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ABSTRACT. We generalize our recent results on the boundedness and com-
pactness of Toeplitz operators to the Bergman space A1 on the unit disc. While
the natural condition for the symbols leads to BMO∂-type symbol classes, the
inevitable logarithmic correction for the nonreflexive case requires a separate
treatment of BA-and BO-type symbols.
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1. INTRODUCTION

In this note we generalize to the case p = 1 our recent results in [8], describ-
ing a large class of unbounded symbols that generate bounded Toeplitz opera-
tors Ta : Ap → Ap, 1 < p < ∞ (see the end of the section for notation). Due to
the discontinuity of the Bergman projection for L1-norm, a logarithmic correction
will be needed, in a way or another. Recall that the sufficient condition for the
boundedness of Ta : Ap → Ap in [8] is a generalized bounded average (BA-)
condition on hyperbolic discs. For the p = 1 case a rather obvious modification
is to add a weight (logarithm of the boundary distance, see (3.3)) to the condi-
tion. However, this direct approach would lead to an unsatisfactory situation,
since the constant functions do not have logarithmically vanishing averages over
hyperbolic discs which approach the boundary, so they do not satisfy the emerg-
ing sufficient condition. The solution to this unexpected problem is, in addition
to the BA-conditions, to consider separately also bounded oscillation (BO-) type
conditions, see Proposition 2.4.

Section 2 is a generalization of [11], containing the necessary decomposition
results of the weighted BMO∂,log-functions to the BAlog- and BOlog-components.
While the boundedness of a Toeplitz-operator Ta : A1 → A1 for a ∈ BMO∂,log ∩
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L∞ is known, see e.g. [7], we give a new, very short proof in the special case
a ∈ BOlog ∩ L∞. The main consideration of this work, the generalization of [8]
to the case p = 1, is contained in Section 3. The main result is presented in
Theorem 3.2.

As for the literature, the following works are related to Toeplitz and Hankel
operators on A1: [1], [2], [5], [6], [7], [9], [10], [11]. In particular we mention that
[9] contains a sufficient condition for the boundedness of Ta : A1 → A1 in terms
of a new integral operator Rα, which is however not so easy to compare with our
more geometric condition.

We follow the notation and terminology of [12]. The spaces are defined
over the open unit disc D = {|z| < 1} of the complex plane. The Lp-spaces,
1 6 p 6 ∞, with norm ‖ · ‖p , are defined with respect to the normalized two-
dimensional Lebesgue measure dA. The Bergman space Ap is the closed sub-
space of Lp consisting of analytic functions. Bergman projection is the operator
P : f 7→

∫
D

f (w)(1− zw)−2dA(w). Given a locally integrable function a : D → C,

the Toeplitz operator Ta with symbol a is defined as PMa, where Ma is the point-
wise multiplication with a. The Hankel operator Ha is defined as Ma − Ta.

2. WEIGHTED BMO SPACES

The Bergman ball D(z, r) with center z and radius r is defined by D(z, r) =
{w ∈ D : β(z, w) < r}, where β(z, w) is the Bergman, or hyperbolic, metric. For a
locally integrable function f : D→ C, the averaging function f̂r is defined by

f̂r(z) =
1

|D(z, r)|

∫
D(z,r)

f (w)dA(w) (z ∈ D),

where |D(z, r)| is the (Euclidean) area of D(z, r). The space of bounded mean
oscillation BMOp

r in the Bergman metric consists of all locally Lp integrable func-
tions for which its norm sup

z∈D
MOp

r ( f )(z) is finite, where

MOp
r ( f )(z) =

( 1
|D(z, r)|

∫
D(z,r)

| f (w)− f̂r(z)|pdA(w)
)1/p

.

As pointed out by K. Zhu [11], the definition of BMOp
r depends on p (unlike in

the case of the classical BMO for the unit circle) and BMOp
r ⊂ BMOq

r properly
for q < p .

We also introduce the space of logarithmic mean oscillation BMOp
r,log that con-

sists of all functions f in BMOp
r with finite norm

sup
z∈D
W(z)MOp

r ( f )(z) < ∞, whereW(z) := 1 + log
1

1− |z| .
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For a continuous function f on D, define the oscillation ωr( f ) of f by

ωr( f )(z) = sup
w∈D(z,r)

| f (z)− f (w)|, z ∈ D.(2.1)

By BOr we denote the space of all continuous functions of bounded oscillation
with the semi-norm sup

z∈D
|ωr( f )(z)| . For the weight W , the weighted BO space,

denoted by BOr,log, consists of all f ∈ BO for which W(z)ωr( f )(z) is bounded
on D; the norm is defined by

‖ f ‖BOr,log = sup
z∈D
W(z)ωr( f )(z) .(2.2)

Concerning functions with bounded averages, we say f ∈ BAp
r if |̂ f |pr is

bounded. We say that f ∈ BAp
r,log, ifW p |̂ f |pr is bounded, and the corresponding

norm is defined by

‖ f ‖BAp
r,log

= sup
z∈D
W(z)(|̂ f |pr )1/p

which is comparable to the expression

sup
z∈D

( 1
|D(z, r)|

∫
D(z,r)

(W(w)| f (w)|)pdA(w)
)1/p

.

