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1. INTRODUCTION

William Barnes Arveson, born in November 1934, completed his doctorate
in 1964 at UCLA under the supervision of Henry Dye. After an instructorship
at Harvard, Bill began a long career at the University of California, Berkeley. He
died in November 2011, shortly before his 77th birthday, of complications result-
ing from surgery.

Arveson’s work was deep and insightful, and occasionally completely rev-
olutionary. When he attacked a problem, he always set it in a general framework,
and built all of the infrastructure needed to understand the workings. This is one
of the reasons that his influence has been so pervasive in many areas of operator
theory and operator algebras.

He worked in both operator theory and operator algebras. I think it is fair
to say that he did not really distinguish between the two areas, and proved over
and over again that these areas are inextricably linked. In [9], he writes in the
introduction, and in fact demonstrated many times, that:

“In the study of families of operators on Hilbert space, the self-
adjoint algebras have occupied a preeminent position. Neverthe-
less, many problems in operator theory lead obstinately toward
questions about algebras that are not necessarily self-adjoint.”
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Bill’s work moves across the landscape of operator theory and operator algebras,
and he developed many foundational ideas which wove the subject together as
an integrated whole.

It is not possible in a short article to review all of Bill’s contributions. I will
cover many of the highlights. The choices made reflect my personal taste, and I
extend my apologies to those who feel that their favourite Arveson paper is omit-
ted. There will be one glaring omission — E0-semigroups and CP semigroups.
Beginning with [21], Arveson wrote 24 papers (more than 650 pages) and a book
(450 pages) on this topic. It is too large a topic to cover in this article, and Masaki
Izumi has written a survey [69] of this area to appear in this same volume.

Bill Arveson was well-known to be an outstanding expositor. His papers
were always meticulously written. In addition, he wrote three graduate level
texts. His An invitation to C∗-algebras [17] is distinguished from other C∗-algebra
texts in that it develops in detail the structure of type I C∗-algebras and their
representation theory. A short course on spectral theory [24] is a brief introduction to
Banach algebras and operator theory. Noncommutative dynamics and E-semigroups
[26] is a full development of the theory of E0-semigroups.

Bill was also a dedicated supervisor. According to the Mathematics Geneal-
ogy Project, he had 27 doctoral students. At the memorial ceremony in Berkeley
in February, many of his former students paid their respects and told stories of
Bill as a mentor, inspiration and friend. He will be greatly missed. But his math-
ematics will live on.

2. DILATION THEORY

I will begin with Arveson’s contributions to dilation theory. While this is
not his first work, it is perhaps his most influential. It has had ramifications in
many aspects of operator algebras and operator theory.

In 1953, Bela Sz. Nagy [102] showed that for every operator T on Hilbert
space of norm at most one, there is a dilation to a unitary operator U on a larger
Hilbert space K = K− ⊕H⊕K+ of the form

U =

∗ 0 0
∗ T 0
∗ ∗ ∗

 ,

where ∗ represents an unspecified operator. In particular, the map from polyno-
mials in U to polynomials in T obtained by compression to H is easily seen to
be a contractive homomorphism. This recovers the von Neumann inequality for
contractions:

‖p(T)‖ 6 ‖p‖∞ := sup
|z|61
|p(z)| for all p ∈ C[z].
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When T does not have a unitary summand, this map extends to yield a
map from the algebra H∞ of bounded analytic functions on the unit disk into the
weakly closed algebra that T generates. This allows the transference of powerful
techniques from function theory to operator theory. See [103], [104] for more in
this direction.

These methods extended, in part, to pairs of commuting contractions. In
1964, Ando [5] showed that any commuting pair of contractions simultaneously
dilate to a pair of commuting unitaries. In particular, they also satisfy von Neu-
mann’s inequality for polynomials in two variables, where the norm on polyno-
mials is the supremum over the bidisk D2. In the one variable case, the minimal
dilation is unique in a natural sense. However, difficulties arise in the two vari-
able case because this dilation is no longer unique.

For commuting triples, there is a serious road block. Briefly skipping ahead
in the history, Parrott [80] used Arveson’s ideas to construct three commuting
contractions which do not dilate to commuting unitaries. Furthermore, exam-
ples developed later from the work of Varopoulos [108] on tensor product norms
showed that even von Neumann’s inequality can fail.

In two papers in Acta Mathematica [11], [13], Arveson revolutionized dila-
tion theory by reformulating it in the framework of an arbitrary operator algebra.
The algebra in Sz. Nagy’s case is the disk algebra A(D), and for Ando is the bidisk
algebra A(D2).

There were a number of key ideas that are central to Arveson’s approach.
First, an operator algebra A was a considered as a subalgebra of a C∗-algebra B.
Second, the correct representations were completely contractive, and yielded com-
pletely positive maps on A+A∗. Third, he claimed that every operator algebra A
lived inside a unique canonical smallest C∗-algebra called the C∗-envelope. These
ideas completely changed the way we look at dilations.

To elaborate, the k × k matrices over the C∗-algebra B, Mk(B), is itself a
C∗-algebra and thus carries a unique norm. This induces a family of norms on
the matrix algebras over A. Today we say that this gives A an operator space
structure. A map ϕ from A into B(H) (or into any C∗-algebra) induces maps ϕk
fromMk(A) intoMk(B(H)) ' B(H(k)) by acting by ϕ on each entry:

ϕk([aij]) = [ϕ(aij)].

We say that ϕ is completely bounded when

‖ϕ‖cb := sup
k>1
‖ϕk‖ < ∞.

It is completely contractive when ‖ϕ‖cb 6 1. When A is an operator system (a unital
self-adjoint subspace), we say ϕ is completely positive when ϕk is positive for all
k > 1.

Completely positive maps on C∗-algebras were introduced by Stinespring
[100], where he proved a fundamental structure theorem for completely positive
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maps. The notion was used by Størmer [101] in a study of positive maps on C∗-
algebras. However, Arveson really recognized the power of this idea, and turned
completely positive maps into a major tool in operator theory.

Every completely contractive unital map ρ of a unital operator algebra A
extends uniquely to a completely positive map ρ̃ on the operator systemA+A∗.
Arveson’s Extension Theorem established that this map extends to a completely
positive map on the C∗-algebra B.

THEOREM 2.1 (Arveson’s extension theorem 1969). Let S be an operator sys-
tem in a unital C∗-algebra B. If ϕ is a completely positive map from S into B(H), then
there is a completely positive extension Φ of B into B(H).

