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ABSTRACT. We use the boundary-path space of a finitely-aligned k-graph Λ to
construct a compactly-aligned product system X, and we show that the graph
algebra C∗(Λ) is isomorphic to the Cuntz–Nica–Pimsner algebra NO(X). In
this setting, we introduce the notion of a crossed product by a semigroup of
partial endomorphisms and partially-defined transfer operators by defining it
to beNO(X). We then compare this crossed product with other definitions in
the literature.
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INTRODUCTION

In [6], Exel proposed a new definition for a crossed product of a unital C∗-
algebra A by an endomorphism α. Exel’s definition depends not only on α, but
also on the choice of transfer operator: a positive continuous linear map L : A→ A
satisfying L(α(a)b) = aL(b). We call a triple (A, α, L) an Exel system. In his mo-
tivating example, Exel finds a family of Exel systems whose crossed products
model the Cuntz–Krieger algebras [4]. This marked the first time a crossed prod-
uct by an endomorphism could successfully model Cuntz–Krieger algebras.

There are two obvious extensions of Exel’s construction. Firstly, to a theory
of crossed products of non-unital C∗-algebras capable of modeling the directed-
graph generalisation of the Cuntz–Krieger algebras [20]. In [2], the authors suc-
cessfully built such a theory, and they realised the graph algebras of locally-finite
graphs with no sources as Exel crossed products ([2], Theorem 5.1). The crossed
product in question was built from the infinite-path space E∞ and the shift map
σ on E∞. The hypotheses on E ensure that E∞ is locally compact, and σ is every-
where defined, and this allows an Exel system to be defined. The other extension
of Exel’s work is to crossed products by semigroups of endomorphisms and trans-
fer operators. In [17], Larsen has a crossed-product construction for dynamical
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systems (A, P, α, L) in which P is an abelian semigroup, α is an action of P by en-
domorphisms, and L is an action of P by transfer operators. Exel has also worked
in this area with his theory of interaction groups [7], [8].

Motivated by these ideas, we construct a semigroup crossed product that
can model the C∗-algebras of the higher-rank graphs, or k-graphs, of Kumjian
and Pask [16]. The only restriction we place on the k-graphs Λ whose C∗-algebras
we model is a necessary finitely-aligned hypothesis, so our result applies in the
fullest possible generality. This does come at a price, however, as without a
locally-finite hypothesis, or a restriction on sources, the space of infinite paths
is not locally compact. To get a locally-compact space we need to consider the
bigger boundary-path space ∂Λ, and on this space the shift maps σn, n ∈ Nk, will
not in general be everywhere defined. This means we can not form Exel systems,
or even a dynamical system in the sense of Larsen [17]. We overcome this prob-
lem by first ignoring the crossed-product construction, and focusing on building
a product system.

A product system of Hilbert A-bimodules over a semigroup P is a semi-
group X =

⊔
p∈P

Xp such that each Xp is a Hilbert A-bimodule, and x⊗A y 7→ xy

determines an isomorphism of Xp⊗A Xq onto Xpq for each p, q ∈ P. Fowler intro-
duced such product systems in [11]. Fowler also defined a Cuntz–Pimsner covari-
ance condition for representations of product systems, and introduced the uni-
versal C∗-algebra O(X) for Cuntz–Pimsner covariant representations of X. This
generalised Pimsner’s C∗-algebra for a single Hilbert bimodule [19]. In [23], Sims
and Yeend looked at the problem of associating a C∗-algebra to product systems
which satisfies a gauge-invariant uniqueness theorem, and noted in particular
that Fowler’sO(X) will not in general do the job. For a large class of semigroups,
and a class of product systems called compactly-aligned, Sims and Yeend intro-
duced a covariance condition for representations — called Cuntz–Nica–Pimsner
covariance — and a C∗-algebra NO(X) universal for such representations. A
gauge-invariant uniqueness theorem for NO(X) is proved in [3].

We build from ∂Λ and the σn topological graphs in the sense of Katsura [14],
and then we apply the construction from [14] to get Hilbert C0(∂Λ)-bimodules
Xn. We glue the bimodules together to form the boundary-path product system X
over Nk. This gives a new class of product systems for which the Cuntz–Nica–
Pimsner algebra NO(X) is tractable. The main result in this paper says that for
Λ a finitely-aligned k-graph, the graph algebra C∗(Λ) is isomorphic to NO(X).
A result, we feel, that gives extra credence to Sims and Yeend’s construction, at
least in the case for the semigroup Nk. We then construct for each n ∈ Nk a partial
endomorphism αn on C0(∂Λ) and a partially-defined transfer operator Ln, and
we define the crossed product C0(∂Λ)oα,L Nk to be NO(X). This gives us our
desired result: C0(∂Λ)oα,L Nk ∼= C∗(Λ).
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We begin with some preliminaries in Section 1. We state some necessary
definitions from the k-graph literature, and we state the definition of the Cuntz–
Krieger algebra of a k-graph. We then state the definitions from [23] needed to
make sense of the notion of Cuntz–Nica–Pimsner covariance, and the Cuntz–
Nica–Pimsner algebra of a compactly-aligned product system. In Section 2 we
construct from a finitely-aligned k-graph Λ the boundary-path product system
X. The proof that X is compactly-aligned requires substantial detail, so we leave
this result for the appendix. In Section 3 we prove the existence of a canonical
isomorphism C∗(Λ) → NO(X). In Section 4 we introduce the crossed product
C0(∂Λ) oα,L Nk, and we discuss the relationship between this crossed product
and the crossed product in [2]; Exel and Royer’s crossed product by a partial
endomorphism [10]; and Larsen’s semigroup crossed product [17].

1. PRELIMINARIES

1.1. k-GRAPHS AND THEIR CUNTZ–KRIEGER ALGEBRAS. A higher-rank graph,
or k-graph, is a pair (Λ, d) consisting of a countable category Λ and a degree
functor d : Λ → Nk satisfying the unique factorisation property: for all λ ∈ Λ

and m, n ∈ Nk with d(λ) = m + n, there are unique elements µ, ν ∈ Λ such that
d(µ) = m, d(ν) = n and λ = µν. We now recall some definitions from the k-graph
literature; for more details see [5].

For λ, µ ∈ Λ we denote

Λmin(λ, µ) := {(α, β) ∈ Λ×Λ : λα = µβ and d(λα) = d(λ) ∨ d(µ)}.

A k-graph Λ is finitely-aligned if Λmin(λ, µ) is at most finite for all λ, µ ∈ Λ. For
each v ∈ Λ0 we denote by vΛ := {λ ∈ Λ : r(λ) = v}. A subset E ⊆ vΛ is
exhaustive if for every µ ∈ vΛ there exists a λ ∈ E such that Λmin(λ, µ) 6= ∅.
We denote the set of all finite exhaustive subsets of Λ by FE(Λ). We denote by
vFE(Λ) the set {E ∈ FE(Λ) : E ⊆ vΛ}.

For each m ∈ (N ∪ {∞})k we get a k-graph Ωk,m through the following
construction. The set Ω0

k,m := {p ∈ Nk : p 6 m}, and

Ω∗k := {(p, q) ∈ Ω0
k,m ×Ω0

k,m : p 6 q}.

The range map is given by r(p, q) = p; the source map by s(p, q) = q; and the
degree functor by d(p, q) = q− p. Composition is given by (p, q)(q, r) = (p, r).

For k-graph Λ we define a graph morphism x to be a degree-preserving func-
tor from Ωk,m to Λ. The range and degree maps are extended to all graph mor-
phisms x : Ωk,m → Λ by setting r(x) := x(0) and d(x) := m. We define the
boundary-path space ∂Λ to be the set of all graph morphisms x such that for all
n ∈ Nk with n 6 d(x), and for all E ∈ x(n)FE(Λ), there exists λ ∈ E such that
x(n, n + d(λ)) = λ. We know from Lemmas 5.13 of [5] that if λ ∈ Λx(0), then
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λx ∈ ∂Λ. We know from Lemma 5.15 of [5] that for each v ∈ Λ0 there exists
x ∈ v∂Λ = {x ∈ ∂Λ : r(x) = v}.

We recall from [23] the following definition.

DEFINITION 1.1. Let Λ be a finitely-aligned k-graph. A Cuntz–Krieger family
in a C∗-algebra B is a collection {tλ : λ ∈ Λ} of partial isometries in B satisfying:
(CK1) {tv : v ∈ Λ0} consists of mutually orthogonal projections;
(CK2) tλtµ = tλµ whenever s(λ) = r(µ);
(CK3) t∗λtµ = ∑

(α,β)∈Λmin(λ,µ)
tαt∗β; and

(CK4) ∏
λ∈E

(tv − tλt∗λ) = 0 for every v ∈ Λ0 and E ∈ vFE(Λ).

The Cuntz–Krieger algebra, or graph algebra, C∗(Λ) is the universal C∗-algebra
generated by a Cuntz–Krieger Λ-family.

1.2. PRODUCT SYSTEMS AND THEIR CUNTZ–NICA–PIMSNER ALGEBRAS. In this
subsection we state some key definitions from Sections 2 and 3 of [23]; see [23]
for more details.

Suppose A is a C∗-algebra, and (G, P) is a quasi-lattice ordered group in the
sense that: G is a discrete group and P is a subsemigroup of G; P∩ P−1 = {e}; and
with respect to the partial order p 6 q ⇐⇒ p−1q ∈ P, any two elements p, q ∈ G
which have a common upper bound in P have a least upper bound p ∨ q ∈ P.
Suppose X :=

⋃
p∈P

Xp is a product system of Hilbert A-bimodules. For each p ∈ P

and each x, y ∈ Xp the operator Θx,y : Xp → Xp defined by Θx,y(z) := x · 〈y, z〉A
is adjointable with Θ∗x,y = Θy,x. The span K(Xp) := span{Θx,y : x, y ∈ Xp} is
a closed two-sided ideal in L(Xp) called the algebra of compact operators on Xp.
For p, q ∈ P with e < p 6 q there is a homomorphism ι

q
p : L(Xp) → L(Xq)

characterised by

(1.1) ι
q
p(S)(xy) = (Sx)y for all x ∈ Xp, y ∈ Xp−1q.

For p 66 q we define ι
q
p(S) = 0L(Xq) for all S ∈ L(Xp). The product system

X is called compactly-aligned if for all p, q ∈ P such that p ∨ q < ∞, and for all
S ∈ K(Xp) and T ∈ K(Xq), we have ι

p∨q
p (S)ιp∨q

q (T) ∈ K(Xp∨q).
A representation ψ of X in a C∗-algebra B is a map X → B such that:

(1) each ψ|Xp := ψp : Xp → B is linear, and ψe : A→ B is a homomorphism;
(2) ψp(x)ψy(q) = ψpq(xy) for all p, q ∈ P, x ∈ Xp, and y ∈ Xq; and
(3) ψe(〈x, y〉pA) = ψp(x)∗ψp(y) for all p ∈ P, and x, y ∈ Xp.