All of the spaces defined above can be shown to be independent of the num-
ber r, so that we can use the notations

BMOp
∂ , BMOp

∂,log, BAp, BAp
log, BO, BOlog,

instead of BMOp
r , BMOp

r,log, BAp
r , BAp

r,log, BOr, BOr,log, respectively. As for the
norms, any r can be used, since the norms corresponding to different r are equiv-
alent.

PROPOSITION 2.1. If f ∈ BMOp
∂,log, then there exist functions f1 ∈ BOlog

and f2 ∈ BAp
log such that f = f1 + f2. These can be chosen such that ‖ f1‖BOlog +

‖ f2‖BAp
log

6 C‖ f ‖BMOp
∂,log

.

Proof. This is similar to the proof of Theorem 5 in [11]. Let us fix r > 0
and let f1 = f̂r and f2 = f − f̂r. Since |D(z, r)|, |D(w, r)|, and |D(z, 2r)| are all
comparable for w ∈ D(z, r) (see Lemma 4 of [11]) and since D(z, r) and D(w, r)
are both contained in D(z, 2r) for w ∈ D(z, r), we have, for β(z, w) 6 r,

W(z)| f̂r(z)− f̂r(w)| 6W(z)| f̂r(z)− f̂2r(z)|+W(z)| f̂r(w)− f̂2r(z)|

6
CW(z)
|D(z, 2r)|

∫
D(z,2r)

| f (v)− f̂2r(z)|dA(v).
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Thus, Hölder’s inequality shows that

W(z)| f̂r(z)− f̂r(w)| 6 CW(z)MOp
2r( f )(z),

and so f1 ∈ BOr,log. Concerning f2, let D := D(z, r), and estimate

W(z)(|̂ f2|
p
r (z))1/p

6W(z)
( 1
|D|

∫
D

| f (v)− f̂r(z)|pdA(v)
)1/p

+
( 1
|D|

∫
D

(W(z)| f̂r(v)− f̂r(z)|)pdA(v)
)1/p

6W(z)MOp
r ( f )(z) +W(z)ωr( f̂r)(z),

which is bounded since f ∈ BMOp
r,log and f̂r ∈ BOr,log.

We show that on the other hand BAp
log and BOlog are contained in BMOp

∂,log.

If f ∈ BAp
r,log, then, just by the triangle inequality,

W(z)MOp
r( f )(z)=W(z)

( 1
|D|

∫
D

| f (v)− f̂r(z)|pdA(v)
)1/p

6W(z)
( 1
|D|

∫
D

| f (v)|pdA(v)
)1/p

+W(z)
( 1
|D|

∫
D

| f̂r(z)|pdA(v)
)1/p

=W(z)(|̂ f |pr )1/p+W(z)| f̂r|)1/p62‖ f ‖BAp
log

, where D :=D(z, r).

So BAp
log ⊂ BMOp

∂,log with ‖ f ‖BMOp
∂,log

6 2‖ f ‖BAp
log

.

PROPOSITION 2.2. For 1 6 p < ∞, we have BMOp
∂,log = BOlog + BAp

log.

Moreover, if f = f1 + f2 with f1 ∈ BOlog and f2 ∈ BAp
log, then ‖ f ‖BMOp

log
6

C‖ f1‖BOlog + C‖ f2‖BAp
log

.

Proof. By the above, we only need to consider f ∈ BOlog:

W(z)MO2
r ( f )(z) =W(z)

( 1
|D|

∫
D

(∣∣∣ f (w)− 1
|D|

∫
D

f (v)dA(v)
∣∣∣)p

dA(w)
)1/p

=
( 1
|D|

∫
D

( 1
|D|

∣∣∣ ∫
D

W(z)( f (w)− f (v))dA(v)
∣∣∣)p

dA(w)
)1/p

6 ‖ f ‖BOlog , with D := D(z, r),

by (2.2), hence, BOlog ⊂ BMOp
∂,log and ‖ f ‖BMOp

∂,log
6 ‖ f ‖BOlog .