In modern terminology, this says that B(H) is injective in the category of op-
erator systems with completely positive maps. This is a generalization of Krein’s
theorem that positive linear functionals have a positive extension. The norm is
not increased because ‖Φ‖ = ‖Φ(1)‖ = ‖ϕ(1)‖ = ‖ϕ‖.

Stinespring’s Theorem shows that Φ is a corner of a ∗-representation π of
B. When restricted to A, we obtain a completely contractive representation of
the form

π(a) =

∗ 0 0
∗ ρ(a) 0
∗ ∗ ∗

 for all a ∈ A.

This is called a ∗-dilation of ρ. So we have

THEOREM 2.2 (Arveson’s dilation theorem 1969). Let A be a unital operator
algebra, and let ρ : A → B(H) be a representation. The following are equivalent:

(i) ρ is completely contractive.
(ii) ρ̃ is completely positive.

(iii) ρ has a ∗-dilation.

This result was highlighted in Paulsen’s book [83] and the expanded re-
vision [84]. In Arveson’s paper, this fundamental result is a remark following
Theorem 1.2.9.

Arveson was focussed on the notion of a boundary representation, that is, an
irreducible ∗-representation π of B with the property that π|A has a unique com-
pletely positive extension to B. These representations are the non-commutative
analogue of points in the spectrum of a function algebra which have a unique
representing measure — points in the Choquet boundary. When there are suffi-
ciently many boundary representations to represent A completely isometrically,
then there is a quotient of B which is the unique minimal C∗-algebra containing
A completely isometrically. This is the C∗-envelope of A.

Arveson was only able to establish the existence of this C∗-envelope in a
variety of special cases. For example, if B contains the compact operators and
the quotient by the compacts is not completely isometric onA+A∗, then B itself
is the C∗-envelope. He analyzed a variety of singly generated examples, always
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from the boundary representation viewpoint. In particular, Arveson introduced
the notion of matrix range of an operator T:

Wn(T) = {ϕ(T) : ϕ : C∗(T)→Mn unital completely positive} for n > 1.

In [12], he proved that the matrix range of an irreducible compact operator formed
a complete unitary invariant. Finding unitary invariants for operators was an im-
portant open problem. This provides a new invariant even for matrices. This was
strengthened in [13] to show that for any irreducible operator T such that C∗(T)
contains the compact operators, the matrix range is again a complete unitary in-
variant.

THEOREM 2.3 (Arveson 1972). If T1 and T2 are irreducible operators such C∗(Ti)
contains the compact operators, then T1 and T2 are unitarily equivalent if and only if

Wn(T1) = Wn(T2) for all n > 1.

A decade later, Hamana [66] established the existence of a unique mini-
mal injective operator system containing A, the injective envelope, and from this
deduced the existence of the C∗-envelope in complete generality. However it
shed little light on the existence of boundary representations. In 2005, Dritschel
and McCullough [55] produced a very different proof of the existence of the C∗-
envelope based on ideas of Agler [1]. It was more direct, and it showed that
every representation had a maximal dilation, which is a representation such that
any further dilation (to a completely contractive representation) can be obtained
only by adjoining another representation by a direct sum. This property in an-
other guise was recognized by Muhly and Solel [78], but their result relied on
Hamana’s theorem. This approach did not deal with the question of irreducible
representations either, so it still did not establish the existence of boundary rep-
resentations. Arveson revisited this question in the light of this new proof, and
established the existence of sufficiently many boundary representations when A
is separable [28].

In the past four decades, many tools have been developed for computing
C∗-envelopes, and they can now be computed for many classes of examples. They
have become a basic tool for the study of nonself-adjoint operator algebras.

Completely bounded maps took on a life of their own in the 1980s. Wittstock
[110] proved the extension theorem for completely bounded maps. Paulsen [82]
showed that this follows directly from Arveson’s extension theorem using a 2× 2
matrix trick.

The notion of completely bounded and completely positive maps has had
a profound influence on self-adjoint operator algebras. While the goal of Bill’s
paper was dilation theory, the theory of completely positive maps has had a life
of its own in the self-adjoint theory. The injectivity of B(H) led to deep work on
injective von Neumann algebras by Connes [46]. This was followed by work on
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nuclear C∗-algebras by Lance [73], and work by Choi, Effros and Lance determin-
ing the tight connection between nuclearity of a C∗-algebra and the injectivity of
the von Neumann algebra it generates [57], [40], [42].

When Brown, Douglas and Fillmore [35], [36] did their groundbreaking
work on essentially normal operators and the Ext functor (a K-homology the-
ory for C∗-algebras), Arveson pointed out how one obtains inverses in the Ext
group using completely positive maps. Later he wrote an important paper [18]
introducing quasicentral approximate units for C∗-algebras, and used this to pro-
vide a unified and transparent approach to Voiculescu’s celebrated generalized
Weyl–von Neumann theorem [109], the Choi–Effros lifting theorem [41], and the
structure of the Ext groups for nuclear C∗-algebras.

Completely positive and completely bounded maps also play a central role
in Kadison’s similarity problem, which asks whether every bounded represen-
tation of a C∗-algebra is similar to a ∗-representation. This was confirmed for
nuclear C∗-algebras by Bunce [37] and Christensen [44]. Then Haagerup [64] es-
tablished the result for cyclic representations of arbitrary C∗-algebras. Along the
way, he showed that a representation was similar to a ∗-representation if and only
if it was completely bounded. See Pisier’s monograph [88].

The theory of CP and CB maps led to a considerable revolution on the
nonself-adjoint side as well. One important application concerns the Sz. Nagy–
Halmos problem. An operator T is called polynomially bounded operator if there is
a constant C so that

‖p(T)‖ 6 C‖p‖∞ for all p ∈ C[x].

It is completely polynomially bounded if this inequality holds for matrices of polyno-
mials. Halmos’s refinement of Sz. Nagy’s question asks whether every polyno-
mially bounded operator is similar to a contraction.

Paulsen [81] showed that a representation of a unital operator algebra is
similar to a completely contractive one if and only if it is completely bounded.
He used this to show that every completely polynomially bounded operator is
similar to a contraction [82].

Then Pisier [87] showed that there are polynomially bounded operators
which are not similar to a contraction, solving the Sz. Nagy–Halmos problem.
See [84], [88] for good coverage of this material.

The notions of matrix norms and completely bounded maps led to an ab-
stract categorical approach to abstract operator systems, operator algebras and
operator spaces. This is significant because it frees the theory from reliance on
spatial representations.

