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ABSTRACT. We present tracial analogs of the classical results of Curto and Fi-
alkow on moment matrices. A sequence of real numbers indexed by words
in noncommuting variables with values invariant under cyclic permutations
of the indexes, is called a tracial sequence. We prove that such a sequence can
be represented with tracial moments of matrices if its corresponding moment
matrix is positive semidefinite and of finite rank. A truncated tracial sequence
allows for such a representation if and only if one of its extensions admits a
flat extension. Finally, we apply this theory via duality to investigate trace-
positive polynomials in noncommuting variables.
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1. INTRODUCTION

The moment problem is a classical question in analysis, well studied be-
cause of its importance and variety of applications. A simple example is the
(univariate) Hamburger moment problem: when does a given sequence of real
numbers represent the successive moments

∫
xn dµ(x) of a positive Borel mea-

sure µ on R? Equivalently, which linear functionals L on univariate real poly-
nomials are integration with respect to some µ? By Haviland’s theorem [13] this
is the case if and only if L is nonnegative on all polynomials nonnegative on R.
Thus Haviland’s theorem relates the moment problem to positive polynomials. It
holds in several variables and also if we are interested in restricting the support
of µ. For details we refer the reader to one of the many beautiful expositions of
this classical branch of functional analysis, e.g. [1], [18], [31].

Since Schmüdgen’s celebrated solution of the moment problem on compact
basic closed semialgebraic sets [30], the moment problem has played a prominent
role in real algebra, exploiting this duality between positive polynomials and the
moment problem, cf. [19], [26], [28], [29]. The survey of Laurent [21] gives a nice
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presentation of up-to-date results and applications; see also [23], [27] for more on
positive polynomials.

Our main motivation are trace-positive polynomials in noncommuting vari-
ables. A polynomial is called trace-positive if all its matrix evaluations (of all sizes)
have nonnegative trace. Trace-positive polynomials have been employed to in-
vestigate problems on operator algebras (Connes’ embedding conjecture [8], [15])
and mathematical physics (the Bessis–Moussa–Villani conjecture [4], [16]), so a
good understanding of this set is desired. By duality this leads us to consider the
tracial moment problem introduced below. We mention that the free noncom-
mutative moment problem has been studied and solved by McCullough [24] and
Helton [14]. Hadwin [12] considered moments involving traces on von Neumann
algebras.

This paper is organized as follows. The short Section 2 fixes notation and
terminology involving noncommuting variables used in the sequel. Section 3 in-
troduces tracial moment sequences, tracial moment matrices, the tracial moment
problem, and their truncated counterparts. Our main results in this section re-
late the truncated tracial moment problem to flat extensions of tracial moment
matrices and resemble the results of Curto and Fialkow [9], [10] on the (classical)
truncated moment problem. For example, we prove that a tracial sequence can be
represented with tracial moments of matrices if its corresponding tracial moment
matrix is positive semidefinite and of finite rank (Theorem 3.14). A truncated
tracial sequence allows for such a representation if and only if one if its exten-
sions admits a flat extension (Corollary 3.21). Finally, in Section 4 we explore the
duality between the tracial moment problem and trace-positivity of polynomials.
Throughout the paper several examples are given to illustrate the theory.

2. BASIC NOTIONS

Let R〈X〉 denote the unital associative R-algebra freely generated by X =
(X1, . . . , Xn). The elements of R〈X〉 are polynomials in the noncommuting vari-
ables X1, . . . , Xn with coefficients in R. An element w of the monoid 〈X〉, freely
generated by X, is called a word. An element of the form aw, where 0 6= a ∈ R
and w ∈ 〈X〉 is called a monomial and a its coefficient. We endow R〈X〉 with the
involution p 7→ p∗ fixing R∪ {X} pointwise. Hence for each word w ∈ 〈X〉, w∗ is
its reverse. As an example, we have (X1X2

2 − X2X1)
∗ = X2

2X1 − X1X2.
For f ∈ R〈X〉 we will substitute symmetric matrices A = (A1, . . . An) of

the same size for the variables X and obtain a matrix f (A). Since f (A) is not
well-defined if the Ai do not have the same size, we will assume this condition
implicitly without further mention in the sequel.

Let SymR〈X〉 denote the set of symmetric elements in R〈X〉, i.e.,

SymR〈X〉 = { f ∈ R〈X〉 : f ∗ = f }.
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Similarly, we use SymRt×t to denote the set of all symmetric t× t matrices.
In this paper we will mostly consider the normalized trace Tr, i.e.,

Tr(A) =
1
t

tr(A) for A ∈ Rt×t.

The invariance of the trace under cyclic permutations motivates the following
definition of cyclic equivalence ([15], p. 1817).

DEFINITION 2.1. Two polynomials f , g ∈ R〈X〉 are cyclically equivalent if
f − g is a sum of commutators:

f − g =
k

∑
i=1

(piqi − qi pi) for some k ∈ N and pi, qi ∈ R〈X〉.

REMARK 2.2. (i) Two words v, w ∈ 〈X〉 are cyclically equivalent if and only
if w is a cyclic permutation of v. Equivalently: there exist u1, u2 ∈ 〈X〉 such that
v = u1u2 and w = u2u1.

(ii) If f
cyc
∼ g then Tr( f (A)) = Tr(g(A)) for all tuples A of symmetric matri-

ces. Less obvious is the converse: if Tr( f (A)) = Tr(g(A)) for all A and f − g ∈
SymR〈X〉, then f

cyc
∼ g; see Theorem 2.1 in [15].

(iii) Although f
cyc
� f ∗ in general, we still have

Tr( f (A)) = Tr( f ∗(A))

for all f ∈ R〈X〉 and all A ∈ (SymRt×t)n.

The length of the longest word in a polynomial f∈R〈X〉 is the degree of f and
is denoted by deg f . We write R〈X〉6k for the set of all polynomials of degree 6k.

3. THE TRUNCATED TRACIAL MOMENT PROBLEM

In this section we define tracial (moment) sequences, tracial moment matri-
ces, the tracial moment problem, and their truncated analogs. After a few mo-
tivating examples we proceed to show that the kernel of a tracial moment ma-
trix has some real-radical-like properties (Proposition 3.8). We then prove that
a tracial moment matrix of finite rank has a tracial moment representation, i.e.,
the tracial moment problem for the associated tracial sequence is solvable (Theo-
rem 3.14). Finally, we give the solution of the truncated tracial moment problem:
a truncated tracial sequence has a tracial representation if and only if one of its ex-
tensions has a tracial moment matrix that admits a flat extension (Corollary 3.21).

For an overview of the classical (commutative) moment problem in sev-
eral variables we refer the reader to Akhiezer [1] (for the analytic theory) and to
the survey of Laurent [22] and references therein for a more algebraic approach.
The standard references on the truncated moment problems are [9], [10]. For the
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noncommutative moment problem with free (i.e., unconstrained) moments see
[24], [14].

