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ABSTRACT. We introduce a relative tensor product of C∗-bimodules and a
spatial fiber product of C∗-algebras that are analogues of Connes’ fusion of
correspondences and the fiber product of von Neumann algebras introduced
by Sauvageot, respectively. These new constructions form the basis for our ap-
proach to quantum groupoids in the setting of C∗-algebras that is published
separately.
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1. INTRODUCTION

The relative tensor product of Hilbert modules over von Neumann algebras
was introduced by Connes in an unpublished manuscript [4], [10], [20] and later
used by Sauvageot to define a fiber product of von Neumann algebras relative to a
common (commutative) von Neumann subalgebra [21]. These constructions and
Haagerup’s theory of operator-valued weights on von Neumann algebras [12],
[13] form the basis for the theory of measured quantum groupoids developed by
Enock, Lesieur and Vallin [8], [9], [18], [30], [31].

In this article, we introduce a new notion of a bimodule in the setting of
C∗-algebras, construct relative tensor products of such bimodules, and define
a fiber product of C∗-algebras represented on such bimodules. These construc-
tions form the basis for a series of articles on quantum groupoids in the setting
of C∗-algebras, individually addressing fundamental unitaries [29], axiomatics
of the compact case [27], and coactions of quantum groupoids on C∗-algebras
[28]. Moreover, our previous approach to quantum groupoids in the setting of
C∗-algebras [25] embeds functorially into this new framework [26], and the latter
overcomes the serious restrictions of the former one.
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Already in the definition of a quantum groupoid, the relative tensor product
and a fiber product appear as follows. Roughly, such an object consists of the fol-
lowing ingredients: an algebra B, thought of as the functions on the unit space, an
algebra A, thought of as functions on the total space, a homomorphism r : B→ A
and an antihomomorphism s : B→ A corresponding to the range and the source
map, and a comultiplication ∆ : B → A ∗

B
A corresponding to the multiplication

of the quantum groupoid. Here, A ∗
B

A is a fiber product whose precise definition

depends on the class of the algebras involved. In the setting of operator algebras,
A acts naturally on some bimodule H and product A ∗

B
A is a certain subalgebra

of operators acting on a relative tensor product H⊗
B

H. This relative tensor prod-

uct is important also because it forms the domain or range of the fundamental
unitary of the quantum groupoid.

Let us now sketch the problems and constructions studied in this article.
The first problem is the construction of a tensor product H ⊗

B
K of modules

H, K over some algebra B. In the algebraic setting, H ⊗
B

K is simply a quotient of

the full tensor product H ⊗ K. In the setting of von Neumann algebras, H and
K are Hilbert spaces, and Connes explained that the right tensor product is not a
completion of the algebraic one but something more complicated. If B is commu-
tative and of the form B = L∞(X, µ), then the modules H, K can be disintegrated
into two measurable fields of Hilbert spaces in the form H =

∫
X

⊕Hxdµ(x) and

K =
∫
X

⊕Kxdµ(x), and H ⊗
B

K is obtained by taking tensor products of the fibers

and integrating again: H ⊗
B

K =
∫
X

⊕Hx ⊗ Kxdµ(x). For the situation where B is a

C∗-algebra, we propose an approach that is based on the internal tensor product
of Hilbert C∗-modules and essentially consists of an algebraic reformulation of
Connes’ fusion. Central to this approach is a new notion of a bimodule in the
setting of C∗-algebras.

The second problem is the construction of a fiber product A ∗
B

C of two al-

gebras A, C relative to a subalgebra B. If B is central in A and the opposite Bop

is central in C, this fiber product is just a relative tensor product. In the algebraic
setting, it coincides with the tensor product of modules; in the setting of opera-
tor algebras, it can be obtained via disintegration and a fiberwise tensor product
again. This approach was studied by Sauvageot for Neumann algebras [21], and
by Blanchard [1] for C∗-algebras.

The case where the subalgebra Bop is no longer central in A or C is more
difficult. In the algebraic setting, the fiber product was introduced by Takeuchi
[24] and is, roughly, the largest subalgebra of the relative tensor product A⊗

B
C

where componentwise multiplication is still well defined. In the setting of von
Neumann algebras, Sauvageot’s definition of the fiber product carries over to the
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general case and takes the form A ∗
B

C = (A′ ⊗
B

C′)′, where A and C are rep-

resented on Hilbert spaces H and K, respectively, and A′ ⊗
B

C′ acts on Connes’

relative tensor product H ⊗
B

K. Here, it is important to note that A′ ⊗
B

C′ is a

completion of an algebraic tensor product spanned by elementary tensors, but
in general, A ∗

B
C is not. Similarly, in the setting of C∗-algebras, one cannot start

from some algebraic tensor product and define the fiber product to be some com-
pletion; rather, a new idea is needed. We propose such a new fiber product for
C∗-algebras represented on the new class of modules mentioned above. Unfor-
tunately, several important questions concerning this construction remain open,
but the applications in [27], [28], [29] already prove its usefulness.

This article is organized as follows.
The introduction ends with a short summary on terminology and some

background on Hilbert C∗-modules.
Section 2 is devoted to the relative tensor product in the setting of C∗-

algebras. It starts with some motivation, then presents a new notion of modules
and bimodules in the setting of C∗-algebras, and finally gives the construction
and its formal properties like functoriality, associativity and unitality.

Section 3 introduces a minimal fiber product of C∗-algebras. It begins with
an overview and then proceeds to C∗-algebras represented on the class of mod-
ules and bimodules introduced in Section 2. The fiber product is first defined
and studied for such represented C∗-algebras, including a discussion of func-
toriality, slice maps, lack of associativity, and unitality. A natural extension to
non-represented C∗-algebras is indicated at the end.

Section 4 relates our constructions for the setting of C∗-algebras to the cor-
responding constructions for the setting of von Neumann algebras. Adapting
our constructions to von Neumann algebras, one recovers Connes’ fusion and
Sauvageot’s fiber product; moreover, the constructions are related by functors
going from the C∗-level to the W∗-level. The section ends with a categorical in-
terpretation of Sauvageot’s fiber product.

Section 5 shows that for a commutative base B = C0(X), the relative tensor
product of the new class of modules corresponds to the fiberwise tensor product
of continuous Hilbert bundles over X, and the fiber product of represented C∗-
algebras is related to the relative tensor product of continuous C0(X)-algebras
studied by Blanchard.

We use the following conventions and notation.
Given a category C, we write A, B ∈ C to indicate that A, B are objects of C,

and denote by C(A, B) the associated set of morphisms.
Given a subset Y of a normed space X, we denote by [Y] ⊂ X the closed

linear span of Y.
All sesquilinear maps like inner products on Hilbert spaces are assumed to

be conjugate-linear in the first component and linear in the second one.
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Given a Hilbert space H and an element ξ ∈ H, we define ket-bra operators
|ξ〉 : C→ H, λ 7→ λξ, and 〈ξ| = |ξ〉∗ : H → C, ξ ′ 7→ 〈ξ|ξ ′〉.

We shall make extensive use of (right) Hilbert C∗-modules; a standard ref-
erence is [16].

Let A and B be C∗-algebras. Given Hilbert C∗-modules E and F over B,
we denote by L(E, F) the space of all adjointable operators from E to F. Let E
and F be Hilbert C∗-modules over A and B, respectively, and let π : A → L(F)
be a ∗-homomorphism. Then the internal tensor product E⊗π F is a Hilbert C∗-
module over B ([16], Section 4) and the closed linear span of elements η ⊗π ξ,
where η ∈ E and ξ ∈ F are arbitrary, and 〈η⊗π ξ|η′ ⊗π ξ ′〉 = 〈ξ|π(〈η|η′〉)ξ ′〉 and
(η ⊗π ξ)b = η ⊗π ξb for all η, η′ ∈ E, ξ, ξ ′ ∈ F, b ∈ B. We denote the internal
tensor product by “=” and drop the index π if the representation is understood;
thus, E = F = E =π F = E⊗π F.

We define a flipped internal tensor product Fπ<E as follows. We equip the
algebraic tensor product F� E with a product 〈ξ � η|ξ ′ � η′〉 := 〈ξ|π(〈η|η′〉)ξ ′〉
and a module structure via (ξ � η)b := ξb� η, form the separated completion,
and obtain a Hilbert C∗-B-module Fπ<E which is the closed linear span of el-
ements ξπ<η, where η ∈ E and ξ ∈ F are arbitrary, and 〈ξπ<η|ξ ′π<η′〉 =
〈ξ|π(〈η|η′〉)ξ ′〉 and (ξπ<η)b = ξbπ<η for all η, η′ ∈ E, ξ, ξ ′ ∈ F, b ∈ B. As
above, we usually drop the index π and simply write “<” instead of “π<”. Evi-

dently, there exists a unitary Σ : F = E
∼=−→ E < F, η = ξ 7→ ξ < η.

Let E1, E2 be Hilbert C∗-modules over A, let F1, F2 be Hilbert C∗-modules
over B with ∗-homomorphisms πi : A→ L(Fi) for i = 1, 2, and let S ∈ L(E1, E2),
T ∈ L(F1, F2) such that Tπ1(a) = π2(a)T for all a ∈ A. Then there exists a unique
operator S = T ∈ L(E1 = F1, E2 = F2) such that (S = T)(η = ξ) = Sη = Tξ for all
η ∈ E1, ξ ∈ F1, and (S = T)∗ = S∗ = T∗ ([7], Proposition 1.34).

2. THE RELATIVE TENSOR PRODUCT IN THE SETTING OF C∗-ALGEBRAS

2.1. MOTIVATION. The aim of this section is to construct a relative tensor product
of suitably defined left and right modules over a general C∗-algebra B such that
(i) the construction shares the main properties of the ordinary tensor product
of bimodules over rings like functoriality and associativity and (ii) the mod-
ules admit representations of C∗-algebras that do not commute with the mod-
ule structures. The latter condition will be needed to construct fiber products of
C∗-algebras; see Section 3.

The internal tensor product of Hilbert C∗-modules meets condition (i) but
not (ii) because C∗-algebras represented on such modules necessarily commute
with the right module structure. An approach to quantum groupoids based on
the internal tensor product was developed in [25] but remained restricted to very
special cases.
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What we are looking for is an analogue of Connes’ fusion of correspon-
dences. Here, B is a von Neumann algebra, and left and right modules are Hilbert
spaces equipped with suitable representation or antirepresentation of B, respec-
tively. The relative tensor product of a right module H and a left module K is
then constructed as follows. Choose a normal, semi-finite, faithful (n.s.f.) weight
µ on B, construct a B-valued inner product 〈 · | · 〉µ on the dense subspace H0 ⊆ H
of all bounded vectors, and define H ⊗

µ
K to be the separated completion of the

algebraic tensor product H0 � K with respect to the sesquilinear form given by
〈ξ � η|ξ ′ � η′〉 = 〈η|〈ξ|ξ ′〉µη′〉. The definition of bounded vectors involves the
GNS-space H := Hµ for µ which, by Tomita–Takesaki theory, is bimodule over B,
and each bounded vector ξ ∈ H0 gives rise to a map L(ξ) ∈ L(HB, HB) of right
B-modules such that 〈ξ|ξ ′〉µ = L(ξ)∗L(ξ ′) ∈ B ⊆ L(H).