Choi and Effros [43] characterized abstract operator systems. Ruan [96] es-
tablished a GNS style representation theorem for operator spaces; and Blecher,
Ruan and Sinclair [34] did the same for unital operator algebras. See [58], [89],
[33] for a treatment of this material.
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3. MAXIMAL SUBDIAGONAL ALGEBRAS

In his early work, Arveson used nonself-adjoint operator algebras to find
non-commutative analogues of results in analytic functions theory, to study dy-
namics on topological spaces, to study invariant subspaces, and even to study the
corona problem of Carleson. We will survey these results in the next few sections.

K. Hoffman [67] defined a logmodular function algebra to be a function al-
gebra A on a compact Hausdorff space X such that the set {log |h| : h ∈ A−1} is
norm dense in CR(X). He showed that this class shared many properties that the
algebra H∞ of bounded analytic functions on the disk enjoys. In fact H∞ satis-
fies the stronger property that every invertible real function f in L∞ has the form
log |h| for an invertible H∞ function. Indeed one can take h = exp( f + i f̃ ) where
f̃ is the harmonic conjugate of f . We say that H∞ is strongly logmodular, or that
it satisfies factorization.

Srinivasan and Wang [99] defined a weak-∗ closed subalgebra A of L∞(m)
to be a weak-∗ Dirichlet algebra if A + A∗ is weak-∗ dense in L∞(m) and the
functional ϕ( f ) =

∫
f dm is multiplicative. Hoffman and Rossi [68] show that

these algebras are logmodular. A variety of other properties such as factoriza-
tion, variants of Szegö’s theorem and Beurling’s invariant subspace theorem are
eventually shown to be equivalent to this property. See [32] for a survey of this
and the non-commutative generalizations.

In the paper [9] that came out of Arveson’s thesis [7], he developed a non-
commutative setting for logmodularity. This setting is a finite von Neumann al-
gebra M with a faithful normal state τ. A weak-∗ closed subalgebra A is tracial
if there is a normal expectation Φ of M onto A ∩A∗ which is a homomorphism
on A: Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A, and preserves the trace: τΦ = τ. A
(finite) maximal subdiagonal algebra is a tracial subalgebra of M such that A+A∗
is weak-∗ dense in M.

It is not hard to see that logmodularity of a function algebra is equivalent
to saying that {|h|2 : h ∈ A−1} is dense in CR(X), and that factorization is the
stronger property that every invertible real continuous function on X is exactly
|h|2 for some invertible h ∈ A. A subalgebraA of a C∗-algebra B is called logmod-
ular if {a∗a : a ∈ A−1} is dense in Bsa, and has factorization if this set coincides
with the set of all invertible self-adjoint elements. By the polar decomposition,
this latter property is equivalent to saying that every invertible element of B fac-
tors as b = ua for some a ∈ A and unitary u ∈ B.

Arveson [9] established the analogue of the Hoffman–Rossi result:

THEOREM 3.1 (Arveson 1967). Every maximal subdiagonal algebra satisfies fac-
torization.

An interesting class of examples is obtained as follows. Start with a chain L
of projections (in the usual order) in a finite von Neumann algebra M such that
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there is a normal expectation onto the commutant L′. Then

AlgL = {a ∈ M : ae = eae for all e ∈ L}
is a maximal subdiagonal algebra. Arveson also provides interesting examples
associated to ergodic group actions on measure spaces.

There are a variety of other important properties that H∞ satisfies, and sur-
prisingly many of them have natural non-commutative analogues. To describe
them, we need to introduce the Fuglede–Kadison determinant [60] which they
define on II1 factors, and Arveson extends to all finite von Neumann algebras.
Define ∆(a) = eτ(log |a|) when a is invertible, and in general

∆(a) = inf
ε>0

eτ(log(|a|+ε1)).

This map is multiplicative, positive homogeneous, monotone, self-adjoint; and it
is norm continuous on the invertible elements. Arveson makes this much more
tractable by showing that

∆(a) = inf{τ(|a|b) : b ∈ M−1, b > 0, τ(b) > 1}.
From this it follows that

∆(a) 6 ∆(Φ(a)) for all a > 0.

Now if h ∈ H∞, then Jensen’s inequality says that

log |h(0)| 6 1
2π

2π∫
0

log |h(eit)|dt.

Jensen’s formula states that this is an equality when h is invertible. We also men-
tion Szegö’s theorem, which states that if f is a positive function in L1, then

inf
h∈H∞ , h(0)=1

1
2π

2π∫
0

|h(eit)|2 f (t)dt = exp
( 1

2π

2π∫
0

log f (t)dt
)

.

Arveson defines the analogues in the non-commutative setting: a tracial
algebra A satisfies Jensen’s inequality if

∆(Φ(a)) 6 ∆(a) for all a ∈ A
and satisfies Jensen’s formula if

∆(Φ(a)) = ∆(a) for all a ∈ A−1.

Szegö’s formula becomes:

∆(b) = inf{τ(ba∗a) : a ∈ A, ∆Φ(a) > 1}.
Arveson [9] established that these three properties are equivalent, and that they
are satisfied in many classes of examples. Labuschagne [72] proved that these
properties hold for all maximal subdiagonal algebras. Then Blecher and Labus-
chagne [31] showed that for the class of tracial algebras, these properties are
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equivalent to logmodularity, and to factorization, and to the weak-∗ Dirichlet
property. See [32] for a survey of this material.

4. DYNAMICAL SYSTEMS

Arveson was interested in using operator algebras to obtain complete in-
variants for a discrete dynamical system in both the topological and the measure
theoretic settings.

In the measure setting, consider an ergodic transformation τ of a measure
space (X, m) where m is a probability measure. Two transformations σ and τ
are conjugate if there is a measure preserving automorphism Φ of X so that
σ = ΦτΦ−1. An important problem is to determine when two ergodic trans-
formations are conjugate.

This is easily transferred to a statement about operator algebras. Take M =
L∞(m) considered as acting on L2(m) by multiplication. The measure preserving
transformation τ induces an automorphism of M by

α(M f ) = M f ◦τ so that α(χE) = χ
τ−1(E).

Ergodicity means that the only fixed points of α are the scalars. If σ induces the
automorphism β, then conjugacy of σ and τ converts to conjugacy of α and β in
the automorphism group of M.

Every automorphism α of M determines a unique unitary map U as follows.
Since L∞(m) is a dense subset of L2(m), we set

U(g) = α(Mg)1 for all g ∈ L∞(m).

Then one readily checks that this extends to a unitary operator such that

α(Mg) = UMgU∗ for all g ∈ L∞(m).

The conjugacy of two transformations reduces to unitary equivalence of the two
automorphisms.