DEFINITION 3.1. A sequence of real numbers (yw) indexed by words w ∈
〈X〉 satisfying

yw = yu whenever w
cyc
∼ u,(3.1)

yw = yw∗ for all w,(3.2)

and y∅ = 1, is called a (normalized) tracial sequence.

EXAMPLE 3.2. Given t ∈ N and symmetric matrices A1, . . . , An ∈ SymRt×t,
the sequence given by

yw := Tr(w(A1, . . . , An)) =
1
t

tr(w(A1, . . . , An))

is a tracial sequence since by Remark 2.2, the traces of cyclically equivalent words
coincide.

We are interested in the converse of this example (the tracial moment prob-

lem): For which sequences (yw) do there exist N ∈ N, t ∈ N, λi ∈ R>0 with
N
∑
i

λi = 1

and vectors A(i) = (A(i)
1 , . . . , A(i)

n ) ∈ (SymRt×t)n, such that

(3.3) yw =
N

∑
i=1

λi Tr(w(A(i))) ?

We then say that (yw) has a tracial moment representation and call it a tracial moment
sequence.

The truncated tracial moment problem is the study of (finite) tracial sequences
(yw)6k where w is constrained by deg w 6 k for some k ∈ N, and properties (3.1)
and (3.2) hold for these w. For instance, which sequences (yw)6k have a tracial
moment representation, i.e., when does there exist a representation of the values
yw as in (3.3) for deg w 6 k? If this is the case, then the sequence (yw)6k is called
a truncated tracial moment sequence.

REMARK 3.3. (i) To keep a perfect analogy with the classical moment prob-
lem, one would need to consider the existence of a positive Borel measure µ on
(SymRt×t)n (for some t ∈ N) satisfying

(3.4) yw =
∫

Tr(w(A))dµ(A).

As we shall mostly focus on the truncated tracial moment problem in the sequel,
the finitary representations (3.3) are the proper setting; cf. Theorem 3.8 in [6]. The
more general representations (3.4) occur if one considers the full moment prob-
lem which, however, can be solved by solving all its truncated moment problems
derived by restriction; see Theorem 3.6 in [6]. We look forward to studying rep-
resentations (3.4) in more detail, see [5] for some first results.
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(ii) Another natural extension of our tracial moment problem with respect to
matrices would be to consider moments obtained by traces in finite von Neumann
algebras as done by Hadwin [12]. However, our primary motivation were trace-
positive polynomials defined via traces of matrices (see Definition 4.1), a theme
we expand upon in Section 4. Understanding these is one of the approaches
to Connes’ embedding conjecture [15]. The notion dual to that of trace-positive
polynomials is the tracial moment problem as defined above.

(iii) The tracial moment problem is a natural extension of the classical quad-
rature problem dealing with representability via atomic positive measures in the
commutative case. Taking a(i) consisting of 1× 1 matrices a(i)j ∈ R for the A(i) in
(3.3), we have

yw = ∑
i

λiw(a(i)) =
∫

xw dµ(x),

where xw denotes the commutative collapse of w ∈ 〈X〉. The measure µ is the
convex combination ∑ λiδa(i) of the atomic measures δa(i) .

The next example shows that there are (truncated) tracial moment sequences
(yw) which cannot be written as

yw = Tr(w(A)).

EXAMPLE 3.4. Let X be a single free (noncommutative) variable. We take
the index set J = (1, X, X2, X3, X4) and y = (1, 1−

√
2, 1, 1−

√
2, 1). Then

yw =

√
2

2
w(−1) +

(
1−
√

2
2

)
w(1),

i.e., λ1 =
√

2/2, λ2 = 1− λ1 and A(1) = −1, A(2) = 1. But there is no symmetric
matrix A ∈ Rt×t for any t ∈ N such that yw = Tr(w(A)) for all w ∈ J. The proof
is given in the appendix.

The (infinite) tracial moment matrix (also called tracial Hankel matrix) M(y)
of a tracial sequence y = (yw) is defined by

M(y) = (yu∗v)u,v.

This matrix is symmetric due to the condition (3.2) in the definition of a tracial
sequence. A necessary condition for y to be a tracial moment sequence is positive
semidefiniteness of M(y) which in general is not sufficient.

The tracial moment matrix of order k is the tracial moment matrix Mk(y)
indexed by words u, v with deg u, deg v 6 k. If y is a truncated tracial moment
sequence, then Mk(y) is positive semidefinite. Here is an easy example showing
the converse is false:

EXAMPLE 3.5. When dealing with two variables, we write (X, Y) instead of
(X1, X2). Taking the index set

(1, X, Y, X2, XY, Y2, X3, X2Y, XY2, Y3, X4, X3Y, X2Y2, XYXY, XY3, Y4)



146 SABINE BURGDORF AND IGOR KLEP

the truncated moment sequence

y = (1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 4, 0, 2, 1, 0, 4)

yields the tracial moment matrix

M2(y) =



1 0 0 1 1 1 1
0 1 1 0 0 0 0
0 1 1 0 0 0 0
1 0 0 4 0 0 2
1 0 0 0 2 1 0
1 0 0 0 1 2 0
1 0 0 2 0 0 4


of degree 2 with respect to the basis (1, X, Y, X2, XY, YX, Y2). M2(y) is positive
semidefinite but y has no tracial representation. Again, we postpone the proof
until the appendix.

For a given polynomial p = ∑
w∈〈X〉

pww ∈ R〈X〉 let~xp be the (column) vector

of coefficients pw in a given fixed order. One can identify R〈X〉6k with Rη for
η = η(k) = dimR〈X〉6k < ∞ by sending each p ∈ R〈X〉6k to the vector ~xp of its
entries with deg w 6 k. The tracial moment matrix M(y) induces the linear map

ϕM : R〈X〉 → RN, p 7→ M~xp.

The tracial moment matrices Mk(y), indexed by w with deg w 6 k, can be re-
garded as linear maps ϕMk : Rη → Rη , ~xp 7→ Mk~xp.

LEMMA 3.6. Let M = M(y) be a tracial moment matrix. Then the following
holds:

(i) p(y) := ∑
w

pwyw = ~x1∗M~xp. In particular, ~x1∗M~xp = ~x1∗M~xq if p
cyc
∼ q.

(ii) ~xp∗M~xq = ~x1∗M~xp∗q.

Proof. Let p, q ∈ R〈X〉. For k := max{deg p, deg q}, we have

(3.5) ~xp∗M(y)~xq = ~xp∗Mk(y)~xq.

Both statements now follow by direct calculation.

We can identify the kernel of a tracial moment matrix M with the subset of
R〈X〉 given by

(3.6) I := {p ∈ R〈X〉 : M~xp = 0}.

PROPOSITION 3.7. Let M � 0 be a tracial moment matrix. Then

(3.7) I = {p ∈ R〈X〉 : 〈M~xp,~xp〉 = 0}.