EXAMPLE 2.1. Assume that B = L∞(X, µ) for some nice measure space
(X, µ), and denote the weight on B given by integration by µ as well. Then
H = L2(X, µ), and we can disintegrate H and K into measurable fields (Hx)x and
(Kx)x of Hilbert spaces over X such that H ∼=

∫
X

⊕Hxdµ(x) and K ∼=
∫
X

⊕Kxdµ(x).

Each vector ξ of H or K corresponds to a measurable section x 7→ ξ(x) with
square-integrable norm function |ξ| : x 7→ ‖ξx‖, and is bounded with respect to
µ if and only if this norm function is essentially bounded. Then for all ξ, ξ ′ ∈ H0,
x ∈ X, η, η′ ∈ K,

〈ξ|ξ ′〉µ(x) = 〈ξ(x)|ξ ′(x)〉Hx ,

〈ξ � η|ξ ′ � η′〉 =
∫
X

〈ξ(x)|ξ ′(x)〉〈η(x)|η′(x)〉dµ(x),

and H ⊗
µ

K ∼=
∫
X

⊕Hx ⊗ Kxdµ(x). Note that the sesquilinear form above need

not extend to H � K because the integrand need not be in L1(X, µ) for arbitrary
ξ, ξ ′ ∈ H and η, η′ ∈ K.

For our purpose, the following algebraic description of H⊗
µ

K is useful. This

relative tensor product can be identified with the separated completion of alge-
braic tensor product

L(HB, HB)�H�L(BH, BK)(2.1)

with respect to the sesquilinear form

〈S� ζ � T|S′ � ζ ′ � T′〉 = 〈ζ|S∗S′T∗T′ζ ′〉 = 〈ζ|T∗T′S∗S′ζ ′〉,

where L(HB, HB) and L(BH, BK) are all bounded maps of right or left B-modules,
respectively. We adapt this definition to the setting of C∗-algebras, making the
following modifications:
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(A) The construction above depends on the choice of some n.s.f. weight µ
or, more precisely, the triple (Hµ, πµ(B), πµ(B)′), but any other µ yields a triple
which is unitarily equivalent. In the setting of C∗-algebras, such a canonical triple
does not exist but has to be chosen.

(B) The module structure of H and K can equivalently be described in terms
of (anti)representations of B or in terms of the spaces L(HB, HB) and L(BH, BK).
In the setting of C∗-algebras, this equivalence breaks down, and we shall make
suitable closed subspaces of intertwiners the primary object. In the commutative
case, a representation corresponds to a measurable field of Hilbert spaces, and
the subspaces fix a continuous structure.

(C) If H and K are bimodules, then so is H ⊗
µ

K. Here, a bimodule structure on

H is given by the additional choice of a representation of some von Neumann al-
gebra A that commutes with the antirepresentation of B or, equivalently, satisfies
AL(HB, HB) = L(HB, HB). If we pass to C∗-algebras, then commutation is too
weak, and we shall adopt the second condition, where L(HB, HB) is replaced by
the subspace of intertwiners mentioned above.

2.2. MODULES AND BIMODULES OVER C∗-BASES. Observation (A) leads us to
adopt the following terminology.

DEFINITION 2.2. A C∗-base b = (K,B,B†) consists of a Hilbert space H and
commuting nondegenerate C∗-algebras B,B† ⊆ L(K), respectively. The opposite
of b is the C∗-base b† := (K,B†,B). A C∗-base (H,A,A†) is equivalent to b if
AdV(A) = B and AdV(A

†) = B† for some unitary V ∈ L(H,K).

Clearly, the Hilbert space C and twice the algebra C ≡ L(C) form a trivial
C∗-base t = (C,C,C).

EXAMPLE 2.3. Let µ be a proper, faithful KMS-weight on a C∗-algebra A
[15] with GNS-space Hµ, GNS-representation πµ : A → L(Hµ), modular con-
jugation Jµ : Hµ → Hµ, and opposite GNS-representation πµop : Aop → L(Hµ),
a 7→ Jµπµ(a∗)Jµ. Then the triple (Hµ, πµ(A), πµop(Aop)) is a C∗-base. Its oppo-
site is equivalent to the C∗-base associated to the opposite weight µop on Aop.
Indeed, Hµ can be considered as the GNS-space for µop via the opposite GNS-
map Λµop : Nµop → Hµ, aop 7→ JµΛµ(a∗), and then Jµop πµop(Aop)Jµop = πµ(A).

Let b = (K,B,B†) be a C∗-base. We define C∗-modules over b as indicated
in comment (B).

DEFINITION 2.4. A C∗-b-module Hα = (H, α) is a Hilbert space H with a
closed subspace α ⊆ L(K, H) satisfying [αK] = H, [αB] = α, [α∗α] = B. A semi-
morphism between C∗-b-modules Hα and Kβ is an operator T ∈ L(H, K) satisfying
Tα ⊆ β. If additionally T∗β ⊆ α, we call T a morphism. We denote the set of all
(semi-)morphisms by L(s)(Hα, Kβ).
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Evidently, the class of all C∗-a-modules forms a category with respect to
all semi-morphisms, and a C∗-category in the sense of [11] with respect to all
morphisms.

LEMMA 2.5. (i) Let H, K be Hilbert spaces and I ⊆ L(H, K) such that [IH] = K.
Then there exists a unique normal, unital ∗-homomorphism ρI : (I∗ I)′ → (I I∗)′ such
that ρI(x)S = Sx for all x ∈ (I∗ I)′, S ∈ I.

(ii) Let H, K, L be Hilbert spaces and I ⊆ L(H, K), J ⊆ L(K, L) such that [IH] = K,
[JK] = L, and J∗ J I ⊆ I. Then ρI((I∗ I)′) ⊆ (J∗ J)′ and ρJ ◦ ρI = ρJ I .

Proof. (i) Uniqueness is evident. Let x ∈ (I∗ I)′ and S1, . . . , Sn ∈ I, ξ1, . . . , ξn
∈ H. Since x∗x commutes with each S∗i Sj, the matrix (S∗i Sjx∗x)i,j ∈ Mn(L(H)) is
dominated by ‖x∗x‖(S∗i Sj)i,j, and∥∥∥∑

i
Sixξi

∥∥∥2
= ∑

i,j
〈ξi|S∗i Sjx∗xξ j〉 6 ‖x‖2 ∑

i,j
〈ξi|S∗i Sjξ j〉 = ‖x‖2

∥∥∥∑
i

Siξi

∥∥∥2
.

Hence, there exists an operator ρI(x) ∈ L(K) as claimed. One easily verifies that
the assignment x 7→ ρI(x) is a ∗-homomorphism. It is normal because [IH] = K
and for all S, T ∈ I, ξ, η ∈ K, the functional x 7→ 〈Sξ|ρI(x)Tη〉 = 〈ξ|xS∗Tη〉 is
normal.

(ii) Let x ∈ (I∗ I)′. Then ρI(x) ∈ J∗ J since S∗TρI(x)R = S∗TRx = ρI(x)S∗TR
for all S, T ∈ J, R ∈ I, and ρJ I(x) = ρJ(ρI(x)) because ρJ I(x)TR = TRx =
ρJ(ρI(x))TR for all T ∈ J, R ∈ I.

LEMMA 2.6. Let Hα be a C∗-b-module.
(i) α is a Hilbert C∗-B-module with inner product (ξ, ξ ′) 7→ ξ∗ξ ′.

(ii) There exist isomorphisms α =K→ H, ξ = ζ 7→ ξζ, and K< α→ H, ζ < ξ 7→ ξζ.
(iii) There exists a unique normal, unital and faithful representation ρα : B′ → L(H)

such that ρα(x)(ξζ) = ξxζ for all x ∈ B′, ξ ∈ α, ζ ∈ K.
(iv) Let Kβ be a C∗-b-module and T ∈ Ls(Hα, Kβ). Then Tρα(x) = ρβ(x)T for all

x ∈ B′. If additionally T ∈ L(Hα, Kβ), then left multiplication by T defines an operator
in LB(α, β), again denoted by T.

Proof. Assertions (i) and (ii) are obvious, and (iii) follows from the preceding
lemma. To prove (iv), let x ∈ B′, ξ ∈ α, ζ ∈ K. Then Tξ ∈ β and Tρα(x)ξζ =
Tξxζ = ρβ(x)Tξζ.

EXAMPLE 2.7. Let Z be a locally compact Hausdorff space, µ a Radon mea-
sure on Z of full support, and H = (Hz)z a continuous bundle of Hilbert spaces
on Z with full support. Then the Hilbert space K = L2(Z, µ) together with the
C∗-algebras B = B† = C0(Z) ⊆ L(K) forms a C∗-base. Let H =

∫
Z

⊕Hzdµ(z) and

α = m(Γ0(H)), where for each section ξ ∈ Γ0(H), the operator m(ξ) ∈ L(K, H)
is given by pointwise multiplication, m(ξ) f = (ξ(z) f (z))z∈Z. Then Hα is a C∗-b-
module and ρα : B′ = L∞(Z, µ) → L(H) is given by pointwise multiplication of
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sections by functions. Every C∗-b-module arises in this way from a continuous
bundle; see Section 5.

Let also a = (H,A,A†) be a C∗-base. We define C∗-(a†, b)-bimodules as
indicated in (C).

DEFINITION 2.8. A C∗-(a†, b)-module is a triple α Hβ = (H, α, β), where H is
a Hilbert space, (H, α) a C∗-a†-module, (H, β) a C∗-b-module, and [ρα(A)β] = β

and [ρβ(B
†)α] = α. The set of (semi-)morphisms between C∗-(a†, b)-modules α Hβ

and γKδ is L(s)(α Hβ, γKδ) := L(s)(Hα, Kγ) ∩ L(s)(Hβ, Kδ).

REMARK 2.9. By Lemma 2.6, we have [ρα(A), ρβ(B
†)] = 0 for every C∗-

(a†, b)-module α Hβ.

Again, the class of all C∗-(a†, b)-modules forms a category with respect to
all semi-morphisms, and a C∗-category with respect to all morphisms.

EXAMPLE 2.10. (i) HA is a C∗-a-module, ρA(x) = x for all x ∈ A′, and A†HA

is a C∗-(a†, a)-module because [ρA†(A)A] = [AA] = A and [ρA(A
†)A†] = A†.

(ii) Let Hβ be a C∗-b-module, let t = (C,C,C) be the trivial C∗-base, and let
α = L(C, H). Then α Hβ is a C∗-(t, b)-module.

(iii) Let (Hi)i be a family of C∗-(a†, b)-modules, where Hi = (Hi, αi, βi) for
each i. Denote by�iαi ⊆ L(H,⊕i Hi) the norm-closed linear span of all operators
of the form ζ 7→ (ξiζ)i, where (ξi)i is in the algebraic direct sum

⊕
i

algαi, and

similarly define �iβi ⊆ L(K,⊕i Hi). Then the triple �iHi := (⊕i Hi,�iαi,�iβi)
is a C∗-(a†, b)-module, for each j, the canonical inclusions ιj : Hj → ⊕i Hi and
projection πj : ⊕i Hi → Hj are morphismsHj → �iHi and�iHi → Hj, and with
respect to these maps, �iHi is the direct sum of the family (Hi)i.

The following example shows how bimodules arise from conditional expec-
tations.

