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ABSTRACT. We use the boundary-path space of a finitely-aligned k-graph A to
construct a compactly-aligned product system X, and we show that the graph
algebra C*(A) is isomorphic to the Cuntz—Nica-Pimsner algebra NO(X). In
this setting, we introduce the notion of a crossed product by a semigroup of
partial endomorphisms and partially-defined transfer operators by defining it
to be NO(X). We then compare this crossed product with other definitions in
the literature.
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INTRODUCTION

In [6], Exel proposed a new definition for a crossed product of a unital C*-
algebra A by an endomorphism «. Exel’s definition depends not only on &, but
also on the choice of transfer operator: a positive continuous linearmap L : A — A
satisfying L(a(a)b) = aL(b). We call a triple (A, «, L) an Exel system. In his mo-
tivating example, Exel finds a family of Exel systems whose crossed products
model the Cuntz—Krieger algebras [4]. This marked the first time a crossed prod-
uct by an endomorphism could successfully model Cuntz—Krieger algebras.

There are two obvious extensions of Exel’s construction. Firstly, to a theory
of crossed products of non-unital C*-algebras capable of modeling the directed-
graph generalisation of the Cuntz—Krieger algebras [20]. In [2], the authors suc-
cessfully built such a theory, and they realised the graph algebras of locally-finite
graphs with no sources as Exel crossed products ([2], Theorem 5.1). The crossed
product in question was built from the infinite-path space E* and the shift map
o on E%. The hypotheses on E ensure that E* is locally compact, and ¢ is every-
where defined, and this allows an Exel system to be defined. The other extension
of Exel’s work is to crossed products by semigroups of endomorphisms and trans-
fer operators. In [17], Larsen has a crossed-product construction for dynamical
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systems (A, P, a, L) in which P is an abelian semigroup, « is an action of P by en-
domorphisms, and L is an action of P by transfer operators. Exel has also worked
in this area with his theory of interaction groups [7], [8].

Motivated by these ideas, we construct a semigroup crossed product that
can model the C*-algebras of the higher-rank graphs, or k-graphs, of Kumjian
and Pask [16]. The only restriction we place on the k-graphs A whose C*-algebras
we model is a necessary finitely-aligned hypothesis, so our result applies in the
fullest possible generality. This does come at a price, however, as without a
locally-finite hypothesis, or a restriction on sources, the space of infinite paths
is not locally compact. To get a locally-compact space we need to consider the
bigger boundary-path space dA, and on this space the shift maps ¢, n € N¥, will
not in general be everywhere defined. This means we can not form Exel systems,
or even a dynamical system in the sense of Larsen [17]. We overcome this prob-
lem by first ignoring the crossed-product construction, and focusing on building
a product system.

A product system of Hilbert A-bimodules over a semigroup P is a semi-

group X = || X, such that each X}, is a Hilbert A-bimodule, and x ®4 y — xy
peP

determines an isomorphism of X, ® 4 X, onto Xy, for each p, g € P. Fowler intro-
duced such product systems in [11]. Fowler also defined a Cuntz-Pimsner covari-
ance condition for representations of product systems, and introduced the uni-
versal C*-algebra O(X) for Cuntz-Pimsner covariant representations of X. This
generalised Pimsner’s C*-algebra for a single Hilbert bimodule [19]. In [23], Sims
and Yeend looked at the problem of associating a C*-algebra to product systems
which satisfies a gauge-invariant uniqueness theorem, and noted in particular
that Fowler’s O(X) will not in general do the job. For a large class of semigroups,
and a class of product systems called compactly-aligned, Sims and Yeend intro-
duced a covariance condition for representations — called Cuntz-Nica-Pimsner
covariance — and a C*-algebra N'O(X) universal for such representations. A
gauge-invariant uniqueness theorem for N'O(X) is proved in [3].

We build from dA and the ¢y, topological graphs in the sense of Katsura [14],
and then we apply the construction from [14] to get Hilbert Cy(0A)-bimodules
X;;. We glue the bimodules together to form the boundary-path product system X
over N¥. This gives a new class of product systems for which the Cuntz-Nica—
Pimsner algebra N'O(X) is tractable. The main result in this paper says that for
A a finitely-aligned k-graph, the graph algebra C*(A) is isomorphic to N O(X).
A result, we feel, that gives extra credence to Sims and Yeend’s construction, at
least in the case for the semigroup N¥. We then construct for each n € N¥ a partial
endomorphism a,, on Cy(dA) and a partially-defined transfer operator L,, and
we define the crossed product Co(dA) x, 1 NF to be NO(X). This gives us our
desired result: Cp(dA) X, 1 Nk > C*(A).
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We begin with some preliminaries in Section 1. We state some necessary
definitions from the k-graph literature, and we state the definition of the Cuntz—
Krieger algebra of a k-graph. We then state the definitions from [23] needed to
make sense of the notion of Cuntz—Nica—Pimsner covariance, and the Cuntz-
Nica-Pimsner algebra of a compactly-aligned product system. In Section 2 we
construct from a finitely-aligned k-graph A the boundary-path product system
X. The proof that X is compactly-aligned requires substantial detail, so we leave
this result for the appendix. In Section 3 we prove the existence of a canonical
isomorphism C*(A) — N O(X). In Section 4 we introduce the crossed product
Co(dA) x, 1 N, and we discuss the relationship between this crossed product
and the crossed product in [2]; Exel and Royer’s crossed product by a partial
endomorphism [10]; and Larsen’s semigroup crossed product [17].

1. PRELIMINARIES

1.1. k-GRAPHS AND THEIR CUNTZ-KRIEGER ALGEBRAS. A higher-rank graph,
or k-graph, is a pair (A,d) consisting of a countable category A and a degree
functor d : A — NF satisfying the unique factorisation property: for all A € A
and m,n € NF with d(A) = m + n, there are unique elements y,v € A such that
d(u) =m,d(v) = nand A = uv. We now recall some definitions from the k-graph
literature; for more details see [5].

For A,y € A we denote

AMNA ) = {(a, B) € Ax A: Aa = pBand d(Aa) = d(A) Vd(p)}.

A k-graph A is finitely-aligned if A™" (), u) is at most finite for all A, u € A. For
each v € A” we denote by vA := {A € A : r(A) = v}. Asubset E C vA is
exhaustive if for every u € vA there exists a A € E such that AMM (A, u) # Q.
We denote the set of all finite exhaustive subsets of A by FE(A). We denote by
vFE(A) theset {E € FE(A) : E CvA}.

For each m € (NU {co})* we get a k-graph (), through the following
construction. The set lem = {peNF:p<m}, and

Ot ={(pg) €N, x AN, :p<q}

The range map is given by r(p,q) = p; the source map by s(p,q) = g; and the
degree functor by d(p,q) = g — p. Composition is given by (p,q)(q,7) = (p, 7).
For k-graph A we define a graph morphism x to be a degree-preserving func-
tor from (2 ,,, to A. The range and degree maps are extended to all graph mor-
phisms x : (2 ,, — A by setting 7(x) := x(0) and d(x) := m. We define the
boundary-path space dA to be the set of all graph morphisms x such that for all
n € NF with n < d(x), and for all E € x(n)FE(A), there exists A € E such that
x(n,n+d(A)) = A. We know from Lemmas 5.13 of [5] that if A € Ax(0), then
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Ax € 0A. We know from Lemma 5.15 of [5] that for each v € A there exists
x € V0A = {x € 0A : r(x) = v}.
We recall from [23] the following definition.

DEFINITION 1.1. Let A be a finitely-aligned k-graph. A Cuntz—Krieger family
in a C*-algebra B is a collection {f, : A € A} of partial isometries in B satisfying:
(CK1) {t, : v € A%} consists of mutually orthogonal projections;

(CK2) trty = ty, whenever s(A) = r(u);

(CK3) tity = Y ta tz; and
(a,B)e A (A, )
(CK4) [T (t» — trt;) =0 foreveryv € A’ and E € 0FE(A).
A€E
The Cuntz—Krieger algebra, or graph algebra, C*(A) is the universal C*-algebra
generated by a Cuntz—Krieger A-family.

1.2. PRODUCT SYSTEMS AND THEIR CUNTZ-NICA-PIMSNER ALGEBRAS. In this
subsection we state some key definitions from Sections 2 and 3 of [23]; see [23]
for more details.

