/2 f ‖2 6 2ε‖(−∆)p/2 f ‖2
2 + ε1−2p|λ|2p‖ f ‖2

2.

The proof for this case is completed on rescaling ε.
Case |r| < p follows from Lemma A.3.

Having completed this decomposition, we obtain an estimate for lower or-
der operators in terms of the higher order operator.

LEMMA A.5. There is a positive constant c1 such for all ρ > 0, θ > 0 and positive
integer p 6 m

‖(−∆)p/2 f ‖2
2 + ρλ2p‖ f ‖2

2 6 c1(1 + θ)Q( f ) + c1ρ
(

1 +
θs
ρ

)2m
λ2m‖ f ‖2

2

for all f ∈ C∞
c (Ω) and with s equal to the bottom eigenvalue.

Proof. We can show applying Lemma A.1 that for each µ > 0 this is

(A.1) ‖(−∆)p/2 f ‖2
2+ρλ2p‖ f ‖2

26‖(−∆)p/2 f ‖2
2+ρµ‖ f ‖2

2+ρµ−(m−p)/pλ2m‖ f ‖2
2.

Applying Lemma A.2 and ellipticity whilst recalling that we have positive-definite
spectral gap s

‖(−∆)p/2 f ‖2
2 + ρλ2p‖ f ‖2

2

6 c1‖(−∆)m/2 f ‖2
2 + ρmµ‖ f ‖2

2 + ρm(1 + µ)m−1λ2m‖ f ‖2
2

6 c1(1 + θ)Q( f )− c1θs‖ f ‖2
2 + ρmµ‖ f ‖2

2 + ρm(1 + µ)m−1λ2m‖ f ‖2
2

we can then set µ = c1θs/mρ.
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Appendix B. DAVIES’ TWISTED OPERATORS AND THE CANONICAL
FUNCTIONAL CALCULUS

The two definitions are consistent

Qλψ( f ) = 〈H1/2eλψ f , H1/2e−λψ f 〉 = 〈e−λψHeλψ f , f 〉 = 〈Hλψ f , f 〉.

LEMMA B.1. H and Hλψ have the same spectrum.

Proof. Given a sequence of functions fn where (H − z) fn → 0 we have
(Hλψ − z)(e−λψ fn)→ 0.

LEMMA B.2. For each f ∈ L2(Ω) and z in the resolvent set of H we have

(z− Hλψ)
−1 f = e−λψ(z− H)−1eλψ f .

Proof. Let B = (z− Hλψ)
−1 then

B(z− Hλψ) f = f

which is just

Be−λψ(z− H)eλψ f = f

and out statement follows.

COROLLARY B.3. For f ∈ C0(R) we have a canonical functional calculus for the
twisted operator given by

f (Hλψ) : = e−λψ f (H)eλψ.

LEMMA B.4. If f ∈ C0(R) and k f (x, y) is the integral kernel of the operator f (H)
then f (Hλψ) has integral kernel k f ,λψ(x, y) where

k f ,λψ(x, y) = e−λψ(x)k f (x, y)eλψ(y).

Proof. Let v ∈ L2(Ω) then∫
Ω

k f ,λψ(x, y) v(y)dy = ( f (Hλψ)v)(x) = (e−λψ f (H)eλψv)(x)

= e−λψ(x)
∫
Ω

k f (x, y)eλψ(y)v(y)dy.
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