EXAMPLE 2.11. Let B be a C∗-algebra with a KMS-state µ and associated C∗-
base b (Example 2.3), let A be a unital C∗-algebra containing B such that 1A ∈ B,
and let φ : A → B be a faithful conditional expectation such that ν := µ ◦ φ is a
KMS-state and φ ◦ σν

t = σ
µ
t ◦ φ for all t ∈ R. Fix a GNS-construction πν : A →

L(Hν) for ν with modular conjugation Jν : Hν → Hν, and define π
op
ν : Aop →

L(Hν) by a 7→ Jνπν(a∗)Jν. Then the inclusion B ↪→ A extends to an isometry
ζ : K = Hµ ↪→ Hν = H, and we obtain a C∗-(b†, b)-module αHβ, where H = Hν,
α = [Jνπν(A)ζ], β = [πν(A)ζ], and ρα ◦ πµop = π

op
ν , ρβ ◦ πµ = πν. Moreover,

πν(A) + π
op
ν ((A ∩ B′)op) ⊆ L(Hα), πνop(Aop) + πν(A ∩ B′) ⊆ L(Hβ).

For details, see Section 2–3 of [27].

2.3. THE RELATIVE TENSOR PRODUCT. The concepts introduced above allow us
to adapt the algebraic formulation of Connes’ fusion to the setting of C∗-algebras
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as follows. Let b = (K,B,B†) be a C∗-base, Hβ a C∗-b-module, and Kγ a C∗-b†-
module. Then the relative tensor product of Hβ and Kγ is the Hilbert space

Hβ ⊗
b

γK := β =K< γ,

which is spanned by elements ξ = ζ < η, where ξ ∈ β, ζ ∈ K, η ∈ γ, the inner
product being given by 〈ξ = ζ < η|ξ ′ = ζ ′ < η′〉 = 〈ζ|ξ∗ξ ′η∗η′ζ ′〉 = 〈ζ|η∗η′ξ∗ξ ′ζ ′〉
for all ξ, ξ ′ ∈ β, ζ, ζ ′ ∈ K, η, η′ ∈ γ.

EXAMPLE 2.12. (i) If b is the trivial C∗-base t = (C,C,C), then β = L(C, H),
γ = L(C, K), and Hβ ⊗

b
γK ∼= H ⊗ K via ξ = ζ < η 7→ ξζ ⊗ η1 = ξ1⊗ ηζ.

(ii) Let Z be a locally compact Hausdorff space, µ a Radon measure on Z of
full support, H = (Hz)z and K = (Kz)z continuous bundles of Hilbert spaces
on Z with full support, and Hα, Kβ the associated C∗-b-modules as defined in
Example 2.7. One easily checks that then we have an isomorphism

Hβ ⊗
b

γK →
∫
Z

⊕
Hz ⊗ Kz dµ(z), m(ξ)= ζ < m(η) 7→ (ξ(z)ζ(z)⊗ η(z))z∈Z.

Let us list some easy observations and a few definitions.
(i) The isomorphisms in Lemma 2.6(ii), applied to Hβ and Kγ, respectively,

yield the following identifications which we shall use without further notice:

β =ργ K ∼= Hβ ⊗
b

γK ∼= Hρβ
<γ, ξ = ηζ ≡ ξ = ζ < η ≡ ξζ < η.

(ii) For each ξ ∈ β and η ∈ γ, there exist bounded linear operators

|ξ〉1 : K → β =ργ K = Hβ ⊗
b

γK, ω 7→ ξ = ω,

|η〉2 : H → Hρβ
<γ = Hβ ⊗

b
γK, ω 7→ ω < η,

whose adjoints 〈ξ|1 := |ξ〉∗1 and 〈η|2 := |η〉∗2 are given by

〈ξ|1 : ξ ′ = ω 7→ ργ(ξ
∗ξ ′)ω, 〈η|2 : ω < η′ 7→ ρβ(η

∗η′)ω.

We put |β〉1 :={|ξ〉1 | ξ∈β} ⊆ L(K, Hβ ⊗
b

γK) and similarly define 〈β|1, |γ〉2, 〈γ|2.

(iii) For all S ∈ ρβ(B
†)′ and T ∈ ργ(B)′, we have operators

S < id ∈ L(Hρβ
<γ) = L(Hβ ⊗

b
γK), id =T ∈ L(β =ργ K) = L(Hβ ⊗

b
γK).

If these operators commute, we let S⊗
b

T := (S < id)(id =T) = (id =T)(S < id).

The commutativity condition holds in each of the following cases:
(a) S ∈ Ls(Hβ); then (S⊗

b
T)(ξ = ω) = Sξ = Tω for each ξ ∈ β, ω ∈ K;

(b) T ∈ Ls(Kγ); then (S⊗
b

T)(ω < η) = Sω < Tη for each ω ∈ H, η ∈ γ;
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(c) (B†)′=B′′; then for all ξ, ξ ′ ∈ β and η, η′ ∈γ, the elements η∗Tη′ ∈B′ and
ξ∗Sξ ′∈ (B†)′ commute, and if ζ, ζ ′∈K and ω= ξ=ζ<η, ω′= ξ ′=ζ ′<η′, then

〈ω|(id =T)(S < id)ω′〉 = 〈ζ|(η∗Tη′)(ξ∗Sξ ′)ζ ′〉
= 〈ζ|(ξ∗Sξ ′)(η∗Tη′)ζ ′〉 = 〈ω|(S < id)(id =T)ω′〉.

Let a = (H,A,A†) and c = (L,C,C†) be further C∗-bases. Then the relative
tensor product of bimodules over (a†, b) and (b†, c) is a bimodule over (a†, c):

PROPOSITION 2.13. Let H = α Hβ be a C∗-(a†, b)-module, K = γKδ a C∗-
(b†, c)-module, and

α / γ := [|γ〉2α] ⊆ L(H, Hβ ⊗
b

γK), β . δ := [|β〉1δ] ⊆ L(L, Hβ ⊗
b

γK).(2.2)

ThenH⊗
b
K := (α/γ)(Hβ ⊗

b
γK)(β.δ) is a C∗-(a†, c)-module and

ρ(α/γ)(x)=ρα(x)<id for all x∈ (A†)′, ρ(β.δ)(y)= id =ρδ(y) for all y∈C′.(2.3)

Proof. The pair (Hβ ⊗
b

γK, α / γ) is a C∗-a†-module since [α∗〈γ|2|γ〉2α] =

[α∗ρβ(B
†)α] = A†, [|γ〉2αA†] = [|γ〉2α], and [|γ〉2αH] = [|γ〉2H] = Hβ ⊗

b
γK.

Likewise, (Hβ ⊗
b

γK, β . δ) is a C∗-c-module. For all x ∈ (A†)′, ζ ∈ H, θ ∈ α,

η ∈ γ, we have |η〉2θ ∈ α / γ and hence

ρ(α/γ)(x)(θζ<η)=ρ(α/γ)(x)|η〉2θζ= |η〉2θxζ=ρα(x)θζ<η=(ρα(x)<id)(θζ<η).

The first equation in (2.3) follows, and a similar agument proves the second
one. Finally, (α/γ)(Hβ ⊗

b
γK)(β.δ) is a C∗-(a†, c)-module because [ρ(α/γ)(A)|β〉1δ]=

[|ρα(A)β〉1δ]= [|β〉1δ] and [ρ(β.δ)(C
†)|γ〉2α] = [|γ〉2α].

In the situation above, we call H⊗
b
K the relative tensor product of H and K.

Note the following commutative diagram of Hilbert spaces and closed spaces of
operators between them:

H α
))TTTTTT

α/γ ..

Kβ

ssggggggggg γ

++WWWWWWWWW Lδ
uujjjjjj

β.δpp

H |γ〉2**UUUUUU K|β〉1ttiiiiii

Hβ ⊗
b

γK

Given a C∗-b-module H = Hβ and a C∗-(b†, c)-module K = γKδ, we abbre-
viate Hβ ⊗

b
γKδ := (Hβ ⊗

b
γK)β.δ. Likewise, we write α Hβ ⊗

b
γK for (Hβ ⊗

b
γK)α/γ

and α Hβ ⊗
b

γKδ for α/γ(Hβ ⊗
b

γK)β.δ.

The relative tensor product is functorial, associative, unital, and compatible
with direct sums in the following sense:
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PROPOSITION 2.14. LetH = α Hβ andH1 = α1 H1
β1

,H2 = α2 H2
β2

be C∗-(a†, b)-
modules, K = γKδ, K1 = γ1 K1

δ1
, K2 = γ2 K2

δ2
C∗-(b†, c)-modules, and L = εLφ a

C∗-(c†, d)-module.
(i) S⊗

b
T ∈ L(H1 ⊗

b
K1,H2 ⊗

b
K2) for all S ∈ L(H1,H2), T ∈ L(K1,K2).

(ii) The composition of the isomorphisms (Hβ ⊗
b

γKδ)⊗c εL ∼= (Hβ ⊗
b

γK)ρ(β.δ)
<ε ∼=

β =ργ Kρδ
<ε and β =ργ Kρδ

<ε ∼= β =ρ(γ/ε)
(Kδ⊗

c
εL) ∼= Hβ⊗

b
(γKδ⊗

c
εL) is an isomor-

phism of C∗-(a†, c)-modules aa,b,c,d(L,K,H) : (H⊗
b
K)⊗

c
L → H⊗

b
(K⊗

c
L).

(iii) Put U := B†KB. Then there exist isomorphisms

ra,b(H) : H⊗
b
U → H, ξ = ζ < b† 7→ ξb†ζ = ρβ(b†)ξζ,

lb,c(K) : U ⊗
b
K → K, b = ζ < η 7→ ηbζ = ργ(b)ηζ.

(iv) Let (Hi)i be a family of C∗-(a†, b)-modules and (Kj)j a family of C∗-(b†, c)-

modules. For each i, j, denote by ιiH : Hi → �i′Hi′ , ι
j
K : Kj → �j′Kj′ and πi

H : �i′

Hi′ → Hi, π
j
K : �j′ Kj′ → Kj the canonical inclusions and projections, respectively.

Then there exist inverse isomorphisms �i,j(Hi ⊗
b
Kj) � (�iHi) ⊗

b
(�jKj), given by

(ωi,j)i,j 7→ ∑
i,j
(ιiH ⊗

b
ι
j
K)(ωi,j) and ((πi

H ⊗
b

π
j
K)(ω))i,j ← [ ω, respectively.

Proof. (i) If S, T are as above and Hi = αi H
i
βi

, Kj = γj K
j
δj

for i, j = 1, 2, then

(S ⊗
b

T)|γ1〉2α1 = |Tγ1〉2Sα1 ⊆ |γ2〉2α2 and similarly (S ⊗
b

T)|β1〉1δ1 ⊆ |β2〉1δ2,

(S⊗
b

T)∗|γ2〉2α2 ⊆ |γ1〉2α1, (S⊗
b

T)∗|β2〉1δ2 ⊆ |β1〉1δ1.

(ii) Straightforward.
(iii) ra,b(H) · (α /B†) = [ρβ(B

†)α] = α and ra,b(H) · (β .B) = [βB] = β.
For lb,c(K), the arguments are similar.

(iv) Straightforward.