Suppose A is a C*-algebra, and (G, P) is a quasi-lattice ordered group in the
sense that: G is a discrete group and P is a subsemigroup of G; PN P~! = {e}; and
with respect to the partial order p < g < p~1g € P, any two elements p,q € G
which have a common upper bound in P have a least upper bound p Vg € P.
Suppose X := UP X is a product system of Hilbert A-bimodules. For each p € P

pe

and each x,y € X, the operator O, : X, — X, defined by @y, (z) := x - (y,2) 4
is adjointable with ©}, = ©y,x. The span K(X,) := span{Ox, : x,y € X,} is
a closed two-sided ideal in £(X}) called the algebra of compact operators on Xp.
For p,q € P with e < p < g there is a homomorphism ), : £(X,) — L(X,)
characterised by

(1.1) lZ(S)(xy) = (Sx)y forallx € X,,y € X1y

For p % q we define /}(S) = Og(x,) forall S € L(Xp). The product system
X is called compactly-aligned if for all p,q € P such that pV g < oo, and for all
S € K(Xp)and T € K(X,), we have iy "7(S)h"(T) € K(Xpvq)-
A representation ¢ of X in a C*-algebra B is a map X — B such that:
(1) each ¢|x, := ¢ : Xp — Bis linear, and ¢ : A — B is a homomorphism;
(2) p(x)y(q) = Ypg(xy) forall p,q € P, x € Xp,and y € X,;; and
() e((x,y)}y) = 9p(x)"Pp(y) forall p € P,and x,y € X,
It follows from Pimsner’s results [19] that for each p € P there is a ho-
momorphism () : K(Xp) — B satisfying l/)(p)(@x,y) = Pp(x)p(y)* for all
x,y € Xp. A representation ¢ of X is Nica-covariant if for all p,q € P and all
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S e K(Xp), T € K(X;) we have

YV (BY(S)EYI(T)) ifpVvg < oo,
0 otherwise.

PP (Sl (T) = {

We denote by ¢, the homomorphism A — L£(X,) implementing the left
action of A on X,. We define I, = A, and for each g € P\ {e} we write I; :=

N ker¢p,. We then denote by }?q the Hilbert A-bimodule
e<p<q

Xg =D Xp- L,
p<q
and we denote by ¢, the homomorphism implementing the left action of A on
}~(q. The product system X is said to be ¢-injective if every (,5,7 is injective.
For p,q € P with p # e there is a homomorphism T,? D L(Xp) — E()?q)
determined by S — rEE} 1,(S) forall S € L(Xp); and characterised by

(1.2) (Tg(S)x)(r) = 1,(S)x(r) forallx € )~(q.

A representation ¢ of a ¢-injective product system X in a C*-algebra B is Cuntz—

Pimsner covariant if Y lp(p)(Tp) = 0p whenever F C P is finite, T, € K(Xp)
peF

for each p € F, and Y 7;(T,) = O for large s (see Definition 3.8 of [23] for
peF

the meaning of “for large s”). A representation ¢ of a ¢-injective product sys-
tem X is Cuntz—Nica—Pimsner covariant if it is both Nica covariant and Cuntz-
Pimsner covariant. It is proved in Proposition 3.12 of [23] that there exists a C*-
algebra NO(X), called the Cuntz—Nica—Pimsner algebra of X, which is universal
for Cuntz—Nica-Pimsner covariant representations of X. We denote the universal
Cuntz-Nica-Pimsner representation by jx : X — N O(X).

2. THE BOUNDARY-PATH PRODUCT SYSTEM OF A k-GRAPH

Let A be a finitely-aligned k-graph. For A € A we denote the set D) := {x €
oA : x(0,d(A)) = A}. For n € NF we denote

A" :={(A,F): A € Awithd(A) > n, F C s(A)A a finite set},

and A := |J A" For (A,F) € A we denote Dyr := |J D,,. Itis proved
neNk veF
in Section 5 of [5] that the family of sets {D) \ Dar : (A, F) € A} is a basis

of compact and open sets for a Hausdorff topology on dA, and 0A is a locally
compact Hausdorff space. For each n € NF we denote dA>" := {x € 9A : d(x) >
n}and 9AZ" := 9A\ dA>". We now use the subsets dA>" to construct topological
graphs in the sense of Katsura [14], [15].
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PROPOSITION 2.1. Let n € N¥ with 9A>" # @. Denote by oy, the shift on 9A>"
given by 0y, (x)(m) = x(m +n), and 1 : IAZ" — IA the inclusion mapping. Then
Ey := (0A,0A>", 0y, 1) is a topological graph.

Proof. We use the definition of convergence given in Remark 5.6 of [5]. Let
(x;) be a sequence in dAZ" converging to x. If x € dA>", then there exists j €
{1,...,k} and a subsequence (x;;) of (x;) such that d(xik)]- < d(x)]- for all x;;.
This contradicts that (x;;) converges to x, so we must have x € 9A#", and hence
dA?" is closed in dA. Hence dA>" is locally compact.

Let x € dA”". Then D, (o,n) is an open neighbourhood of x, with D,y €
9A>". The map On|Dy 0 * Dx(om) = Ds(x(0,n)) 18 @ bijection, and oy (Dy(,n)) =
Dy(x(0,n)) is open in dA. Now suppose A € s(x(0,1))A and F C s(A)A. Then

n|D,g ) (Px(0,m)A \ Dx(on)ar) = Da\ Dar

is open in Dj(y(q ), and

(Un|DX<0,,,>)_l(D/\ \ Dar) = Dx(ou)a \ Dx(0n)AF

is open in Dy (g ,,y. Hence, ou[p, (o 18 continuous and open, and so it is a home-

n)
omorphism of Dy ,) onto Dy, ))- Hence oy is a local homeomorphism. We

know that ¢ is continuous, so the result follows. &

We now use Katsura’s construction [14] to form Hilbert bimodules. For
f,g € Cc(0A=") and a € Cy(dA), we define

(2.1) (f-a)(x) := f(x)a(on(x)), and
(2.2) (f,8)n(x) := (Z), f)gy).
on(y)=x

We complete C(dA”") under the norm | - ||, given by (,-), to get a Hilbert
Co(0A)-module X,, = X(E,). The formula

(2.3) (a-f)(x) = a(u(x)) f(x) = a(x)f(x),

defines an action of Cy(dA) by adjointable operators on X,, which we denote by
¢un : Co(0A) — L(X,), and then X, becomes a Hilbert Cy(dA)-bimodule. For
n € NF with 9A>" = @ we set X,, := {0}. Note that Xg = Cy(3A).

PROPOSITION 2.2. Let m,n € NF with dA>™,dA>" # @. Then the map
7T Ce(0AP™) x Co(9AZ™) — Co(9AZ™MH)

givenby t(f, g)(x) = f(x)g(om(x)) is a surjective map which induces an isomorphism
Tonn = Xm @ X — Xpn satisfying mpn(f @ ) = f(g 0 0m).

To prove this proposition we need some results. To state these results we
use the following notation.
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NOTATION 2.3. (i) Recall from Definition 3.10 of [5] that given A € A and
E C r(A)A we denote

Ext(\;E) := | J{a € A: (&, B) € A™™(A,v) for some p € A}.
veE

For A, u € Awe denote F(A, u) := Ext(A; {p}). Since A is finitely-aligned, F(A, i)
is a finite subset of s(A)A, and so (A, F(A, u)) € A. We have

(2.4) Dar(au) = Dyru,)-

(ii) Let A, € Aand x € 0A with d(x) > d(A) Vd(p). Then we denote by xﬁt
the path
= x(d(1),d(V) V ().
LEMMA 2.4. Let (A, F), (u,G) € A. Then we have

(2.5) (DA\Dap) N (Du\ Dyg) = | Djx \ Daar,,
(a,8)€A™IN (A1)

where

Fy = (VLEJFF(Aa,Av)> U (gLGJGF(Azx,y@))

Proof. The factorisation property ensures that the union in (2.5) is disjoint.
Let x € (D) \ Dyr) N (Dy\ Dyg). Then d(x) > d(A) Vd(u); the pair
(xh, x ) € AMn(A,u);andx € D, - Using (2.4) we have

X e D)\xKF(/\xK,)W) = D/\VF()W,)\XK) x € Dap,

which contradicts x € D) \ Dy, so we must have x ¢ DAxKF(/\x;‘ Av) forallv € F.
By symmetry, we also have x ¢ DMQF(?\XK,}@ forall { € G. Hence x € DMK \

DAxﬁF e
A

Now suppose v is an element of the right-hand-side of (2.5). So there exists
(2, B) € A™M(A, 1) withy € Dy, \ Dayr,- We havey € Dy, C D). Assume
y € Dy, for some v € F. Then d(y) > d(Aa) V d(Av); the pair (y}",y}%) €
AMIN(Ag, Av); and y € Djar(rarv) © Daar,- This is a contradiction, and so y ¢
D), forallv € F. Hencey € D, \ D,r. By symmetry, we also have y € D, \ D,g.
Hencey € (Dy\ Dap) N (Dy\ Dyg). &

LEMMA 2.5. Let n € N¥and (A, F) € Awith Dy \ Dyp C 9A>". Then we have

(2.6) D, \ Dyr = I_l D)\y \ D/\yExt(y;F)/
HES()‘)Ad(/\)\/nfd(/\)

where (A, Ext(y; F)) € A" for each u € s(A)AZM)Vrn—d(A),
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Proof. The factorisation property ensures that the union in (2.6) is disjoint.