It follows from Pimsner’s results [19] that for each p ∈ P there is a ho-
momorphism ψ(p) : K(Xp) → B satisfying ψ(p)(Θx,y) = ψp(x)ψp(y)∗ for all
x, y ∈ Xp. A representation ψ of X is Nica-covariant if for all p, q ∈ P and all
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S ∈ K(Xp), T ∈ K(Xq) we have

ψ(p)(S)ψ(q)(T) =

{
ψ(p∨q)(ι

p∨q
p (S)ιp∨q

q (T)) if p ∨ q < ∞,
0 otherwise.

We denote by φp the homomorphism A → L(Xp) implementing the left
action of A on Xp. We define Ie = A, and for each q ∈ P \ {e} we write Iq :=⋂
e<p6q

ker φp. We then denote by X̃q the Hilbert A-bimodule

X̃q :=
⊕
p6q

Xp · Ip−1q,

and we denote by φ̃q the homomorphism implementing the left action of A on
X̃q. The product system X is said to be φ̃-injective if every φ̃q is injective.

For p, q ∈ P with p 6= e there is a homomorphism ι̃
q
p : L(Xp) → L(X̃q)

determined by S 7→ ⊕
r6q

ιrp(S) for all S ∈ L(Xp); and characterised by

(1.2) (ι̃
q
p (S)x)(r) = ιrp(S)x(r) for all x ∈ X̃q.

A representation ψ of a φ̃-injective product system X in a C∗-algebra B is Cuntz–
Pimsner covariant if ∑

p∈F
ψ(p)(Tp) = 0B whenever F ⊂ P is finite, Tp ∈ K(Xp)

for each p ∈ F, and ∑
p∈F

ι̃ s
p (Tp) = 0 for large s (see Definition 3.8 of [23] for

the meaning of “for large s”). A representation ψ of a φ̃-injective product sys-
tem X is Cuntz–Nica–Pimsner covariant if it is both Nica covariant and Cuntz–
Pimsner covariant. It is proved in Proposition 3.12 of [23] that there exists a C∗-
algebra NO(X), called the Cuntz–Nica–Pimsner algebra of X, which is universal
for Cuntz–Nica–Pimsner covariant representations of X. We denote the universal
Cuntz–Nica–Pimsner representation by jX : X → NO(X).

2. THE BOUNDARY-PATH PRODUCT SYSTEM OF A k-GRAPH

Let Λ be a finitely-aligned k-graph. For λ ∈ Λ we denote the set Dλ := {x ∈
∂Λ : x(0, d(λ)) = λ}. For n ∈ Nk we denote

An := {(λ, F) : λ ∈ Λ with d(λ) > n, F ⊆ s(λ)Λ a finite set},

and A :=
⋃

n∈Nk
An. For (λ, F) ∈ A we denote DλF :=

⋃
ν∈F

Dλν. It is proved

in Section 5 of [5] that the family of sets {Dλ \ DλF : (λ, F) ∈ A} is a basis
of compact and open sets for a Hausdorff topology on ∂Λ, and ∂Λ is a locally
compact Hausdorff space. For each n ∈ Nk we denote ∂Λ>n := {x ∈ ∂Λ : d(x) >
n} and ∂Λ6>n := ∂Λ\ ∂Λ>n. We now use the subsets ∂Λ>n to construct topological
graphs in the sense of Katsura [14], [15].
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PROPOSITION 2.1. Let n ∈ Nk with ∂Λ>n 6= ∅. Denote by σn the shift on ∂Λ>n

given by σn(x)(m) = x(m + n), and ι : ∂Λ>n → ∂Λ the inclusion mapping. Then
En := (∂Λ, ∂Λ>n, σn, ι) is a topological graph.

Proof. We use the definition of convergence given in Remark 5.6 of [5]. Let
(xi) be a sequence in ∂Λ6>n converging to x. If x ∈ ∂Λ>n, then there exists j ∈
{1, . . . , k} and a subsequence (xik) of (xi) such that d(xik)j < d(x)j for all xik.
This contradicts that (xik) converges to x, so we must have x ∈ ∂Λ6>n, and hence
∂Λ6>n is closed in ∂Λ. Hence ∂Λ>n is locally compact.

Let x ∈ ∂Λ>n. Then Dx(0,n) is an open neighbourhood of x, with Dx(0,n) ⊆
∂Λ>n. The map σn|Dx(0,n)

: Dx(0,n) → Ds(x(0,n)) is a bijection, and σn(Dx(0,n)) =

Ds(x(0,n)) is open in ∂Λ. Now suppose λ ∈ s(x(0, n))Λ and F ⊆ s(λ)Λ. Then

σn|Dx(0,n)
(Dx(0,n)λ \ Dx(0,n)λF) = Dλ \ DλF

is open in Ds(x(0,n)), and

(σn|Dx(0,n)
)−1(Dλ \ DλF) = Dx(0,n)λ \ Dx(0,n)λF

is open in Dx(0,n). Hence, σn|Dx(0,n)
is continuous and open, and so it is a home-

omorphism of Dx(0,n) onto Ds(x(0,n)). Hence σn is a local homeomorphism. We
know that ι is continuous, so the result follows.

We now use Katsura’s construction [14] to form Hilbert bimodules. For
f , g ∈ Cc(∂Λ>n) and a ∈ C0(∂Λ), we define

( f · a)(x) := f (x)a(σn(x)), and(2.1)

〈 f , g〉n(x) := ∑
σn(y)=x

f (y)g(y).(2.2)

We complete Cc(∂Λ>n) under the norm ‖ · ‖n given by 〈·, ·〉n to get a Hilbert
C0(∂Λ)-module Xn = X(En). The formula

(2.3) (a · f )(x) := a(ι(x)) f (x) = a(x) f (x),

defines an action of C0(∂Λ) by adjointable operators on Xn, which we denote by
φn : C0(∂Λ) → L(Xn), and then Xn becomes a Hilbert C0(∂Λ)-bimodule. For
n ∈ Nk with ∂Λ>n = ∅ we set Xn := {0}. Note that X0 = C0(∂Λ).

PROPOSITION 2.2. Let m, n ∈ Nk with ∂Λ>m, ∂Λ>n 6= ∅. Then the map

π : Cc(∂Λ>m)× Cc(∂Λ>n)→ Cc(∂Λ>m+n)

given by π( f , g)(x) = f (x)g(σm(x)) is a surjective map which induces an isomorphism
πm,n : Xm ⊗ Xn → Xm+n satisfying πm,n( f ⊗ g) = f (g ◦ σm).

To prove this proposition we need some results. To state these results we
use the following notation.
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NOTATION 2.3. (i) Recall from Definition 3.10 of [5] that given λ ∈ Λ and
E ⊆ r(λ)Λ we denote

Ext(λ; E) :=
⋃

ν∈E
{α ∈ Λ : (α, β) ∈ Λmin(λ, ν) for some β ∈ Λ}.

For λ, µ ∈ Λ we denote F(λ, µ) := Ext(λ; {µ}). Since Λ is finitely-aligned, F(λ, µ)
is a finite subset of s(λ)Λ, and so (λ, F(λ, µ)) ∈ A. We have

(2.4) DλF(λ,µ) = DµF(µ,λ).

(ii) Let λ, µ ∈ Λ and x ∈ ∂Λ with d(x) > d(λ) ∨ d(µ). Then we denote by xµ
λ

the path

xµ
λ := x(d(λ), d(λ) ∨ d(µ)).

LEMMA 2.4. Let (λ, F), (µ, G) ∈ A. Then we have

(2.5) (Dλ \ DλF) ∩ (Dµ \ DµG) =
⊔

(α,β)∈Λmin(λ,µ)

Dλα \ DλαFα
,

where

Fα :=
( ⋃

ν∈F
F(λα, λν)

)
∪
( ⋃

ξ∈G
F(λα, µξ)

)
.

Proof. The factorisation property ensures that the union in (2.5) is disjoint.
Let x ∈ (Dλ \ DλF) ∩ (Dµ \ DµG). Then d(x) > d(λ) ∨ d(µ); the pair

(xµ
λ, xλ

µ) ∈ Λmin(λ, µ); and x ∈ Dλxµ
λ
. Using (2.4) we have

x ∈ Dλxµ
λ F(λxµ

λ ,λν) = DλνF(λν,λxµ
λ)

=⇒ x ∈ DλF,

which contradicts x ∈ Dλ \ DλF, so we must have x 6∈ Dλxµ
λ F(λxµ

λ ,λν) for all ν ∈ F.

By symmetry, we also have x 6∈ Dλxµ
λ F(λxµ

λ ,µξ) for all ξ ∈ G. Hence x ∈ Dλxµ
λ
\

Dλxµ
λ F

xµ
λ

.

Now suppose y is an element of the right-hand-side of (2.5). So there exists
(α, β) ∈ Λmin(λ, µ) with y ∈ Dλα \ DλαFα

. We have y ∈ Dλα ⊆ Dλ. Assume
y ∈ Dλν for some ν ∈ F. Then d(y) > d(λα) ∨ d(λν); the pair (yλν

λα, yλα
λν) ∈

Λmin(λα, λν); and y ∈ DλαF(λα,λν) ⊆ DλαFα
. This is a contradiction, and so y 6∈

Dλν for all ν ∈ F. Hence y ∈ Dλ \DλF. By symmetry, we also have y ∈ Dµ \DµG.
Hence y ∈ (Dλ \ DλF) ∩ (Dµ \ DµG).

LEMMA 2.5. Let n ∈ Nk and (λ, F) ∈ A with Dλ \ DλF ⊆ ∂Λ>n. Then we have

(2.6) Dλ \ DλF =
⊔

µ∈s(λ)Λd(λ)∨n−d(λ)

Dλµ \ Dλµ Ext(µ;F),

where (λµ, Ext(µ; F)) ∈ An for each µ ∈ s(λ)Λd(λ)∨n−d(λ).
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Proof. The factorisation property ensures that the union in (2.6) is disjoint.
Suppose x ∈ Dλ \ DλF, and consider the path µ := x(d(λ), d(λ) ∨ n) ∈

s(λ)Λd(λ)∨n−d(λ). Then x ∈ Dλµ. If x ∈ Dλµ Ext(µ;F), then there exists ν ∈ F
and (α, β) ∈ Λmin(µ, ν) with x ∈ Dλµα = Dλνβ ⊆ Dλν ⊆ DλF. But this is a
contradiction, and so we must have x ∈ Dλµ \ Dλµ Ext(µ;F).