REMARK 2.15. The relative tensor product of modules and morphisms can
be considered as composition in a bicategory as follows. Recall that a bicate-
gory B consists of a class of objects ob B, a category B(A, B) for each A, B ∈
ob B whose objects and morphisms are called 1-cells and 2-cells, respectively, a
functor cA,B,C : B(B, C)× B(A, B) → B(A, C) (“composition”) for each A, B, C ∈
ob B, an object 1A ∈ B(A, A) (“identity”) for each A ∈ ob B, an isomorphism
aA,B,C,D( f , g, h) : cA,B,D(cB,C,D(h, g), f ) → cA,C,D(h, cA,B,C(g, f )) in B(A, D) (“as-

sociativity”) for each triple of 1-cells A
f−→ B

g−→ C h−→ D in B, and isomorphisms
lA( f ) : cA,A,B( f , 1A) → f and rB( f ) : cA,B,B(1B, f ) → f in B(A, B) for each 1-cell

A
f−→ B in B, subject to several axioms [17]. Tedious but straightforward calcula-

tions show that there exists a bicategory C∗-bimod such that
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(i) the objects are all C∗-bases and C∗-bimod(a, b) is the category of all C∗-
(a†, b)-modules with morphisms (not semi-morphisms) for all C∗-bases a, b;

(ii) the functor ca,b,c is given by (γKδ, αHβ) 7→ α Hβ ⊗
b

γKδ and (T, S) 7→ S⊗
b

T,

respectively, and the identity 1a is A†HA for all C∗-bases a, b, c, d;
(iii) a, r, l are as in Proposition 2.14.

3. THE SPATIAL FIBER PRODUCT OF C∗-ALGEBRAS

3.1. BACKGROUND. We now use the relative tensor product to construct a fiber
product of C∗-algebras that are represented on C∗-modules over C∗-bases. To
motivate our approach, let us first review several related constructions. In each
case, the task is to construct a relative tensor product or “fiber product” of two
algebras A and C with respect to a common subalgebra B.

First, assume that we are working in the category of unital commutative
rings. Then the fiber product is just the push-out of the diagram formed by
A, B, C. Explicitly, it is the algebraic tensor product A �

B
C, where A and C are

considered as modules over B, and the multiplication is defined component-
wise. In the category of commutative C∗-algebras, the push-out is the maxi-
mal completion of the algebraic tensor product A �

B
C and, as usual in the set-

ting of C∗-algebras, also other interesting completions exist [1]. For example, if
B = C0(X) for some locally compact Hausdorff space and if A and C are rep-
resented on Hilbert spaces H and K, respectively, then H and K can be disinte-
grated over X with respect to some measure µ (see Subsection 2.1), and the alge-
bra A�

B
C has a natural representation π on the relative tensor product H ⊗

µ
K =∫

X

⊕Hx ⊗ Kxdµ(x), leading to a minimal completion π(A�
B

C). In the setting of

von Neumann algebras, H and K are intrinsic, and the desired fiber product is
π(A�

B
C)′′ ⊆ L(H ⊗

µ
K). Note that all of these constructions do not depend on

commutativity of A and C and make sense as long as B is central in A and in C.
Next, consider the case where A, B, C are non-commutative, B is a subal-

gebra of A, and the opposite Bop is a subalgebra of C. Then one can consider
A and C as modules over B via right multiplication, and form the algebraic ten-
sor product A �

B
C, but componentwise multiplication is well defined only on

the subspace A ×
B

C ⊆ A �
B

C which consists of all elements ∑
i

ai � ci satisfying

∑
i

bai � ci = ∑
i

ai � bopci for all b ∈ B. This subspace was first considered by

Takeuchi and provides the right notion of a fiber product for the algebraic the-
ory of quantum groupoids [2], [32]. In the setting of C∗-algebras, the Takeuchi
product A×

B
C may be 0 even when we expect a nontrivial fiber product on the
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level of C∗-algebras; therefore, the latter cannot be obtained as the completion of
the former. In the setting of von Neumann algebras, a fiber product can be con-
structed as follows [21]. If A and C act on Hilbert spaces H and K, respectively,
one can form the Connes fusion H⊗

µ
K with respect to some weight µ on B and the

actions of B on H and Bop on K which, by functoriality, carries a representation
π : A′ � C′ → L(H⊗

µ
K), and the desired fiber product is A ∗

µ
C = π(A′ � C′)′. A

categorical interpretation of this construction is given in Theorem 4.3.
We modify the last construction to define a fiber product for C∗-algebras A

and C as follows:

(A) We assume that A and C are represented on a C∗-b-module Hβ and a C∗-
b†-module Kγ, respectively, where b = (K,B,B†) is a C∗-base, such that ρβ(B)

and ργ(B†) take the places of B and Bop, respectively.
(B) On Hβ ⊗

b
γK, we define two C∗-algebras Ind|γ〉2(A) and Ind|β〉1(C) which,

roughly, take the places of π(A′ � idK)
′ and π(idH �C′)′.

(C) The fiber product is then Aβ∗
b

γB = Ind|γ〉2(A)∩ Ind|β〉1(C) ⊆ L(Hβ ⊗
b

γK).

3.2. C∗-ALGEBRAS REPRESENTED ON C∗-MODULES. Let b = (K,B,B†) be a C∗-
base. As indicated in step (A), we adopt the following terminology.

DEFINITION 3.1. A C∗-B†-algebra (A, ρ), briefly written Aρ, is a C∗-algebra
A with a ∗-homomorphism ρ : B† → M(A). A morphism of C∗-B†-algebras Aρ

and Bσ is a ∗-homomorphism π : A → B satisfying σ(x)π(a) = π(ρ(x)a) for all
x ∈ B†, a ∈ A. We denote the category of all C∗-B†-algebras by C∗

B† .
A (nondegenerate) C∗-b-algebra is a pair Aα

H = (Hα, A), where Hα is a C∗-
b-module, A ⊆ L(H) a (nondegenerate) C∗-algebra, and ρα(B†)A ⊆ A. A
(semi-)morphism between C∗-b-algebras Aα

H , Bβ
K is a ∗-homomorphism π : A →

B satisfying the condition β = [Lπ
(s)(Hα, Kβ)α], where Lπ

(s)(Hα, Kβ) := {T ∈
L(s)(Hα, Kβ) : ∀a ∈ A : Ta = π(a)T}. We denote the category of all C∗-b-algebras
together with all (semi-)morphisms by C∗b

(s).

We first give some examples of C∗-b-algebras and then study the relation
between C∗

B† and C∗b.

EXAMPLE 3.2. (i) If H is a Hilbert space and A ⊆ L(H) a C∗-algebra, then
Aα

H is a C∗-t-algebra, where t = (C,C,C) denotes the trivial C∗-base and α =
L(C, H).

(ii) Let Aα
H be a nondegenerate C∗-b-algebra. If we identify M(A) with a C∗-

subalgebra of L(H) in the canonical way, M(A)α
H becomes a C∗-b-algebra.

(iii) Let (Ai)i be a family of C∗-b-algebras, whereAi = (Hi, Ai) for each i. Then
the c0-sum

⊕
i

Ai and the l∞-product ∏
i

Ai are naturally represented on the under-

lying Hilbert space of �iHi, and we obtain C∗-b-algebras �iAi := (�iHi,
⊕

i Ai)
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and ∏
i
Ai := (�iHi, ∏i Ai). For each j, the canonical maps Aj →

⊕
i

Ai →

∏
i

Ai → Aj are evidently morphisms of C∗-b-algebrasAj → �iAi → ∏
i
Ai → Aj.

The following example is a continuation of Example 2.11.

EXAMPLE 3.3. Let B be a C∗-algebra with a KMS-state µ and associated C∗-
base b, and let A be a C∗-algebra containing B with a conditional expectation
φ : A → B as in Example 2.11. With the notation introduced before, πν(A)

β
H is a

nondegenerate C∗-b-algebra because ρβ(B)πν(A) = πν(B)πν(A) ⊆ πν(A), and
similarly, (πop

ν (Aop))α
H is a nondegenerate C∗-b†-algebra ([27], Section 2–3).

The categories C∗sb and C∗
B† are related by a pair of adjoint functors, as we

shall see now.

LEMMA 3.4. Let π be a semi-morphism of C∗-b-algebras Aα
H and Bβ

K. Then π is
normal and π(aρα(x)) = π(a)ρβ(x) for all x ∈ B†, a ∈ A.

Proof. Let T, T′ ∈ Lπ
s (Hα, Kβ), ξ, ξ ′ ∈ α, ζ, ζ ′ ∈ K, a ∈ A, and x ∈ B†. Then

〈Tξζ|π(a)T′ξ ′ζ ′〉 = 〈ξζ|aT∗T′ξ ′ζ ′〉 and

π(aρα(x))Tξζ = Taρα(x)ξζ = π(a)Tξxζ = π(a)ρβ(x)Tξζ

because Tξ ∈ β. Now, the assertions follow since K = [Lπ
s (Hα, Kβ)αK].

The preceding lemma shows that there exists a forgetful functor

Ub : C∗sb → C∗
B† ,

{
Aα

H 7→ Aρα for each object Aα
H ,

π 7→ π for each morphism π.

We shall see that this functor has a partial adjoint that associates to a C∗-B†-
algebra a universal representation on a C∗-b-module. For the discussion, we fix a
C∗-B†-algebra Cσ.

DEFINITION 3.5. A representation of Cσ in C∗sb is a pair (A, φ), where A =
Aα

H ∈ C∗sb and φ ∈ C∗
B†(Cσ, UA). Denote by Repb(Cσ ) the category of all such

representations, where the morphisms between objects (A, φ) and (B, ψ) are all
π ∈ C∗sb (A,B) satisfying ψ = Uπ ◦ φ.

Note that Repb(Cσ ) is just the comma category (Cσ ↓ Ub) [19]. Unfortu-
nately, we have no general method like the GNS-construction to produce rep-
resentations of Cσ in in C∗sb . In particular, we have no good criteria to decide
whether there are any and, if so, whether there exists a faithful one. However, we
now show that if there are any representations, then there also is a universal one.
The proof involves the following direct product construction.

EXAMPLE 3.6. Let (Ai, φi) ∈ Repb(Cσ) for all i, where Ai = (Hi, Ai), and
define φ : C → ∏

i
Ai by c 7→ (φi(c))i. Then ∏

i
(Ai, φi) := (∏iAi, φ) ∈ Repb(Cσ),
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and the canonical maps Aj → ∏
i
Ai → Aj are morphisms between (Aj, φj) and

(∏iAi, φ) for each j.

PROPOSITION 3.7. If the category Repb(Cσ) is non-empty, then it has an initial
object.

Proof. Assume that Repb(Cσ) is non-empty. We first use a cardinality argu-
ment to show that Repb(Cσ) has an initial set of objects, and then apply the direct
product construction to this set to obtain an initial object.

Given a topological vector space X and a cardinal number c, let us call X
c-separable if X has a linearly dense subset of cardinality c. Choose a cardinal
number d such that B and C× K are d-separable, and let e := |N|∑

n
dn. Then the

isomorphism classes of e-separable Hilbert C∗-B-modules form a set, and hence
there exists a set R of objects in Repb(Cσ) such that each (Aα

H , φ) ∈ Repb(Cσ)
with e-separable α is isomorphic to some element of R. Let (Aα

H , φ) = �R∈RR.
We show that (φ(C)α

H , φ) is initial in Repb(Cσ).
Let (Bβ

K, ψ) ∈ Repb(Cσ). We shall show that there exists a morphism π ∈
C∗sb (φ(C)α

H , Bβ
K) such that ψ = π ◦ φ. Uniqueness of such a π is evident. Let

ξ ∈ β be given. Since B and C × K are d-separable, we can inductively choose
subspaces β0 ⊆ β1 ⊆ · · · ⊆ β and cardinal numbers d0, d1, . . . such that ξ ∈ β0,
[β∗0β0] = B, d0 6 2d + 1, β0 is d0-separable and for all n > 0,

βnB ⊆ βn+1, ψ(C)βnK ⊆ [βn+1K], dn+1 6 |N|ddn, βn+1 is dn+1-separable.

