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ABSTRACT. We strengthen Mohammad B. Asadi’s analogue of Stinespring’s
theorem for certain maps on Hilbert C∗-modules. We also show that any two
minimal Stinespring representations are unitarily equivalent. We illustrate the
main theorem with an example.
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1. INTRODUCTION

Stinespring’s representation theorem is a fundamental theorem in the the-
ory of completely positive maps. It is a structure theorem for completely pos-
itive maps from a C∗-algebra into the C∗-algebra of bounded operators on a
Hilbert space. This theorem provides a representation for completely positive
maps, showing that they are simple modifications of ∗-homomorphisms (see [9]
for details). One may consider it as a natural generalization of the well-known
Gelfand–Naimark–Segal theorem for states on C∗-algebras (see Theorem 4.5.2,
page 278 of [2] for details). Recently, a theorem which looks like Stinespring’s the-
orem was presented by Mohammad B. Asadi in [1] for a class of maps on Hilbert
C∗-modules. Here we strengthen this result by removing a technical condition of
Asadi’s theorem [1]. We also remove the assumption of unitality of underlying
completely positive maps. Further we prove uniqueness up to unitary equiva-
lence for minimal representations, which is an important ingredient of structure
theorems like GNS theorem and Stinespring’s theorem. Now the result looks
even more like Stinespring’s theorem.
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1.1. PRELIMINARIES. We denote Hilbert spaces by H, H1, H2 etc. and their inner
product and the induced norm by 〈·, ·〉 and ‖ · ‖ respectively.

Our inner products are conjugate linear in the first variable and linear in the
second variable.

The space of all bounded linear operators from H1 to H2 is denoted by
B(H1, H2) and if H1 = H2 = H, then B(H1, H2) = B(H).

The C∗-algebra of all n × n matrices with entries from a C∗-algebra A is
denoted byMn(A). If L is a subset of a Hilbert space, then [L] := span(L).

Let E be a Hilbert C∗-module over a C∗-algebra A (see [4] for details of
Hilbert C∗-modules). Let φ : A → B(H) be linear. Then φ is said to be a mor-
phism if it is a ∗-homomorphism and non-degenerate (i.e., [φ(A)H] = H). We
remind the reader that B(H1, H2) is a Hilbert B(H1)-module with respect to the
inner product 〈T, S〉 := T∗S.

A map Φ : E→ B(H1, H2) is said to be a

(i) φ-map if 〈Φ(x), Φ(y)〉 = φ(〈x, y〉) for all x, y ∈ E;
(ii) φ-morphism if Φ is a φ-map and φ is a morphism;

(iii) φ-representation if Φ is a φ-map and φ is a representation (possibly degen-
erate).

Note that a φ-morphism Φ is linear and satisfies Φ(xa) = Φ(x)φ(a) for
every x ∈ E and a ∈ A. Several module versions of Stinespring’s theorem can
be found in the literature. Typically they are structure theorems for completely
positive maps in more general contexts ([3], [5], [6]).

The result we are going to consider here are for φ-maps. M. Skeide has
informed us that φ-morphisms are also known as φ-isometries in the literature
(see [8] for further references). He has also remarked that as in the case of Stine-
spring’s theorem the result below can be generalized further using the language
of Hilbert C∗-modules.

THEOREM 1.1 ([1]). If E is a Hilbert C∗-module over a unital C∗-algebra A, φ :
A → B(H1) is a completely positive map with φ(1) = 1 and Φ : E → B(H1, H2) is a
φ-map with the additional property Φ(x0)Φ(x0)

∗ = IH2 for some x0 ∈ E, where H1, H2
are Hilbert spaces, then there exist Hilbert spaces K1, K2, isometries V : H1 → K1,
W : H2 → K2, a ∗-homomorphism ρ : A → B(K1) and a ρ-representation Ψ : E →
B(K1, K2) such that

φ(a) = V∗ρ(a)V, Φ(x) = W∗Ψ(x)V, for all x ∈ E, a ∈ A.

The proof of this theorem as given in [1] is erroneous as the sesquilinear
form defined there on E⊗ H2 is not positive definite. This can be fixed by inter-
changing the indices i, j in the definition of this form. However such a modifica-
tion yields a “non-minimal” representation.

Moreover, the technical condition to have Φ(x0)Φ(x0)
∗ = IH2 for some x0 ∈

E is completely unnecessary.
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2. MAIN RESULTS

In this section we strengthen Asadi’s theorem for a φ-map Φ and discuss
the minimality of the representations.