Arveson’s idea was to construct an operator algebra A(α) as the norm clo-
sure of

A0(α) =
{ k

∑
i=1

M fi
Ui : fi ∈ L∞(m), k > 0

}
.

His main result in [8] is that conjugacy of two automorphisms α and β is equiva-
lent to the unitary equivalence of A(α) and A(β).

His results actually got a lot more mileage in the topological setting, which
he and Josephson developed in [29]. Begin with a locally compact Hausdorff
space X and a proper map σ of X into itself. As we shall see, construction of
a nonself-adjoint operator algebra does not require the map σ to be invertible.
Two dynamical systems (X, σ) and (Y, τ) are (topologically) conjugate if there is
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a homeomorphism γ of Y onto X so that σ = γτγ−1. Again the issue is to decide
when two systems are conjugate.

The map σ induces an endomorphism α of C(X) by composition. When σ
is a homeomorphism, this map is an automorphism. So we consider a dynamical
system as the pair (C(X), α). Arveson and Josephson construct a nonself-adjoint
operator algebra in an analogous way to the measure theoretic setting. Their
construction depended on the existence of a quasi-invariant measure and small
fixed point set. Indeed they put rather stringent conditions on the maps:

Suppose that (X, σ) and (Y, τ) are two topological dynamical systems satis-
fying the following conditions:

(i) σ and τ are homeomorphisms;
(ii) there is a regular Borel probability measure µ on X which is quasi-invariant

for σ, i.e. µ ◦ σ and µ are mutually absolutely continuous;
(iii) µ(O) > 0 for every non-empty open set O ⊂ X;
(iv) the set P = {x ∈ X : σn(x) = x for some n > 1} of periodic points has

measure zero;
(v) there is a regular Borel probability measure ν on Y with these same prop-

erties, and in addition τ is ergodic with respect to ν.

Arveson and Josephson use these properties to build algebras A(α) and
A(β) as in the measure theoretic setting, but using continuous functions rather
than L∞(µ), by constructing an explicit representation on L2(µ).

What I will describe instead is a more general construction due to Peters
[85] called the semicrossed product. This has the major advantages that it does
not depend on any measure, and we may consider non-invertible systems (X, τ)
where τ is any proper continuous map from X into itself.

The key new notion is that of a covariant representation (π, V) where π is a
∗-representation of C(X) on a Hilbert space H and V ∈ B(H) is a contraction
such that

Vπ( f ) = π(α( f ))V for all f ∈ C(X).

Peters defines the operator algebra C(X)×α Z+ to be the universal operator alge-
bra for covariant representations. To form this algebra, let A0(α) be the set of all

formal polynomials of the form
k
∑

i=0
fiτ

i for fi∈C(X) and k>0. Define a norm by

∥∥∥ k

∑
i=0

fiτ
i
∥∥∥ := sup

{∥∥∥ k

∑
i=1

π( fi)Vi
∥∥∥ : (π, V) is covariant

}
.

The semicrossed product is the completion of A0(α) in this norm.
Peters shows that a sufficient family of covariant representations is given by

the orbit representations: fix x ∈ X and define a representation πx

πx( f ) = diag( f (x), f (τ(x)), f (τ2(x)), . . . )
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and set V to be the unilateral shift. The direct sum over a dense subset of X
yields a faithful completely isometric representation of A(α). In particular, τ is
represented by an isometry.

Peters shows that subject to the Arveson–Josephson hypotheses, their alge-
bra A(α) coincides with the semicrossed product C(X)×α Z+.

I can now state the Arveson–Josephson result in this modern terminology.

THEOREM 4.1 (Arveson–Josephson 1969). Suppose that (X, σ) and (Y, τ) are
two topological dynamical systems, and let α and β be the automorphisms of C(X) and
C(Y) induced by σ and τ respectively. Furthermore assume conditions (i)–(v) listed
above. Then the following are equivalent:

(1) (X, σ) and (Y, τ) are conjugate.
(2) C(X)×α Z+ and C(Y)×β Z+ are completely isometrically isomorphic.
(3) C(X)×α Z+ and C(Y)×β Z+ are algebraically isomorphic.

Peters improved on this result considerably by removing the conditions (i),
(ii), (iii) and (v) at the expense of a slight strengthening of (iv) to

(a) X is compact.
(b) σ has no periodic points.

He obtained the same equivalence. Hadwin and Hoover [65] further im-
proved on this. Finally Davidson and Katsoulis [50] removed all of these condi-
tions, and showed that (1), (2) and (3) are equivalent for arbitrary proper maps of
locally compact Hausdorff spaces with no conditions on periodic points at all.

5. INVARIANT SUBSPACES

The invariant subspace problem, which remains open today, was a popular
topic four decades ago. Arveson made some important contributions, which as
usual, stressed operator algebras rather than single operator theory.

If A is an algebra of operators on a Hilbert space H, let

LatA = {M is a closed subspace ofH : AM ⊂ M},

and if L is a collection of subspaces, then

Alg(L) = {T ∈ B(H) : TM ⊂ M for all M ∈ L}.

Halmos called an operator algebra reflexive if A = Alg LatA. This algebra is al-
ways unital and closed in the weak operator topology (WOT-closed). An operator
algebra is transitive if it has no proper closed invariant subspace. The transitive
algebra problem asks whether there is a proper unital WOT-closed transitive op-
erator algebra.

Arveson’s first contribution to invariant subspace theory recognized the ad-
vantage of having a masa (maximal abelian self-adjoint algebra) in A. Note that
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he shows that the algebra is dense in the weak-∗ topology, rather than weak op-
erator topology. This is a subtle, and occasionally non-trivial, strengthening.

THEOREM 5.1 (Arveson’s density theorem 1967). A transitive subalgebra of
B(H) which contains a masa is weak-∗ dense in B(H).

This result received a fair bit of interest, and a generalization was found by
Radjavi and Rosenthal [93]: if A is an operator algebra containing a masa, and
LatA is a chain (nest), then the WOT-closure of A is reflexive.

Perhaps this result prompted Bill to revisit the issue. He decided to study
weak-∗ closed operator algebras containing a masa, to determine whether all
such operator algebras are reflexive. We assume that the Hilbert space is sep-
arable. The masa D is spatially isomorphic to L∞(µ) acting on L2(µ) for some
sigma-finite Borel measure µ. If A ⊃ D, then LatA ⊂ LatD. If M ∈ LatD, then
the orthogonal projection PM commutes with D; and by maximality, PM belongs
to D. So LatA can be naturally identified with a sublattice of the lattice of pro-
jections in D. In particular, these projections all commute. In addition, the lattice
is complete (as a lattice, and as a SOT-closed set of projections). Such a lattice is
called a commutative subspace lattice (CSL).