Now, let y ∈ Dλµ \Dλµ Ext(µ;F) for some µ ∈ s(λ)Λd(λ)∨n−d(λ). Then y ∈ Dλ.
If y ∈ Dλν for some ν ∈ F, then the pair

(yλν
λµ(d(λ), d(λ) + d(µ) ∨ d(ν)), yλµ

λν (d(λ), d(λ) + d(µ) ∨ d(ν))) ∈ Λmin(µ, ν),

and y ∈ Dλµ Ext(µ;F). This is a contradiction, and so we must have y ∈ Dλ \ DλF.
Finally, for each µ ∈ s(λ)Λd(λ)∨n−d(λ) the set Ext(µ; F) is finite because

F is finite and Λ is finitely-aligned. We obviously have d(λµ) > n, and so
(λµ, Ext(µ; F)) ∈ An.

Proof of Proposition 2.2. To show that π is surjective we let f ∈ Cc(∂Λ>m+n).
For each x ∈ supp f there exists (λ, F) ∈ A with x ∈ Dλ \ DλF ⊆ ∂Λ>m+n. So
there exists a subset J ⊆ A such that supp f ⊆ ⋃

(λ,F)∈J
Dλ \ DλF, where Dλ \

DλF ⊆ ∂Λ>m+n for each (λ, F) ∈ J . It follows from Lemma 2.5 that each Dλ \
DλF is a disjoint union of sets of the form Dµ \ DµG with (µ, G) ∈ Am+n, and so
there exists a subset J ′ ⊆ Am+n such that supp f ⊆ ⋃

(µ,G)∈J ′
Dµ \ DµG, where

Dµ \ DµG ⊆ ∂Λ>m+n for each (µ, G) ∈ J ′. Since supp f is compact, there exists

a finite number of pairs (µj, Gj) ∈ J ′ with supp f ⊆
h⋃

j=1
Dµj \ DµjGj . Now for

each 1 6 j 6 h let λj := µj(m, d(µj)), and consider the function X∪jDλj
\DλjGj

∈

Cc(∂Λ>n). Consider also f̃ ∈ Cc(∂Λ>m) which is equal to f on ∂Λ>m+n and zero
on the complement. Then we have π( f̃ ,X∪jDλj

\DλjGj
) = f , and so π maps onto

Cc(∂Λ>m+n).
Routine calculations show that π is bilinear, and so it induces a surjective

linear map πm,n : Cc(∂Λ>m) � Cc(∂Λ>n) → Cc(∂Λ>m+n) satisfying πm,n( f ⊗
g)(x) = f (x)g(σm(x)). It follows immediately from the formulas (2.1) and (2.3)
that π preserves the left and right actions.

To see that πm,n preserves the inner product, we let f , h ∈ Cc(∂Λ>m) and
g, l ∈ Cc(∂Λ>n). Then for x ∈ ∂Λ>m+n we have

〈 f ⊗ g, h⊗ l〉(x) = 〈〈h, f 〉m · g, l〉n(x) = ∑
σn(y)=x

〈h, f 〉m(y)g(y)l(y)

= ∑
σn(y)=x

(
∑

σm(z)=y
h(z) f (z)

)
g(y)l(y)
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= ∑
σm+n(z)=x

g(σm(z))l(σm(z)) f (z)h(z).(2.7)

Now

〈πm,n( f ⊗ g), πm,n(h⊗ l)〉m+n(x) = ∑
σm+n(z)=x

πm,n( f ⊗ g)(z)πm,n(h⊗ l)(z)

= ∑
σm+n(z)=x

f (z)g(σm(z))h(z)l(σm(z))

= 〈 f ⊗ g, h⊗ l〉(x),

and so πm,n preserves the inner product. Hence it extends to an isomorphism
πm,n : Xm ⊗ Xn → Xm+n.

REMARK 2.6. Suppose ∂Λ>m, ∂Λ>n 6= ∅ and ∂Λ>m+n = ∅. We claim that
Xm ⊗ Xn = {0}. To see this is true, we assume the contrary. Then there exists
f ∈ Cc(∂Λ>m) and g ∈ Cc(∂Λ>n) with f ⊗ g 6= 0. It follows from equation (2.7)
that

〈 f ⊗ g, f ⊗ g〉(x) = ∑
σm+n(z)=x

| f (z)|2|g(σm(z))|2,

and this implies

〈 f ⊗ g, f ⊗ g〉 6= 0⇐⇒ σ−1
m+n(x) 6= ∅ for some x ∈ ∂Λ

⇐⇒ ∂Λ>m+n 6= ∅.

This is a contradiction, and so we must have Xm ⊗ Xn = {0} = Xm+n.
Now suppose that ∂Λ>m 6= ∅ and ∂Λ>n = ∅. Then we have ∂Λ>m+n = ∅,

and so Xn = {0} = Xm+n. Then Xm ⊗ Xn = Xm ⊗ {0} = {0} = Xm+n. So we can
extend Proposition 2.2 to include all m, n ∈ Nk, and we think of πm,n for m, n as
in this remark as the trivial map from {0} to itself.

PROPOSITION 2.7. The family X :=
⊔

n∈Nk
Xn of Hilbert bimodules over C0(∂Λ)

with multiplication given by

(2.8) xy := πm,n(x⊗ y)

is a product system over Nk.

Proof. We just need to check that ax = a · x and xa = x · a for all x ∈ Xn,
n ∈ Nk and a ∈ C0(∂Λ), but this follows from (2.1), (2.3) and the definition of
multiplication (2.8).

We prove that X is compactly-aligned in the Appendix.
Given the definition (2.8) of multiplication within X, we now have the fol-

lowing restatement of Proposition 2.2. This corollary plays an important role in
subsequent sections.
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COROLLARY 2.8. Let n ∈ Nk and h ∈ Cc(∂Λ>n). Then for every l, m ∈ Nk with
n = l + m, there exists f ∈ Cc(∂Λ>l) and g ∈ Cc(∂Λ>m) with h = f g.

3. THE CUNTZ-NICA-PIMSNER ALGEBRA NO(X)

Recall that we denote by jX : X → NO(X) the universal Cuntz–Nica–
Pimsner representation of X. For each m ∈ Nk we denote by jX,m the restriction
of jX to Xm. For each λ ∈ Λ the set Dλ is closed and open, and so the characteristic
function XDλ

∈ Cc(∂Λ>d(λ)) ⊂ Xd(λ).

THEOREM 3.1. Let Λ be a finitely-aligned k-graph and X be the associated product
system of Hilbert bimodules given in Proposition 2.7. Denote by {sλ : λ ∈ Λ} the
universal Cuntz–Krieger Λ-family in C∗(Λ). There exists an isomorphism π : C∗(Λ)→
NO(X) such that π(sλ) = jX,d(λ)(XDλ

).

To prove this result we first show that S := {Sλ := jX,d(λ)(XDλ
) : λ ∈ Λ} is

a set of partial isometries inNO(X) satisfying (CK1) and (CK2). We use the Nica
covariance of jX to show that S satisfies (CK3), and the Cuntz–Pimsner covariance
of jX to show that S satisfies (CK4). The universal property of C∗(Λ) then gives
us a map π : C∗(Λ) → NO(X) with π(sλ) = jX(XDλ

) for each λ ∈ Λ. We show
that S generates NO(X), and we use the gauge-invariant uniqueness theorem
for C∗(Λ) ([22], Theorem 4.2) to prove that π is injective.

PROPOSITION 3.2. The set S = {Sλ : λ ∈ Λ} is a family of partial isometries
satisfying (CK1) and (CK2).

Proof. Let λ ∈ Λ. Using (2.1) and (2.2) we get XDλ
· 〈XDλ

,XDλ
〉d(λ) = XDλ

,
and it follows that SλS∗λSλ = Sλ. It follows from the properties of characteristic
functions that {Sv = jX,0(XDv)} is a set of mutually orthogonal projections, thus
(CK1) is satisfied. Relation (CK2) follows from the calculation

XDλ
XDµ(x) = πd(λ),d(µ)(XDλ

⊗XDµ)(x) = XDλ
(x)XDµ(σd(λ)(x))

=

{
1 if x(0, d(λ)) = λ and x(d(λ), d(λ) + d(µ)) = µ,
0 otherwise,

= XDλµ
(x).

PROPOSITION 3.3. The set S satisfies relation (CK3):

S∗λSµ = ∑
(α,β)∈Λmin(λ,µ)

SαS∗β for all λ, µ ∈ Λ.

To prove this proposition we need the next result. For λ, µ ∈ Λ with d(λ) =
d(µ) we denote by Θλ,µ the rank-one operator ΘXDλ

,XDµ
∈ K(Xd(λ)).
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LEMMA 3.4. Let λ, µ ∈ Λ. Then we have

(3.1) ι
d(λ)∨d(µ)
d(λ) (Θλ,λ)ι

d(λ)∨d(µ)
d(µ) (Θµ,µ) = ∑

(α,β)∈Λmin(λ,µ)

Θλα,µβ.

Proof. Let f ∈ Cc(∂Λ>d(µ)) and g ∈ Cc(∂Λ>d(λ)∨d(µ)−d(µ)). We show that
the operators in (3.1) agree on the product f g ∈ Cc(∂Λ>d(λ)∨d(µ)), and then the
result will follow from Corollary 2.8 and the fact that Cc(∂Λ>d(λ)∨d(µ)) is dense in
Xd(λ)∨d(µ).

We know that for each µ ∈ Λ we have Θµ,µ( f ) = XDµ · 〈XDµ , f 〉
d(µ)

. It

follows from a routine calculation using (2.1) and (2.2) that Θµ,µ( f ) = XDµ f ,
where XDµ f is a product of functions in Cc(∂Λ>d(µ)). It now follows from (1.1)
that

(3.2) ι
d(λ)∨d(µ)
d(µ) (Θµ,µ)( f g) = (Θµ,µ( f ))g = (XDµ f )g.

We now use Corollary 2.8 to factor (XDµ f )g = hl, where h ∈ Cc(∂Λ>d(λ)) and
l ∈ Cc(∂Λ>d(λ)∨d(µ)−d(λ)). For x ∈ ∂Λ>d(λ)∨d(µ) we have

ι
d(λ)∨d(µ)
d(λ) (Θλ,λ)ι

d(λ)∨d(µ)
d(µ) (Θµ,µ)( f g)(x)= ι

d(λ)∨d(µ)
d(λ) (Θλ,λ)(hl)(x) = (XDλ

h)l(x)

=

{
hl(x) if x∈Dλ,
0 otherwise

=

{
f g(x) if x∈Dλ∩Dµ,
0 otherwise.