Further, I is a two-sided ideal of R〈X〉 invariant under the involution.
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Proof. Let J := {p ∈ R〈X〉 : 〈M~xp,~xp〉 = 0}. The implication I ⊆ J is
obvious. Let p ∈ J be given and k = deg p. Since M and thus Mk for each k ∈ N is
positive semidefinite, the square root

√
Mk of Mk exists. Then 0 = 〈Mk~xp,~xp〉 =

〈
√

Mk~xp,
√

Mk~xp〉 implies
√

Mk~xp = 0. This leads to Mk~xp = M~xp = 0, thus
p ∈ I.

To prove that I is a two-sided ideal, it suffices to show that I is a right-ideal
which is closed under ∗. To do this, consider the bilinear map

〈p, q〉M := 〈M~xp,~xq〉

on R〈X〉, which is a semi-scalar product. By Lemma 3.6, we get that

〈pq, pq〉M = ((pq)∗pq)(y) = (qq∗p∗p)(y) = 〈pqq∗, p〉M.

Then by the Cauchy–Schwarz inequality it follows that for p ∈ I, we have

0 6 〈pq, pq〉2M = 〈pqq∗, p〉2M 6 〈pqq∗, pqq∗〉M〈p, p〉M = 0.

Hence pq ∈ I, i.e., I is a right-ideal.

Since p∗p
cyc
∼ pp∗, we obtain from Lemma 3.6 that

〈M~xp,~xp〉 = 〈p, p〉M = (p∗p)(y) = (pp∗)(y) = 〈p∗, p∗〉M = 〈M~xp∗,~xp∗〉.

Thus if p ∈ I then also p∗ ∈ I.

In the commutative context, the kernel of M is a real radical ideal if M is
positive semidefinite as observed by Scheiderer (see p. 2974 in [21]). The next
proposition gives a description of the kernel of M in the noncommutative setting,
and could be helpful in defining a noncommutative real radical ideal.

PROPOSITION 3.8. For the ideal I in (3.6) we have

I = { f ∈ R〈X〉 : ( f ∗ f )k ∈ I for some k ∈ N}.

Further,

I =
{

f ∈ R〈X〉 : ( f ∗ f )2k + ∑ g∗i gi ∈ I for some k ∈ N, gi ∈ R〈X〉
}

.

Proof. If f ∈ I then also f ∗ f ∈ I since I is an ideal. If f ∗ f ∈ I we have
M~x f ∗ f = 0 which implies by Lemma 3.6 that

0 = ~x1∗M~x f ∗ f = ~x f ∗M~x f = 〈M f , f 〉.

Thus f ∈ I. If ( f ∗ f )k ∈ I then also ( f ∗ f )k+1 ∈ I. So without loss of generality let
k be even. From ( f ∗ f )k ∈ I we obtain

0 = ~x1∗M~x( f ∗ f )k = ~x( f ∗ f )k/2∗M~x( f ∗ f )k/2,

implying ( f ∗ f )k/2 ∈ I. This leads to f ∈ I by induction.
To show the second statement let ( f ∗ f )2k + ∑ g∗i gi ∈ I. This leads to

~x( f ∗ f )k∗M~x( f ∗ f )k + ∑
i
~xgi
∗M~xgi = 0.
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Since M(y) � 0 we have ~x( f ∗ f )k∗M~x( f ∗ f )k > 0 and ~xgi
∗M~xgi > 0. Thus

~x( f ∗ f )k∗M~x( f ∗ f )k = 0

(and ~xgi
∗M~xgi = 0) which implies f ∈ I as above.

In the commutative setting one uses the Riesz representation theorem for
some set of continuous functions (vanishing at infinity or with compact support)
to show the existence of a representing measure. We will use the Riesz repre-
sentation theorem for positive linear functionals on a finite-dimensional Hilbert
space.

DEFINITION 3.9. Let A be an R-algebra with involution. We call a linear
map L : A → R a state if L(1) = 1, L(a∗a) > 0 and L(a∗) = L(a) for all a ∈ A. If
all the commutators have value 0, i.e., if L(ab) = L(ba) for all a, b ∈ A, then L is
called a tracial state.

With the aid of the Artin–Wedderburn theorem we shall characterize tracial
states on matrix ∗-algebras in Proposition 3.13. This will enable us to prove the
existence of a tracial moment representation for tracial sequences with a finite
rank tracial moment matrix; see Theorem 3.14.

REMARK 3.10. The only central simple algebras over R are full matrix al-
gebras over R, C or H (combine e.g. the Frobenius theorem (3.12) in [20] with
the Artin–Wedderburn theorem (3.5) in [20]). In order to understand (R-linear)
tracial states on these, we recall some basic Galois theory.

Let

TrdC/R : C→ R, z 7→ 1
2
(z + z)

denote the field trace and

TrdH/R : H→ R, z 7→ 1
2
(z + z)

the reduced trace ([17], p. 5). Here the Hamilton quaternions H are endowed with
the standard involution

z = a + ib + jc + kd 7→ a− ib− jk− kd = z

for a, b, c, d ∈ R. We extend the canonical involution on C and H to the conjugate
transpose involution ∗ on matrices over C and H, respectively.

Composing the field trace and reduced trace, respectively, with the normal-
ized trace, yields an R-linear map from Ct×t andHt×t, respectively, to R. We will
denote it simply by Tr. A word of caution: Tr(A) does not denote the (normal-
ized) matricial trace over K if A ∈ Kt×t and K ∈ {C,H}.

An alternative description of Tr is given by the following lemma:

LEMMA 3.11. LetK ∈ {R,C,H}. Then the only (R-linear) tracial state onKt×t

is Tr.
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Proof. An easy calculation shows that Tr is indeed a tracial state.
Let L be a tracial state on Rt×t. By the Riesz representation theorem there

exists a positive semidefinite matrix B with Tr(B) = 1 such that, for all A ∈ Rt×t,

L(A) = Tr(BA).

Write B =
(
bij
)t

i,j=1. Let i 6= j. Then A = λEij has zero trace for every λ ∈ R
and is thus a sum of commutators. (Here Eij denotes the t× t matrix unit with a
one in the (i, j)-position and zeros elsewhere.) Hence

λbij = L(A) = 0.

Since λ ∈ Rwas arbitrary, bij = 0.
Now let A = λ(Eii − Ejj). Clearly, Tr(A) = 0 and hence

λ(bii − bjj) = L(A) = 0.

As before, this gives bii = bjj. So B is scalar, and Tr(B) = 1. Hence it is the identity
matrix. In particular, L = Tr.

If L is a tracial state on Ct×t, then L induces a tracial state on Rt×t, so L0 :=
L|Rt×t = Tr by the above. Extend L0 to

L1 : Ct×t → R, A + iB 7→ L0(A) = Tr(A) for A, B ∈ Rt×t.

L1 is a tracial state on Ct×t as a straightforward computation shows. As Tr(A) =
Tr(A + iB), all we need to show is that L1 = L.

Clearly, L1 and L agree on the vector space spanned by all commutators in
Ct×t. This space is (over R) of codimension 2. By construction, L1(1) = L(1) = 1
and L1(i) = 0. On the other hand,

L(i) = L(i∗) = −L(i)

implying L(i) = 0. This shows L = L1 = Tr.
The remaining case of tracial states over H is dealt with similarly and is left

as an exercise for the reader.