In a 100 page tour de force in the Annals of Mathematics, Arveson [14] de-
veloped an extensive theory for these operator algebras. The first major result is
a spectral theorem for CSLs.

THEOREM 5.2 (Arveson 1974). If L is a CSL on a separable Hilbert space, there
is a compact metric space X, a regular Borel measure µ on X, and a Borel partial order
� on X so that L is unitarily equivalent to the lattice of projections onto the (essentially)
increasing Borel sets.

Then he develops a class of pseudo-integral operators and identifies when
one is supported on the graph of the partial order; and hence belongs to AlgL.
Curiously, while the pseudo-integral operators seem to depend on the choice of
coordinates, the weak-∗ closure of the pseudo-integral operators supported on
the graph of the partial order is independent of all choices. He calls this algebra
Amin(L). He shows that LatAmin(L) = L and hence Lat AlgL = L for all CSLs.
One of the main results is:

THEOREM 5.3 (Arveson 1974). If L is a CSL on a separable Hilbert space, then
there is a weak-∗ closed operator algebraAmin(L) containing a masa with Lat(Amin(L))
= L so that: a weak-∗ closed operator algebra A containing a masa has Lat(A) = L if
and only if Amin ⊆ A ⊆ Alg(L).

Surprisingly, it is possible for Amin(L) to be properly contained in Alg(L),
even if it is WOT-closed. An example is constructed based on the failure of spec-
tral synthesis on S3 in harmonic analysis. He calls a lattice synthetic if Amin(L) =
Alg(L). Many examples of synthetic lattices are produced, including lattices
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which are generated by finitely many commuting chains, and lattices associated
to certain ordered groups. This is a definitive answer to the question.

The area of CSL algebras has received a lot of attention. See [20] for a survey
of some of this material. Also see [49] for further material.

6. NEST ALGEBRAS AND THE CORONA THEOREM

Kadison and Singer [71] initiated a theory of triangular operator algebras.
While their algebras were not necessarily WOT-closed or even norm-closed, Ring-
rose [94], [95] developed a related class that are WOT-closed and reflexive. He
calls a complete chain of subspaces N a nest. A nest algebra is T (N ) := AlgN ,
the algebra of all operators which are upper triangular with respect to the nestN .
In the first paper, he characterized the Jacobson radical. In the second, he showed
that any algebra isomorphism between two nest algebras is given by a similarity.

Arveson’s paper [16] was very influential for the subject of nest algebras. In
particular, he developed a distance formula from an arbitrary operator to T (N ).
Note that if N ∈ N and T ∈ T (N ), the invariance of N may be expressed alge-
braically by TPN = PNTPN , or equivalently P⊥N TPN = 0. Therefore if A ∈ B(H)
and T ∈ T (N ), we see that

‖P⊥N APN‖ = ‖P⊥N (A− T)PN‖ 6 inf
T∈T (N )

‖T − A‖ = dist(A, T (N )).

This inequality remains valid if we take the supremum over all N ∈ N . Surpris-
ingly, this leads to an exact formula:

THEOREM 6.1 (Arveson’s distance formula 1975). LetN be a nest on a Hilbert
spaceH; and let A ∈ B(H). Then

dist(A, T (N )) = sup
N∈N

‖P⊥N APN‖.

This and other results about nest algebras proved important in the development
of the theory.

A separable continuous nest is a nest which is order isomorphic to I = [0, 1].
The Volterra nest N consisting of subspaces

Nt = L2(0, t) ⊂ H = L2(0, 1) for 0 6 t 6 1

is an example which is multiplicity free, in that the projections onto Nt generate a
masa. The infinite ampliationM given by Mt = L2((0, t)× I) ⊂ L2(I2) generates
an abelian von Neumann algebra with non-abelian commutant. So T (N ) and
T (M) are not unitarily equivalent. Ringrose [95] asked whether they could be
similar.

Three students of Arveson’s eventually solved this problem completely. An-
dersen [4] showed that any two continuous nests are approximately unitarily
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equivalent. So in particular, there is a sequence of unitaries Un so that

[0, 1] 3 t→ PMt −UnPNt U
∗
n

are continuous, compact operator valued functions converging uniformly to 0.
(Arveson [19] generalized this to certain CSL algebras.) Larson [74] used this to
solve Ringrose’s problem by showing that any two continuous nests are similar.
Shortly afterwards, Davidson [48] showed that if two nests are order isomorphic
via a map which preserves dimensions of differences of nested subspaces, then
there is a similarity of the two nests implementing the isomorphism; and the
similarity may be taken to be a small compact perturbation of a unitary operator.
See [49] for more material on nest algebras.

Arveson was also interested in finding an operator theoretic proof of the
famous corona theorem of Carleson [39]. This result is formulated as follows:
suppose that f1, . . . , fn are functions in H∞ for which there is an ε > 0 so that

inf
z∈D

n

∑
i=1
| fi(z)|2 > ε.(†)

Then there are functions gi ∈ H∞ so that
n
∑

i=1
figi = 1. A reformulation of this

result is that the unit disk D is dense in the maximal ideal space of H∞. Carleson’s
proof was very difficult, and people continue to look for more accessible proofs.
An easier (but not easy) proof, based on unpublished ideas of Thomas Wolff, is
now available. See Garnett’s book [61].

Arveson had an operator theoretic approach to the corona theorem. H2 is
the Hardy space of square integrable analytic functions on the disk D considered
as a subspace of L2(T). Represent H∞ on H2 as multiplication operators Th (these
are analytic Toeplitz operators). In [16], he established this variation of Carleson’s
theorem:

THEOREM 6.2 (Arveson’s Toeplitz corona theorem 1975). If f1,. . ., fn∈H∞ and
n

∑
i=1

Tfi
T∗fi

> εI,(‡)

then there are gi ∈ H∞ so that
n
∑

i=1
figi = 1.

This result is weaker than the corona theorem because (‡) is a stronger hy-
pothesis than (†). To see this, we use the fact that H2 is a reproducing kernel
Hilbert space: the functions

kw(z) =
(1− |w|2)1/2

1− zw

are unit vectors for w ∈ D with the property that T∗h kw = h(w)kw. Applying
the vector state ρw(A) = 〈Akw, kw〉 to (‡) for w ∈ D, one recovers Carleson’s
condition (†).
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It turns out that Toeplitz corona theorems are useful in establishing full
corona theorems. Ball, Trent and Vinnikov [30] established a Toeplitz corona the-
orem for all complete Nevanlinna–Pick kernels as a consequence of their commu-
tant lifting theorem. This was a useful step towards a bona fide corona theorem
by Costea, Sawyer and Wick [47] for Drury–Arveson space, among other spaces.
For definitions of these concepts, see Section 8.