We know from Lemma 2.4 that Dλ ∩ Dµ =
⊔

(α,β)∈Λmin(λ,µ)
Dλα. So we have the

following and the result follows:

ι
d(λ)∨d(µ)
d(λ) (Θλ,λ)ι

d(λ)∨d(µ)
d(µ) (Θµ,µ)( f g)(x) =

 f g(x) if x ∈ ⊔
(α,β)∈Λmin(λ,µ)

Dλα,

0 otherwise.

=
(

∑
(α,β)∈Λmin(λ,µ)

Θλα,µβ

)
( f g)(x).

Proof of Proposition 3.3. It follows from the Nica covariance of jX that

SλS∗λSµS∗µ = j(d(λ))X (Θλ,λ)j(d(µ))X (Θµ,µ)= j(d(λ)∨d(µ))
X (ι

d(λ)∨d(µ)
d(λ) (Θλ,λ)ι

d(λ)∨d(µ)
d(µ) (Θµ,µ)).

It follows from this equation and Lemma 3.4 that

Sλ

(
∑

(α,β)∈Λmin(λ,µ)

SαS∗β
)

S∗µ = ∑
(α,β)∈Λmin(λ,µ)

SλαSµβ
∗= ∑

(α,β)∈Λmin(λ,µ)

j(d(λ)∨d(µ))
X (Θλα,µβ)

= j(d(λ)∨d(µ))
X

(
∑

(α,β)∈Λmin(λ,µ)

Θλα,µβ

)
= SλS∗λSµS∗µ.
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It then follows that

S∗λSµ =(S∗λSλS∗λ)(SµS∗µSµ)=S∗λ(SλS∗λSµS∗µ)Sµ =S∗λSλ

(
∑

(α,β)∈Λmin(λ,µ)

SαS∗β
)

S∗µSµ

= ∑
(α,β)∈Λmin(λ,µ)

Ss(λ)Sα(Ss(µ)Sβ)
∗= ∑

(α,β)∈Λmin(λ,µ)

SαS∗β.

Recall from Section 1.2 that In is given by In :=
⋂

0<m6n
ker φm. To prove that

S satisfies (CK4), we need to find families which span dense subspaces of the
Hilbert bimodules Xm · In−m, for m, n ∈ Nk with m 6 n. To do this, we must first
find families which span dense subspaces of the bimodules Xn and the ideals In.

PROPOSITION 3.5. For each n∈Nk we have Xn =span{XDλ\DλF
: (λ, F)∈An}.

Proof. Let f ∈ Cc(∂Λ>n). We can use the same argument as in the beginning

of the proof of Proposition 2.2 to write supp f ⊆
h⋃

j=1
Dµj \ DµjGj , where (µj, Gj) ∈

An and Dµj \ DµjGj ⊆ ∂Λ>n for each 1 6 j 6 h. We now take a partition of
unity ρ1, . . . , ρh subordinate to {Dµj \ DµjGj : 1 6 j 6 h}, and for f j := f ρj ∈
C(Dµj \ DµjGj) we have

(3.3) f =
h

∑
j=1

f j.

Now for each 1 6 j 6 h we have d(µj) > n. So σn is injective on Dµj \ DµjGj , and
hence

(3.4) ‖ f j‖n = sup{| f j(x)| : x ∈ Dµj \ DµjGj} = ‖ f j‖∞.

Now, it follows from Lemma 2.4 that for each (λ, F) ∈ A the set

span{XDµ\DµG
: (µ, G) ∈ A and Dµ \ DµG ⊆ Dλ \ DλF}

is a subalgebra of C(Dλ \DλF). An application of the Stone–Weierstrass Theorem
shows that the closure of that span is equal to C(Dλ \ DλF), and hence each f j
can be uniformly approximated by elements in span{XDλ\DλF

: d(λ) > n}. It
now follows from (3.4) that f j can be uniformly approximated by elements in
span{XDλ\DλF

: d(λ) > n} with respect to ‖ · ‖n, and then (3.3) says that f can
be approximated by elements in span{XDλ\DλF

: d(λ) > n} with respect to ‖ · ‖n.
The result follows because Cc(∂Λ \ ∂n) is dense in Xn with respect to ‖ · ‖n.

DEFINITION 3.6. Let i ∈ {1, . . . , k} and ei denote the standard basis element
of Nk. We say that (λ, F) ∈ A satisfies condition K(i) if

µ ∈ s(λ)Λ with d(µ) > ei =⇒ Dµ ⊆ Dν for some ν ∈ F.

PROPOSITION 3.7. For each n ∈ Nk we have

In = span{XDλ\DλF
: ni > 0 =⇒ d(λ)i = 0 and (λ, F) satisfies condition K(i)}.
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To prove this proposition we need the following result.

LEMMA 3.8. Let i ∈ {1, . . . , k} and (λ, F) ∈ A. Then Dλ \ DλF ⊆ ∂Λ6>ei if and
only if d(λ)i = 0 and (λ, F) satisfies condition K(i). Moreover, we have

ker φei = span{XDλ\DλF
: (λ, F) ∈ A, d(λ)i = 0(3.5)

and (λ, F) satisfies condition K(i)}.

Proof. Suppose Dλ \ DλF ⊆ ∂Λ6>ei . Then we obviously have d(λ)i = 0.
Suppose that (λ, F) does not satisfy condition K(i). Then there exists µ ∈ s(λ)Λ
with d(µ) > ei, and x ∈ Dµ with x 6∈ Dν for all ν ∈ F. Consider the boundary
path λx. We have d(λx)i > 0 and λx ∈ Dλ \DλF. But d(λx)i > 0 =⇒ λx ∈ ∂Λ>ei ,
and this is a contradiction, so (λ, F) satisfies condition K(i).

Now suppose that d(λ)i = 0 and (λ, F) satisfies condition K(i). Assume
that Dλ \ DλF 6⊆ ∂Λ6>ei , so there exists x ∈ Dλ \ DλF with x ∈ ∂Λ>ei . This implies
that d(x)i > 0. Consider the edge µ := x(d(λ), d(λ) + ei), which we know exists
because d(λ)i = 0. We have µ ∈ s(λ)Λ and d(µ) = ei. The boundary path
σd(λ)(x) satisfies σd(λ)(x) ∈ Dµ and σd(λ)(x) 6∈ Dν for all ν ∈ F, and so Dµ 6⊆
Dν for all ν ∈ F. But this contradicts that (λ, F) satisfies condition K(i), so we
must have Dλ \ DλF ⊆ ∂Λ6>ei .

Now, it follows from Lemma 2.4 and an application of the Stone-Weierstrass
Theorem for locally compact spaces that for any open subset U of ∂Λ we have

C0(U) = span{XDλ\DλF
: (λ, F) ∈ A and Dλ \ DλF ⊆ U}.

It follows that

ker φei ={a ∈ C0(∂Λ) : a|∂Λ>ei = 0} = {a ∈ C0(∂Λ) : a|
∂Λ>ei

= 0}

=C0(int ∂Λ6>ei ) = span{XDλ\DλF
: (λ, F) ∈ A and Dλ \ DλF ⊆ int ∂Λ6>ei}

=span{XDλ\DλF
: (λ, F) ∈ A and Dλ \ DλF ⊆ ∂Λ6>ei}

=span{XDλ\DλF
: (λ, F)∈A, d(λ)i =0, (λ, F) satisfies condition K(i)}.

Proof of Proposition 3.7. We have

ker φn ={a ∈ C0(∂Λ) : a|∂Λ>n = 0}={a ∈ C0(∂Λ) : a|
∂Λ>n = 0}=C0(int ∂Λ>n).

Since m 6 n =⇒ ∂Λ6>m ⊆ ∂Λ6>n, it follows that m 6 n⇒ ker φm ⊆ ker φn. Hence
In =

⋂
{i: ni>0}

ker φei , and the result now follows from Lemma 3.8.

NOTATION 3.9. Let n ∈ Nk. We define

I(In) := {(λ, F) ∈ A : Dλ \ DλF 6= ∅ and

ni > 0 =⇒ d(λ)i = 0 and (λ, F) satisfies condition K(i)},
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and for µ ∈ Λ we write µI(In) := {(µλ, F) : (λ, F) ∈ I(In) with s(µ) = r(λ)}.
The reason for introducing this notation is that we can now write

In = span{XDλ\DλF
: (λ, F) ∈ I(In)}.

PROPOSITION 3.10. Let m, n ∈ Nk with m 6 n. Then we have

(3.6) Xm · In−m = span{XDλ\DλF
: (λ, F) ∈ Am ∩ λ(0, m)I(In−m)}.

Proof. We have Xm · In−m = span{x · a : x ∈ Xm, a ∈ In−m}. To prove that
the right-hand side of (3.6) is contained in the left-hand side, we let m, n ∈ Nk

with m 6 n, and suppose (λ, F) ∈ Am ∩ λ(0, m)I(In−m). Then (λ(m, d(λ)), F) ∈
I(In−m), and for x ∈ ∂Λ>m we have

XDλ\DλF
(x)=

{
1 if x(0, d(λ)) = λ and x(0, d(λν)) 6= λν, for all ν ∈ F,
0 otherwise;

=XDλ
(x)XDλ(m,d(λ))\Dλ(m,d(λ))F

(σm(x))=(XDλ
·XDλ(m,d(λ))\Dλ(m,d(λ))F

)(x).

So XDλ\DλF
= XDλ

· XDλ(m,d(λ))\Dλ(m,d(λ))F
∈ Xm · In−m, and it follows that

span{XDλ\DλF
: (λ, F) ∈ Am ∩ λ(0, m)I(In−m)} ⊂ Xm · In−m.

It follows from Proposition 3.7 and Proposition 3.5 that

Xm · In−m = span{XDρ\DρF
· XDτ\DτG

: (ρ, F) ∈ Am and (τ, G) ∈ I(In−m)}.

So to prove that the left-hand side of (3.6) is contained in the right-hand side, it
suffices to show that for (ρ, F) ∈ Am and (τ, G) ∈ I(In−m) the product XDρ\DρF

·
XDτ\DτG

is an element of the right-hand side. Since σ−1
m is continuous, the inter-

section

(3.7) (Dρ \ DρF) ∩ σ−1
m (Dτ \ DτG)

is an open and compact subset of Dρ \DρF. Since it is open, we know there exists
a subset J ⊆ Am such that (Dρ \ DρF) ∩ σ−1

m (Dτ \ DτG) =
⋃

(η,H)∈J
Dη \ DηH ;

since it is compact, there is a finite number, say h, of pairs (ηj, Hj) ∈ J with

(Dρ \ DρF) ∩ σ−1
m (Dτ \ DτG) =

h⋃
j=1

Dηj \ Dηj Hj .