REMARK 3.12. Every complex number z = a+ ib can be represented as a 2×
2 real matrix z′ =

( a b
−b a

)
. This gives rise to an R-linear ∗-map Ct×t → R(2t)×(2t)

that commutes with Tr. A similar property holds if quaternions a + ib + jc + kd
are represented by the 4× 4 real matrix

a b c d
−b a −d c
−c d a −b
−d −c b a

 .

PROPOSITION 3.13. Let A be a ∗-subalgebra of Rt×t for some t ∈ N and let
L : A → R be a tracial state. Then there exist full matrix algebras A(i) over R, C or H,
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a ∗-isomorphism

(3.8) A →
N⊕

i=1

A(i),

and λ1, . . . , λN ∈ R>0 with ∑
i

λi = 1, such that for all A ∈ A,

L(A) =
N

∑
i

λi Tr(A(i)).

Here,
⊕

i
A(i) =

(
A(1)

. . .
A(N)

)
denotes the image of A under the isomorphism (3.8).

The size of (the real representation of )
⊕

i
A(i) is at most t.

Proof. Since L is tracial, L(U∗AU) = L(A) for all orthogonal U ∈ Rt×t.
Hence we can apply orthogonal transformations to A without changing the val-
ues of L. SoA can be transformed into block diagonal form as in (3.8) according to
its invariant subspaces. That is, each of the blocks A(i) acts irreducibly on a sub-
space of Rt and is thus a central simple algebra (with involution) over R. The in-
volution on A(i) is induced by the conjugate transpose involution. (Equivalently,
by the transpose on the real matrix representation in the complex of quaternion
case.)

Now L induces (after a possible normalization) a tracial state on the block
A(i) and hence by Lemma 3.11, we have Li := L|A(i) = λi Tr for some λi ∈ R>0.
Then

L(A) = L
(⊕

i
A(i)

)
= ∑

i
Li(A(i)) = ∑

i
λi Tr(A(i))

and 1 = L(1) = ∑
i

λi.

The following theorem is the tracial version of the representation theorem
of Curto and Fialkow for moment matrices with finite rank [9].

THEOREM 3.14. Let y = (yw) be a tracial sequence with positive semidefinite
moment matrix M(y) of finite rank t. Then y is a tracial moment sequence, i.e., there
exist vectors A(i) = (A(i)

1 , . . . , A(i)
n ) of symmetric matrices A(i)

j of size at most t and
λi ∈ R>0 with ∑ λi = 1 such that

yw = ∑ λi Tr(w(A(i))).

Proof. Let M := M(y). We equip R〈X〉 with the bilinear form given by

〈p, q〉M := 〈M~xp,~xq〉 = ~xq∗M~xp.
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Let I = {p ∈ R〈X〉 : 〈p, p〉M = 0}. Then by Proposition 3.7, I is an ideal of R〈X〉.
In particular, I = ker ϕM for

ϕM : R〈X〉 → Ran M, p 7→ M~xp.

Thus if we define E := R〈X〉/I, the induced linear map

ϕM : E→ Ran M, p 7→ M~xp

is an isomorphism and

dim E = dim(Ran M) = rank M = t < ∞.

Hence (E, 〈 , 〉E) is a finite-dimensional Hilbert space for 〈p, q〉E = ~xq∗M~xp.
Let X̂i be the right multiplication with Xi on E, i.e., X̂i p := pXi. Since I is a

right ideal ofR〈X〉, the operator X̂i is well defined. Further, X̂i is symmetric since

〈X̂i p, q〉E = 〈M~xpXi,~xq〉 = (Xi p∗q)(y) = (p∗qXi)(y) = 〈M~xp,~xqXi〉 = 〈p, X̂iq〉E.

Thus each X̂i, acting on a t-dimensional vector space, has a representation matrix
Ai ∈ SymRt×t.

Let B = B(X̂1, . . . , X̂n) = B(A1, . . . , An) be the algebra of operators gener-
ated by X̂1, . . . , X̂n. These operators can be written as

p̂ = ∑
w∈〈X〉

pwŵ

for some pw ∈ R, where ŵ = X̂w1 · · · X̂ws for w = Xw1 · · ·Xws . Observe that
ŵ = w(A1, . . . , An). We define the linear functional

L : B → R, p̂ 7→ ~x1∗M~xp = p(y),

which is a state on B. Since yw = yu for w
cyc
∼ u, it follows that L is tracial. Thus

by Proposition 3.13 (and Remark 3.12), there exist λ1, . . . λN ∈ R>0 with ∑
i

λi = 1

and real symmetric matrices A(i)
j (i = 1, . . . , N) for each Aj ∈ SymRt×t, such that

for all w ∈ 〈X〉, we have, as desired:

yw = w(y) = L(ŵ) = ∑
i

λi Tr(w(A(i))).

The sufficient conditions on M(y) in Theorem 3.14 are also necessary for y
to be a tracial moment sequence. Thus we get our first characterization of tracial
moment sequences:

COROLLARY 3.15. Let y = (yw) be a tracial sequence. Then y is a tracial moment
sequence if and only if M(y) is positive semidefinite and of finite rank.

Proof. If yw = Tr(w(A)) for some A = (A1, . . . , An) ∈ (SymRt×t)n, then

L(p) = ∑
w

pwyw = ∑
w

pw Tr(w(A)) = Tr(p(A)).
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Hence, for all p ∈ R〈X〉,

~xp∗M(y)~xp = L(p∗p) = Tr(p∗(A)p(A)) > 0.

Further, the tracial moment matrix M(y) has rank at most t2. This can be
seen as follows: M induces a bilinear map

Φ : R〈X〉 → R〈X〉∗, p 7→ (q 7→ Tr((q∗p)(A))),

where R〈X〉∗ is the dual space of R〈X〉. This implies

rank M = dim(Ran Φ) = dim(R〈X〉/ ker Φ).

The kernel of the evaluation map εA : R〈X〉 → Rt×t, p 7→ p(A) is a subset of
ker Φ. In particular,

dim(R〈X〉/ ker Φ) 6 dim(R〈X〉/ ker εA) = dim(Ran εA) 6 t2.

The same holds true for each convex combination yw = ∑
i

λi Tr(w(A(i))).

The converse is Theorem 3.14.

DEFINITION 3.16. Let A ∈ SymRt×t be given. A (symmetric) extension of
A is a matrix Ã ∈ SymR(t+s)×(t+s) of the form

Ã =

(
A B
B∗ C

)
for some B ∈ Rt×s and C ∈ Rs×s. Such an extension is flat if rank A = rank Ã, or,
equivalently, if B = AW and C = W∗AW for some matrix W.

The kernel of a flat extension Mk of a tracial moment matrix Mk−1 has some
(truncated) ideal-like properties as shown in the following lemma.

LEMMA 3.17. Let f ∈ R〈X〉 with deg f 6 k− 1 and let Mk be a flat extension of
Mk−1. If f ∈ ker Mk then f Xi, Xi f ∈ ker Mk.