Suppose x € D, \ D,r, and consider the path y := x(d(A),d(A) Vn) €
s(A)ATA)Vn=d(A) - Then x € Dy If x € Dyygx(ur), then there exists v € F
and (¢, B) € A™"(y,v) with x € Djue = Dap € Dyy C Dyp. But this is a
contradiction, and so we must have x € Dy, \ D, xe(u;1)-

Now, let y € Dy, \ Dy gxe(r) for some p € s(A)AYMVI=d(N) Theny € D,.
If y € D), for some v € F, then the pair

WAL (d(A), d(A) +d(p) V() ¥} (d(A), d(A) +d(p) Vd(v))) € A (),

and y € D), gx(y;F)- This is a contradiction, and so we must have y € D) \ Dj.

Finally, for each u € s(A)AYMVi—d(A) the set Ext(y; F) is finite because
F is finite and A is finitely-aligned. We obviously have d(Ay) > n, and so
(A, Ext(u; F)) € A".

Proof of Proposition 2.2. To show that 7 is surjective we let f € C.(aAZ" 7).

For each x € supp f there exists (A, F) € A with x € D, \ Dyp C 9AZ™". So

there exists a subset 7 C A such thatsuppf € U D, \ Dap, where D, \
(AF)eg

Dar € 9AZ™ T for each (A, F) € J. It follows from Lemma 2.5 that each D, \

D, is a disjoint union of sets of the form D, \ D, with (u,G) € A™*", and so

there exists a subset 7' C A""" such that suppf € |J Dy \ Dyg, where
(wG)eJ’
Dy \ Dyg C 0AZ™H" for each (1, G) € J'. Since supp f is compact, there exists

h
a finite number of pairs (y;, G;) € J' with supp f € U Dy; \ Dy,;- Now for
j=1
each1 < j < hlet A; := pj(m,d(p;)), and consider the function XUjDA-\DA-G- €
j VA

Cc(dA>"). Consider also f € Cc(dA>™) which is equal to f on dA>"*" and zero
on the complement. Then we have 7(f, Xu, D,\Dy, G/) = f, and so 7t maps onto

Cc(oAzm+m),

Routine calculations show that 7t is bilinear, and so it induces a surjective
linear map 7y @ Co(0AZ™) ® Co(0AP") — Co(dAZMTM) satisfying 7, (f @
9)(x) = f(x)g(om(x)). It follows immediately from the formulas (2.1) and (2.3)
that 7t preserves the left and right actions.

To see that 71, preserves the inner product, we let f,h € C.(dA”™) and
g,1 € C.(dA>"). Then for x € dIAZ" " we have

(foghal)(x)=((hf), &1),x) = (Z); () ()8 (W) (y)
on(y)=x

= ¥ (L @)l

on(y)=x om(z)=y
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2.7) = (M%:xml (om(2)) f(2)h(2).
Now
(T (f © &), Ttmn(h @ 1))y (%) = Wﬁ):xmnmm ®@1)(z)
= %%):xmh@)l (om(2))
= (feghalk),

and so 7T, preserves the inner product. Hence it extends to an isomorphism
TTmn - X @ Xy — Xopgn- 1

REMARK 2.6. Suppose dAZ",dA>" # @ and A" = @. We claim that
Xm @ X, = {0}. To see this is true, we assume the contrary. Then there exists
f € Cc(0A”™) and g € Cc(dAZ") with f ® g # 0. It follows from equation (2.7)
that
fogfeg=Y If@Fgon@)
Omn(z)=x

and this implies

(fog fRg) #0+ 0,!,(x) # O for some x € IA
= AT L @,

This is a contradiction, and so we must have X, ® X, = {0} = Xytn.

Now suppose that 9IAZ" # @ and A" = @. Then we have IAZ"" = @,
and so X, = {0} = Xy4»- Then X, @ X, = X, ® {0} = {0} = Xjy44. So we can
extend Proposition 2.2 to include all m,n € Nk, and we think of Ttm,n for m,n as
in this remark as the trivial map from {0} to itself.

PROPOSITION 2.7. The family X := || X, of Hilbert bimodules over Co(0A)

neNk
with multiplication given by

(2.8) Xy = T (X @ Y)
is a product system over NF.

Proof. We just need to check that ax = a-xand xa = x-a forall x € X,
n € NFand a € Cy(dA), but this follows from (2.1), (2.3) and the definition of
multiplication (2.8). 1

We prove that X is compactly-aligned in the Appendix.

Given the definition (2.8) of multiplication within X, we now have the fol-
lowing restatement of Proposition 2.2. This corollary plays an important role in
subsequent sections.
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COROLLARY 2.8. Let n € N¥and h € C.(9A>"). Then for every 1, m € N¥ with
n =1+ m, there exists f € Cc(dA>!) and g € C.(dA>™) with h = fg.

3. THE CUNTZ-NICA-PIMSNER ALGEBRA N O(X)

Recall that we denote by jx : X — NO(X) the universal Cuntz-Nica-
Pimsner representation of X. For each m € Nf we denote by jx ,, the restriction
of jx to X;;,. Foreach A € Atheset D, is closed and open, and so the characteristic
function Xp, € Cc(dA>4N)) ¢ X4(p)-

THEOREM 3.1. Let A be a finitely-aligned k-graph and X be the associated product
system of Hilbert bimodules given in Proposition 2.7. Denote by {s) : A € A} the
universal Cuntz—Krieger A-family in C*(A). There exists an isomorphism 1t : C*(A) —
NO(X) such that 7t(s)) = jx a(r) (Xp,)-

To prove this result we first show that S := {S, := jx 4)(XD,) : A € A}is
a set of partial isometries in N'O(X) satisfying (CK1) and (CK2). We use the Nica
covariance of jx to show that S satisfies (CK3), and the Cuntz-Pimsner covariance
of jx to show that S satisfies (CK4). The universal property of C*(A) then gives
us amap 7 : C*(A) = NO(X) with 71(s)) = jx(Xp,) for each A € A. We show
that S generates NO(X), and we use the gauge-invariant uniqueness theorem
for C*(A) ([22], Theorem 4.2) to prove that 77 is injective.

PROPOSITION 3.2. The set S = {S) : A € A} is a family of partial isometries
satisfying (CK1) and (CK2).

Proof. Let A € A. Using (2.1) and (2.2) we get Ap, - <XD/\’XD/\>d(/\) = Ap,,
and it follows that 5,515, = S,. It follows from the properties of characteristic
functions that {S, = jx0(Xp,)} is a set of mutually orthogonal projections, thus
(CK1) is satisfied. Relation (CK2) follows from the calculation

Xp, &b, (X) = 74(1),a(u) (XD, ® Ap,)(x) = Xp, (x) XD, (401 (%))
B {1 if x(0,d(A)) = A and x(d(A),d(A) +d(u)) = u,
0 otherwise,
=&p,,(x). 1
PROPOSITION 3.3. The set S satisfies relation (CK3):
SiSu = ) SaSp forall A,p € A.
(a,B) €A™ (A1)

To prove this proposition we need the next result. For A, u € Awithd(A) =
d(p) we denote by @, , the rank-one operator @ Xp, A, € K(Xa(n))-
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LEMMA 3.4. Let A,y € A. Then we have

(3.1) tmw(”)(@A,A)tﬁgzgw(”)(@y,y) = Y. Op,up-
(,B)eA™n(A,p)

Proof. Let f € Cc(0A>4)) and g € Cc(aAZ4MVAR)—d(k))  We show that
the operators in (3.1) agree on the product fg € C.(aA>#(M)Vd(1)), and then the
result will follow from Corollary 2.8 and the fact that C.(9A>4(M) V(1) is dense in
Xanyvau):

We know that for each u € A we have O,,(f) = Ap, - <XDI"f>d(y)' It
follows from a routine calculation using (2.1) and (2.2) that ©,,,(f) = Xp, f,

where Xp, f is a product of functions in Cc(0AZ41), Tt now follows from (1.1)
that

(3:2) 400" (00) (£2) = (Ouu(f))g = (Xp,f)g-

We now use Corollary 2.8 to factor (Xp, f)g = hl, where h € Cc(0AZ4M)) and
I € C.(aAZF MV —=d(M)) For x € 9A>4(MVA(1) we have

O1u0) (£8) ()= 53" (@,0) (1) (x) = (X, )i (x)

_{hl(x) ifxeD,, _{fg(x) if x€e DyNDy,

d(A)vd d(A)vd
dw (y)(@A,A)‘dEV; (H)(

0 otherwise |0 otherwise.
We know from Lemma 2.4 that Dy N D, = L D,,. So we have the
(a,B)€A™IN (A, 1)

following and the result follows:

fg(x) ifxe Ll D
lflgﬁg\/d(y) (@)")‘)lflgig\/d(y) (@y,y)(fg) (x) = { (a,ﬁ)e/\mm(/\,ﬂ)

0 otherwise.