We know from Lemma 2.4 that the intersection of sets in the above finite union is
a finite, disjoint union of sets of the same form. So it follows that there is a finite
number, say l, of pairs (µj, Lj) ∈ Am and constants cj such that

(3.8) XDρ\DρF
· XDτ\DτG

= X(Dρ\DρF)∩σ−1
m (Dτ\DτG)

=
l

∑
j=1

cjXDµj\Dµj Lj
.

To finish the proof, we need to show that each (µj, Lj) ∈ µj(0, m)I(In−m). Sup-
pose ni > mi and d(µj)i > mi. Then for x ∈ Dµj \Dµj Lj we have σm(x) ∈ Dτ \DτG
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and σm(x)i > 0. Since d(τ)i = 0, there exists a path α := σm(x)(d(τ), d(τ) + ei)
satisfying α ∈ s(τ)Λei . Since (τ, G) satisfies condition K(i), we have Dα ⊆ Dξ

for some ξ ∈ G. But this implies that σm(x) = τασm(x)(d(τ) + ei, d(x)) ∈ Dτξ ⊆
DτG, which contradicts σm(x) ∈ Dτ \ DτG. So we must have d(µj)i = mi.

Now suppose ni > mi and there exists an edge ζ ∈ s(µj)Λ
ei with Dζ 6⊆ Dν

for any ν ∈ Lj. Let x ∈ s(ζ)∂Λ. Then µjζx ∈ Dµj \ Dµj Lj , which implies

(3.9) σm(µjζx) ∈ Dτ \ DτG.

Since d(τ)i = 0, there exists a path β := σm(µjζx)(d(τ), d(τ) + ei) satisfying β ∈
s(τ)Λei . Since (τ, G) satisfies condition K(i), we have Dβ ⊆ Dξ for some ξ ∈ G.
But this implies that σm(µjζx) = τβσm(µjζx)(d(τ) + ei, d(x)) ∈ Dτξ ⊆ DτG,
which contradicts (3.9). So Dζ ⊆ Dν for some ν ∈ Lj, and hence (µj, Lj) satisfies
condition K(i).

NOTATION 3.11. Let m, n ∈ Nk with m 6 n. We denote

I(Xm · In−m) := {(λ, F) : Dλ \ DλF 6= ∅, (λ, F) ∈ Am ∩ λ(0, m)I(In−m)}.

So we have

Xm · In−m = span{XDλ\DλF
: (λ, F) ∈ I(Xm · In−m)}.

PROPOSITION 3.12. The set S = {Sλ : λ ∈ Λ} satisfies (CK4)

∏
µ∈F

(Sv − SµS∗µ) = 0

for all v ∈ Λ0 and all nonempty finite exhaustive sets F ⊂ r−1(v).

To prove this proposition we need the following results. For a finite subset
G ⊂ Λ we denote by

∨
d(G) the element

∨
µ∈G

d(µ) of Nk.

LEMMA 3.13. Let v ∈ Λ0 and F ⊆ vΛ a finite exhaustive set; n ∈ Nk with
n > ∨d(F ) and m ∈ Nk with m 6 n; and λ ∈ vΛ and F ⊆ s(λ)Λ with (λ, F) ∈
I(Xm · In−m). Then there exists η ∈ F such that λ extends η.

Proof. Suppose λ does not extend any element of F . Since Dλ \ DλF 6= ∅,
there exists a boundary path x ∈ Dλ \ DλF. Since F is exhaustive, there exists
η ∈ F with x(0, d(η)) = η. So x ∈ Dη ∩ (Dλ \ DλF), and the pair (xη

λ, xλ
η ) ∈

Λmin(λ, η). Since λ does not extend η, there exists i ∈ {1, . . . , k} with d(λ)i <

d(η)i, and hence d(xη
λ) > ei. Since mi 6 d(λ)i < d(η)i 6 ni, we know (λ, F)

satisfies condition K(i), and hence Dxη
λ
⊆ Dν for some ν ∈ F. But this implies

that x ∈ Dλxη
λ
⊆ Dλν, which contradicts the fact x 6∈ DλF. So λ must extend an

element of F .

LEMMA 3.14. Suppose n ∈ Nk and µ ∈ Λ with d(µ) 6 n. Consider the element
x̃ given by x̃ := (0, . . . , 0,XDλ\DλF

, 0, . . . , 0) ∈ X̃n, where (λ, F) ∈ I(Xm · In−m) for
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m 6 n. Then we have

ι̃nd(µ)(Θµ,µ)(x̃) =

{
x̃ if λ extends µ,
0 otherwise.

Proof. It follows from (1.2) that for r 6 n we have

(3.10) ι̃ n
d(µ)(Θµ,µ)(x̃)(r)=ιrd(µ)(Θµ,µ)(x̃(r))=

{
ιmd(µ)(Θµ,µ)(XDλ\DλF

) if r=m,

0 otherwise.

Now assume m > d(µ). A straightforward calculation shows that

(3.11) XDλ\DλF
= XDλ(d(µ),d(λ))\Dλ(0,d(µ))

XDλ(d(µ),d(λ))F
.

We also have

Θµ,µ(XDλ(0,d(µ))
)(x)=(XDµ · 〈X ∗Dµ

,XDλ(0,d(µ))
〉

d(µ)
)(x)

=XDµ(x)〈X ∗Dµ
,XDλ(0,d(µ))

〉
d(µ)

(σd(µ)(x))

=


∑

σd(µ)(y)=σd(µ)(x)
XDµ(y)XDλ(0,d(µ))

(y) if x(0, d(µ)) = µ,

0 otherwise;

=

{
1 if λ(0, d(µ)) = µ and x(0, d(µ)) = µ,
0 otherwise;

=

{
XDµ(x) if λ extends µ,
0 otherwise;

=

{
XDλ(0,d(µ))

(x) if λ extends µ,

0 otherwise.
(3.12)

It now follows from equations (3.11) and (3.12) that

ιmd(µ)(Θµ,µ)(XDλ\DλF
) = ιmd(µ)(Θµ,µ)(XDλ(0,d(µ))

XDλ(d(µ),d(λ))\Dλ(d(µ),d(λ))F
)

= Θµ,µ(XDλ(0,d(µ))
)XDλ(d(µ),d(λ))\Dλ(d(µ),d(λ))F

=

{
XDλ(0,d(µ))

XDλ(d(µ),d(λ))\Dλ(d(µ),d(λ))F
if λ extends µ,

0 otherwise;

=

{
XDλ\DλF

if λ extends µ,
0 otherwise.

(3.13)

Equations (3.10) and (3.13) now give the result.

We are now ready to prove that S satisfies relation (CK4). The proof runs
through the main argument from the proof of Proposition 5.4 of [23].

Proof of Proposition 3.12. Fix v ∈ Λ0 and a finite exhaustive set F ⊂ vΛ. We
must show that

∏
µ∈F

(Sv − SµS∗µ) = 0.
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Recall from [21] that for a nonempty subset G of F , Λmin(G) denotes the set
{λ ∈ Λ : d(λ) =

∨
d(G), λ extends µ for all µ ∈ G}. Recall also that

∨F :=⋃
G⊂F

Λmin(G) is finite and is closed under minimal common extensions. We have

∏
µ∈F

(Sv−SµS∗µ)=Sv+ ∑
∅ 6=G⊂F

λ∈Λmin(G)

(−1)|G|SλS∗λ = j(0)X (Θv,v)+ ∑
∅ 6=G⊂F

λ∈Λmin(G)

(−1)|G| j(
∨

d(G))
X (Θλ,λ),

where the first equation can be obtained through repeated application of (CK3).
Since jX is Cuntz–Pimsner covariant, it suffices to show that for each q ∈ Nk there
exists r > q such that for all s > r, we have

ι̃ s
0 (Θv,v) + ∑

∅ 6=G⊂F
λ∈Λmin(G)

(−1)|G| ι̃ s∨
d(G)(Θλ,λ) = 0.

For this, fix q ∈ Nk, let r = q ∨ (
∨

d(F )) and fix s > r. It suffices to show that

(3.14)
(

ι̃ s
0 (Θv,v) + ∑

∅ 6=G⊂F
λ∈Λmin(G)

(−1)|G| ι̃ s∨
d(G)(Θλ,λ)

)
(x̃) = 0,

where x̃ ∈ X̃s is given by x̃ := (0, . . . , 0,XDρ\DρF
, 0, . . . , 0), for (ρ, F) ∈ I(Xt · Is−t),

t 6 s. For any µ ∈ F we have s > d(µ). It then follows from Lemma 3.14 that

(3.15) ι̃ s
d(µ)(Θµ,µ)(x̃) =

{
x̃ if ρ extends µ,
0 otherwise.

Fix a nonempty subset G of F . Then(
∏
µ∈G

ι̃ s
d(µ)(Θµ,µ)

)
(x̃) =

{
x̃ if ρ extends each µ ∈ G,
0 otherwise.

The factorisation property implies that ρ extends each µ ∈ G if and only if there
exists λ ∈ Λmin(G) such that ρ extends λ. The factorisation property also implies
that if there does exist such a λ ∈ Λmin(G), then it is necessarily unique. We
therefore have(

∏
µ∈G

ι̃ s
d(µ)(Θµ,µ)

)
(x̃) =

(
∑

λ∈Λmin(G)

ι̃ s∨
d(G)(Θµ,µ)

)
(x̃).

Since G was an arbitrary subset of F , we have(
∏

µ∈F
(ι̃ s

0 (Θv,v)− ι̃ s
d(µ)(Θµ,µ))

)
(x̃)=

(
ι̃ s
0 (Θv,v)+ ∑

∅ 6=G⊂F

(
(−1)|G| ∏

µ∈G
ι̃ s
d(µ)(Θµ,µ)

))
(x̃)

=
(

ι̃ s
0 (Θv,v) + ∑

∅ 6=G⊂F
λ∈Λmin(G)

(−1)|G| ι̃ s∨
d(G)(Θλ,λ)

)
(x̃).
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Now we can apply Lemma 3.13 to see that there exists η ∈ F such that ρ extends
η. It now follows from equation (3.15) that(

∏
µ∈F

(ι̃ s
0 (Θv,v)− ι̃ s

d(µ)(Θµ,µ))
)
(x̃)

=
(

∏
µ∈F\{η}

(ι̃ s
0 (Θv,v)− ι̃ s

d(µ)(Θµ,µ))
)
((ι̃ s

0 (Θv,v)− ι̃ s
d(η)(Θη,η)))(x̃) = 0,

and hence equation (3.14) is established.