Proof. Let f = ∑
w

fww. Then for v ∈ 〈X〉k−1, we have

(3.9) (Mk~x f Xi)v = ∑
w

fwyv∗wXi = ∑
w

fwy(vXi)∗w = (Mk~x f )vXi = 0.

The matrix Mk is of the form Mk =
(

Mk−1 B
B∗ C

)
. Since Mk is a flat extension,

ker Mk = ker
(

Mk−1 B
)
. Thus by (3.9), f Xi ∈ ker

(
Mk−1 B

)
= ker Mk. For Xi f

we obtain analogously that

(Mk~xXi f )v = ∑
w

fwyv∗Xiw = ∑
w

fwy(Xiv)∗w = (Mk~x f )Xiv = 0

for v ∈ 〈X〉k−1, which implies Xi f ∈ ker Mk.

We are now ready to prove the tracial version of the flat extension theorem
of Curto and Fialkow [10].
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THEOREM 3.18. Let y = (yw)62k be a truncated tracial sequence of order 2k.
If rank Mk(y) = rank Mk−1(y), then there exists a unique tracial extension ỹ =
(ỹw)62k+2 of y such that Mk+1(ỹ) is a flat extension of Mk(y).

Proof. Let Mk := Mk(y). We will construct a flat extension Mk+1 :=
(

Mk B
B∗ C

)
such that Mk+1 is a tracial moment matrix. Since Mk is a flat extension of Mk−1(y)
we can find a basis b of Ran(Mk) consisting of columns of Mk labeled by w with
deg w 6 k − 1. Thus the range of Mk is completely determined by the range of
Mk|span b, i.e., for each p ∈ R〈X〉 with deg p 6 k there exists a unique r ∈ span b
such that Mk~xp = Mk~xr; equivalently, p− r ∈ ker Mk.

Let v ∈ 〈X〉, deg v = k + 1, v = v′Xi for some i ∈ {1, . . . , n} and v′ ∈ 〈X〉
with deg v′ = k. For v′ there exists an r ∈ span b such that v′ − r ∈ ker Mk.

If there exists a flat extension Mk+1, then by Lemma 3.17, from v′ − r ∈
ker Mk ⊆ ker Mk+1 it follows that (v′ − r)Xi ∈ ker Mk+1. Hence the desired flat
extension has to satisfy

(3.10) Mk+1~xv = Mk+1~xrXi = Mk~xrXi.

Therefore we define

(3.11) B~xv := Mk~xrXi.

More precisely, let (w1, . . . , w`) be the words in the basis of Mk of degree k.
Let rwi be the unique element in span b with wi − rwi ∈ ker Mk. Then B = MkW
with W = (~xrw1X1 ,~xrw1X2 , . . . ,~xrw`Xn) and we define

(3.12) C := W∗MkW.

Since the rwi are uniquely determined,

(3.13) Mk+1 =

(
Mk B
B∗ C

)
is well-defined. The constructed Mk+1 is a flat extension of Mk, and Mk+1 � 0 if
and only if Mk � 0; see Proposition 2.1 in [10]. Moreover, once B is chosen, there
is only one C making Mk+1 as in (3.13) a flat extension of Mk. This follows from
general linear algebra; see e.g. p. 11 in [10]. Hence Mk+1 is the only candidate for
a flat extension.

Therefore we are done if Mk+1 is a tracial moment matrix, i.e.,

(3.14) (Mk+1)v,w = (Mk+1)v1,w1 whenever v∗w
cyc
∼ v∗1w1.

To show this we prove first that (Mk+1)u,Xiv = (Mk+1)uXi ,v for u, v ∈ 〈X〉k, which
implies the tracial property for block B and B∗ (by symmetry) in Mk+1.

If deg u, deg vXi 6 k there is nothing to show since Mk is a tracial moment
matrix. If deg u 6 k and deg vXi = k + 1 there exists an r ∈ span b such that



154 SABINE BURGDORF AND IGOR KLEP

r− v ∈ ker Mk−1, and by Lemma 3.17, also vXi − rXi ∈ ker Mk. Then we get

(Mk+1)u,vXi = ~xu∗Mk+1~xvXi = ~xu∗Mk+1~xrXi = ~xu∗Mk~xrXi

= yu∗rXi = yXiu∗r = y(uXi)∗r
(∗)
= ~xuXi

∗Mk+1~xv = (Mk+1)uXi ,v,

where equality (∗) holds by (3.10) and by construction.
We are left to show that (Mk+1)Xju,vXi = (Mk+1)uXi ,Xjv. Then (3.14) follows

recursively for all entries in block C and Mk+1 is a tracial moment matrix. Let
deg u = deg v = k, then there exist s, r ∈ span b with u − s ∈ ker Mk−1 and
r− v ∈ ker Mk−1. Then

(Mk+1)Xju,vXi = ~xXju
∗Mk+1~xvXi = ~xXjs

∗Mk~xrXi = ys∗XjrXi = y(sXi)∗(Xjr)

(∗)
= ~xuXi

∗Mk+1~xXjv = (Mk+1)(uXi)∗Xjv = (Mk+1)uXi ,Xjv.

Finally, the construction of ỹ from Mk+1 is clear.

COROLLARY 3.19. Let y = (yw)62k be a truncated tracial sequence. If Mk(y)
is positive semidefinite and Mk(y) is a flat extension of Mk−1(y), then y is a truncated
tracial moment sequence.

Proof. By Theorem 3.18 we can extend Mk(y) inductively to a positive semi-
definite moment matrix M(ỹ) with rank M(ỹ) = rank Mk(y) < ∞. Thus M(ỹ)
has finite rank and by Theorem 3.14, there exists a tracial moment representation
of ỹ. Therefore y is a truncated tracial moment sequence.

The following two corollaries give characterizations of tracial moment ma-
trices coming from tracial moment sequences.

COROLLARY 3.20. Let y = (yw) be a tracial sequence. Then y is a tracial moment
sequence if and only if M(y) is positive semidefinite and there exists some N ∈ N such
that Mk+1(y) is a flat extension of Mk(y) for all k > N.

Proof. If y is a tracial moment sequence then by Corollary 3.15, M(y) is pos-
itive semidefinite and has finite rank t. Thus there exists an N ∈ N such that
t = rank MN(y). In particular, rank Mk(y) = rank Mk+1(y) = t for all k > N, i.e.,
Mk+1(y) is a flat extension of Mk(y) for all k > N.

For the converse, let N be given such that Mk+1(y) is a flat extension of
Mk(y) for all k > N. By Theorem 3.18, the (iterated) unique extension ỹ of (yw)62k
for k > N is equal to y. Otherwise there exists a flat extension ỹ of (yw)62` for
some ` > N such that M`+1(ỹ) � 0 is a flat extension of M`(y) and M`+1(ỹ) 6=
M`+1(y) contradicting the uniqueness of the extension in Theorem 3.18.