(T G

(,B) €A™ (A, 1)

Proof of Proposition 3.3. It follows from the Nica covariance of jx that

P . (d(A)Vd d d
SASASySy:]ggl(/\))(@)\,)x)]g?(y))((aﬂ,y):]gg (M) (P‘))([ZEQ;V (H)(@A,A)[ZE;BV (y)((@Pbﬂ))'

It follows from this equation and Lemma 3.4 that
*\ o* * (d(A)vd
5/\( ). Sﬂtsﬁ)sy: Y. SwaSut= )3 ]gg( v (H))(@Arx,yﬁ)
(a,B)€AMN (A, p) (a,p) €A™ (A, 1) (@,B)eA™n(A,p)

.(d d * *
— flaov (H))( > @M,uﬂ) = 5,555,
(a,B)eA™N (A1)
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It then follows that
S38u=(SiA81)(SuS1S)) =Si(5aSiSuSiSu =535 (X SaS5)S;Su
() EAmn (A z)
= 2 SS(A)SIX(SS(MS,B)* = 2 SWSE. [ |
() €A (A, g0 () €A (A0

Recall from Section 1.2 that I, is givenby I, := () ker ¢y,. To prove that
o<m<n
S satisfies (CK4), we need to find families which span dense subspaces of the

Hilbert bimodules X, - I_m, for m,n € N¥ with m < n. To do this, we must first
find families which span dense subspaces of the bimodules X, and the ideals I;,.

PROPOSITION 3.5. For each n € N we have X, = span{Xp \p,,: (A F)eA"}.
Proof. Let f € Cc(dA>™). We can use the same argument as in the beginning

h
of the proof of Proposition 2.2 to write supp f € U Dy, \ Dy, where (1), Gj) €
j=1

A" and Dyj \ Dij]- C 9A>" for each 1 < j < h. We now take a partition of
unity py, ..., pj, subordinate to {Dy; \ Dy, : 1 < j < h}, and for f; := fp; €
C(Dy; \ Dy,c;) we have

h
(3.3) f=Y 5
i=1

]
Now for each 1 < j < h we have d(y;) > n. So 0, is injective on Dy, \ Dy,c;, and
hence

(34 Il = sup{If;(x)] : x € Dy \ Dy} = Il
Now, it follows from Lemma 2.4 that for each (A, F) € A the set
span{XD#\DyG :(n,G) € Aand Dy \ Dy € Dy \ Dar}

is a subalgebra of C(D) \ D). An application of the Stone-Weierstrass Theorem
shows that the closure of that span is equal to C(D, \ D)), and hence each f;
can be uniformly approximated by elements in span{X \p , : d(A) > n}. It
now follows from (3.4) that f; can be uniformly approximated by elements in
span{Xp \p,, : d(A) > n} with respect to || - ||, and then (3.3) says that f can
be approximated by elements in span{Xp \p,, : d(A) > n} with respect to || - [|.
The result follows because C.(0A \ 9,,) is dense in X, with respectto || - ||,,. 1

DEFINITION 3.6. Leti € {1,...,k} and e; denote the standard basis element
of N¥. We say that (A, F) € A satisfies condition K(7) if

u € s(A)Awithd(pu) > e; = D, C D, for some v € F.

PROPOSITION 3.7. For each n € N¥ we have
Iy =span{Xp \p,, : n; > 0==d(A); = 0and (A, F) satisfies condition K(i)}.
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To prove this proposition we need the following result.

LEMMA 3.8. Leti € {1,...,k} and (A,F) € A. Then D) \ Dyr C 9AZ if and
only ifd(A); = 0and (A, F) satisfies condition K(i). Moreover, we have

(35)  kerg, =span{Xp \p,, : (A,F) € A, d(A); =0
and (A, F) satisfies condition K(i)}.

Proof. Suppose D, \ Dyr C dA%%. Then we obviously have d(A); = 0.
Suppose that (A, F) does not satisfy condition K(7). Then there exists y € s(A)A
with d(p) > e;, and x € Dy with x ¢ D, for all v € F. Consider the boundary
path Ax. We have d(Ax); > 0and Ax € D) \ Dyr. Butd(Ax); > 0 => Ax € 9A”¢,
and this is a contradiction, so (A, F) satisfies condition K(7).

Now suppose that d(A); = 0 and (A, F) satisfies condition K(i). Assume
that Dy \ Dy Z 9AZ%, so there exists x € D, \ Dyr with x € dA>¢. This implies
that d(x); > 0. Consider the edge u := x(d(A),d()) + e;), which we know exists
because d(A); = 0. We have u € s(A)Aandd(y) = e;. The boundary path
0a(r) (x) satisfies o4,y (x) € Dy and oy (x) & Dy forallv € F, and so D, ¢
D, forallv € F. But this contradicts that (A, F) satisfies condition K(7), so we
must have D, \ D p C 9AZ,

Now, it follows from Lemma 2.4 and an application of the Stone-Weierstrass
Theorem for locally compact spaces that for any open subset U of 0A we have

Co(U) =span{Xp \p,, : (A, F) € Aand D, \ Dyr C U}.
It follows that
ker ¢, ={a € Co(9A) : a|y > = 0} = {a € Co(9A) : al = = 0}
=Cp(intdA%) = span{Xp, \p,, : (A, F) € Aand D) \ Dyr C intdAZ )
=span{Ap,\p,, : (A, F) € Aand D) \ Dy C dA%¢i}
=span{Xp \p,,: (A, F) €A, d(A);=0, (A, F) satisfies condition K(i)}. 1
Proof of Proposition 3.7. We have

ker ¢ ={a € Co(9A) : a|ys>n = 0} ={a € Cy(9A) =0} =Cy(intdA=").

Al 5 s

Since m < n = IA*™ C 9AZ", it follows that m < n = ker ¢m C ker ¢,,. Hence
In= 1 ker¢e, and the result now follows from Lemma 3.8. &

{l Vl,‘>0}

NOTATION 3.9. Let n € N¥. We define

Z(Iy) :=={(A,F) € A:D) \ Dyr # @ and
n; > 0= d(A); = 0and (A, F) satisfies condition K(i)},
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and for y € A we write pZ(I,) := {(yA,F) : (A F) € Z(I,) withs(u) = r(A)}.
The reason for introducing this notation is that we can now write

Iy =span{Xp \p,, : (A, F) € Z(In)}.
PROPOSITION 3.10. Let m, n € NF with m < n. Then we have
(3.6) X - In—m = span{Xp \p,, : (A, F) € A" NA0,m)Z(In—m)}-

Proof. We have Xy, - I, = Span{x-a:x € Xy, a € I,_y}. To prove that
the right-hand side of (3.6) is contained in the left-hand side, we let m,n € Nk
with m < n, and suppose (A, F) € A" NA(0,m)Z(I,—m). Then (A(m,d(N)), F) €
Z(Iy—m), and for x € dAZ™ we have

1 ifx(0,d(A)) = Aand x(0,d(Av)) # Av,forallv € F,
Xpy\py (%) =

0 otherwise;
:XDA(X)XDA(m,d()\))\D)\(md (A)F ¢ (om(x)) = (XDA'XDA md(A)) \DA(ma(r))F £ (%)
So XD/\\DAF =&p, - XD 2 \DA(md(\)F € X - In_m, and it follows that
span{Xp \p,, : (A, F) € A" NA0,m)L(Ln—m)} C X - Ln—m-
It follows from Proposition 3.7 and Proposition 3.5 that
X In—m = span{XDp\DpF “Xpap, (0, F) € A" and (t,G) € Z(In—m)}-

So to prove that the left-hand side of (3.6) is contained in the right-hand side, it
suffices to show that for (p, F) € A™ and (7,G) € Z(I,—m) the product Xp,\D,r °

1

Xp.\D, is an element of the right-hand side. Since ¢,," is continuous, the inter-

section

(3.7) (Dp \ Dpr) Ny (D \ Drg)

is an open and compact subset of D, \ D,r. Since it is open, we know there exists
a subset J C A™ such that (D, \ Dor) N0y, (D \Dzg) = U Dy \ Dyn;

(nH)eT
since it is compact, there is a finite number, say &, of pairs (17;, H;) € J with

(Dp\ Dpr) N 0" (Dr\ Drg) = U Dy, \Dq]-H]-~
i=1

We know from Lemma 2.4 that the intersection of sets in the above finite union is
a finite, disjoint union of sets of the same form. So it follows that there is a finite
number, say [, of pairs (u is L]-) € A™ and constants c; such that

l

(38) XDP\DPF ' XDT\DTG - X(DP\DPF)OU};l(DT\DTG) - ]; CjXDVj\DV]'L]‘.