Proof of Theorem 3.1. Lemma 3.2, Proposition 3.3 and Proposition 3.12 show
that the set S := {Sλ = jX(XDλ

) : λ ∈ Λ} is a family of partial isometries
satisfying the Cuntz–Krieger relations (CK1)–(CK4). It follows from the universal
property of C∗(Λ) that there exists a homomorphism π : C∗(Λ) → NO(X) such
that π(sλ) = jX(XDλ

) for each λ ∈ Λ. We know from Proposition 3.12 of [23] that
NO(X) = span{jX(x)jX(y)∗ : x, y ∈ X}. For each λ ∈ Λ and F ⊆ s(λ)Λ we have
XDλ\DλF

= XDλ
− ∑

ν∈F
XDλν

, and so

jX(XDλ\DλF
) = jX(XDλ

)− jX
(

∑
ν∈F
XDλν

)
= Sλ − ∑

ν∈F
Sλν.

It then follows from Proposition 3.5 that S generatesNO(X), and hence π is sur-
jective. It follows from Lemma 5.13(2) and Lemma 5.15 of [5] that each Dλ 6= ∅,
and hence each XDλ

6= 0. It then follows from Theorem 4.1 of [23] that each Sλ 6=
0. (Note that the quasi-lattice ordered group (Nk,Zk) satisfies condition (3.5) of
[23], and so Theorem 4.1 of [23] can indeed be applied.) Since π intertwines the
gauge actions of Tk onNO(X) and C∗(Λ), the gauge-invariant uniqueness theo-
rem for C∗(Λ) ([22], Theorem 4.2) implies that π is an isomorphism.

4. CONNECTIONS TO SEMIGROUP CROSSED PRODUCTS

We begin this section by building a crossed product from a finitely-aligned
k-graph Λ. For each n ∈ Nk we define a partial endomorphism αn : C0(∂Λ) →
C0(∂Λ>n) given by αn( f ) = f ◦ σn. We claim that for f ∈ Cc(∂Λ>n) the function
Ln( f ) given by

Ln( f )(x) =

 ∑
σn(y)=x

f (y) if x ∈ σn(∂Λ),

0 otherwise,

is well-defined and is an element of Cc(∂Λ). We can cover supp f with finitely
many sets Ui such that σn(Ui) is open, σn(Ui) is compact, and σn|Ui is a home-
omorphism. The function f must be zero on all but a finite number of points
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in σ−1
n (x). Then near any x ∈ σn(∂Λ), Ln( f ) = ∑

{i:x∈σn(Ui)}
f ◦ (σn|Ui )

−1 is a fi-

nite sum of continuous functions with compact support. Since σn(x) is open,
Ln( f ) ∈ Cc(∂Λ), and the claim is proved. Routine calculations show that each Ln
satisfies the transfer-operator identity: Ln(αn( f )g) = f Ln(g) for all f ∈ C0(∂Λ),
g ∈ Cc(∂Λ>n). Adapting Exel’s construction of a Hilbert bimodule [6] to accom-
modate the partial maps, and applying it to (C0(∂Λ), αn, Ln), gives the Hilbert
C0(∂Λ)-bimodule Xn from Section 2. So we consider the boundary-path product
system X, and take the suggested route of Section 9 of [2] for defining a crossed
product for the system (C0(∂Λ),Nk, α, L):

DEFINITION 4.1. Let Λ be a finitely-aligned k-graph, and consider the prod-
uct system X given in Proposition 2.7. We define the crossed product C0(∂Λ)oα,L
Nk to be the Cuntz–Nica–Pimsner algebra NO(X).

COROLLARY 4.2. Let Λ be a finitely-aligned k-graph. Then C0(∂Λ)oα,L Nk ∼=
C∗(Λ).

For the remainder of this section we discuss the relationship between the
crossed product C0(∂Λ)oα,L Nk and the other crossed products in the literature
which are given via transfer operators; namely, the non-unital version of Exel’s
crossed product [2], Exel and Royer’s crossed product by a partial endomorphism
[10], and Larsen’s crossed product for semigroups [17]. The upshot of this dis-
cussion is that, when these crossed products can be defined, they coincide with
C0(∂Λ)oα,L Nk. To be make things clear, we use the following notation.

NOTATION 4.3. (i) For (A, β,L) a dynamical system in the sense of Exel and
Royer [10] we denote by A oER

β,L N the crossed product given in Definition 1.6 of
[10].

(ii) For (A, β,L) a dynamical system in the sense of [2], [6] we denote by
A oBRV

β,L N the crossed product given in Section 4 of [2].
(iii) For P an abelian semigroup and (A, P, β,L) a dynamical system in the

sense of Larsen [17] we denote by A oLar
β,L P the crossed product given in Defini-

tion 2.2 of [17].

4.1. DIRECTED GRAPHS. Suppose Λ is a 1-graph. Then for each λ, µ ∈ Λ we have
|Λmin(λ, µ)| ∈ {0, 1}, and so Λ is finitely aligned. As shown in Examples 10.1–
10.2 of [20], Λ is the path category of the directed graph E := (Λ0, d−1(1), r, s). We
know from Proposition B.1 of [22] that C∗(Λ) coincides with the graph algebra
C∗(E) as given in [12]. We denote by E∗ the set of finite paths in E and by E∞

the set of infinite paths in E. We define E∗inf := {µ ∈ E∗ : |r−1(s(µ))| = ∞} and
E∗s := {µ ∈ E∗ : r−1(s(µ)) = ∅}, so E∗inf is the set of paths whose source is an
infinite receiver, and E∗s is the set of paths whose source is a source in E. Then the
boundary-path space ∂Λ coincides with ∂E := E∞ ∪ E∗inf ∪ E∗s . We now freely use
directed graphs E in place of 1-graphs Λ in Definition 4.1.
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PROPOSITION 4.4. Let E be a directed graph. Then (C0(∂E), α, L) is a dynamical
system in the sense of [10], and we have C0(∂E)oα,L N ∼= C0(∂E)oER

α,L N.

To prove this proposition we need the following result.

PROPOSITION 4.5. Let (A, β,L) be a dynamical system in the sense of [10], and
consider the Hilbert A-bimodule M constructed in Section 1 of [10]. Then A oER

β,L N is
isomorphic to Katsura’s Cuntz–Pimsner algebra OM [13].

Proof. The arguments in Section 3 of [1] (or Section 4 of [2]) extend across to
this setting, except A oER

β,L N is defined by modding out redundancies (a, k) with

a ∈ (ker φ)⊥ ∩ φ−1(K(M)) instead of Aα(A)A ∩ φ−1(K(M)). But (ker φ)⊥ ∩
φ−1(K(M)) is precisely the ideal involved in Katsura’s definition of OM ([13],
Definition 3.5).

Proof of Proposition 4.4. The construction of the Hilbert A-bimodule M from
[10] gives X1. We know from Proposition 5.3 of [23] thatNO(X) is isomorphic to
Katsura’s OX1 . We know from Proposition 4.5 that C0(∂E)oER

α,L N ∼= OM. So we
have

C0(∂E)oα,L N = NO(X) ∼= OX1 = OM ∼= C0(∂E)oER
α,L N.

4.2. LOCALLY-FINITE DIRECTED GRAPHS WITH NO SOURCES. For a locally-finite
directed graph Λ := E with no sources we have ∂E = E∞. We denote by σ the
backward shift on E∞, and αE the endomorphism of C0(E∞) given by αE( f ) =
f ◦ σ. So αE = α1. For each f ∈ C0(E∞) we denote by LE( f ) the function given by

LE( f )(x) =


1

|σ−1(x)| ∑
σ(y)=x

f (y) if x ∈ σ(E∞),

0 otherwise.

So LE is the normalised version of L1. It is proved in Section 2.1 of [2] that LE is a
transfer operator for (C0(E∞), αE).

PROPOSITION 4.6. Let E be a locally-finite directed graph with no sources. Then
we have C0(E∞)oα,L N ∼= C0(E∞)oBRV

αE ,LE
N.

Proof. Recall the construction of the Hilbert C0(E∞)-bimodule MLE ([2], Sec-
tion 3), and in particular that q : C0(E∞)→ MLE denotes the quotient map. Since
E is locally finite, the shift σ is proper. We can use this fact to find for each x ∈ E∞

an open neighbourhood V of σ(x) such that |σ−1(v)| = |σ−1(σ(x))| for each
v ∈ V, and it follows that the map d : E∞ → C given by d(x) =

√
|σ−1(σ(x))|

is continuous. Straightforward calculations show that U : Cc(E∞) → MLE given
by U( f ) = q(d f ) extends to an isomorphism of X1 onto MLE . So OX1

∼= OMLE
.

Since E has no sources, the homomorphism φ : C0(E∞) → L(MLE) giving the
left action on MLE is injective, and so (ker φ)⊥ = C0(E∞). It then follows from
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Corollary 4.2 of [2] that C0(E∞)oBRV
αE ,LE

N ∼= OMLE
. Finally, we know from Propo-

sition 5.3 of [23] that NO(X) ∼= OX1 , so we have

C0(E∞)oα,L N = NO(X) ∼= OX1
∼= OMLE

∼= C0(E∞)oBRV
αE ,LE

N.

4.3. REGULAR k-GRAPHS. We now examine how C0(∂Λ)oα,L Nk fits in with the
theory of Larsen’s semigroup crossed products [17].

If Λ is a row-finite k-graph with no sources, then ∂Λ is the set Λ∞ of all graph
morphisms from Ωk,(∞,...,∞) to Λ, and the shift maps are everywhere defined. So
α is an action by endomorphisms. We say a k-graph Λ is regular if it is row-
finite with no sources, and there exists M1, . . . , Mk ∈ N \ {0} such that for each
i ∈ {1, . . . , k} we have |Λei v| = Mi for all v ∈ Λ0. For each x ∈ Λ∞ and n ∈ Nk

define

ω(n, x) := |σ−1
n (σn(x))|−1

=
k

∏
i=1

M−ni
i .

Then for each f ∈ C0(Λ
∞) the map Ln( f ) given by

Ln( f )(x) =

 ∑
σn(y)=x

ω(n, y) f (y) if x ∈ σn(Λ∞),

0 otherwise,

is a transfer operator for (C0(Λ
∞), αn). Simple calculations show that

∑
σn(y)=x

ω(n, y) = 1

for all x ∈ Λ∞, n ∈ Nk, and that ω(m + n, x) = ω(m, x)ω(n, σm(x)) for all x ∈
Λ∞, m, n ∈ Nk. Hence Proposition 2.2 of [9], which still holds in the non-unital
setting, gives an action L of Nk of transfer operators on C0(Λ

∞). It follows that
(C0(Λ

∞),Nk, α,L) is a dynamical system in the sense of Larsen ([17], Section 2).

PROPOSITION 4.7. Let Λ be a regular k-graph. Then we have C0(Λ
∞)oα,L Nk ∼=

C0(Λ
∞)oLar

α,L N
k.