7. AUTOMORPHISM GROUPS

In [15], Arveson developed a spectral analysis of automorphism groups act-
ing on C∗-algebras and von Neumann algebras.

Here G is a locally compact abelian group with Haar measure dt. A repre-
sentation is a bounded representation t→ Ut in B(X), where X is a Banach space,
and the representation is assumed to be continuous with respect to a certain weak
topology. In particular, SOT-continuous unitary representations on Hilbert space
form an important special case. A standard technique extends this to a bounded
representation πU of L1(G) such that

πU( f )ξ =
∫
G

f (t)Utξ dt.

We may regard the Fourier transform as the Gelfand transform of the com-
mutative Banach algebra L1(G) into C(Ĝ), where Ĝ is the dual group consisting
of continuous characters of G. When f ∈ L1(G), its zero set is Z( f ) = {γ ∈ Ĝ :
f̂ (γ) = 0}.

We define the spectrum of the representation U to be

sp U =
⋂
{Z( f ) : f ∈ L1(G), πU( f ) = 0}.

Moreover, if ξ ∈ H, then the spectrum of ξ is

spU(ξ) =
⋂
{Z( f ) : f ∈ L1(G), πU( f )ξ = 0}.

Then if E is a closed subset of Ĝ, we define the spectral subspace to be

MU(E) = {ξ : spU(ξ) ⊂ E}.
When U is a strongly continuous unitary representation on Hilbert space, Stone’s
theorem yields a projection valued measure dPγ on Ĝ so that Ut =

∫̂
G

γ(t)dPγ;

and MU(E) = P(E)H. But in more general contexts, there is often no version of
Stone’s theorem. Nevertheless, the spectral subspaces form a substitute, and they
determine the representation uniquely:

THEOREM 7.1 (Arveson 1974). Let X be a Banach space, and let U and V be two
strongly continuous representations of G on X. If MU(E) = MV(E) for every compact
subset E of Ĝ, then U = V.
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An important application of this theory is to a one parameter group of au-
tomorphisms acting on a von Neumann algebra R ⊂ B(H). That is, t → αt is a
weak-∗ continuous representation of R into Aut(R).

Arveson was interested in finding conditions that determine when this
group is unitarily implemented, i.e. when αt = Ad Ut, where U is a strongly
continuous unitary representation with Ut ∈ R and sp U ⊂ [0, ∞). Let Rα(E) =
{A ∈ R : spα(A) ⊂ E}. The answer is given by:

THEOREM 7.2 (Arveson 1974). Let (αt) be a weak-∗ continuous representation
of R into Aut(R). Then there is a strongly continuous unitary representation U with
Ut ∈ R and sp U ⊂ [0, ∞) such that αt = Ad Ut for t ∈ R if and only if

⋂
t∈R
Rα[t, ∞) = {0}.

Moreover Ut =
+∞∫
−∞

eitx dP(x) where P is the spectral measure such that

P[t, ∞)H =
⋂
s<t
Rα[s, ∞)H.

Arveson used this to provide a new proof of the famous theorem of Kadison
[70] and Sakai [97] that every derivation of a von Neumann algebra is inner.

Alain Connes [45] used the Arveson spectrum to define the more refined
Connes spectrum of an automorphism group that allows one to define the type
IIIλ factors.

One can show that

Rα[s, ∞)Rα[t, ∞) ⊂ Rα[s + t, ∞).

It follows that H∞
α (R) = Rα[0, ∞) is a weak-∗ closed subalgebra of R. This is

sometimes a maximal subdiagonal algebra, but not always.
A very curious result of Loebl and Muhly [75] exhibits an example where

H∞
α (R) is a proper nonself-adjoint subalgebra of R which is WOT-dense in R.

A variant on the transitive algebra problem deals with reductive algebras, mean-
ing that every invariant subspace is reducing (or that the orthogonal complement
of every invariant subspace is invariant). It asks whether every WOT-closed re-
ductive operator is a von Neumann algebra. Loebl and Muhly’s construct is a
reductive weak-∗ closed algebra which is not self-adjoint (but the WOT-closure is a
von Neumann algebra).

I will now skip ahead to some more recent results. As I mentioned in the
introduction, in the intervening period, Bill was very interested in E0-semigroups
and CP-semigroups. This work will be covered in the article [69] by Izumi in this
volume.
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8. MULTIVARIABLE OPERATOR THEORY

As discussed in Section 2, the Sz. Nagy dilation theorem led to a develop-
ment of function-theoretic techniques in single operator theory. In particular, if T
is a contraction with no unitary summand, then it has an H∞ functional calculus.
This has many ramifications. See [104] for an updated look at this material.

The examples of Parrott and Varopolous, also mentioned in Section 2, ex-
plain why there are problems with a straightforward generalization of this dila-
tion theory to several variables by studying d-tuples of commuting contractions.

It turns out that a different choice of norm condition leads to a better theory.
The more tractable norm condition on an d-tuple T1, . . . , Td is a row contractive
condition: consider T = [T1, . . . , Td] as an operator mapping the direct sum H(d)

of d copies ofH intoH and require that

‖T‖ =
∥∥∥ d

∑
i=1

TiT∗i
∥∥∥1/2

6 1.

In the non-commutative case, the appropriate model for the dilation theo-
rem is best described as the left regular representation of the free semigroup F+

d ,
consisting of all words in an alphabet {1, . . . , d}, acting on `2(F+

d ) by

Liξw = ξiw for 1 6 i 6 d, w ∈ F+
d .

The space `2(F+
d ) can be realized as the full Fock space over E = Cd, namely

`2(F+
d ) ' ∑

k>0

⊕E⊗k = C⊕Cd ⊕Cd2 ⊕ · · ·

where E⊗k = Cdk
is identified with the span of words of length k. In this view,

the operators Li become the creation operators that tensor on the left by ei, where
e1, . . . , ed is the standard basis for Cd.

The dilation theorem is that every row contraction T dilates to a row isom-
etry V = [V1, . . . , Vd] where V∗i Vj = δij I. Furthermore, there is a decomposition

Vi ' L(α)
i ⊕Wi where α is a cardinal and W1, . . . , Wd are generators of a represen-

tation of the Cuntz algebra Od. This was established for d = 2 by Frazho [59], for
finite d by Bunce [38] and for arbitrary d including infinite values, and unique-
ness, by Popescu [90]. Popescu has written a long series of papers developing
the Sz. Nagy–Foiaş theory in this context. The WOT-closed algebras generated
by row isometries have also been extensively studied by Popescu beginning with
[91] and Davidson and Pitts beginning with [51].