To finish the proof, we need to show that each (u;, L;) € uj(0,m)Z(Iy—m). Sup-
pose n; > m;and d(y;); > m;. Then forx € Dy, \ Dy, wehave o (x) € Dr\ Drg
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and 0y, (x); > 0. Since d(7); = 0, there exists a path a := 0y,(x)(d(7),d(7) + ¢;)
satisfying a € s(7)A%. Since (7, G) satisfies condition K(i), we have D, C D¢
for some ¢ € G. But this implies that 07, (x) = o, (x)(d(T) +e;,d(x)) € D C
D+, which contradicts oy, (x) € Dt \ Drg. So we must have d(u;); = m;.

Now suppose n; > m; and there exists an edge { € s(p;)A% with Dy Z D,
forany v € L;. Let x € s({)0A. Then p;gx € Dy, \ Dy 1, which implies

(3.9) Um(ngx) € D; \ D.¢.

Since d(7); = 0, there exists a path B := 0y, (1;0x)(d(7),d(T) + ¢;) satisfying B €
s(T)A%. Since (7, G) satisfies condition K(i), we have Dg C D for some ¢ € G.
But this implies that oy (4;j0x) = TBowm(pjGx)(d(T) +e;,d(x)) € Dz € Deg,
which contradicts (3.9). So D; C D, for some v € L;, and hence (uj, L;) satisfies
condition K(i).

NOTATION 3.11. Let m, n € Nk with m < n. We denote
Z(Xm - In-m) == {(A,F) : DA\ Dar # @, (A, F) € A" NA(0,m)Z(In—m)}.
So we have
X+ In—m = span{Xp \p,, : (A, F) € (X In-m)}-
PROPOSITION 3.12. Theset S = {S) : A € A} satisfies (CK4)
[1(So—8uS) =0

ueF
or all v € AY and all nonempty finite exhaustive sets F C r—1(v).
pty

To prove this proposition we need the following results. For a finite subset
G C Awe denote by \/ d(G) the element \/ d(u) of N¥.
ueG
LEMMA 3.13. Let v € A" and F C vA a finite exhaustive set; n € Nk with
n > Vd(F)and m € Nk withm < n; and A € vAand F C s(A)A with (A, F) €
Z(Xm - Ln—m). Then there exists j € F such that A extends 1.

Proof. Suppose A does not extend any element of F. Since D) \ Dyr # @,
there exists a boundary path x € D, \ D,r. Since F is exhaustive, there exists
n € F with x(0,d(n7)) = n. Sox € Dy N (Dy \ Dap), and the pair (xK,x%) €
A™N(A, 7). Since A does not extend 7, there exists i € {1,...,k} with d(A); <
d(n7);, and hence d(x;{) > e;. Since m; < d(A); < d(n); < n;, we know (A, F)
satisfies condition K(7), and hence DXK C D, for some v € F. But this implies
thatx € D Axl C D,,, which contradicts the fact x ¢ D)r. So A must extend an

elementof 7. 1

LEMMA 3.14. Suppose n € NF and yu € A with d(y) < n. Consider the element
X given by X := (0,...,0,Xp \p,,,0,...,0) € Xy, where (A, F) € Z(Xy - In—m) for
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m < n. Then we have

~ if A extends i,
(0 X) =
i) O (%) {O otherwise.
Proof. It follows from (1.2) that for r < n we have
M (Ouu)(Xpp,.) ifr=m
(310) Tty (Gpugu) (R (r)=th ) (O ) (R(r))=4 A0 1M TON e .
0 otherwise.
Now assume m > d(p). A straightforward calculation shows that
G.11) XD \Drr = XDy a,400) \Paw) YDA a0
We also have
Opat (XD, 0.0)) () = (XD, (XD XD 4 >d(u))(x)

=D, (x) <X5;1’ XDA(O,d(;L)) >d(”) <Ud(ﬂ) (x))

T X (1), () Ex(0,d() = g
= ¢ () (¥) =04y (%)

0 otherwise;

B {1 if A(0,d(pn)) = pand x(0,d(p)) = p,

)0 otherwise ;

(3.12) _ {XDV (x) if A extends p, _ {XD/\(W(M) (x) if A extends p,

0 otherwise; 0 otherwise.

It now follows from equations (3.11) and (3.12) that

l;n(ﬂ) (®V'”)(XDA\DAF) - lg(ﬂ) (Opp) (XDA 0,d(n XD\ M \D A (), (M)F)
= @H’”(XD)L(M(#)))XD/\( 1\t
_ XD/\(O,d(;,))XD/\( ) \DA@().d(0)F if A extends y,
0 otherwise;
(3.13) _ JAp\p,, ifAextendsyp,
| 0 otherwise.

Equations (3.10) and (3.13) now give the result. 1

We are now ready to prove that S satisfies relation (CK4). The proof runs
through the main argument from the proof of Proposition 5.4 of [23].

Proof of Proposition 3.12. Fix v € A” and a finite exhaustive set F C vA. We

must show that
H (So — S,,S;i) =0.
ueF



REALISING THE C*-ALGEBRA OF A HIGHER-RANK GRAPH AS AN EXEL’S CROSSED PRODUCT 117

Recall from [21] that for a nonempty subset G of F, A™"(G) denotes the set
{A € A:d(A) = Vd(G), Aextends u forall u € G}. Recall also that \/ F :=

U A™"(G) is finite and is closed under minimal common extensions. We have
GCF

* x_ (0 (Vd(G
[1(So=SuSi) =5+ 1 (-1)I5,55 = @00)+ 3 (- DAo4,),
ueF @#GCF ©@#GCF

AEA™IN(G) AEA™IN(G)
where the first equation can be obtained through repeated application of (CK3).
Since jx is Cuntz-Pimsner covariant, it suffices to show that for each g € N¥ there
exists r 2 g such that for all s > r, we have

§0)+ Y (=156 (O@10) =0.
@#GCF
AeA™IN(G)

For this, fix g € NF, letr = g v (V d(F)) and fix s > r. It suffices to show that

(3.14) (@) + ¥ (156 @10) @ =0,
@#GCF
AEA™N(G)
where ¥ € X is givenby X := (0,...,0, XDp\DpF’O" ..,0),for (o, F) € Z(X¢ - Ls—¢),
t <s. Forany u € F wehaves > d(u). It then follows from Lemma 3.14 that

X if p extends y,

(3.15) () (Oppe) (%) = {

0 otherwise.

Fix a nonempty subset G of . Then

(H @wt) %) = {97 if p extends each 1 € G,

T 0 otherwise.

The factorisation property implies that p extends each u € G if and only if there
exists A € AMN(G) such that p extends A. The factorisation property also implies
that if there does exist such a A € A™"(G), then it is necessarily unique. We
therefore have

(}g‘}s@)(@w))(f):( ) T\id(G)(@H,}l))(f)-

AEAMIN(G)

Since G was an arbitrary subset of 7, we have

( I (35 (©o0) T (O) (}) = (r(f(@v,m@#;d( 1l T Oy0))) (%)
= (5(000) + . (-1l d(c)@m) ().