Let β̃ := [
⋃

n βn] ⊆ β and K̃ := [β̃K] ⊆ K. By construction, [β̃∗ β̃] = B, β̃B ⊆ β̃,

ψ(C)K̃ ⊆ K̃, so that (ψ(C)|K̃)
β̃

K̃
is in C∗b. Define ψ̃ : C → ψ(C)|K̃ by c 7→ ψ(c)|K̃.

Then (ψ̃(C)β̃

K̃
, ψ̃) is in Repb(Cσ). Since β̃ is e-separable, (ψ̃(C)β̃

K̃
, ψ̃) is isomor-

phic to some element of R. Hence, there exists a surjection T̃ : H → K̃ such
that T̃α = β̃, and the composition with the inclusion K̃ → K gives an operator
T ∈ Ls(Hα, Kβ) such that ψ(c)T = Tφ(c) for all c ∈ C. Since ξ ∈ β̃ = Tα and
ξ ∈ β was arbitrary, we can conclude the existence of π as desired.

Evidently, every morphism Φ between C∗-B†-algebras Cσ and Dτ yields a
functor

Φ∗ : Repb(Dτ)→ Repb(Cσ),

{
(Aα

H , φ) 7→ (Aα
H , φ ◦Φ) for objects (Aα

H , φ),
π 7→ π for morphisms π.

Denote by C∗r
B† the full subcategory of C∗

B† formed by all objects Cσ for which
Rep(Cσ) is non-empty.

THEOREM 3.8. There exist a functor Rb : C∗r
B† → C∗sb and natural transforma-

tions η : idC∗r
B†
→ UbRb and ε : RbUb → idC∗sb

such that for every Cσ, Dτ ∈ C∗r
B† ,

Φ ∈ C∗r
B†(Cσ, Dτ), Aα

H ∈ C∗sb ,



380 THOMAS TIMMERMANN

(i) Rb(Cσ) ∈ Repb(Cσ) is an initial object and Rb(Φ) is the unique morphism from
Rb(Cσ) to Φ∗(Rb(Dτ));

(ii) ηCσ
= φ if Rb(Cσ) = (Bβ

K, φ), and εAα
H

is the unique morphism from RbUb(Aα
H)

to (Aα
H , idA).
Moreover, Rb is left adjoint to Ub and η, ε are the unit and counit of the adjunction,

respectively.

The proof follows from Proposition 3.7 and Section IV Theorem 2 of [19].
We next consider C∗-algebras acting on C∗-bimodules. Let a = (H,A,A†)

be a C∗-base.

DEFINITION 3.9. A C∗-(A,B†)-algebra is a triple (A, ρ, σ), briefly written
Aρ,σ, where Aρ is a C∗-A-algebra, Aσ is a C∗-B†-algebra, and [ρ(A), σ(B†)] =

0. A morphism of C∗-(A,B†)-algebras is a morphism of the underlying C∗-A-
algebras and C∗-B†-algebras. We denote the category of all C∗-(A,B†)-algebras
by C∗

(A,B†)
.

A (nondegenerate) C∗-(a†, b)-algebra is a pair Aα,β
H = (α Hβ, A), where α Hβ

is a C∗-(a†, b)-module, Aα
H is a (nondegenerate) C∗-a†-algebra, and Aβ

H is a C∗-
b-algebra. A (semi-)morphism of C∗-(a†, b)-algebras Aα,β

H and Bγ,δ
K is a ∗-homo-

morphism π : A→ B satisfying γ = [Lπ
(s)(α Hβ, γKδ)α] and δ = [Lπ

(s)(α Hβ, γKδ)β],
where Lπ

(s)(αHβ, γKδ) := {T ∈ L(s)(αHβ, γKδ) : ∀a ∈ A : Ta = π(a)T}. We

denote the category of all C∗-(a†, b)-algebras together with all (semi-)morphisms
by C∗(s)

(a† ,b).

REMARK 3.10. Note that the condition on a (semi-)morphism between C∗-
(a†, b)-algebras above is stronger than just being a (semi-)morphism of the un-
derlying C∗-a†-algebras and C∗-b-algebras.

Examples 3.2(ii) and (iii) naturally extend to C∗-(a†, b)-algebras, and the
categories C∗

(A,B†)
and C∗s

(a† ,b) are again related by a pair of adjoint functors.

THEOREM 3.11. There exists a functor U(a† ,b) : C∗s
(a† ,b) → C∗

(A,B†)
, given by

Aα,β
H 7→ Aρα ,ρβ

on objects and π 7→ π on morphisms. Denote by C∗r
(A,B†)

the full
subcategory of C∗

(A,B†)
formed by all objects Cσ,ρ for which the comma category (Cσ,ρ ↓

U(a† ,b)) is non-empty. Then the corestriction of U(a† ,b) to C∗r
(A,B†)

has a left adjoint
R(a† ,b) : C∗r

(A,B†)
→ C∗s

(a† ,b).

Proof. The proof proceeds as in the case of C∗-b-algebras with straightfor-
ward modifications, so we only indicate the necessary changes for the second half
of the proof of Proposition 3.7. Given a C∗-(A,B†)-algebra Cσ,τ and a C∗-(a†, b)-
algebra Bγ,δ

K with a morphism ψ : Cσ,τ → Bργ ,ρδ
, one constructs γ̃ ⊆ γ and δ̃ ⊆ δ

for given ξ ∈ γ, η ∈ δ as follows. One first fixes a cardinal number d such that
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A,A†,H,B,B†,H are d-separable, and then inductively chooses cardinal numbers
d0, d1, . . . and closed subspaces γ0 ⊆ γ1 ⊆ · · · ⊆ γ and δ0 ⊆ δ1 ⊆ · · · ⊆ δ such
that, for all n > 0,

ξ∈γ0, η∈δ0, [γ∗0 γ0]=A†, [δ∗0 δ0]=B, d062d+1, γ0, δ0 are d0-separable,

ρδ(B
†)γn + γnA

† ⊆ γn+1, ργ(A)γn + δnB ⊆ δn+1,

ψ(C)γnH+ ψ(C)δnK ⊆ [γn+1H] ∩ [δn+1K],

dn+1 6 |N|d2dn, γn+1, δn+1 are dn+1-separable,

and finally lets γ̃ := [
⋃

n γn], δ̃ := [
⋃

n δn], K̃ := [γ̃H] = [δ̃K].

REMARK 3.12. Let Cρ,σ be a C∗-(A,B†)-algebra, Aα,β
H = R(a† ,b)(Cρ,σ), and

φ = ηCρ,σ : Cρ,σ → Aρα ,ρβ
the morphism given by the unit of the adjunction above.

Then (Aα, φ) ∈ Repa†(Cρ) and (Aβ, φ) ∈ Repb(Cσ) and therefore, we have semi-

morphisms Ra†(Cσ)→ Aα
H and Rb(Cρ)→ Aβ

H .

3.3. THE SPATIAL FIBER PRODUCT FOR C∗-ALGEBRAS ON C∗-MODULES. Our def-
inition of the fiber product of C∗-algebras represented on C∗-modules, more pre-
cisely, step (B) in the introduction, involves the following construction.

Let H and K be Hilbert spaces, I ⊆ L(H, K) a subspace and A ⊆ L(H) a
C∗-algebra such that [IH] = K, [I∗K] = H, [I I∗ I] = I, I∗ IA ⊆ A. We define a
new C∗-algebra

IndI(A) := {T ∈ L(K) : TI + T∗ I ⊆ [IA]} ⊆ L(K).

DEFINITION 3.13. The I-strong-∗, I-strong, and I-weak topology on L(K) are
the topologies induced by the families of semi-norms T 7→ ‖Tξ‖+ ‖T∗ξ‖ (ξ ∈ I),
T 7→ ‖Tξ‖ (ξ ∈ I), and T 7→ ‖ξ∗Tξ ′‖ (ξ, ξ ′ ∈ I), respectively. Given a subset
X ⊆ L(K), denote by [X]I the closure of span X with respect to the I-strong-∗
topology.

Evidently, the multiplication in L(K) is separately continuous with respect
to the topologies introduced above, and the involution T 7→ T∗ is continuous
with respect to the I-strong-∗ and the I-weak topology. Define ρI : (I∗ I)′ → L(K)
as in Lemma 2.5.

LEMMA 3.14. (i) [I∗ IndI(A)I] ⊆ A and IndI(A) = [IAI∗]I .
(ii) IndI(M(A)) ⊆ M(IndI(A)).

(iii) IndI(A) ⊆ L(K) is nondegenerate if and only if A ⊆ L(H) is nondegenerate.
(iv) If A ⊆ L(H) is nondegenerate, then A′ ⊆ (I∗ I)′ and IndI(A) ⊆ ρI(A′)′.

Proof. (i) First, [I∗ IndI(A)I] ⊆ [I∗ IA] ⊆ A by definition and [IAI∗]I ⊆
IndI(A) because [IAI∗]I I ⊆ [IAI∗ I] ⊆ [IA]. To see that [IAI∗]I ⊇ IndI(A),
choose a bounded approximate unit (uν)ν for the C∗-algebra [I I∗] and observe
that for each T ∈ IndI(A), the net (uνTuν)ν lies in the space [I I∗ IndI(A)I I∗] ⊆
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[IAI∗] and converges to T in the I-strong-∗ topology because lim
ν

T(∗)uνξ = T(∗)ξ

∈ [IA] for all ξ ∈ I and lim
ν

uνω = ω for all ω ∈ [IA].

(ii) If S ∈ IndI(M(A)) and T ∈ IndI(A), then ST ∈ IndI(A) because STI ⊆
[SIA] ⊆ [IM(A)A] = [IA] and T∗S∗ I ⊆ [TIM(A)] ⊆ [IAM(A)] = [IA].

(iii) If IndI(A) ⊆ L(K) is nondegenerate, then [AH] ⊇ [I∗ IndI(A)IH] =
[I∗ IndI(A)K] = [I∗K] = H. Conversely, if A is nondegenerate, then [IAI∗] and
hence also IndI(A) is nondegenerate.

(iv) Assume that A is nondegenerate. Then I∗ I ⊆ M(A) ⊆ L(H) and hence
A′ ⊆ (I∗ I)′. For all x ∈ IndI(A), y ∈ A′, S, T ∈ I, we have S∗xρI(y)T = S∗xTy =
yS∗xT = S∗ρI(y)xT because S∗xT ∈ A, and since [IH] = K, we can conclude that
xρI(y) = ρI(y)x.

Let b = (K,B,B†) be a C∗-base, Aβ
H a C∗-b-algebra, and Bγ

K a C∗-b†-algebra.
We apply the construction above to A, B and |γ〉2 ⊆ L(H, Hβ ⊗

b
γK), |β〉1 ⊆

L(K, Hβ ⊗
b

γK), respectively, and define the fiber product of Aβ
H and Bγ

K to be the

C∗-algebra

Aβ∗
b

γB := Ind|γ〉2(A) ∩ Ind|β〉1(B)

= {T ∈ L(Hβ ⊗
b

γK) : T(∗)|γ〉2 ⊆ [|γ〉2 A] and T(∗)|β〉1 ⊆ [|β〉1B]}.