Proof. We apply the construction in Section 3.2 of [17] to (C0(Λ
∞),Nk, α,L)

to form a product system M =
⋃

n∈Nk
MLn , and then Proposition 4.3 of [17] says

C0(Λ
∞) oLar

α,L N
k is isomorphic to Fowler’s Cuntz–Pimsner algebra O(M) ([11],

Proposition 2.9). Suppose M1, . . . , Mk ∈ N \ {0} such that for each i ∈ {1, . . . , k}

we have |Λei v| = Mi for all v ∈ Λ0. For each n ∈ Nk denote Mn :=
k

∏
i=1

M−ni
i .

Then the map f 7→ qn(
√

Mn f ) from Cc(Λ∞) to MLn extends to an isomorphism
of Xn onto MLn . These maps induce an isomorphism of the product systems X
and M (observe the formulae for multiplication within X (Proposition 2.2) and M
([17], Equation 3.8). So O(X) ∼= O(M).
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Recall that each Xn is constructed from the topological graph (Λ∞, Λ∞, σn, ι),
where ι is the inclusion map. It then follows from Proposition 1.24 of [14] that
each φn is injective and acts by compact operators. So we can apply Corollary 5.2
of [23] to see that NO(X) coincides with O(X). So we have

C0(Λ
∞)oα,L Nk = NO(X) = O(X) ∼= O(M) ∼= C0(Λ

∞)oLar
α,L N

k.

4.4. CONCLUSION. The results in this section justify our decision to define the
crossed product C0(∂Λ)oα,L Nk to be the Cuntz–Nica–Pimsner algebra NO(X),
and we propose that the same definition is made for a general crossed product
by a quasi-lattice ordered semigroup of partial endomorphisms and partially-
defined transfer operators. The problem is that Sims and Yeend’s Cuntz–Nica–
Pimsner algebra is only appropriate for a particular family (containing Nk) of
quasi-lattice ordered semigroups. The “correct” definition of a Cuntz–Pimsner
algebra of a product system over an arbitrary quasi-lattice ordered semigroup is
yet to be found. (See [23], [3] for more discussion.)

5. APPENDIX

Recall that for (G, P) a quasi-lattice ordered group, and X a product sys-
tem over P of Hilbert bimodules, we say that X is compactly-aligned if for all
p, q ∈ P such that p ∨ q < ∞, and for all S ∈ K(Xp) and T ∈ K(Xq), we have
ι
p∨q
p (S)ιp∨q

q (T) ∈ K(Xp∨q).

PROPOSITION 5.1. The product system X constructed in Section 2 is compactly-
aligned.

We start with a definition and some notation.

DEFINITION 5.2. Let n ∈ Nk. We say that a subset J ⊆ An is disjoint if

(λ, F), (µ, G) ∈ J with (λ, F) 6= (µ, G) =⇒ (Dλ \ DλF) ∩ (Dµ \ DµG) = ∅.

For (λ, F), (µ, G) ∈ An we write

Θ(λ,F),(µ,G) := ΘXDλ\DλF
,XDµ\DµG

∈ K(Xn).

Let m, n ∈ Nk. To prove Proposition 5.1 we first need to show that for each
(λ1, F1), (λ2, F2) ∈ Am and (µ1, G1), (µ2, G2) ∈ An we have

ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)ιm∨n
n (Θ(µ1,G1),(µ2,G2)

) ∈ K(Xm∨n).
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We do this by finding for each (α, β) ∈ Λmin(λ2, µ1) finite subsetsH(α,β),J(α,β) ⊆
Am∨n such that

⊔
(α,β)
H(α,β) and

⊔
(α,β)
J(α,β) are disjoint, and

ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)ιm∨n
n (Θ(µ1,G1),(µ2,G2)

)(5.1)

= ∑
(α,β)∈Λmin(λ2,µ1)

∑
(κ,H)∈H(α,β)
(ω,J)∈J(α,β)

Θ(κ,H),(ω,J).

To find the correct H(α,β) and J(α,β), we evaluate both sides of (5.1) on products
f g, where f ∈ Cc(∂Λ>n) and g ∈ Cc(∂Λ>m∨n−n). For the left-hand-side of (5.1)
we use (1.1) and Corollary 2.8 to factor

ιm∨n
n (Θ(µ1,G1),(µ2,G2)

)( f g) = Θ(µ1,G1),(µ2,G2)
( f )g = hl,

where h ∈ Cc(∂Λ>m) and l ∈ Cc(∂Λ>m∨n−m). Then for x ∈ ∂Λ>m∨n we have

ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)ιm∨n
n (Θ(µ1,G1),(µ2,G2)

)( f g)(x)

= ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)(hl)(x) = Θ(λ1,F1),(λ2,F2)
(h)l(x)

= XDλ1
\Dλ1F1

(x)〈XDλ2
\Dλ2F2

, h〉
m
(σm(x))l(σm(x))

= XDλ1
\Dλ1F1

(x)
(

∑
σm(y)=σm(x)

XDλ2
\Dλ2F2

(y)h(y)
)

l(σm(x))

=

{
hl(λ2(0, m)σm(x)) if x ∈ (Dλ1 \ Dλ1F1) ∩ σ−1

m (Dλ2(m,d(λ2))
\ Dλ2(m,d(λ2))F2

),
0 otherwise.

A similar calculation to the one above gives

hl(λ2(0, m)σm(x))

= Θ(µ1,G1),(µ2,G2)
( f )g(λ2(0, m)σm(x))

=


f g(µ2(0, n)σn(λ2(0, m)σm(x))) if λ2(0, m)σm(x) ∈ (Dµ1 \ Dµ1G1)∩

σ−1
n (Dµ2(n,d(µ2))

\ Dµ2(n,d(µ2))G2
),

0 otherwise.

So we label conditions

x ∈ (Dλ1 \ Dλ1F1) ∩ σ−1
m (Dλ2(m,d(λ2))

\ Dλ2(m,d(λ2))F2
), and(5.2)

λ2(0, m)σm(x) ∈ (Dµ1 \ Dµ1G1) ∩ σ−1
n (Dµ2(n,d(µ2))

\ Dµ2(n,d(µ2))G2
),(5.3)

and then we have

ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)ιm∨n
n (Θ(µ1,G1),(µ2,G2)

)( f g)(x)(5.4)

=

{
f g(µ2(0, n)σn(λ2(0, m)σm(x))) if x satisfies (5.2) and(5.3),
0 otherwise.



124 NATHAN BROWNLOWE

Now, for each (α, β) ∈ Λmin(λ2, µ1), (κ, H) ∈ H(α,β) and (ω, J) ∈ J(α,β) we have

Θ(κ,H),(ω,J)( f g)(x)

= XDκ\DκH
(x)〈XDω\Dω J

, f g〉
m∨n

(σm∨n(x))

= XDκ\DκH
(x)
(

∑
σm∨n(y)=σm∨n(x)

XDω\Dω J
(y) f g(y)

)

=

{
f g(τ(0, m ∨ n)σm∨n(x)) if x ∈ (Dκ \ DκH) ∩ σ−1

m∨n(Dω \ Dω J),
0 otherwise.

Since
⊔

(α,β)
H(α,β) and

⊔
(α,β)
J(α,β) are disjoint, we have

(
∑

(α,β)∈Λmin(λ2,µ1)
∑

(κ,H)∈H
(τ,J)∈J

Θ(κ,H),(ω,J)

)
( f g)(x)(5.5)

=


f g(τ(0, m ∨ n)σm∨n(x)) if x ∈ ⊔

(α,β)
(κ,H),(ω,J)

(Dκ \ DρH) ∩ σ−1
m∨n(Dω \ Dω J),

0 otherwise.

Equation (5.1) now follows from (5.4), (5.5) and the following lemma.

LEMMA 5.3. Let m, n ∈ Nk, and suppose the pairs (λ1, F1), (λ2, F2) ∈ Am and
(µ1, G1), (µ2, G2) ∈ An. Then for each pair (α, β) ∈ Λmin(λ2, µ1) there exists fi-
nite and disjoint subsets H(α,β),J(α,β) ⊆ Am∨n such that x ∈ ∂Λ>m∨n satisfies equa-
tions (5.2) and (5.3) if and only if

(5.6) x ∈
⊔

(α,β)∈Λmin(λ2,µ1)

⊔
(κ,H)∈H(α,β)
(ω,J)∈J(α,β)

(Dκ \ DκH) ∩ σ−1
m∨n(Dω \ Dω J).

Moreover, if x satisfies (5.2) and (5.3) and x ∈ (Dκ \DκH)∩ σ−1
m∨n(Dω \Dω J), then we

have
µ2(0, n)σn(λ2(0, m)σm(x)) = ω(0, m ∨ n)σm∨n(x).

Proof. Recall that for λ, µ ∈ Λ we denote by

F(λ, µ) = {α ∈ Λ : (α, β) ∈ Λmin(λ, µ) for some β ∈ Λ}.

Let (α, β) ∈ Λmin(λ2, µ1). For each (γ, δ) ∈ Λmin(λ1(m, d(λ1)), λ2(m, d(λ2))α)
we define

Hγ,α :=
( ⋃

ν∈F1

F(λ1γ, λ1ν)
)
∪
( ⋃

ζ∈F2

F(λ2(m, d(λ2))αδ, λ2(m, d(λ2))ζ)
)

∪
( ⋃

η∈G1

F(µ1βδ, µ1η)
)

,
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and

H(α,β) := {(λ1γ, Hγ,α) ∈ Am∨n : (γ, δ) ∈ Λmin(λ1(m, d(λ1)), λ2(m, d(λ2))α)}.

For each (ρ, τ) ∈ Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β) we define

Jρ,β :=
( ⋃

ξ∈G2

F(µ2ρ, µ2ξ)
)
∪
( ⋃

η∈G1

F(µ1(n, d(µ1))βτ, µ1(n, d(µ1))η)
)

∪
( ⋃

ζ∈F2

F(λ2ατ, λ2ζ)
)

,

and

J(α,β) := {(µ2ρ, Hρ,β) ∈ Am∨n : (ρ, τ) ∈ Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β)}.

The sets H(α,β) and J(α,β) are finite sets because Λ is finitely-aligned. Since the
paths in the elements of H(α,β) are of the same length, the factorisation property
ensures that each H(α,β) is disjoint. For the same reason, each J(α,β) is disjoint.
This explains why the second union in (5.6) is a disjoint union. Moreover, the sets⊔
(α,β)
H(α,β) and

⊔
(α,β)
J(α,β) are disjoint, and hence why the first union in (5.6) is a

disjoint union.
To prove the ‘only if’ part of the statement, we assume x ∈ ∂Λ>m∨n satisfies

(5.2) and (5.3). We have to find pairs

(α, β) ∈ Λmin(λ2, µ1),

(γ, δ) ∈ Λmin(λ1(m, d(λ1)), λ2(m, d(λ2))α), and

(ρ, τ) ∈ Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β)

such that

(a) x ∈ Dλ1γ \ Dλ1γHγ,α , and
(b) σm∨n(x) ∈ Dµ2ρ(m∨n,d(µ2ρ)) \ Dµ2ρ(m∨n,d(µ2ρ))Jρ,β

.