AEAMIN(G)
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Now we can apply Lemma 3.13 to see that there exists 7 € F such that p extends
1. It now follows from equation (3.15) that

(T1(@u0) ~ 750 (©0)) ) (B)
ueF

= (T @ (@u0) =T (@) ) (3§ (@) — T3y (@))) () = 0,
neF\{n}

and hence equation (3.14) is established. 1

Proof of Theorem 3.1. Lemma 3.2, Proposition 3.3 and Proposition 3.12 show
that the set S := {S) = jx(Xp,) : A € A} is a family of partial isometries
satisfying the Cuntz—Krieger relations (CK1)—-(CK4). It follows from the universal
property of C*(A) that there exists a homomorphism 77 : C*(A) — N O(X) such
that 77(s)) = jx(A&p, ) for each A € A. We know from Proposition 3.12 of [23] that
NO(X) =span{jx(x)jx(y)* : x,y € X}. Foreach A € Aand F C s(A)A we have
Xp,\D,y = XD, — ng Ap,,,and so

ix(Xp\p,;) = ix(Xp,) —jx( ) XDM) =51 =) Sn-
veF veF
It then follows from Proposition 3.5 that S generates N'O(X), and hence 7 is sur-
jective. It follows from Lemma 5.13(2) and Lemma 5.15 of [5] that each D, # @,
and hence each Xp, # 0. It then follows from Theorem 4.1 of [23] that each S; #
0. (Note that the quasi-lattice ordered group (N, Z¥) satisfies condition (3.5) of
[23], and so Theorem 4.1 of [23] can indeed be applied.) Since 7r intertwines the
gauge actions of TX on A’O(X) and C*(A), the gauge-invariant uniqueness theo-
rem for C*(A) ([22], Theorem 4.2) implies that 77 is an isomorphism. 1

4. CONNECTIONS TO SEMIGROUP CROSSED PRODUCTS

We begin this section by building a crossed product from a finitely-aligned
k-graph A. For each n € N¥ we define a partial endomorphism «, : Co(dA) —
Co(9A>") given by ay(f) = f o 0. We claim that for f € C.(dA>") the function

L, (f) given by

on(y)=
0 otherwise,

Y f(y) ifx € ou(0A),
La(f)(x) = =x

is well-defined and is an element of C.(dA). We can cover supp f with finitely
many sets U; such that ¢y, (U;) is open, 03, (U;) is compact, and 0y, |, is a home-
omorphism. The function f must be zero on all but a finite number of points
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in ;7 1(x). Then near any x € 0,,(9A), L,(f) = Y fo (an|ul.)7l is a fi-
{izxeo, (U;)}

nite sum of continuous functions with compact support. Since 0, (x) is open,
L,(f) € Cc(0A), and the claim is proved. Routine calculations show that each L,
satisfies the transfer-operator identity: L, (xn(f)g) = fLn(g) for all f € Cy(9A),
g € Cc(9A>"). Adapting Exel’s construction of a Hilbert bimodule [6] to accom-
modate the partial maps, and applying it to (Co(dA), ay, Ly), gives the Hilbert
Co(0A)-bimodule X,, from Section 2. So we consider the boundary-path product
system X, and take the suggested route of Section 9 of [2] for defining a crossed
product for the system (Cy(dA), N, &, L):

DEFINITION 4.1. Let A be a finitely-aligned k-graph, and consider the prod-
uct system X given in Proposition 2.7. We define the crossed product Co(0A) X, 1
N¥ to be the Cuntz—Nica—Pimsner algebra N’O(X).

COROLLARY 4.2. Let A be a finitely-aligned k-graph. Then Co(9A) x,p NF =
C*(A).

For the remainder of this section we discuss the relationship between the
crossed product Co(0A) X, 1 Nk and the other crossed products in the literature
which are given via transfer operators; namely, the non-unital version of Exel’s
crossed product [2], Exel and Royer’s crossed product by a partial endomorphism
[10], and Larsen’s crossed product for semigroups [17]. The upshot of this dis-
cussion is that, when these crossed products can be defined, they coincide with
Co(dA) 1,1 NF. To be make things clear, we use the following notation.

NOTATION 4.3. (i) For (A, B, £) a dynamical system in the sense of Exel and
Royer [10] we denote by A x. N the crossed product given in Definition 1.6 of
[10].

(ii) For (A,B, L) a dynamical system in the sense of [2], [6] we denote by

A NE,RLV N the crossed product given in Section 4 of [2].

(iii) For P an abelian semigroup and (A,P, B, £) a dynamical system in the
sense of Larsen [17] we denote by A X'Iﬁaﬁr P the crossed product given in Defini-

tion 2.2 of [17].

4.1. DIRECTED GRAPHS. Suppose Ais a 1-graph. Then for each A, 1 € Awehave
|A™N (A, 1)| € {0,1}, and so A is finitely aligned. As shown in Examples 10.1-
10.2 of [20], A is the path category of the directed graph E := (A%, d~1(1),7,s). We
know from Proposition B.1 of [22] that C*(A) coincides with the graph algebra
C*(E) as given in [12]. We denote by E* the set of finite paths in E and by E*®
the set of infinite paths in E. We define E . := {u € E* : [r"(s(u))| = oo} and
EX := {u € E* : r"1(s(n)) = @}, so E} is the set of paths whose source is an
infinite receiver, and E; is the set of paths whose source is a source in E. Then the
boundary-path space 0A coincides with dE := E* U E .U EZ. We now freely use

inf

directed graphs E in place of 1-graphs A in Definition 4.1.
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PROPOSITION 4.4. Let E be a directed graph. Then (Co(0E), «, L) is a dynamical
system in the sense of [10], and we have Co(E) x4, N 2= Co(9E) x5 N.

To prove this proposition we need the following result.

PROPOSITION 4.5. Let (A, B, L) be a dynamical system in the sense of [10], and
consider the Hilbert A-bimodule M constructed in Section 1 of [10]. Then A xER N is

B.L
isomorphic to Katsura’s Cuntz—Pimsner algebra Oy [13].

Proof. The arguments in Section 3 of [1] (or Section 4 of [2]) extend across to
this setting, except A X/%rRﬁ N is defined by modding out redundancies (a, k) with

a € (kerg) N¢~1(K(M)) instead of Aa(A)AN ¢~ (K(M)). But (ker¢)t N
¢~ 1(KC(M)) is precisely the ideal involved in Katsura’s definition of Oy ([13],
Definition 3.5). 1

Proof of Proposition 4.4. The construction of the Hilbert A-bimodule M from
[10] gives X;. We know from Proposition 5.3 of [23] that N'O(X) is isomorphic to
Katsura’s Ox,. We know from Proposition 4.5 that Cy(9E) NEE N = Op. So we
have

Co(9E) xor N = NO(X) = Ox, = Oy 22 Co(9E) xER N. 1

4.2. LOCALLY-FINITE DIRECTED GRAPHS WITH NO SOURCES. For a locally-finite
directed graph A := E with no sources we have E = E*. We denote by ¢ the
backward shift on E*, and ar the endomorphism of Cy(E®) given by ag(f) =
foo.Soar = ;. Foreach f € Cy(E®) we denote by Lg(f) the function given by

== L fly) ifx € o(E®),
lo=1(x)] o(y)=x
0 otherwise.

Le(f)(x) :{

So L is the normalised version of L;. It is proved in Section 2.1 of [2] that Lr is a
transfer operator for (Co(E*), ag).

PROPOSITION 4.6. Let E be a locally-finite directed graph with no sources. Then
we have Co(E®) 3, N 22 Co(E®) xBRY N,

ap,LE

Proof. Recall the construction of the Hilbert Cy(E*)-bimodule M, ([2], Sec-
tion 3), and in particular that q : Co(E*®) — M}, denotes the quotient map. Since
E is locally finite, the shift ¢ is proper. We can use this fact to find for each x € E®
an open neighbourhood V of ¢(x) such that |c=1(v)| = |c~!(c(x))| for each
v € V, and it follows that the map d : E* — C given by d(x) = /|c—1(c(x))|
is continuous. Straightforward calculations show that U : C.(E*) — Mp, given
by U(f) = q(df) extends to an isomorphism of X; onto M. So Ox, = Om,, -
Since E has no sources, the homomorphism ¢ : Co(E*®) — L(Mp,) giving the

left action on My, is injective, and so (ker ¢)" = Co(E®). It then follows from
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Corollary 4.2 of [2] that Cy(E*) NES{E N OMLE' Finally, we know from Propo-
sition 5.3 of [23] that N O(X) = Ox,, so we have

C()(Eoo) X L N= NO(X) = Oxl = OMLE = Co(Eoo) NE?}{E N 1
4.3. REGULAR k-GRAPHS. We now examine how Cy(dA) x, ; N* fits in with the
theory of Larsen’s semigroup crossed products [17].

If Ais a row-finite k-graph with no sources, then dA is the set A* of all graph
morphisms from (o, . o) to A, and the shift maps are everywhere defined. So
« is an action by endomorphisms. We say a k-graph A is reqular if it is row-
finite with no sources, and there exists My, ..., My € N\ {0} such that for each
i€ {1,...,k} wehave |A%v| = M; for all v € A°. For each x € A® and n € N
define

k
_ -1 o,
w(n,x) = oy Hom(x)| =M™
i=1
Then for each f € Cy(A*®) the map L, (f) given by

{ Y wmy)fly) ifxcou(A%),
La(f)(x) = { oul)=x

0 otherwise,

is a transfer operator for (Co(A®), a,). Simple calculations show that

Y, wlmy)=1

on(y)=x

for all x € A®,n € N¥, and that w(im+n,x) = w(m,x)w(n,oy,(x)) for all x €
A®,m,n € NF. Hence Proposition 2.2 of [9], which still holds in the non-unital
setting, gives an action £ of N¥ of transfer operators on Cy(A®). It follows that
(Co(A*®), Nk, a, £) is a dynamical system in the sense of Larsen ([17], Section 2).