Thus M(y) � 0 and rank M(y) = rank MN(y) < ∞. Hence by Theo-
rem 3.14, y is a tracial moment sequence.
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COROLLARY 3.21. Let y = (yw) be a tracial sequence. Then y has a tracial
moment representation with matrices of size at most t := rank M(y) if MN(y) is pos-
itive semidefinite and MN+1(y) is a flat extension of MN(y) for some N ∈ N with
rank MN(y) = t.

Proof. Since rank M(y) = rank MN(y) = t, each Mk+1(y) with k > N is a
flat extension of Mk(y). As MN(y) � 0, all Mk(y) are positive semidefinite. Thus
M(y) is also positive semidefinite. Indeed, let p ∈ R〈X〉 and ` = max{deg p, N}.
Then ~xp∗M(y)~xp = ~xp∗M`(y)~xp > 0.

Thus by Corollary 3.20, y is a tracial moment sequence. The representing
matrices can be chosen to be of size at most rank M(y) = t.

4. POSITIVE DEFINITE MOMENT MATRICES AND TRACE-POSITIVE POLYNOMIALS

In this section we explain how the representability of positive definite tracial
moment matrices relates to sum of hermitian squares representations of trace-
positive polynomials. We start by introducing some terminology.

An element of the form g∗g for some g ∈ R〈X〉 is called a hermitian square
and we denote the set of all sums of hermitian squares by

Σ2 =
{

f ∈ R〈X〉 : f = ∑ g∗i gi for some gi ∈ R〈X〉
}

.

A polynomial f ∈ R〈X〉 is matrix-positive if f (A) is positive semidefinite for all
tuples A of symmetric matrices Ai ∈ SymRt×t, t ∈ N. Helton [14] proved that
f ∈ R〈X〉 is matrix-positive if and only if f ∈ Σ2 by solving a noncommutative
moment problem; see also [24].

We are interested in a different type of positivity induced by the trace.

DEFINITION 4.1. A polynomial f ∈ R〈X〉 is called trace-positive if

Tr( f (A)) > 0 for all A ∈ (SymRt×t)n, t ∈ N.

Trace-positive polynomials are intimately connected to deep open problems
from e.g. operator algebras (Connes’ embedding conjecture [15]) and mathemati-
cal physics (the Bessis–Moussa–Villani conjecture [16]), so a good understanding
of this set is needed. A distinguished subset is formed by sums of hermitian
squares and commutators.

DEFINITION 4.2. Let Θ2 be the set of all polynomials which are cyclically
equivalent to a sum of hermitian squares, i.e.,

(4.1) Θ2 =
{

f ∈ R〈X〉 : f
cyc
∼ ∑ g∗i gi for some gi ∈ R〈X〉

}
.
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Obviously, all f ∈ Θ2 are trace-positive. However, in contrast to Helton’s
sum of squares theorem mentioned above, the following noncommutative ver-
sion of the well-known Motzkin polynomial ([23], p. 5) shows that a trace-positive
polynomial need not be a member of Θ2 [15].

EXAMPLE 4.3. Let

Mnc = XY4X + YX4Y− 3XY2X + 1 ∈ R〈X, Y〉.

Then Mnc /∈ Θ2 since the commutative Motzkin polynomial is not a (commuta-
tive) sum of squares ([23], p. 5). The fact that Mnc(A, B) has nonnegative trace
for all symmetric matrices A, B has been shown by Schweighofer and the second
author in Example 4.4 in [15] using Putinar’s Positivstellensatz [28].

Let Σ2
k := Σ2 ∩R〈X〉62k and Θ2

k := Θ2 ∩R〈X〉62k. These are convex cones in
R〈X〉62k. By duality there exists a connection between Θ2

k and positive semidefi-
nite tracial moment matrices of order k. If every tracial moment matrix Mk(y) � 0
of order k has a tracial representation then every trace-positive polynomial of de-
gree at most 2k lies in Θ2

k . In fact:

THEOREM 4.4. Let k ∈ N. All truncated tracial sequences (yw)62k with positive
definite tracial moment matrix Mk(y) have a tracial moment representation (3.3) if and
only if all trace-positive polynomials of degree 6 2k are elements of Θ2

k .

For the proof we need some preliminary work.

LEMMA 4.5. Θ2
k is a closed convex cone in R〈X〉62k.

Proof. EndowR〈X〉62k with a norm ‖ ‖ and the quotient spaceR〈X〉62k/cyc
∼

with the quotient norm

(4.2) ‖π( f )‖ := inf{‖ f + h‖ : h
cyc
∼ 0}, f ∈ R〈X〉62k.

Here π : R〈X〉62k → R〈X〉62k/cyc
∼

denotes the quotient map. (Note: due to the
finite-dimensionality of R〈X〉62k, the infimum on the right-hand side of (4.2) is
attained.)

Since Θ2
k = π−1(π(Θ2

k)), it suffices to show that π(Θ2
k) is closed. Let dk =

dimR〈X〉62k. Since by Carathéodory’s theorem ([2], p. 10) each element f ∈
R〈X〉62k can be written as a convex combination of dk + 1 elements of R〈X〉62k,
the image of

ϕ : (R〈X〉6k)
dk+1 → R〈X〉2k/cyc

∼

(gi)i=0,...,dk
7→ π

( dk

∑
i=0

g∗i gi

)
equals π(Σ2

k) = π(Θ2
k). In (R〈X〉6k)

dk+1 we define S := {g = (gi) : ‖g‖ = 1}.
Note that S is compact, thus V := ϕ(S) ⊆ π(Θ2

k) is compact as well. Since
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0 /∈ S , and a sum of hermitian squares cannot be cyclically equivalent to 0 by
Lemma 3.2(b) in [16], we see that 0 /∈ V.

Let ( f`)` be a sequence in π(Θ2
k) which converges to π( f ) for some f ∈

R〈X〉62k. Write f` = λ`v` for λ` ∈ R>0 and v` ∈ V. Since V is compact there
exists a subsequence (v`j

)j of v` converging to v ∈ V. Then

λ`j
=
‖ f`j
‖

‖v`j
‖

j→∞−→ ‖ f ‖
‖v‖ .

Thus f` → f = (‖ f ‖/‖v‖)v ∈ π(Θ2
k).

DEFINITION 4.6. To a truncated tracial sequence (yw)6k we associate the
(tracial) Riesz functional Ly : R〈X〉6k → R defined by

Ly(p) := ∑
w

pwyw for p = ∑
w

pww ∈ R〈X〉6k.

We say that Ly is strictly positive (Ly > 0), if

Ly(p) > 0 for all trace-positive p ∈ R〈X〉6k, p
cyc
� 0.

If Ly(p) > 0 for all trace-positive p ∈ R〈X〉6k, then Ly is positive (Ly > 0).

Equivalently, a tracial Riesz functional Ly is positive (respectively, strictly
positive) if and only if the map Ly it induces on R〈X〉6k/cyc

∼
is nonnegative

(respectively, positive) on the nonzero images of trace-positive polynomials in
R〈X〉6k/cyc

∼
.