REMARK 2.3. One can define spaces with vanishing logarithmic mean oscil-
lation, average, or oscillation, analogously (which we denote by VMOp

∂,log, VAp
log,



WEIGHTED BMO AND TOEPLITZ OPERATORS ON BERGMAN SPACE 135

and VOlog, respectively). One can show that also for them the following decom-
position holds:

VMOp
∂,log = VOlog + VAp

log.

We end this section with a couple of lemmas. It is known that Toeplitz
operators with symbols in BMO∂,log ∩ L∞ are bounded on A1 (see [7]). We give a
very short proof in a special case, which complements our main proof in the next
section. Let B be the Bloch space on the unit disc; for details, see [12].

PROPOSITION 2.4. If a ∈ BOlog ∩ L∞, then Ta : A1 → A1 is bounded .

Proof. Let f ∈ A1 and h ∈ B be arbitrary. Using the usual dual pairing
〈 f , h〉 =

∫
D

f h between A1 and B, we write 〈Ta f , h〉 = 〈PMaP f , h〉 = 〈 f , PMah〉.

By [10], Ma is bounded BMO∂ → BMO∂ for a ∈ BOlog ∩ L∞, and also the
projection P : BMO∂ → B is bounded. Hence, |〈Ta f , h〉| = |〈 f , PMah〉| 6
C‖Ma‖‖ f ‖A1‖h‖B .

A similar proof gives the following, which we later apply for Hankel oper-
ators.

LEMMA 2.5. If a ∈ BA1 then Ma : A1 → L1 is bounded.

Proof. Let g ∈ BA1, f ∈ A1, and also h ∈ L∞, ‖h‖∞ 6 1, and write
〈Ma f , h〉 = 〈P f , ah〉 = 〈 f , P(ah)〉. But we have ah ∈ BA1 with ‖ah‖BA1 6
‖a‖BA1‖h‖∞ 6 ‖a‖BA1 . Moreover, P : BA1 → B is bounded (since it is bounded
BMO∂ → B). Hence, P(ah) ∈ B with ‖P(ah)‖B 6 C‖a‖BA1 . As a conclusion,
using the duality of A1 and B,

‖Ma f ‖L1 = sup
‖h‖∞61

|〈Ma f , h〉|= sup
‖h‖∞61

|〈 f , P(ah)〉|6C‖ f ‖A1‖P(ah)‖B6C‖ f ‖A1‖a‖BA1 .

Thus, Ma is bounded.

3. ON THE BOUNDEDNESS OF TOEPLITZ OPERATORS

Let us introduce a collection Q of subsets Q := Q(r, θ) of D which are rect-
angles in polar coordinates and have a hyperbolic radius bounded from above
and below:

(3.1) Q =
{

ρeiφ : r 6 ρ 6 1− 1
2
(1− r) , θ 6 φ 6 θ + π(1− r)

}
for all 0 < r < 1, θ ∈ [0, 2π].

Given Q = Q(r, θ) ∈ Q and ζ = ρeiφ ∈ Q, we denote

(3.2) âQ(ζ) :=
1
|Q|

ρ∫
r

φ∫
θ

a($eiϕ)$dϕd$.
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PROPOSITION 3.1. Assume that a ∈ L1
loc and that there exists a constant C > 0

such that

(3.3) |âQ(ζ)| 6
C
W(ζ)

=
C

1 + | log(1− |ζ|)|

for all Q ∈ Q and all ζ ∈ Q. Then Ta : A1 → A1 is well defined and bounded, and there
is a constant C such that

(3.4) ‖Ta‖ 6 CCa with Ca := sup
Q∈Q,ζ∈Q

|âQ(ζ)|W(ζ).

Since Q is essentially a hyperbolic disc, the ζ on the right hand side of (3.3)
can be replaced by an arbitrary point of Q.

Proof. The proof follows that of Theorem 2.3 of [8], so we shall be quite brief
with the calculations here.

We use an explicit decomposition of D into sets belonging to the family Q.
Let us denote by n := n(m, µ) a bijection from the set {(m, µ) : m ∈ N, µ =
1, . . . , 2−m} onto N which preserves the order in the sense that m < l ⇒ n(m, µ) <
n(l, λ) for all µ and λ, and µ < λ⇒ n(m, µ) < n(m, λ) for all m.

We define the sets

(3.5) Qn := Qn(m,µ) := {z = reiθ : rn < r 6 r′n, θn < θ 6 θ′n},

where m ∈ N and µ = 1, . . . , 2m, and, for n = n(m, µ), rn := 1− 2−m+1, r′n :=
1− 2−m, θn := π(µ− 1)2−m+1, θ′n := πµ2−m+1.