PROPOSITION 4.7. Let A be a regular k-graph. Then we have Co(A%) X, NF
Co(A%®) x L N,

Proof. We apply the construction in Section 3.2 of [17] to (Co(A%), N, a, £)

to form a product system M = |J Mg, , and then Proposition 4.3 of [17] says
neNk

Co(A%) xkf‘z Nk is isomorphic to Fowler’s Cuntz-Pimsner algebra O(M) ([11],
Proposition 2.9). Suppose My, ..., My € N\ {0} such that for eachi € {1,...,k}

k
we have [A%0| = M; for all v € AC. For each n € N¥ denote M,, := [] M, ".
i=1

Then the map f — gu(v/M,f) from C.(A%) to M., extends to an isomorphism
of X, onto M, . These maps induce an isomorphism of the product systems X
and M (observe the formulae for multiplication within X (Proposition 2.2) and M
([17], Equation 3.8). So O(X) = O(M).
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Recall that each X, is constructed from the topological graph (A%, A®, 7y, 1),
where 1 is the inclusion map. It then follows from Proposition 1.24 of [14] that
each ¢, is injective and acts by compact operators. So we can apply Corollary 5.2
of [23] to see that NO(X) coincides with O(X). So we have

Co(A®) x4 NF = NO(X) = O(X) = O(M) = Co(A®) xFF N 1

4.4. CONCLUSION. The results in this section justify our decision to define the
crossed product Co(dA) x, 1 NF to be the Cuntz-Nica-Pimsner algebra N'O(X),
and we propose that the same definition is made for a general crossed product
by a quasi-lattice ordered semigroup of partial endomorphisms and partially-
defined transfer operators. The problem is that Sims and Yeend’s Cuntz-Nica—
Pimsner algebra is only appropriate for a particular family (containing N¥) of
quasi-lattice ordered semigroups. The “correct” definition of a Cuntz—Pimsner
algebra of a product system over an arbitrary quasi-lattice ordered semigroup is
yet to be found. (See [23], [3] for more discussion.)

5. APPENDIX

Recall that for (G, P) a quasi-lattice ordered group, and X a product sys-
tem over P of Hilbert bimodules, we say that X is compactly-aligned if for all
p,q € Psuchthat pVg < co,and forall S € K(X,) and T € K(X;), we have

BY(S)E T € K(Xpvg)-

PROPOSITION 5.1. The product system X constructed in Section 2 is compactly-
aligned.

We start with a definition and some notation.

DEFINITION 5.2. Letn € N¥. We say that a subset J C A" is disjoint if
(A F), (4, G) € T with (A, F) # (4, G) = (Da\ Dar) N (Dy \ Dyg) = @.

For (A, F), (4, G) € A" we write

O\, (1,G) € K(Xy).

®
Xp, \D/\F’XD#\D;AG

Letm,n € Nk, To prove Proposition 5.1 we first need to show that for each
(/\1,1:1), (/\7_, Fz) e A™ and (“ul, G1), (]42, Gz) € A" we have

mvVn

I " (OB, (A ) (O, 61, (2 Ga)) € K(Xmvm)-
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We do this by finding for each («, B) € A™"(Ay, 1) finite subsets H , ), J(a,p) <
A™ guch that | | Hp)and || J(4p) are disjoint, and
(a,p) (@p)

(5.1) l%vn (8()\1/1‘"1 )(A2,F2) ) lﬁvn (Q(ﬂerl )/(#2,G2) )

= ) L OwH) )
(a,B) €A™ (Ag, 1) (1, H)EH 4 )
(@ )E€T(wp)

To find the correct H, g) and J(, 5), we evaluate both sides of (5.1) on products
fg, where f € C.(9A”") and g € C.(dAZ™V"="). For the left-hand-side of (5.1)
we use (1.1) and Corollary 2.8 to factor

177117\/71 (@(Vl Gl Ha, Gz )(fg) Hi, Gl),(“uz,Gz) (f)g = hl’
where i € C.(dA>™) and | € C, (6A>”N”’m). Then for x € 9A=""" we have

mvVn

m (@(Al,Pl) (Aa, Pz)) (@(y1 G1),(112,Go) )(fg)( )
= 1 (OB, (A k) (D) (%) = O(a, 1), (A ) ()1(X)
= Xp, \Dy,p, (XD, \D,,p, 1) (0 (X)) (0 (%))
=20, 0, (L F by, W) )ow(x))
T (y)=0m(x)
_ {hl(/\z(o,m)am(x)) if x € (Da, \ Dayry) N0 (Daymd(rn)) \ Das(ma(aa))E)r

2

0 otherwise.
A similar calculation to the one above gives
hl(A2(0, m)om(x))
= O(11,G1),(12,65) ()&(A2(0, m) 0 (%))

f8(12(0,n) 0 (A2(0,m)0rn (x)))  if A2(0,m)0m(x) € (Dyy \ Dyy, )0

= 7 (Dpy(md2)) \ Ppa(md(2))G2 )
0 otherwise.

So we label conditions

(5.2) x € (Dy, \ Dayi) N0 (Daymd(a)) \ Day(md(ry))r,), and

(5.3) A2(0,m)0m(x) € (Dyy \ Dyy,) N 0 Doy nd(un)) \ Dta (md(12))Ga)#
and then we have

G4 OB (Ohu,6) (1,Ge)) (f) (%)

) f&(u2(0,n)0 (A2(0,m)cm(x)))  if x satisfies (5.2) and(5.3),
o otherwise.
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Now, for each («, ) € A™"(Ay, 1), (1, H) € Hy gy and (w,]) € (4 p) we have

O, H),(w,)) (f8) (%)
= XDK\DKH(x)<XDW\Dw,ffg>mv”(‘7m\/n(x))
= X, 0, (¥)( ( )Z ( )XDw\Dw,(J/)fg(y))
Omvn\Y)=0mvn(X
_ {fg(rm,m V 1)0myn(x)) if x € (Di\ Dyir) N ubn(Deo \ Daoy),

0 otherwise.

Since || Hap)and || Ji4p) are disjoint, we have
(B) (@,B)

6 (¥ Y O ) (fR))

(a,p)eAmn (A 1) (1, H)EH

(v)eJg
f8(t(0,mV n)omyn(x)) ifx € (|_1|5) (Dx \ Do) N Oovn(Dw \ Doy,
a,
- (k,H),(w,])
0 otherwise.

Equation (5.1) now follows from (5.4), (5.5) and the following lemma.

LEMMA 5.3. Let m,n € Nk, and suppose the pairs (A1, Fy), (A, ) € A™ and
(41,G1), (42, Go) € A". Then for each pair (a,) € A™" (A, uy) there exists fi-
nite and disjoint subsets M, ), J (a5 © A™'" such that x € IAZ"" satisfies equa-
tions (5.2) and (5.3) if and only if

(5.6) x € | || (De\Den)N Tovn(Dw \ D))
(a,8)eAmIR(Ag ) (K, H)EMH (4 p)
(w/])ekﬁa,ﬁ)

Moreover, if x satisfies (5.2) and (5.3) and x € (D \ Dypr) N0y (Do \ Doy ), then we
have

12(0,1)07 (A2(0, m)om (x)) = w(0,m V 1)Tuyn(x).
Proof. Recall that for A, 4 € A we denote by
F(Au) ={a € A: (a,B) € A™(A, ) for some p € A}.
Let (a,B) € A™™(Ay, 1q). For each (v,8) € A™M(Aq(m,d(Ar)), Aa(m,d()\z))a)

we define

Hya o= (U P Am) ) U (H F(Aa(m, d(A2))ad, Az (m, d(22))0) )

U( U F(#lﬁ‘sr#l’?))r

neGy
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Hap) = { (M7, Hya) € A™7 2 (7,8) € A™(Aq(m,d(A1)), A2 (m,d(Az))a) }.

For each (p, T) € A™™(up(n,d(u2)), p1(n,d(u1))B) we define

Jop = ( U E( sz/yzé‘) ( U Flu(n,d(m)) B, pa(n, d(m))ﬂ))

£eGy n€Gy

U ( U F(Asar, Azg)),

(eh

and

Tap) = {(H20, Hyp) € A"+ (0,7) € A™(pa(n, d(p2)), p1 (1, (1)) B) }.