The spaces of operators involved are visualized as arrows in the following dia-
gram:

H

A
��

|γ〉2 // Hβ ⊗
b

γK

Aβ∗
b
γB

��

K
|β〉1oo

B
��

H
|γ〉2 // Hβ ⊗

b
γK K

|β〉1oo

Even in very special situations, it seems to be difficult to give a more explicit
description of the fiber product. The main drawback of the definition above is
that apart from special situations, we do not know how to produce elements of
the fiber product.

Let a = (H,A,A†) and c = (L,C,C†) be further C∗-bases.

PROPOSITION 3.15. Let A = Aα,β
H be a C∗-(a†, b)-algebra and B = Bγ,δ

K a C∗-
(b†, c)-algebra. Then A ∗

b
B := (α Hβ ⊗

b
γKδ, Aβ∗

b
γB) is a C∗-(a†, c)-algebra.

Proof. The product X := ρ(α/γ)(A
†)(Aβ∗

b
γB) is contained in Aβ∗

b
γB because

X|β〉1 ⊆ [|ρα(A)β〉1B] = [|β〉1B], X∗|β〉1 = (Aβ∗
b

γB)|ρα(A)β〉1 ⊆ [|β〉1B],

X|γ〉2 ⊆ [|γ〉2ρα(A)A] ⊆ [|γ〉2 A], X∗|γ〉2 = (Aβ∗
b

γB)|γ〉2ρα(A) ⊆ [|γ〉2 A],
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by equation (2.3). A similar argument proves ρ(β.δ)(C
†)(Aβ∗

b
γB) ⊆ Aβ∗

b
γB.

In the situation above, we call A ∗
b
B the fiber product of A and B. Forgetting

α or δ, we obtain a C∗-c-algebra Aβ∗
b

γBδ := Aβ
H ∗b Bγ,δ

H := (Hβ ⊗
b

γKδ, Aβ∗
b

γB) and

a C∗-a†-algebra α Aβ∗
b

γB = Aα,β
H ∗b Bγ

K.

Denote by A′ ⊆ L(H) and B′ ⊆ L(K) the commutants of A and B, respec-
tively, and let

A(β) := A ∩ L(Hβ), B(γ) := B ∩ L(Kγ), X := (A(β) ⊗
b

id) + (id⊗
b

B(γ)),

Ms(A(β) ⊗
b

B(γ)) := {T ∈ L(Hβ ⊗
b

γK) : TX, XT ⊆ A(β) ⊗
b

B(γ)}.

LEMMA 3.16. The following relations hold:
(i) 〈β|1(Aβ∗

b
γB)|β〉1 ⊆ B and 〈γ|2(Aβ∗

b
γB)|γ〉2 ⊆ A and M(A)β∗

b
γ M(B) ⊆

M(Aβ∗
b

γB).

(ii) A(β) ⊗
b

B(γ) ⊆ Aβ∗
b

γB.

(iii) If [A(β)β] = β and [B(γ)γ] = γ, then Aβ∗
b

γB is nondegenerate and Ms(A(β) ⊗
b

B(γ)) ⊆ Aβ∗
b

γB.

(iv) If ρβ(B
†) ⊆ A, then idH ⊗

b
B(γ) ⊆ Aβ∗

b
γB. If ργ(B) ⊆ B, then A(β) ⊗

b
idK ⊆

Aβ∗
b

γB.

(v) id(Hβ⊗
b

γK) ∈ Aβ∗
b

γB if and only if ρβ(B
†) ⊆ A and ργ(B) ⊆ B.

(vi) If Aα,β
H is a C∗-(a†, b)-algebra and Bγ,δ

K a C∗-(b†, c)-algebra such that ρα(A) +

ρβ(B
†) ⊆ A and ργ(B) + ρδ(C

†) ⊆ B, then ρ(α/γ)(A) + ρ(β.δ)(C
†) ⊆ Aβ∗

b
γB.

(vii) If Aβ∗
b

γB is nondegenerate, then the C∗-algebra [β∗Aβ] ∩ [γ∗Bγ] ⊆ L(K) is

nondegenerate.
(viii) If A and B are nondegenerate, then A′ ⊆ ρβ(B

†)′, B′ ⊆ ργ(B)′, and Aβ∗
b

γB ⊆
ρ|γ〉2(A′) ∩ ρ|β〉1(B′) = (A′ ⊗

b
idK)

′ ∩ (idH ⊗
b

B′)′.

Proof. (i) Immediate from Lemma 3.14.
(ii) Follows from (A(β) ⊗

b
B(γ))|β〉1 ⊆ [|A(β)β〉1B(γ)] ⊆ [|β〉1B] and (A(β) ⊗

b

B(γ))|γ〉2 ⊆ [|B(γ)γ〉1 A(β)] ⊆ [|γ〉2 A].
(iii) Assume [A(β)β] = β and [B(γ)γ] = γ. Then A(β) ⊗

b
B(γ) ⊆ Aβ∗

b
γB is

nondegenerate and for each T ∈ Ms(A(β) ⊗
b

B(γ)), we have T|β〉1 ⊆ [T(A(β) ⊗
b

id)|β〉1] ⊆ [(A(β) ⊗
b

B(γ))|β〉1] ⊆ [|β〉1B] and similarly T∗|β〉1 ⊆ [|β〉1B], T|γ〉2 +
T∗|γ〉2 ⊆ [|γ〉2 A].
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(iv) If ργ(B) ⊆ B, then (A(β) ⊗
b

idK)|γ〉2 = |γ〉2 A(β) and [(A(β) ⊗
b

idK)|β〉1]
⊆|β〉1=[|βB〉1]= [|β〉1ργ(B)]⊆ [|β〉1B]. The second assertion follows similarly.

(v) If id(Hβ⊗
b

γK) ∈ Aβ∗
b

γB, then ρβ(B
†) = [〈γ|2|γ〉2] ⊆ A, ργ(B) = [〈β|1|β〉1]

⊆ B by (i). Conversely, if the last two inclusions hold, then |γ〉2 = [|γB†〉2] =
[|γ〉2ρβ(B

†)] ⊆ [|γ〉2 A] and similarly |β〉1 ⊆ [|β〉1B], whence id(Hβ⊗
b

γK) ∈ Aβ∗
b

γB.

(vi) Immediate from (iv).
(vii) The C∗-algebra C := [β∗Aβ] ∩ [γ∗Bγ] contains β∗〈γ|2(Aβ∗

b
γB)|γ〉2β =

γ∗〈β|1(Aβ∗
b

γB)|β〉1γ. Hence, [CK] ⊇ [β∗〈γ|2(Aβ∗
b

γB)(Hβ ⊗
b

γK)] = K if Aβ∗
b

γB

is nondegenerate.
(viii) Immediate from Lemma 3.14.

Even in the case of a trivial C∗-base, we have no explicit description of the
fiber product.

EXAMPLE 3.17. Let H and K be Hilbert spaces, β = L(C, H), γ = L(C, K),
b = t the trivial C∗-base (C,C,C), and identify Hβ ⊗

b
γK with H ⊗ K as in Exam-

ple 2.12.
(i) Let A ⊆ L(H) and B ⊆ L(K) be nondegenerate C∗-algebras. Then A(β) =

A, B(γ) = B, and by Lemma 3.16, Aβ∗
b

γB contains the minimal tensor product

A ⊗ B ⊆ L(H ⊗ K) and Ms(A ⊗ B) = {T ∈ L(H ⊗ K) : T(∗)(1⊗ B), T(∗)(A ⊗
1) ⊆ A⊗ B}. If A or B is non-unital, then idH⊗K 6∈ Aβ∗

b
γB by Lemma 3.16 and

so M(A ⊗ B) 6⊆ Aβ∗
b

γB. In Example 5.3(iii), we shall see that also Aβ∗
b

γB *
M(A⊗ B) is possible.

(ii) Assume that H = K = l2(N) and identify β = γ = L(C, H) with H. Then
the flip Σ : H ⊗ H → H ⊗ H, ξ ⊗ η 7→ η ⊗ ξ, is not contained in L(H)β∗

b
γL(H).

Indeed, let (ξν)ν be an orthonormal basis for H and let η ∈ H be non-zero. Then
〈ξν|1Σ|η〉1 = |η〉〈ξν| for each ν and hence ∑

ν
〈ξν|1Σ|η〉1 does not converge in

norm. On the other hand, one easily verifies that ∑
ν
〈ξν|1S converges in norm

for each S ∈ [|H〉1L(H)]. Hence, Σ|η〉1 6∈ [|H〉1L(H)].

3.4. FUNCTORIALITY AND SLICE MAPS. We show that the fiber product is func-
torial, and consider various slice maps. The results concerning functoriality were
stated in slightly different form in [27], [28], [29] with proofs referring to unpub-
lished material. We use the opportunity to rectify this situation. As before, let
a = (H,A,A†), b = (K,B,B†), c = (L,C,C†) be C∗-bases.

LEMMA 3.18. Let π be a (semi-)morphism of C∗-b-algebras Aβ
H and Cλ

L , let γKδ

be a C∗-(b†, c)-module, and let I := Lπ
(s)(Hβ, Lλ)⊗

b
id ⊆ L(Hβ ⊗

b
γK, Lλ ⊗

b
γK).
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(i) The pairs X := (Hβ ⊗
b

γKδ, (I∗ I)′) and Y := (Lλ ⊗
b

γKδ, (I I∗)′) are nondegen-

erate C∗-c-algebras.
(ii) There is a unique ρI ∈ Mor(s)(X ,Y) satisfying ρI(x)S = Sx for all x ∈

(I∗ I)′, S ∈ I.
(iii) There is a unique linear contraction jπ : [|γ〉2 A] → [|γ〉2C] given by |η〉2a 7→
|η〉2π(a).

(iv) Ind|γ〉2(A) ⊆ (I∗ I)′ and ρI(x)|η〉2 = jπ(x|η〉2) for all x ∈ Ind|γ〉2(A), η ∈ γ.
(v) Let Bγ

K be a C∗-b†-algebra. Then Aβ∗
b

γB ⊆ (I∗ I)′ and ρI(Aβ∗
b

γB) ⊆ Cλ ∗
b

γB.

Proof. (i) First, (I∗ I)′ and (I I∗)′ are nondegenerate C∗-algebras, and second,
ρ(β.δ)(C

†) = id β ⊗
b

γρδ(C
†) ⊆ (I∗ I)′ and ρ(λ.δ)(C

†) = id λ ⊗
b

γρδ(C
†) ⊆ (I I∗)′.

(ii) There exists a unique ∗-homomorphism ρI : (I∗ I)′ → (I I∗)′ satisfying
the formula above by Lemma 2.5, and this is a (semi-)morphism because [I(β .
δ)] = [λ . δ] by assumption on π.