Now, we know from (5.2) and (5.3) that λ2(0, m)σm(x) ∈ Dλ2 ∩ Dµ1 , so we take

(5.7) (α, β) := (λ2(0, m)σm(x)µ1
λ2

, λ2(0, m)σm(x)λ2
µ1 ) ∈ Λmin(λ2, µ1).

We know from (5.2) and (5.3) that σm(x) ∈ Dλ1(m,d(λ1))
∩ Dλ2(m,d(λ2))α

, so we
define (γ, δ) to be the pair

(5.8) (σm(x)λ2(m,d(λ2))α
λ1(m,d(λ1))

, σm(x)λ1(m,d(λ1))
λ2(m,d(λ2))α

) ∈ Λmin(λ1(m, d(λ1)), λ2(m, d(λ2))α).
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We now have σm(x) ∈ Dλ1(m,d(λ1))γ
, and this along with (5.2) implies that x ∈

Dλ1γ. We also have

x ∈ Dλ1γ and x 6∈ Dλ1F1 =⇒ x 6∈ Dλ1γν′ for all ν′ ∈
⋃

ν∈F1

F(λ1γ, λ1ν);(5.9)

σm(x) ∈ Dλ2(m,d(λ2))αδ and σm(x) 6∈ Dλ2(m,d(λ2))F2

=⇒σm(x)6∈Dλ2(m,d(λ2))αδζ ′ for all ζ ′∈
⋃

ζ∈F2

F(λ2(m, d(λ2))αδ, λ2(m, d(λ2))ζ)

⇐⇒σm(x)6∈Dλ1(m,d(λ1))γζ ′ for all ζ ′∈
⋃

ζ∈F2

F(λ2(m, d(λ2))αδ, λ2(m, d(λ2))ζ)

⇐⇒ x 6∈ Dλ1γζ ′ for all
⋃

ζ∈F2

F(λ2(m, d(λ2))αδ, λ2(m, d(λ2))ζ);(5.10)

and

λ2(0, m)σm(x) ∈Dλ2αδ and λ2(0, m)σm(x) 6∈ Dµ1G1

=⇒ λ2(0, m)σm(x) 6∈ Dλ2αδη′ for all η′ ∈
⋃

η∈G1

F(µ1βδ, µ1η)

⇐⇒ σm(x) 6∈ Dλ2(m,d(λ2))αδη′ for all η′ ∈
⋃

η∈G1

F(µ1βδ, µ1η)

⇐⇒ σm(x) 6∈ Dλ1(m,d(λ1))γη′ for all η′ ∈
⋃

η∈G1

F(µ1βδ, µ1η)

⇐⇒ x 6∈ Dλ1γη′ for all η′ ∈
⋃

η∈G1

F(µ1βδ, µ1η).(5.11)

It follows from (5.9), (5.10) and (5.11) that x 6∈ Dλ1γHγ,α , and so (a) is satisfied.
We have σn(λ2(0, m)σm(x)) ∈ Dµ1(n,d(µ1))β, and it follows from (5.3) that

σn(λ2(0, m)σm(x)) ∈ Dµ2(n,d(µ2))
. So we take

(ρ, τ) := (σn(λ2(0, m)σm(x))µ1(n,d(µ1))β

µ2(n,d(µ2))
, σn(λ2(0, m)σm(x))µ2(n,d(µ2))

µ1(n,d(µ1))β
)(5.12)

∈ Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β),

and we have

σn(λ2(0, m)σm(x)) ∈Dµ2(n,d(µ2))ρ

=⇒ σm∨n(x) = σm∨n(λ2(0, m)σm(x)) ∈ Dµ2ρ(m∨n,d(µ2ρ)).

Suppose for contradiction that there exists ξ ∈ G2 and a pair (ξ ′, ξ ′′) in the set
Λmin(µ2ρ, µ2ξ) with σm∨n(x) ∈ Dµ2ρ(m∨n,d(µ2ρ))ξ ′ . Then it follows from (5.12) that

σn(λ2(0, m)σm(x)) = σn(λ2(0, m)σm(x))(0, m ∨ n− n)σm∨n(x)

= µ2(n, d(µ2))ρ(0, m ∨ n− n)σm∨n(x) = µ2ρ(n, m ∨ n)σm∨n(x)

∈ Dµ2(n,d(µ2))ρξ ′ = Dµ2(n,d(µ2))ξξ ′′ ⊆ Dµ2(n,d(µ2))G2
.
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This contradicts equation (5.3), and so we must have

(5.13) σm∨n(x) 6∈ Dµ2ρ(m∨n,d(µ2ρ))ξ ′ for all ξ ′ ∈
⋃

ξ∈G2

F(µ2ρ, µ2ξ).

Similar arguments show that

(5.14) σm∨n(x)6∈Dµ2ρ(m∨n,d(µ2ρ))η′ , for all η′∈
⋃

η∈G1

F(µ1(n, d(µ1))βτ, µ1(n, d(µ1))η),

and

(5.15) σm∨n(x) 6∈ Dµ2ρ(m∨n,d(µ2ρ))η′ , for all ζ ′ ∈
⋃

ζ∈F2

F(λ2ατ, λ2ζ).

It follows from (5.13), (5.14) and (5.15) that σm∨n(x) 6∈ Dµ2ρ(m∨n,d(µ2ρ))Jρ,β
, and so

(b) is satisfied.
To prove the “if” part of the statement, we assume there exists

(α, β) ∈ Λmin(λ2, µ1),

(γ, δ) ∈ Λmin(λ1(m, d(λ1)), λ2(m, d(λ2))α), and

(ρ, τ) ∈ Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β),

such that

x ∈ (Dλ1γ \ Dλ1γHγ,α) ∩ σ−1
m∨n(Dµ2ρ(m∨n,d(µ2ρ)) \ Dµ2ρ(m∨n,d(µ2ρ))Jρ,β

).

We have

x ∈ Dλ1γ \ Dλ1γHγ,α =⇒ x ∈ Dλ1 \ Dλ1F1 , and

x ∈ Dλ1γ \ Dλ1γHγ,α =⇒ σm(x) ∈ Dλ1(m,d(λ1))γ
\ Dλ1(m,d(λ1))γHγ,α

⇐⇒ σm(x) ∈ Dλ2(m,d(λ2))αδ \ Dλ2(m,d(λ2))αδHγ,α

⇐⇒ σm(x) ∈ Dλ2(m,d(λ2))
\ Dλ2(m,d(λ2))F2

.

So (5.2) is satisfied. We have

x ∈ Dλ1γ \ Dλ1γHγ,α =⇒ σm(x) ∈ Dλ1(m,d(λ1))γ
\ Dλ1(m,d(λ1))γHγ,α

⇐⇒ σm(x) ∈ Dλ2(m,d(λ2))αδ \ Dλ2(m,d(λ2))αδHγ,α

=⇒ λ2(0, m)σm(x) ∈ Dλ2αδ \ Dλ2αδHγ,α

⇐⇒ λ2(0, m)σm(x) ∈ Dµ1βδ \ Dµ1βδHγ,α

⇐⇒ λ2(0, m)σm(x) ∈ Dµ1 \ Dµ1G1 .
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We have

x ∈ Dλ1γ =⇒ λ2(0, m)σm(x)(n, m ∨ n)

= (λ2(0, m)λ1(m, d(λ1))γ)(n, m ∨ n)

= (λ2(0, m)λ2(m, d(λ2))αδ)(n, m ∨ n)

= λ2αδ(n, m ∨ n) = λ2α(n, m ∨ n) = µ1β(n, m ∨ n)

= (µ1(n, d(µ1))β)(n, m ∨ n) = (µ1(n, d(µ1))βτ)(n, m ∨ n)

= (µ2(n, d(µ2))ρ)(n, m ∨ n).

It follows that

σn(λ2(0, m)σm(x)) = (λ2(0, m)σm(x))(n, m ∨ n)σm∨n(λ2(0, m)σm(x))

= (λ2(0, m)σm(x))(n, m ∨ n)σm∨n(x)

= (µ2(n, d(µ2))ρ)(n, m ∨ n)σm∨n(x),

and then we have

σm∨n(x) ∈Dµ2ρ(m∨n,d(µ2ρ)) \ Dµ2ρ(m∨n,d(µ2ρ))Jρ,β

=⇒ σn(λ2(0, m)σm(x)) ∈ Dµ2ρ(n,d(µ2ρ)) \ Dµ2ρ(n,d(µ2ρ))Jρ,β

=⇒ σn(λ2(0, m)σm(x)) ∈ Dµ2(n,d(µ2))
\ Dµ2(n,d(µ2))G2

.

So (5.3) is satisfied.
To prove the final part of the result, recall that, given x ∈ ∂Λ>m∨n satisfy-

ing (5.2) and (5.3), we have the following formula for the pair (ρ, τ) in the set
Λmin(µ2(n, d(µ2)), µ1(n, d(µ1))β):

(ρ, τ) = (σn(λ2(0, m)σm(x))µ1(n,d(µ1))β

µ2(n,d(µ2))
, σn(λ2(0, m)σm(x))µ2(n,d(µ2))

µ1(n,d(µ1))β
).

We then have

µ2(0, n)σn(λ2(0, m)σm(x)) = µ2(0, n)(σn(λ2(0, m)σm(x)))(0, m ∨ n− n)σm∨n(x)

= µ2(0, n)(µ2(n, d(µ2))ρ)(0, m ∨ n− n)σm∨n(x)

= µ2ρ(0, m ∨ n)σm∨n(x).

Proof of Proposition 5.1. We have already established equation (5.1). Since Λ
is finitely-aligned, the sums in (5.1) are finite, and so

ιm∨n
m (Θ(λ1,F1),(λ2,F2)

)ιm∨n
n (Θ(µ1,G1),(µ2,G2)

) ∈ K(Xm∨n),

for every m, n ∈ Nk, (λ1, F1), (λ2, F2) ∈ Am and (µ1, G1), (µ2, G2) ∈ An. It then
follows from Proposition 3.5 that ιm∨n

m (Θx1,x2)ι
m∨n
n (Θy1,y2) ∈ K(Xm∨n), for every

x1, x2 ∈ Xm and y1, y2 ∈ Xn. Hence, ιm∨n
m (S)ιm∨n

n (T) ∈ K(Xm∨n), for every
S ∈ K(Xm) and (T ∈ K(Xn).
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