The dilation theory for commuting row contractions came earlier, but was
exploited later. Drury [56] showed that every commuting row contraction with
‖T‖ < 1 dilates to a direct sum of copies of a certain d-tuple of weighted shifts,
S = [S1, . . . , Sd], now called the d-shift. This was refined by Müller and Vasilescu
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[79] to show that if ‖T‖ 6 1, then T dilates to a row contraction V with commut-
ing entries so that Vi ' S(α)

i ⊕ Ni where the Ni are commuting normal operators

such that
d
∑

i=1
Ni N∗i = I, a spherical isometry. Perhaps the reason this did not go

further at the time is that the exact nature of the d-tuple S was not realized.
Arveson began a program of multivariable operator theory in [22]. He re-

proved the Drury–Müller–Vasilescu dilation theorem. Moreover, he showed that
the d-shift has a natural representation on symmetric Fock space over E = Cd. Let
Ek denote the symmetric tensor product of k copies of E, which can be considered
as the subspace of E⊗k which is fixed by the action of the permutation group Sk
which permutes the terms of a tensor product of k vectors. Then

H2
d = ∑

k>0

⊕ Ek ⊂ `2(F+
d ).

This space is coinvariant for the creation operators Li, and Si = PH2
d
Li|H2

d
.

There is a natural basis

zk =
k!
|k|! ∑

|w|=k, w(z)=zk

ξw,

where k = (k1, . . . , kd) ∈ Nd
0, |k| = ∑

i
ki, k! := ∏

i
ki! and zk := zk1

1 zk2
2 · · · z

kd
d . This is

an orthogonal but not orthonormal basis since ‖zk‖2 = k!/|k|! =: ck. In this basis,
Si is just multiplication by zi. The space H2

d may now be considered as the space
of analytic functions

f (z) = ∑
k∈Nd

0

akzk such that ∑
k∈Nd

0

|ak|2ck < ∞.

These series converge on the unit ball Bd of Cd, so are bona fide functions. This is
a reproducing kernel Hilbert space (RKHS), meaning that w ∈ Bd separate points
and the value of f (w) may be recovered by

f (w) = 〈 f , kw〉 where kw(z) =
1

1− 〈z, w〉 , w ∈ Bd.

The space H2
d is now often called Drury–Arveson space.

Every RKHS has an algebra of multipliers, those functions which multiply
the space into itself. The multiplier algebra Md = Mult(H2

d) of H2
d consists of

bounded analytic functions on the ball Bd. It is the WOT-closed unital algebra
generated by S1, . . . , Sd. However the norm is greater than the sup norm, and is
not comparable — soMd is a proper subalgebra of H∞(Bd).

The C∗-algebra C∗(S) := C∗(S1, . . . , Sn) contains the compact operators K,
and C∗(S)/K ' C(∂Bd), the boundary sphere of Bd — which is the spectrum of
the generic spherical isometry. So one deduces that this is the C∗-envelope of the
unital nonself-adjoint algebra Ad generated by S1, . . . , Sd.
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The classical Nevanlinna–Pick theorem [86] for the unit disk states that
given z1, . . . , zn ∈ D and w1, . . . , wn ∈ C, there is a function h ∈ H∞ with
‖h‖∞ 6 1 so that h(zi) = wi if and only if[1− wiwj

1− zizj

]
n×n

is positive definite. A matrix version states that given z1, . . . , zn in the disk, and
r × r matrices W1, . . . , Wn, there is a function F in the the unit ball of Mr(H∞)
such that F(zi) = Wi if and only if the Pick matrix[ Ir −WiW∗j

1− zizj

]
n×n

is positive semidefinite. Sarason [98] put this into an operator theoretic context.
An RKHSH of functions on a set X is a natural place to study interpolation.

One asks the same question: given x1, . . . , xn ∈ X and r× r matrices W1, . . . , Wn,
is there a function F in the the unit ball ofMr(Mult(H)) so that F(zi) = Wi? It
is easy to show that a necessary condition is the positive semidefiniteness of the
matrix

[(Ir −WiW∗j )〈kxj , kxi 〉]n×n.

A space for which this is also a sufficient condition is called a complete Nevan-
linna–Pick kernel.

Complete Nevanlinna–Pick kernels were characterized by Quiggin [92] and
McCullough [76]. It follows from their characterization that H2

d is a complete
Nevanlinna–Pick kernel. This was shown from a completely different angle, by
showing that the non-commutative WOT-closed algebra Ld on Fock space gen-
erated by L1, . . . , Ld has a good distance formula for ideals [52], [6], and hence
has a Nevanlinna–Pick theory based on Sarason’s approach. It follows thatMd
is a complete quotient of Ld, and hence is a complete Nevanlinna–Pick kernel.
Finally, Agler and McCarthy [2] give a new proof of the Quiggin–McCullough
theorem, and show that Md for d = ∞ is the universal complete Nevanlinna–
Pick kernel in the sense that every irreducible complete Nevanlinna–Pick RKHS
imbeds in a natural way into H2

d . See [3] for an overview of this theory.
The confluence of these very different directions leading to the same space,

H2
d , is remarkable: the good dilation theory for commuting row contractions, the

close relationship with the non-commutative model Ld, and the fact that this is
a complete Nevanlinna–Pick kernel. All play a role in making H2

d a very fertile
environment in which to study multivariable operator theory.

Associated to any row contraction T is the completely positive contractive
map

ϕ(A) =
d

∑
i=1

Ti AT∗i .
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Notice that T is spherical if and only if ϕ(I) = I. We call a row contraction T pure
if there is no spherical part. The decreasing sequence

I > ϕ(I) > ϕ2(I) > · · ·

always has a limit in the strong operator topology. This limit ϕ∞(I) is 0 if and
only if T is pure.

In [23], Arveson begins a much more algebraic approach to multivariable
operator theory. Douglas particularly has espoused the approach of considering
a Hilbert space H with an operator algebra A acting on it via a representation
ρ : A → B(H) as a Hilbert module over A with the action a · ξ = ρ(a)ξ. This
approach was developed for function algebras in the monograph [53] by Douglas
and Paulsen.