(iii) For all η1, . . . , ηn ∈ γ and a1, . . . , an ∈ A, we have∥∥∥∑
j
|ηj〉2π(aj)

∥∥∥2
=
∥∥∥∑

i,j
π(a∗i )ρλ(η

∗
i ηj)π(aj)

∥∥∥6∥∥∥∑
i,j

a∗i ρβ(η
∗
i ηj)aj

∥∥∥=∥∥∥∑
j
|ηj〉2aj

∥∥∥2

by Lemma 3.4. The claim follows.
(iv) The first assertion follows from Lemma 3.14 and the relation I∗ I ⊆ A′⊗

b

id = ρ|γ〉2(A′), and the second one from the fact that for all x ∈ Ind|γ〉2(A), η ∈
γ, S ∈ Lπ

(s)(Hβ, Lλ), we have ρI(x)|η〉2S = ρI(x)(S⊗
b

id)|η〉2 = (S⊗
b

id)x|η〉2 =

jπ(x|η〉2)S.
(v) First, Aβ∗

b
γB ⊆ (I∗ I)′ by Lemma 3.16. The second assertion follows from

the relations

ρI(Aβ∗
b

γB)|γ〉2 ⊆ ρI(Ind|γ〉2(A))|γ〉2 ⊆ jπ([|γ〉2 A]) = [|γ〉2C],

ρI(Aβ∗
b

γB)|λ〉1 = ρI(Aβ∗
b

γB)[I|β〉1] ⊆ [I(Aβ∗
b

γB)|β〉1] ⊆ [I|β〉1B] = [|λ〉1B].

THEOREM 3.19. Let φ be a (semi-)morphism of C∗-(a, b)-algebras A = Aα,β
H and

C = Cκ,λ
L , and ψ a (semi-)morphism of C∗-(b†, c)-algebras B = Bγ,δ

K and D = Dµ,ν
M .

Then there exists a unique (semi-)morphism of C∗-(a, c)-algebras φ ∗ ψ from A ∗
b
B to

C ∗
b
D such that

(φ ∗ ψ)(x)R = Rx for all x ∈ Aβ∗
b

γB and R ∈ IM JH + JL IK,

where IX = Lφ

(s)(Hβ, Lλ)⊗
b

idX and JY = idY ⊗
b
Lψ

(s)(Kγ, Mµ) for X ∈ {K, M}, Y ∈
{H, L}.
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Proof. By Lemma 3.18, we can define φ ∗ψ to be the restriction of ρIM ◦ ρJH or
of ρJL ◦ ρIK to Aβ∗

b
γB. Uniqueness follows from the fact that [IM JH(Hβ ⊗

b
γK)] =

[JL IK(Hβ ⊗
b

γK)] = Lλ ⊗
b

µ M.

REMARK 3.20. Let Aβ
H , Cλ

L be C∗-b-algebras, Bγ
K, Dµ

M C∗-b†-algebras, and

φ ∈ Mor(Aβ
H , M(C)λ

L), ψ ∈ Mor(Bγ
K, M(D)

µ
M) such that [φ(A)C] = C, [ψ(B)D] =

D. Then there exists a ∗-homomorphism φ ∗
b

ψ : Aβ∗
b

γB → M(C)λ∗
b

µ M(D) ↪→
M(Cλ ∗

b
µD), but in general, we do not know whether this is nondegenerate.

Next, we briefly discuss two kinds of slice maps on fiber products. For ap-
plications and further details, see [29]. The first class of slice maps arises from a
completely positive map on one factor and takes values in operators on a certain
KSGNS-construction, that is, an internal tensor product with respect to a com-
pletely positive linear map ([16], Sections 4–5).

PROPOSITION 3.21. Let Aβ
H be a C∗-b-algebra, Kγ a C∗-b†-module, L a Hilbert

space, φ : [A + ρβ(B
†)] → L(L) a c.p. map, and θ = φ ◦ ρβ : B† → L(L). Then

there exists a unique c.p. map φ ∗ id : Ind|γ〉2(A) → L(Lθ<γ) such that for all ζ, ζ ′ ∈
L, η, η′ ∈ γ, x ∈ Ind|γ〉2(A),

〈ζ < η|(φ ∗ id)(x)(ζ ′ < η′)〉 = 〈ζ|φ(〈η|2x|η′〉2)ζ ′〉.(3.1)

If Bγ
K is a C∗-b†-algebra, then

(φ ∗ id)(Aβ∗
b

γB) ⊆ (φ(A)′θ<(B′ ∩ L(Kγ))
′ ⊆ L(Lθ<γ).

Proof. Let x = (xij)i,j ∈ Mn(Ind|γ〉2(A)) be positive, let ζ1, . . . , ζn ∈ L,
η1, . . . , ηn ∈ γ, where n ∈ N, and let d = diag(|η1〉2, . . . , |ηn〉2). Then 0 6
(〈ηi|2xij|ηj〉2)i,j = d∗xd 6 ‖x‖d∗d and hence 0 6 (φ(〈ηi|2xij|ηj〉2))i,j 6 ‖x‖φ(d∗d)
and

0 6∑
i,j
〈ζi|φ(〈ηi|2xij|ηj〉2)ζ j〉 6 ‖x‖∑

i,j
〈ζi < ηi|ζ j < ηj〉.

Hence, there exists a map φ ∗ id as claimed. The verification of the assertion
concerning Bγ

K is straightforward.

REMARK 3.22. If Cλ
L is a C∗-b†-algebra and φ|A is a semi-morphism of C∗-

b†-algebras, then the map φ ∗ id extends the fiber product φ ∗ id defined in Theo-
rem 3.19.

Second, we show that the fiber product is functorial with respect to the fol-
lowing class of maps. A spatially implemented map of C∗-b-algebras Aβ

H and Cλ
L is

a map φ : A→ C admitting sequences (Sn)n and (Tn)n in L(Lλ, Hβ) such that:

(i) ∑
n

S∗nSn, ∑
n

T∗n Tn converge in norm, (ii) φ(a)=∑
n

S∗naTn for all a∈A.(3.2)
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Note that condition (i) implies norm-convergence of the sum in (ii). Evidently,
such a map is linear, it extends to a normal map φ̄ : A′′ → C′′, its norm is bounded

by
∥∥∥∑

n
S∗nSn

∥∥∥1/2
·
∥∥∥∑

n
T∗n Tn

∥∥∥1/2
, and the composition of spatially implemented

maps is spatially implemented again.

PROPOSITION 3.23. Let φ be a spatially implemented map of C∗-b-algebras Aβ
H

and Cλ
L , and let Bγ,δ

K be a C∗-(b†, c)-algebra. Then there exists a spatially implemented
map from Aβ

H ∗b Bγ,δ
K to Cλ

H ∗b Bγ,δ
K such that 〈η|2(φ ∗ id)(x)|η′〉2 = φ(〈η|2x|η′〉2) for

all x ∈ Aβ∗
b

γB, η, η′ ∈ γ.

Proof. Uniqueness is clear. Fix sequences (Sn)n, (Tn)n as in (3.2) and let
S̃n := Sn ⊗

b
idK, T̃n := Tn ⊗

b
idK for all n. Then S̃n, T̃n ∈ L(Lλ ⊗

b
γKδ, Hβ ⊗

b
γKδ)

for all n, we have
∥∥∥∑

n
S̃∗nS̃n

∥∥∥ =
∥∥∥∑

n
S∗nSn

∥∥∥,
∥∥∥∑

n
T̃∗n T̃n

∥∥∥ =
∥∥∥∑

n
T∗n Tn

∥∥∥, and the map

φ ∗ id : Aβ∗
b

γB → L(Lλ ⊗
b

γK) given by x 7→ ∑
n

T̃∗n xS̃n has the desired proper-

ties. Indeed, let x ∈ Aβ∗
b

γB, η, η′ ∈ γ. Then S̃n|η〉2 = |η〉2Sn and T̃n|η′〉2 =

|η′〉2Tn for all n, and hence 〈η|2(φ ∗ id)(x)|η′〉2 = φ(〈η|2x|η′〉2). It remains to
show that (φ ∗ id)(x) ∈ Cλ∗

b
γB. Consider the expression (φ ∗ id)(x)|η′〉2 =

∑
n

S̃∗nx|η′〉2Tn. This sum converges in norm and each summand lies in [|γ〉2L(H)]

because x|η′〉2 ∈ [|γ〉2 A] and [S̃∗n|γ〉2] = [|γ〉2S∗n]. Since 〈η′′|2(φ ∗ id)(x)|η′〉2 ∈ C
for each η′′ ∈ γ, we can conclude that the sum lies in [|γ〉2C]. Finally, con-
sider the expression (φ ∗ id)(x)|ξ〉1 = ∑

n
S̃nxT̃n|ξ〉1, where ξ ∈ λ. Again, the

sum converges in norm and each summand lies in [|λ〉1B] because S̃∗nxT̃n|ξ〉1 =

S̃∗nx|Tnξ〉1 ∈ S̃∗n(Aβ∗
b

γB)|β〉1 ⊆ [S̃∗n|β〉1B] ⊆ [|λ〉1B].

REMARK 3.24. (i) The map φ ∗ id constructed above is a “slice map” in the
case where Cλ

L = L(K)BK and Sn, Tn ∈ β ⊆ L(KB, Hβ) for all n. Then, we can
identify Cλ∗

b
γB with a C∗-subalgebra ofL(K), and φ ∗ id is just the map Aβ∗

b
γB→

B given by x 7→ ∑
n
〈Sn|1X|Tn〉1.

(ii) Assume that the extension φ̃ : [A + ρβ(B
†)] → C given by x 7→ ∑

n
S∗nxTn is

completely positive. Here, we use the notation of the proof above. Then the map
φ̃ ∗ id constructed in Proposition 3.21 extends the map φ ∗ id of Proposition 3.23
because then θ = ρλ and hence 〈η|2(φ̃ ∗ id)(x)|η′〉2 = φ̃(〈η|2x|η′〉2) for all x ∈
Aβ∗

b
γB and η, η′ ∈ γ.

Of course, slice maps of the form id ∗φ can be constructed in a similar way.
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3.5. FURTHER CATEGORICAL PROPERTIES. The fiber product of C∗-algebras is
neither associative, unital, nor compatible with infinite sums.

We first discuss non-associativity. Let A = Aα,β
H be a C∗-(a†, b)-algebra,

B = Bγ,δ
K a C∗-(b†, c)-algebra, and C = Cε,φ

L a C∗-(c†, d)-algebra. Then we can
form the fiber products (A ∗

b
B) ∗

c
C and A ∗

b
(B ∗

c
C). The following example

shows that these C∗-algebras need not be identified by the canonical isomorphism
aa,b,c,d(εLφ, γKδ, α Hβ) of Proposition 2.14. A similar phenomenon occurs in the
purely algebraic setting with the Takeuchi ×R-product [24].

EXAMPLE 3.25. Let a = b = c = d be the trivial C∗-base, H = l2(N), α =
L(C, H), A = B = C = L(H)α,α

H . Identify Hα ⊗
b

αKα ⊗
c

αL ∼= α ⊗ H ⊗ α with

H ⊗ H ⊗ H via |ξ〉= ζ < |η〉 ≡ ξ ⊗ ζ ⊗ η, fix an orthonormal basis (en)n∈N of H,
and define T ∈ L(H⊗3) by

T(ek ⊗ el ⊗ em) =

{
ek ⊗ el ⊗ em for all k, l, m ∈ N such that m 6 k + l,
el ⊗ ek ⊗ em for all k, l, m ∈ N such that m > k + l.

We show that T belongs to the underlying C∗-algebra of (A ∗
b
B) ∗

c
C, but not of

A ∗
b
(B ∗

c
C).