We shall prove that strictly positive Riesz functionals lie in the interior of
the cone of positive Riesz functionals, and that truncated tracial sequences y with
strictly positive Ly are truncated tracial moment sequences (Theorem 4.8 below).
These results are motivated by and resemble the results of Fialkow and Nie in
Section 2 in [11] in the commutative context.

LEMMA 4.7. If Ly > 0 then there exists an ε > 0 such that Lỹ > 0 for all ỹ with
‖y− ỹ‖1 < ε.

Proof. Let Ck be the convex cone of trace-positive polynomials of degree at
most 2k. We equip R〈X〉62k/cyc

∼
with a quotient norm as in (4.2). Then

S := {π(p) ∈ R〈X〉62k/cyc
∼

: p ∈ Ck, ‖π(p)‖ = 1}

is compact. By a scaling argument, it suffices to show that Lỹ > 0 on S for ỹ close
to y. The map y 7→ Ly is linear between finite-dimensional vector spaces. Thus

|Ly′(π(p))− Ly′′(π(p))| 6 C‖y′ − y′′‖1

for all π(p) ∈ S , truncated tracial moment sequences y′, y′′, and some C ∈ R>0.
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Since Ly is continuous and strictly positive on S , there exists an ε > 0 such
that Ly(π(p)) > 2ε for all π(p) ∈ S . Let ỹ satisfy ‖y− ỹ‖1 < ε/C. Then

Lỹ(π(p)) > Ly(π(p))− C‖y− ỹ‖1 > ε > 0.

THEOREM 4.8. Let y = (yw)6k be a truncated tracial sequence of order k. If
Ly > 0, then y is a truncated tracial moment sequence.

Proof. We show first that y ∈ T, where T is the closure of

T =
{
(yw)6k : ∃A(i) ∃λi ∈ R>0 : yw = ∑ λi Tr(w(A(i)))

}
.

Assume Ly > 0 but y /∈ T. Since T is a closed convex cone in Rη (for some
η ∈ N), by the Minkowski separation theorem there exists a vector ~xp ∈ Rη such
that ~xp∗y < 0 and ~xp∗w > 0 for all w ∈ T. The noncommutative polynomial
corresponding to ~xp is trace positive since ~xp∗z > 0 for all z ∈ T. Thus 0 <
Ly(p) = ~xp∗y < 0, a contradiction.

By Lemma 4.7, y ∈ int(T). Thus y ∈ int(T) ⊆ T, see e.g. Theorem 25.20
in [3].

We remark that assuming only non-strict positivity of Ly in Theorem 4.8
would not suffice for the existence of a tracial moment representation (3.3) for y.
This is a consequence of Example 3.5.

Proof of Theorem 4.4. To show sufficiency, assume f = ∑
w

fww ∈ R〈X〉62k is

trace-positive but f /∈ Θ2
k . By Lemma 4.5, Θ2

k is a closed convex cone in R〈X〉62k,
thus by the Minkowski separation theorem we find a hyperplane which separates
f and Θ2

k . That is, there is a linear form L : R〈X〉62k → R such that L( f ) < 0 and

L(p) > 0 for p ∈ Θ2
k . In particular, L( f ) = 0 for all f

cyc
∼ 0, i.e., without loss of

generality, L is tracial. Since there are tracial states strictly positive on Σ2
k \ {0},

we may assume L(p) > 0 for all p ∈ Θ2
k , p

cyc
� 0. Hence the bilinear form given by

(p, q) 7→ L(pq)

can be written as L(pq) = ~xq∗M~xp for some truncated tracial moment matrix
M � 0. By assumption, the corresponding truncated tracial sequence y has a
tracial moment representation

yw = ∑ λi Tr(w(A(i)))

for some tuples A(i) of symmetric matrices A(i)
j and λi ∈ R>0 which implies the

contradiction
0 > L( f ) = ∑ λi Tr( f (A(i))) > 0.

Conversely, if the second statement holds true, then Ly > 0 if and only
if M(y) � 0. Thus a positive definite moment matrix M(y) defines a strictly
positive functional Ly which by Theorem 4.8 has a tracial representation.
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As mentioned above, the Motzkin polynomial Mnc is trace-positive but we
also have Mnc /∈ Θ2. Thus by Theorem 4.4 there exists at least one truncated
tracial moment matrix which is positive definite but has no tracial representation.

EXAMPLE 4.9. Taking the index set

(1, X, Y, X2, XY, YX, Y2, X2Y, XY2, YX2, Y2X, X3, Y3, XYX, YXY),

the matrix

M3(y) :=



1 0 0 7
4 0 0 7

4 0 0 0 0 0 0 0 0
0 7

4 0 0 0 0 0 0 19
16 0 19

16
21
4 0 0 0

0 0 7
4 0 0 0 0 19

16 0 19
16 0 0 21

4 0 0
7
4 0 0 21

4 0 0 19
16 0 0 0 0 0 0 0 0

0 0 0 0 19
16 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 19
16 0 0 0 0 0 0 0 0 0

7
4 0 0 19

16 0 0 21
4 0 0 0 0 0 0 0 0

0 0 19
16 0 0 0 0 9

8 0 5
6 0 0 9

8 0 0
0 19

16 0 0 0 0 0 0 9
8 0 5

6
9
8 0 0 0

0 0 19
16 0 0 0 0 5

6 0 9
8 0 0 9

8 0 0
0 19

16 0 0 0 0 0 0 5
6 0 9

8
9
8 0 0 0

0 21
4 0 0 0 0 0 0 9

8 0 9
8 51 0 0 0

0 0 21
4 0 0 0 0 9

8 0 9
8 0 0 51 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 5
6 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
6


is a tracial moment matrix of degree 3 in 2 variables and is positive definite. But

Ly(Mnc) = Mnc(y) = −
5

16
< 0.

Thus y is not a truncated tracial moment sequence, since otherwise Ly(p) > 0 for
all trace-positive polynomials p ∈ R〈X, Y〉66.

On the other hand, the (free) noncommutative moment problem is always
solvable for positive definite moment matrices; cf. Theorem 2.1 in [24]. In our
example this means there are symmetric matrices A, B ∈ R15×15 and a vector
v ∈ R15 such that, for all w ∈ 〈X, Y〉63,

yw = 〈w(A, B)v, v〉.

REMARK 4.10. A trace-positive polynomial f ∈ R〈X〉 of degree 2k lies in
Θ2

k if and only if Ly( f ) > 0 for all truncated tracial sequences y = (yw)62k with
Mk(y) � 0. This condition is obviously satisfied if all truncated tracial sequences
y = (yw)62k with Mk(y) � 0 have a tracial representation.

We can prove that trace-positive binary quartics, i.e., polynomials of degree
4 in R〈X, Y〉, lie in Θ2

2 [7]. This implies by Theorem 4.4 that truncated tracial
sequences of degree 4 with a positive definite tracial moment matrix have a tra-
cial moment representation. Example 3.5 shows that a polynomial f can satisfy
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Ly( f ) > 0 for all truncated tracial sequences y = (yw)62k although there are trun-
cated tracial sequences with Mk(y) � 0 that do not have a tracial representation.