THEOREM 2.1. LetA be a unital C∗-algebra and φ : A → B(H1) be a completely
positive map. Let E be a Hilbert A-module and Φ : E → B(H1, H2) be a φ-map. Then
there exists a pair of triples (ρ, V, K1) and (Ψ, W, K2), where

(i) K1 and K2 are Hilbert spaces;
(ii) ρ : A → B(K1) is a unital ∗-homomorphism and Ψ : E → B(K1, K2) is a

ρ-morphism;
(iii) V : H1 → K1 and W : H2 → K2 are bounded linear operators such that φ(a) =

V∗ρ(a)V, for all a ∈ A and Φ(x) = W∗Ψ(x)V, for all x ∈ E.

Proof. We prove the theorem in two steps.
Step 1. Existence of ρ, V and K1.
This is the content of Stinespring’s theorem ([7], Theorem 4.1, page 43). In

fact we can choose a minimal Stinespring representation (ρ, V, K1) for φ. That is
K1 = [ρ(A)VH1].

Step 2. Construction of Ψ, W and K2.
Let K2 := [Φ(E)H1]. For x ∈ E, define Ψ(x) : K1 → K2 by

Ψ(x)
( n

∑
j=1

ρ(aj)Vhj

)
:=

n

∑
j=1

Φ(xaj)hj, aj ∈ A, hj ∈ H1, j = 1, . . . , n, n > 1.

Since∥∥∥Ψ(x)
( n

∑
j=1

ρ(aj)Vhj

)∥∥∥2
=

n

∑
i,j=1
〈hj, V∗ρ(a∗j 〈x, x〉ai)Vhi〉6‖ρ(〈x, x〉)‖

∥∥∥ n

∑
j=1

ρ(aj)Vhj

∥∥∥2

6‖x‖2
∥∥∥ n

∑
j=1

ρ(aj)Vhj

∥∥∥2
,

Ψ(x) is well defined and bounded. Hence it can be extended to whole of K1. This
gives the required Ψ. To prove that Ψ is a ρ-morphism, let x ∈ E, aj ∈ A, hj ∈
H1, j = 1, 2, . . . , n, n > 1. Then〈

Ψ(x)∗Ψ(y)
( n

∑
j=1

ρ(aj)Vhj

)
,

n

∑
i=1

ρ(ai)Vhi

〉
=

n

∑
i,j=1
〈φ(〈xai, yaj〉)hj, hi〉

=
〈

ρ(〈x, y〉)
( n

∑
j=1

ρ(aj)Vhj

)
,

n

∑
i=1

ρ(ai)Vhi

〉
.

Thus Ψ(x)∗Ψ(y) = ρ(〈x, y〉) on the dense set span(ρ(A)VH1) and hence they are
equal on K1. Note that K2 ⊆ H2. Let W := PK2 , the orthogonal projection onto
K2. Then W∗ : K2 → H2 is the inclusion map. Hence WW∗ = IK2 . That is W is
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a co-isometry. Now for x ∈ E and h ∈ H1, we have W∗Ψ(x)Vh = Ψ(x)Vh =
Ψ(x)(ρ(1)Vh) = Φ(x)h.

DEFINITION 2.2. Let φ and Φ be as in Theorem 2.1. We say that a pair of
triples ((ρ, V, K1), (Ψ, W, K2)) is a Stinespring representation for (φ, Φ) if the con-
ditions (i)–(iii) of Theorem 2.1 are satisfied. Such a representation is said to be
minimal if:

(i) K1 = [ρ(A)VH1], and
(ii) K2 = [Ψ(E)VH1].

REMARK 2.3. The pair ((ρ, V, K1), (Ψ, W, K2)) obtained in the proof of The-
orem 2.1 is a minimal representation for (φ, Φ).

THEOREM 2.4. Let φ and Φ be as in Theorem 2.1. Let ((ρ, V, K1), (Ψ, W, K2))
and ((ρ′, V′, K′1), (Ψ

′, W ′, K′2)) be minimal representations for (φ, Φ). Then there exists
unitary operators U1 : K1 → K′1 and U2 : K2 → K′2 such that:

(i) U1V = V′, U1ρ(a) = ρ′(a)U1, for all a ∈ A, and
(ii) U2W = W ′, U2Ψ(x) = Ψ′(x)U1, for all x ∈ E.