The assumption (3.3) and the definition of rn imply for all n and all ζ =
ρeiφ ∈ Qn

(3.6) |âQn(ζ)| =
1
|Qn|

∣∣∣ ρ∫
rn

φ∫
θn

a($eiϕ)$d$dϕ
∣∣∣ 6 Ca

m
,

where Ca is as in (3.4).
Let f ∈ A1 and fix an n(m, µ). We perform the same integration by parts as

in [8] as follows∫
Qn

a(ζ) f (ζ)
(1− zζ)2

dA(ζ)

=

r′n∫
rn

θ′n∫
θn

a(reiθ) f (reiθ)

(1− zre−iθ)2 rdrdθ

=
( r′n∫

rn

θ′n∫
θn

a($eiϕ)$dϕd$
) f (r′neiθ′n)

(1−zr′ne−iθ′n)2
−

r′n∫
rn

( r∫
rn

θ′n∫
θn

a($eiϕ)$dϕd$
)

∂r
f (reiθ′n)

(1−zre−iθ′n)2
dr
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−
θ′n∫

θn

( r′n∫
rn

θ∫
θn

a($eiϕ)$dϕd$
)

∂θ
f (r′neiθ)

(1− zr′ne−iθ)2 dθ

+

r′n∫
rn

θ′n∫
θn

( r∫
rn

θ∫
θn

a($eiϕ)$dϕd$
)

∂r∂θ
f (reiθ)

(1− zre−iθ)2 dθdr

=: F1,n(z) + F2,n(z) + F3,n(z) + F4,n(z) =: Fn(z).(3.7)

Let us consider F1,n. The integral of a there has, by (3.6), the bound∣∣∣ ∫ ∫
a($eiϕ)$dϕd$

∣∣∣ 6 Ca|Qn|
m

.(3.8)

Repeating the estimations made in [8] we find that

|F1,n(z)| 6
CCa

m

∫
Qn

| f (ζ)|
|1− zζ|2

dA(ζ).(3.9)

By the same methods we get for j = 2, 3

(3.10) |Fj,n(z)| 6
CCa

m

∫
Qn

( | f (ζ)|
|1− zζ|2

+
| f ′(ζ)|(1− |ζ|2)
|1− zζ|2

)
dA(ζ),

and moreover

(3.11) |F4,n(z)|6
CCa

m

∫
Qn

( | f (ζ)|
|1−zζ|2

+
| f ′(ζ)|(1−|ζ|2)
|1− zζ|2

+
| f ′′(ζ)|(1−|ζ|2)2

|1− zζ|2
)

dA(ζ).

Notice that 1/m can be estimated by C/W(ζ) on Qn, hence, we can write
∞

∑
n=1

Fn(z) 6
∞

∑
n=1
|Fn(z)| 6

∞

∑
n=1

4

∑
j=1
|Fj,n(z)|(3.12)

6 CCa

∫
D

| f (ζ)|+ | f ′(ζ)|(1− |ζ|2) + | f ′′(ζ)|(1− |ζ|2)2

W(ζ)|1− zζ|2
dA(ζ).

We show below that the maximal Bergman projection satisfies the following esti-
mate: ∥∥∥ ∫

D

|g(ζ)|
W(ζ)|1− zζ|2

dA(ζ)
∥∥∥

1
6 C‖g‖1(3.13)

for all g ∈ L1 (see Corollary 3.13 of [12]). Moreover, by Theorem 4.28 of [12], the
functions | f ′(ζ)|(1− |ζ|2) and | f ′′(ζ)|(1− |ζ|2)2 belong to L1. Using (3.12) and

(3.13) we thus find that the series
∞
∑

n=1
|Fn(z)| can be pointwise bounded by an L1

function, and thus it converges for almost all z. Hence, the Toeplitz operator can
be defined as a bounded operator on A1 (see Remark 2.4. of [8]), and its norm has
the bound (3.4).
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As for the inequality (3.13), using the duality of L1 and L∞ 3 h and the
Forelli–Rudin estimate ([12], Lemma 3.10), we have the following which com-
pletes the proof:∥∥∥ ∫

D

|g(ζ)|
W(ζ)|1− zζ|2

dA(ζ)
∥∥∥

1
6 sup
‖h‖∞61

∫
D

∫
D

|g(ζ)h(z)|
W(ζ)|1− zζ|2

dA(ζ)dA(z)

6
∫
D

|g(ζ)|
W(ζ)

∫
D

1
|1− zζ|2

dA(z)dA(ζ)

6
∫
D

C|g(ζ)|
W(ζ)

W(ζ)dA(ζ) = C‖g‖1.