5. APPENDIX. PROOFS OF THE CLAIMS MADE IN EXAMPLES 3.4 AND 3.5

EXAMPLE 3.4 REVISITED. We take the index set J = (1, X, X2, X3, X4) and y =

(1, 1 −
√

2, 1, 1 −
√

2, 1). Then there is no symmetric matrix A ∈ Rt×t for any
t ∈ N such that

(5.1) yw = Tr(w(A)) for all w ∈ J.

Without loss of generality we can choose A to be diagonal with diagonal
elements a1, . . . , at. Then yw = Tr(w(A)) if and only if the following equations
hold:

t

∑
i=1

ai =
t

∑
i=1

a3
i = (1−

√
2)t,(5.2)

t

∑
i=1

a2
i =

t

∑
i=1

a4
i = t.(5.3)

In the general means inequality

t
∑

i=1
xi

t
>

√√√√√ t
∑

i=1
x2

i

t

for the arithmetic and the quadratic mean of x = (x1, . . . , xt) ∈ Rt
>0, equality

holds if and only if all the xi are the same. Hence (5.3) rewritten as

∑ a2
i

t
= 1 =

√
∑ a4

i
t

,

gives a2
1 = · · · = a2

t = 1. Therefore,
t

∑
i=1

ai =
t

∑
i=1

a3
i ∈ Z.

Since (1−
√

2)t /∈Z, this contradicts (5.3) and there is no representation (5.1) of y.

EXAMPLE 3.5 REVISITED. The truncated tracial moment matrix

M2(y) =



1 0 0 1 1 1 1
0 1 1 0 0 0 0
0 1 1 0 0 0 0
1 0 0 4 0 0 2
1 0 0 0 2 1 0
1 0 0 0 1 2 0
1 0 0 2 0 0 4


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is positive semidefinite but with respect to the index set

(1, X, Y, X2, XY, YX, Y2),

y has no tracial moment representation (3.3).

Assume yw =
N
∑

i=1
λi Tr(w(A(i)

1 , A(i)
2 )) for some symmetric matrices A(i)

j and

λi ∈ R>0 with ∑
i

λi = 1. Setting

T(i) := (Tr(u∗v(A(i)
1 , A(i)

2 )))u,v

we have M2(y) =
N
∑

i=1
λiT(i). Each T(i) is positive semidefinite, thus in particular

T(i)
22 = T(i)

33 = T(i)
23 =: ti holds for all i = 1, . . . , N. Let di be the size of the

symmetric matrices A(i)
j , j = 1, 2. From

1
d2

i
〈A(i)

1 , A(i)
1 〉〈A

(i)
2 , A(i)

2 〉=Tr(A(i)
1

2
)Tr(A(i)

2

2
)=t2

i=(Tr(A(i)
1 A(i)

2 ))2=
1
d2

i
〈A(i)

1 , A(i)
2 〉

2

we obtain by the Cauchy–Schwarz inequality that A(i)
1 = αi A

(i)
2 for some αi ∈ R,

i = 1, . . . , N. But then we derive the contradiction

2 = M2(y)55 =
N

∑
i=1

λiT
(i)
55 = ∑ λi Tr(A(i)

1

2
A(i)

2

2
) = ∑ λiα

2
i Tr(A(i)

2

4
)

= ∑ λi Tr(A(i)
1 A(i)

2 A(i)
1 A(i)

2 ) = M2(y)45 = 1.

Acknowledgements. Both authors thank Markus Schweighofer for his insightful com-
ments and suggestions. The second author also thanks Scott McCullough and Jiawang Nie
for enlightening discussions.

Both authors were supported by the French-Slovene partnership project Proteus
20208ZM. The first author was partially supported by the Zukunftskolleg Konstanz. The
second author was partially supported by the Slovenian Research Agency (program no.
P1-0222 and project no. J1-3608).

REFERENCES

[1] N.I. AKHIEZER, The Classical Moment Problem and Some Related Questions in Analysis,
Hafner Publishing Co., New York 1965.

[2] A. BARVINOK, A Course in Convexity, Grad. Stud. Math., vol. 54, Amer. Math. Soc.,
Providence, RI 2002.

[3] S. BERBERIAN, Lectures in Functional Analysis and Operator Theory, Springer-Verlag,
New York 1973.



162 SABINE BURGDORF AND IGOR KLEP

[4] D. BESSIS, P. MOUSSA, M. VILLANI, Monotonic converging variational approxi-
mations to the functional integrals in quantum statistical mechanics, J. Math. Phys.
16(1975), 2318–2325.

[5] S. BURGDORF, Trace-positive polynomials, sums of hermitian squares and the tra-
cial moment problem, Ph.D. Dissertation, Universität Konstanz, Konstanz 2011,
http://nbn-resolving.de/urn:nbn:de:bsz:352-139805.

[6] S. BURGDORF, K. CAFUTA, I. KLEP, J. POVH, The tracial moment problem and
trace-optimization of polynomials, Math. Programming Ser. A doi:10.1007/s10107-011
-0505-8.

[7] S. BURGDORF, I. KLEP, Trace-positive polynomials and the quartic tracial moment
problem, C. R. Math. Acad. Sci. Paris 348(2010), 721–726.

[8] A. CONNES, Classification of injective factors. Cases II1, II∞, IIIλ, λ 6= 1, Ann. Math.
104(1976), 73–115.

[9] R.E. CURTO, L.A. FIALKOW, Solution of the Truncated Complex Moment Problem for Flat
Data, Mem. Amer. Math. Soc., vol. 119, Amer. Math. Soc., Providence, RI 1996.

[10] R.E. CURTO, L.A. FIALKOW, Flat Extensions of Positive Moment Matrices: Recursively
Generated Relations, Mem. Amer. Math. Soc., vol. 136, Amer. Math. Soc., Providence,
RI 1998.

[11] L.A. FIALKOW, J. NIE, Positivity of Riesz functionals and solutions of quadratic and
quartic moment problems, J. Funct. Anal. 258(2010), 328–356.

[12] D. HADWIN, A noncommutative moment problem, Proc. Amer. Math. Soc. 129(2001),
1785–1791.

[13] E.K. HAVILAND, On the momentum problem for distribution functions in more than
one dimension. II, Amer. J. Math. 58(1936), 164–168.

[14] J.W. HELTON, “Positive" non-commutative polynomials are sums of squares, Ann. of
Math. 156(2002), 675–694.

[15] I. KLEP, M. SCHWEIGHOFER, Connes’ embedding conjecture and sums of hermitian
squares, Adv. Math. 217(2008), 1816–1837.

[16] I. KLEP, M. SCHWEIGHOFER, Sums of hermitian squares and the BMV conjecture, J.
Statist. Phys. 133(2008), 739–760.

[17] M.-A. KNUS, A.S. MERKURJEV, M. ROST, J.-P. TIGNOL, The Book of Involutions, Amer.
Math. Soc. Colloq. Publ., vol. 44, Amer. Math. Soc., Providence, RI 1998.
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