The sets 1, g) and J(, ) are finite sets because A is finitely-aligned. Since the
paths in the elements of %, 4) are of the same length, the factorisation property
ensures that each H, g) is disjoint. For the same reason, each 7, g) is disjoint.
This explains why the second union in (5.6) is a disjoint union. Moreover, the sets
(LL) H(a,ﬁ) and (|_L) j(a,ﬁ) are disjoint, and hence why the first union in (5.6) is a
o, o,
disjoint union.

To prove the ‘only if’ part of the statement, we assume x € IAZ™V" satisfies
(5.2) and (5.3). We have to find pairs

(a, B) € A™(Ag, 1),
(7,8) € A™N(Ay(m,d(Ar)), Aa(m,d(A2))a), and

(0, T) € A™™ (pz(n,d(p2)), pa(n,d(p1))PB)

such that

(@) x € Dyq \ Dj,yH,,, and
(®) Tnvn(x) € Dyypmvmd(pa)) \ Ppzp(mvn,d(uzg)) sy s

Now, we know from (5.2) and (5.3) that A»(0, m)ow (x) € D), N Dy, so we take

(5.7) (a,B) := ()\2(0,m)am(x)ﬁ,Az(O,m)Um(x)i,‘f) € A™MN( Ay, 1q).

We know from (5.2) and (5.3) that 0iu(x) € Dy (md(n)) N Day(md(ry))ar SO We
define (v, ) to be the pair

(5:8) (0w (2)\2 a2 o (YL ) € AT (A (i, d(Ar)), A (m, d(A2))a).

—~
=
=2
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We now have 0y (x) € D), (md(),)),- and this along with (5.2) implies that x €
D,,,- We also have

(59) «xe€ D)\lzy and x g D)\lFl —x ¢ D/\l"ﬂ/, forallv' € U F(/\]’)/, )Lli/),‘
veER

Om(x) € D,y (md(Ay))as A0 O (X) & D, (md(As))Es

= 0 (X)EDpy (m,d () ywog for all '€ J F(Aa(m, d(A2))ad, Az (m, d(A2))])
‘en

== 0 (X)ZD ), (ma(1,))y¢ for all g'e|JF(Aa(m, d(A2))ad, Ay (m, d(A2))7)
‘eh
(5.10) <= x & D) ¢ forall | J F(Az(m,d(Az))ad, Ax(m,d(A2))0);
(eR
and

/\2 (OI m)Um(x) ED)\zlx(s and AZ (O/ m)o'm(x) ¢ DylGl

= A2(0,m)0m(x) & Dj,asy forall VS U F(u1Bd, u1n)
USE

= (%) & Dpy(ma(ry))asy forally’ € | J F(u1Bo, uan)
neGy

<= op(x) & D, (md(ry))yy for all n' e U F(u1B6, m1n)
USE

(5.11) < X & D) oy forall n' e |J F(uBé, mn).
Gy
It follows from (5.9), (5.10) and (5.11) that x ¢ D, Hoynr and so (a) is satisfied.
We have 0y (A2(0,m)owm(x)) € Dy, (nd(u,))p, and it follows from (5.3) that

0 (A2(0,m)0m (x)) € Dy, (n,d(yiy))- SO we take

— (nd(u1))p (nd(2))
(5.12) (p,7):= (‘7”()‘2(0'm)am(x))fl;(n,d(y;)) ,Un(}\z(o,m)(fm(x))Zf(n,d(Hf))

€ A (uz(n, d(p2)), 11 (n,d(p1))B),

s)

and we have

Ou(A2(0, )0 (%)) €Dy (na(y))p
= Omvn(x) = Omvn(A2(0,m)owm(x)) € Dyzp(mv'rz,d(yzp))'

Suppose for contradiction that there exists ¢ € G, and a pair (¢’,¢") in the set
A™N (150, 1o &) with gy (x) € Dy,p(mvnd(uap))- Then it follows from (5.12) that

0n(A2(0,m)0m (x)) = 04 (A2(0,m) 0y (x))(0,mV 1 — 1) Tyyn(x)
= pa(n,d(p2))p(0,mV n —n)omyn(x) = pop(n,mV n)omya(x)
€ Dyy(mi(ua))pg’ = Ppa(na(u))ze” S Ppy(nd(u2))Go-
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This contradicts equation (5.3), and so we must have

(5.13) Omvn (x) ¢ Dyzp(m\/n,d(yzp))é’ for all C/ € CL% P(I’lzpr VZC)
€6

Similar arguments show that

(5:14) v (X)ZD 1,0 (mvnd o)y for all '€ JF(pa (n,d(pr)) BT, pa(n, d(p1))n),
1€Gy

and

(5.15) Tinvn (%) & Diypyp(mvmd(uap)yy - forall g’ € U F(Azat, A20).
‘eR

It follows from (5.13), (5.14) and (5.15) that oyvu(x) & Djyp(myn,d(
(b) is satisfied.
To prove the “if” part of the statement, we assume there exists

nap))ppr AN 5O

(a, B) € A™™ (g, 1),
(7,8) € A (Ay(m,d (A1), Aa(m,d(A2))a), and

(0, T) € A™™ (pz(n,d(p2)), 1 (n, d(p1))P),

such that

-1
x e (D)\l’y \ D)\1’YH~,,a) N ‘Tm\/n<Dy2p(m\/n,d(y2p)) \ Dyzp(m\/n,d(yzp))]p,ﬁ)'
We have

x € Dyjy \ Dyjgn,, = x € Dy \ Dy,p;, and

X € Dayy \ DayyHy o = 0m(x) € Dayma(ar))y \ Day(md(A)yHy
< 0m(x) € Dy, (md(ry))as \ Day(md(rs))asH,
<= 0m(x) € Dayma(r)) \ Dra(m (1)

So (5.2) is satisfied. We have

* € Dayy \ DayyHy = 0n(%) € Do ma(an)y \ Dasmd(h)) vy
< 0m(X) € Dyy(ma(ry))as \ Day(md(ry))asH,
= A2(0,m)0(x) € Dyyus \ DayusH,
<= A2(0,m)om(x) € Dy s \ DyypoH,
<= A (0,m)op(x) € Dy, \DmGr
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We have
x € Dy, = A2(0,m)oy (x)(n,m\V n)
= (A2(0,m)Ay(m, d(A1))y) (n,mV n)
= (A2(0,m)Az(m, d(Az))ad)(n,mV n)
= Mad(n,mVn) = Aw(n,m\Vn)=pup(n,mVn)
= (1 (n,d (1)) B) (n,m vV n) = (p(n,d(p1)) pr) (n, m V)
= (ua(n,d(p2))p) (n,mV n).
It follows that
Tn(A2(0,m)owm (x)) = (A2(0,m)orm (x)) (1, m N 1) 0yn(A2(0, m)0m (x))
= (A2(0, m)oy(x)) (n,m NV 1n)Tyn(x)
= (pa(n,d(u2))p) (n, m N 1n)0myu(x),

>~

and then we have

Tnvin(X) €D yiyp(mvnd(uap)) \ Dusp(mvn A(120)) ],
= 0u(A2(0,m)00(x)) € Dypyp(na(uap)) \ Ppop(md(ap)) sy s

= 00 (A2(0,m)om(x)) € D 2(nd(py)) \Dyz n,d(p2))Gy

So (5.3) is satisfied.
To prove the final part of the result, recall that, given x € oAZMVR satisfy-
ing (5.2) and (5.3), we have the following formula for the pair (p, T) in the set

AN (5 (n,d(p2)), 1 (n,d (1)) B):

11(n,d n,d
(e ) = (o (a0, ) (o)) 0 o2 O () )

We then have

#2(0,1)03 (A2(0,m) 0 (x)) = 2(0, 1) (0 (A2(0, 1) (x))) (0, 1V 1t = 1) Ty ()
= p2(0,m) (pa(n,d(pu2))0) (0, m V 1 — 1) Ty (x)
= ppp(0,m V n)oyyn(x). 1
Proof of Proposition 5.1. We have already established equation (5.1). Since A
is finitely-aligned, the sums in (5.1) are finite, and so

0 MO0, () )i (O (0,61, (10,Ga)) € K(Ximvn),
for every m,n € Nk (/\1,1:1) (/\z,Fz) e A™ and (]xl],Gl), (]/lz,Gz) e A", It then
follows from Proposition 3.5 that 1" (Ox, x, ) (0" (O, y,) € K(Xmvn), for every
x1,X € Xm and y1,y2 € Xu. Hence, V" (S)™V™(T) € K(Xmvn), for every
S e K(Xy)and (T € K(Xy). 1
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