By combining Propositions 2.4 and 3.1, and denoting by X the space of
symbols satisfying the condition (3.3), we obtain our most general result on the
boundedness of Ta:

THEOREM 3.2. If a ∈ BOlog ∩ L∞ + X, then Ta : A1 → A1 is bounded.

Notice that the constants do not satisfy (3.3) though they correspond to the
multiples of the identity operator, hence, Theorem 3.2 is well motivated in com-
parison with Proposition 3.1. Since X contains the space BA1

log, we have the fol-
lowing strengthening of the result in [7]:

THEOREM 3.3. If a ∈ BOlog ∩ L∞ + BA1
log, then Ta : A1 → A1 is bounded.

Next we give the following sufficient condition for Ta to be compact on A1.

PROPOSITION 3.4. Assume that a ∈ L1
loc and that

lim
d(Q)→0

sup
ζ∈Q
|âQ(ζ)|W(ζ) = 0 ,(3.14)

where d(Q) := inf{|z− w| : z ∈ Q, |w| = 1}. Then Ta : A1 → A1 is compact.

Proof. By definitions, we actually have

lim
n→∞

sup
ζ∈Qn

|âQn(ζ)|W(ζ) = 0.(3.15)

We take an arbitrary sequence ( fk)
∞
k=1 ⊂ A1 with ‖ fk‖1 6 1 for all k such that

fk → 0 uniformly on compact subsets of D; we show that ‖Ta fk‖1 → 0.
Let ε > 0 be arbitary. Let the expressions Fj,n(z) be as above, and let Fj,n,k(z)

be equal to Fj,n(z) with f is replaced by fk. Consider F1,n,k(z). Applying (3.15) to
(3.8) and deducing as in (3.8)–(3.9), we obtain instead of (3.9) the estimate

|F1,n,k(z)| 6 C
εn

m

∫
Qn

| fk(ζ)|
|1− zζ|2

dA(ζ) 6 C′εn

∫
Qn

| fk(ζ)|
W(ζ)|1− zζ|2

dA(ζ),(3.16)

where we may assume that εn → 0. Choose N ∈ N such that εn < ε for n > N.
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Since the closure of the set D(N) :=
⋃

n6N
Qn is compact, there exists a con-

stant CN > 0 such that

∑
n6N

∫
Qn

1
|1− zζ|2

dA(ζ) 6 CN

for all z ∈ D. Since the sequence ( fk) converges to 0 on compact subsets, we may
choose M ∈ N such that | fk(ζ)| 6 ε/(1+ CN) for all k > M and ζ ∈ D(N). We get
for all k > M,

∞

∑
n=1
|F1,n,k(z)| 6 ∑

n6N

∫
Qn

| fk(ζ)|
W(ζ)|1− zζ|2

dA(ζ) + ∑
n>N

∫
Qn

εn
| fk(ζ)|

W(ζ)|1− zζ|2
dA(ζ)

6 ∑
n6N

ε

1 + CN

∫
Qn

1
|1− zζ|2

dA(ζ) + ε
∫
D

| fk(ζ)|
W(ζ)|1− zζ|2

dA(ζ)

6 ε + ε
∫
D

| fk(ζ)|
W(ζ)|1− zζ|2

dA(ζ).

The other expressions Fj,n,k(z), j = 2, 3, 4, are treated similarly, keeping in mind
that also the derivatives of the functions fk converge to 0 uniformly on compact
subsets of D. Arguing as in the proof of Proposition 3.1 we find that ‖Ta fk‖1 6 Cε
for large enough k.

The previous lemma contains the result that if a ∈ VA1
log, then Ta : A1 → A1

is compact.
We end our paper by a direct application to Hankel operators.

COROLLARY 3.5. Let a ∈ BMO1
log be such that a = f + g with f ∈ BOlog ∩ L∞

and g ∈ BA1
log. Then the Hankel operator Ha : A1 → L1 is bounded.

Proof. Since Ha depends on the symbol a linearly, it suffices to show that
both H f and Hg are bounded. Trivially, M f is bounded from A1 into L1 for
f ∈ L∞. Hence, by Proposition 2.4, H f = M f − Tf : A1 → L1 is bounded.
Similarly, the boundedness of Hg : A1 → L1 follows from Lemma 2.5 and Propo-
sition 3.1.

REMARK 3.6. The problem whether Ha : A1 → L1 is bounded for every
a ∈ BMO1

log remains open.
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