In this context, one begins with a commuting row contractive d-tuple T
acting on H, and consider H as a module over C[z] := C[z1, . . . , zd] given by
p · ξ = p(T1, . . . , Td)ξ. In order to use results from algebra effectively, assume
that the defect operator

∆ := (I − TT∗)1/2 =
(

I −
d

∑
i=1

TiT∗i
)1/2

has finite rank; and define rank(T) := rank(∆). We also say that H is a Hilbert
module of the same rank.

Form a finitely generated module over C[z] as follows

MH := {p · ξ : p ∈ C[z], ξ ∈ ∆H}.

This space is not closed; so it is a finitely generated C[z] module algebraically.
From commutative algebra (Hilbert’s syzygy theorem), one obtains a free resolu-
tion

0→ Fn → Fn−1 → · · · → F1 → MH → 0.

Each Fi is a finitely generated free C[z]-module of rank βi < ∞. One can define
an invariant known as the Euler characteristic

χ(H) :=
n

∑
i=1

(−1)i+1βi

which is independent of the choice of resolution.
Motivated by an analogy with the Gauss–Bonnet theorem relating the cur-

vature of a manifold to its topological invariants, Arveson also defines an analytic
invariant that he calls curvature. Set

T(z) =
d

∑
i=1

ziTi = [T1 · · · Td][z1 · · · zd]
∗.

This satisfies ‖T(z)‖ 6 ‖z‖2. Thus we may define a function on the ball by

F(z) = ∆(I − T(z)∗)−1(I − T(z))−1∆|∆H ∈ B(∆H) for z ∈ Bd.
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The boundary values, appropriately weighted, exist in the sense that

K0(ζ) = lim
r→1−

(1− r2)Tr F(rζ) exists a.e. for ζ ∈ ∂Bd.

Define the curvature ofH to be

K(H) =
∫

∂Bd

K0(ζ)dσ(ζ)

where σ is normalized Lebesgue measure on the sphere ∂Bd.

THEOREM 8.1 (Arveson 2000). LetH be a finite rank Hilbert module. Then

K(H) = d! lim
n→∞

Tr(I − ϕn+1(I))
nd

and

χ(H) = d! lim
n→∞

rank(I − ϕn+1(I))
nd .

It is immediate that 0 6 K(H) 6 χ(H). Examples show that this inequality
may be proper. However there is an important context in which they are equal.
Say that H is graded if there is a strongly continuous unitary representation Γ of
the circle T onH so that

Γ(t)TiΓ(t)∗ = tTi for all 1 6 i 6 d, t ∈ T.

This is called a gauge group on H. When H is graded, Fourier series allows the
decomposition of H into a direct sum of subspaces Hn = {ξ ∈ H : Γ(t)ξ = tnξ}.
WhenH is finite rank, these are all finite dimensional. Arveson calls the following
result his analogue of the Gauss–Bonnet theorem:

THEOREM 8.2 (Arveson 2000). Let H be a graded finite rank Hilbert module.
Then

K(H) = χ(H).

In particular, the curvature is always an integer in the graded case. Arve-
son hypothesized that it was always an integer. This conjecture was verified by
Greene, Richter and Sundberg [62].

An important tool for multivariable operator theory is the Taylor spectrum
and functional calculus [106], [107]. Arveson [25] builds a Dirac operator based
on this theory. Let Z = Cd with basis e1, . . . , ed; and let ΛZ be the exterior algebra
over Z, namely

ΛZ = Λ0Z⊕Λ1Z⊕ · · · ⊕ΛdZ

where ΛkZ is spanned by vectors of the form x1 ∧ · · · ∧ xk. For z ∈ Z, there is a
Clifford operator given by

C(z)(x1 ∧ · · · ∧ xk) = z ∧ x1 ∧ · · · ∧ xk.
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Now form H̃ = H⊗ΛZ, and for λ ∈ Cd and z ∈ Z, define

Bλ =
d

∑
i=1

(Ti − λi I)⊗ C(ei), Dλ = Bλ + B∗λ and R(z) = I ⊗ (C(z) + C(z)∗).

Arveson observes that λ is not in the Taylor spectrum of T if and only if Dλ is
invertible. The pair (D0, R) is called the Dirac operator for T.

Now the graded space H̃ splits into its even and odd parts:

H̃+ = ∑
i even

⊕
(H⊗ΛiZ) and H̃− = ∑

i odd

⊕
(H⊗ΛiZ).

Note that D0 maps H̃+ into H̃− and vice versa. Let D+ = D0|H̃+
considered as

an operator in B(H̃+, H̃−). The relationship to curvature is the following index
theorem:

THEOREM 8.3 (Arveson 2002). If T is a pure graded row contraction, then both
ker D+ and ker D∗+ are finite dimensional, and

(−1)dK(H) = ind D+ = dim ker D+ − dim ker D∗+.

Stability of the Fredholm index leads to the corollary that two d-contractions
T and T′, which are both Fredholm and are unitarily equivalent modulo the com-
pact operators, have the same curvature. He observes that if the commutators
[Ti, T∗j ] are compact, then DT is Fredholm.

Finally we discuss [27] in which Arveson considers pure graded finite rank
d-contractions. By the dilation theorem for commuting row contractions, such a
row contraction is obtained from a graded submodule M of H2

d ⊗ Cn, where n
is finite. Graded means that M is spanned by homogeneous polynomials, and
thus is generated by a finite set of homogeneous polynomials (Hilbert’s basis
theorem).

An easy calculation shows that the multipliers Si on H2
d satisfy

[Si, S∗j ] = SiS∗j − S∗j Si ∈ Sp for all 1 6 i, j 6 d, p > d,

where Sp is the Schatten p-class of compact operators with s-numbers lying in `p.
Examples suggest that this condition on the commutators [Ti, T∗j ] should persist

for graded submodules M, i.e. Ti = S(n)
i |M. Arveson establishes this for mod-

ules generated by monomials of the form zk1
1 · · · z

kd
d ⊗ ξ. Moreover he makes the

following conjecture:

CONJECTURE 8.4 (Arveson 2005). If T = [T1, . . . , Td] is a pure graded finite
rank d-contraction, then [Ti, T∗j ] ∈ Sp for all 1 6 i, j 6 d and p > d.

Douglas [54] further refines this conjecture first by enlarging the family of
Hilbert modules considered, and more significantly by considering the ideal I
of all polynomials annihilating the d-tuple T. Let Z be the zero set of this ideal.
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Then Douglas conjectures that the commutators [Ti, T∗j ] should lie in Sp for all
p > dim(Z ∩Bd).

There are no known counterexamples, so both of these conjectures remain
open. There has been a lot of recent interest. The best result so far, due to Guo
and Wang [63], establishes Arveson’s conjecture when d = 2 or 3, and when M is
singly generated.
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