That is, the following diagram commutes, for a ∈ A and x ∈ E :

H1
V - K1

ρ(a) - K1
Ψ(x)- K2 �

W
H2

K′1

U1

?

ρ′(a)
-

V ′
-

K′1

U1

?

Ψ′(x)
- K′2

U2

?�

W
′

Proof. Define U1 : span(ρ(A)VH1)→ span(ρ′(A)V′H1) by

U1

( n

∑
j=1

ρ(aj)Vhj

)
:=

n

∑
j=1

ρ′(aj)V′hj, aj ∈ A, hj ∈ H1, j = 1, . . . , n, n > 1,

which can be seen to be an onto isometry and the unitary extension of this is the
required map U1 : K1 → K2 ([7], Theorem 4.2, page 46).

Now define U2 : span(Ψ(E)VH1)→ span(Ψ′(E)V′H1) by

U2

( n

∑
j=1

Ψ(xj)Vhj

)
:=

n

∑
j=1

Ψ′(xj)V′hj, xj ∈ E, hj ∈ H1, j = 1, 2, . . . , n, n > 1.

Consider∥∥∥ n

∑
j=1

Ψ′(xj)V′hj

∥∥∥2
=

n

∑
i,j=1
〈hj, V′∗ρ′(〈xj, xi〉)V′hi〉 =

n

∑
i,j=1
〈hj, V∗ρ(〈xj, xi〉)Vhi〉

=
∥∥∥ n

∑
j=1

Ψ(xj)Vhj

∥∥∥2
.
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Thus U2 is well defined and is an isometry and can be extended to whole of K2,
call the extension U2 itself, and being onto it is a unitary.

Since ((ρ, V, K1), (Ψ, W, K2)) and ((ρ′, V′, K′1), (Ψ
′, W ′, K′2)) are representa-

tions for (φ, Φ), it follows that Φ(x) = W∗Ψ(x)V = W ′∗Ψ′(x)V′ = W ′∗U2Ψ(x)V
and hence (W∗ −W ′∗U2)Ψ(x)V = 0. Since [Ψ(E)VH1] = K2, it follows that
U2W = W ′. As Ψ is a ρ-morphism and Ψ′ is a ρ′-morphism, it can be shown
that

U2Ψ(x)
( n

∑
j=1

ρ(aj)Vhj

)
= Ψ′(x)U1

( n

∑
j=1

ρ(aj)Vhj

)
,

for all x ∈ E, aj ∈ A, hj ∈ H1, 1 6 j 6 n, n > 1, concluding U2Ψ(x) = Ψ′(x)U1.

REMARK 2.5. Let ((ρ, V, K1), (Ψ, W, K2)) be a Stinespring representation for
(φ, Φ). If φ is unital, then V is an isometry. If the representation is minimal, then
W is a co-isometry by the proof of Theorem 2.1 and (ii) of Theorem 2.4.

EXAMPLE 2.6. Let A = M2(C), H1 = C2, H2 = C8 and E = A ⊕ A. Let

D =

(
1 1

2
1
2 1

)
. Define φ : A → B(H1) by φ(A) = D ◦ A, for all A ∈ A; here

◦ denote the Schur product. As D is positive, φ is a completely positive map

(see Theorem 3.7, page 31 of [7] for details). Let D1 =

( 1√
2

0

0 1√
2

)
and D2 =( 1√

2
0

0 − 1√
2

)
. Let K1 = C4 and K2 = H2. Define Φ : E → B(H1, H2) and

Ψ : E→ B(K1, K2) by

Φ(A1 ⊕ A2) =



√
3√
2

A1D1
√

3√
2

A2D1

1√
2

A1D2

1√
2

A2D2


, Ψ(A1 ⊕ A2) =


A1 0
A2 0
0 A1
0 A2

 , for all A1, A2 ∈ A.

It can be verified that Φ is a φ-map.
Define V : H1→K1 and ρ : A → B(K1) by

V =

√3√
2

D1

1√
2

D2

 , ρ(A) =

(
A 0
0 A

)
, for all A ∈ A.

Clearly Ψ is a ρ-morphism and Φ(A1 ⊕ A1) = W∗Ψ(A1 ⊕ A2)V, where
W = IH2 . This example illustrates Theorem 2.1.

Note that in this example, there does not exists an x0 ∈ E with the property
that Φ(x0)Φ(x0)

∗ = IH2 , which is an assumption in Theorem 1.1.
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