For each ξ ∈ H and ω ∈ H⊗2, we define |ξ〉1, |ξ〉3 ∈ L(H⊗2, H⊗3) and
|ω〉12 ∈ L(H, H⊗3) by υ 7→ ξ ⊗ υ, υ 7→ υ⊗ ξ, and ζ 7→ ω ⊗ ζ, respectively. Then
for all k, l, m ∈ N,

T|ek⊗el〉12= |ek⊗el〉12Pl+k+|el⊗ek〉12(id−Pl+k), where Pl+k := ∑
m6k+l

|em〉〈em|,

T|em〉3= |em〉3(id+Σm), where Σm := ∑
k,l; k+l<m

|el ⊗ ek − ek ⊗ el〉〈ek ⊗ el |,

and therefore,

T|H⊗2〉12 ∈ [|H⊗2〉12L(H)],

T|α〉3 ∈ [|α3〉(id+K(H)⊗K(H))] ⊆ [|α〉3(L(H)α∗
b

αL(H))].

Since T = T∗, we can conclude that T belongs to (L(H)α∗
b

αL(H)α)∗
b

αL(H). How-
ever,

T|e0〉1 = |e0〉1Q + ∑
l
|el〉1Ql , where Q = ∑

m6l
|el ⊗ em〉〈el ⊗ em|

and Ql = ∑
m>l
|e0 ⊗ em〉〈el ⊗ em|,

and |e0〉1Q ∈ [|α〉1L(H ⊗ H)], but ∑
l
|el〉1Ql 6∈ [|α〉1L(H ⊗ H)] because the sum

∑
l

Q∗l Ql = ∑
l

∑
m>l
|el ⊗ em〉〈el ⊗ em|
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does not converge in norm. Therefore, we have T|e0〉1 6∈ [|α〉1L(H ⊗ H)] and
T 6∈ L(H)α∗

b
(αL(H)α∗

b
αL(H)).

We next discuss unitality. A unit for the fiber product relative to b would

be a C∗-(b†, b)-algebra U = UB† ,B
K such that for all C∗-(a†, b)-algebras A = Aα,β

H
and all C∗-(b†, c)-algebras B = Bγ,δ

K , we have A = Adr(A ∗
b
U ) and B = Adl(U ∗

b

B), where r = ra,b(α Hβ) and l = lb,c(γKδ) (see Proposition 2.14). The relations
r|β〉1 = β, r|B†〉2 = ρβ(B

†), l|γ〉2 = γ, l|B〉1 = ργ(B) imply

Adr(Aβ ∗
b
B†U) = Indβ(U) ∩ Indρβ(B†)(A),

Adl(UB ∗
b

γB) = Indργ(B)(B) ∩ Indγ(U).
(3.3)

If B† and B are unital, then Indρβ(B†)(A) = A and Indργ(B)(B) = B, and then

the C∗-(b†, b)-algebra L(K)B
† ,B

K is a unit for the fiber product on the full subcat-

egories of all Aα,β
H and Bγ,δ

K satisfying A ⊆ Indβ(L(K)) and B ⊆ Indγ(L(K)).

REMARK 3.26. (i) If A ⊆ Indα(L(H)) and B ⊆ Indγ(L(L)), then we have
Aβ∗

b
γB ⊆ Ind(α/γ)(L(H)) ∩ Ind(β.δ)(L(K)).

(ii) Indβ(B
†) = L(Hβ), and if B† is unital, then Adr(Aβ ∗

b
B†B†) = A ∩

L(Hβ) = A(β).
(iii) Adr(BB∗

b
B†B†) = L(KB) ∩ L(KB†) = M(B) ∩M(B†).

We finally discuss compatibility with sums and products. First, the fiber
product is compatible with finite sums in the following sense. Let (Ai)i be a
finite family of C∗-(a†, b)-algebras and (B j)j a finite family of C∗-(b†, c)-algebras.
For each i, j, denote by

ιiA : Ai → �i′Ai′ , ι
j
B : B j → �j′B j′ , πi

A : �i′ Ai′ → Ai, π
j
B : �j′ B j′ → B j

the canonical inclusions and projections, respectively. One easily verifies that
there exist inverse isomorphisms �i,jAi ∗

b
B j � (�iAi) ∗

b
(�jB j), given by

(xi,j)i,j 7→∑
i,j
(ιiA ∗

b
ι
j
B)(xi,j) and ((πi

A ∗
b

π
j
B)(y))i,j ← [ y,

respectively. However, the fiber product is neither compatible with infinite sums
nor infinite products:

EXAMPLE 3.27. Let t = (C,C,C) be the trivial C∗-base.
(i) For each i, j ∈ N, letAi and B j be the C∗-t-algebra CC

C. Identify
⊕
i,j
CC ⊗

t
CC

with l2(N×N) in the canonical way. Then
⊕
i,j
(Ai∗

t
B j) corresponds to C0(N×N),

represented on l2(N × N) by multiplication operators, but (
⊕

iAi)∗
t
(
⊕

j B j) ∼=
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C0(N)∗
t
C0(N) is strictly larger and contains, for example, the characteristic func-

tion of the diagonal {(x, x) : x ∈ N} (see Example 5.3).
(ii) Let H = l2(N), α = L(C, H), and let A and B j be the C∗-t-algebra K(H)α

H
for all j. Identify Hα ⊗

t
α H with H⊗ H as in Example 2.12(i), choose an orthonor-

mal basis (ek)k∈N of H, and put yj := |ej⊗ e0〉〈e0⊗ e0| ∈ K(H⊗H) for each j ∈ N.
Then y := (yj)j ∈ ∏

j
A∗

t
B j because yj ∈ K(H)⊗K(H) ⊂ A∗

t
B j for all j ∈ N, but

with respect to the canonical identification
⊕

j
H ⊗ H ∼= H ⊗ (

⊕
j⊗H), we have

y 6∈ A∗
t
(∏j B j) because y|e0〉1 corresponds to the family

(|ej〉1|e0〉〈e0|)j ∈∏
j
L(H, H ⊗ H) ⊆ L(

⊕
j
H,
⊕

j
H ⊗ H)

which is not contained in the space [|α〉1L(
⊕

j H)].

3.6. A FIBER PRODUCT OF NON-REPRESENTED C∗-ALGEBRAS. The spatial fiber
product of C∗-algebras represented on C∗-modules yields a fiber product of non-
represented C∗-algebras as follows.

Let b = (K,B,B†) be a C∗-base. In Subsection 3.2, we constructed a functor
Rb : C∗r

B† → C∗sb that associates to each C∗-B†-algebra a universal representation
in form of a C∗-b-algebra. Replacing b by b†, we obtain a functor Rb† : C∗rB → C∗sb ,
and composition of these with the spatial fiber product gives a fiber product of
non-represented C∗-algebras in form of a functor

C∗r
B† × C∗rB

Rb×R
b†−−−−→ C∗sb × C∗s

b† → C∗, (Cσ, Dτ) 7→ Rb(Cσ) ∗
b

Rb†(Dτ),

where C∗ denotes the category of C∗-algebras and ∗-homomorphisms. In categor-
ical terms, this is the right Kan extension of the spatial fiber product on C∗sb ×C∗s

b†

along the product of the forgetful functors Ub × Ub† : C∗sb × C∗s
b† → C∗r

B† × C∗rB
([19], Section X).

Given further C∗-bases a = (H,A,A†) and c = (L,C,C†), we similarly ob-
tain a functor

C∗r(A,B†) × C∗r(B,C†)

R
(a†,b)×R

(b†,c)−−−−−−−−→ C∗s(a† ,b) × C∗s(b† ,c) → C∗s(a† ,c)

U
(a†,c)−−−→ C∗r(A,C†),

and, using Remark 3.12, a natural transformation between the compositions in
the square

C∗r
(A,B†)

× C∗r
(B,C†)

//

��

C∗r
(A,C†)

��qy llllllllll
llllllllll

C∗r
B† × C∗rB // C∗,

,

where the vertical maps are the forgetful functors.
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4. RELATION TO THE SETTING OF VON NEUMANN ALGEBRAS

In this section, let N be a von Neumann algebra with a n.s.f. weight µ, de-
note by Nµ, Hµ, πµ, Jµ the usual objects of Tomita–Takesaki theory [23], and define
the antirepresentation π

op
µ : N → L(Hµ) by x 7→ Jµπµ(x∗)Jµ.

4.1. ADAPTATION TO VON NEUMANN ALGEBRAS. The definitions and construc-
tions presented in Sections 2 and 3 can be adapted to a variety of other settings.
We now briefly explain what happens when we pass to the setting of von Neu-
mann algebras. Instead of a C∗-base, we start with the triple b = (K,B,B†),
where K = Hµ, B = πµ(N), and B† = Jµπµ(N)Jµ. Next, we define W∗-b-
modules, W∗-(b†, b)-modules, their relative tensor product, W∗-b-algebras, and
the fiber product by just replacing the norm closure [ · ] by the closure with re-
spect to the weak operator topology [ · ]w everywhere in Sections 2 and 3. We
then recover Connes’ fusion of Hilbert bimodules over N and Sauvageot’s fiber
product as follows.

MODULES. Let H be some Hilbert space. If (H, ρ) is a right N-module, then

α = L((K, π
op
µ ), (H, ρ)) := {T ∈ L(K, H) : ∀x ∈ N : Tπ

op
µ (x) = ρ(x)T}

satisfies [αK] = H, [α∗α]w = B, αB ⊆ α, and ρα ◦ π
op
µ (see Lemma 2.5) coin-

cides with ρ. Conversely, if α ⊆ L(K, H) is a weakly closed subspace satisfy-
ing the three preceding equations, then (H, ρα ◦ π

op
µ ) is a right N-module and

α = L((K, π
op
µ ), (H, ρα ◦ π

op
µ )) [22]. We thus obtain a bijective correspondence

between right N-modules and W∗-b-modules. This correspondence is an iso-
morphism of categories since for every other right N-module (K, σ), an oper-
ator T ∈ L(H, K) intertwines ρ and σ if and only if Tα is contained in β :=
L((K, π

op
µ ), (K, σ)). For W∗-b-modules, the notions of morphisms and semi-mor-

phisms coincide.
ALGEBRAS. Let H, ρ, α be as above and let A ⊆ L(H) be a von Neumann

algebra. Then ρ(N) ⊆ A if and only if ρα(B)A ⊆ A. Thus, W∗-b-algebras cor-
respond with von Neumann algebras equipped with a normal unital embedding
of N. Moreover, let K, σ, β be as above, let B ⊆ L(K) be a von Neumann algebra,
assume ρ(N) ⊆ A and σ(N) ⊆ B, and let π : A → B be a ∗-homomorphism sat-
isfying π ◦ ρ = σ. Then π is normal if and only if [Lπ(Hα, Kβ)α]w = β. Indeed,
the “if” part is straightforward (see Lemma 3.4), and the “only if” part follows
easily from the fact that every normal ∗-homomorphism is the composition of an
amplification, reduction, and unitary transformation ([5], Section 4.4).

BIMODULES. Let (H, ρ) be a left N-module, let (H, σ) be a right N-module,
and let α = L((K, πµ), (H, ρ)) and β = L((K, π

op
µ ), (H, σ)). Then (H, ρ, σ) is

an N-bimodule if and only if ρ(N)β = β and σ(N)α = α, and thus we obtain
an isomorphism between the category of N-bimodules and the category of W∗-
(b†, b)-modules.
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FUSION. The preceding considerations and (2.1) show that the relative tensor
product of W∗-(b†, b)-modules corresponds to Connes’ fusion of N-bimodules.

FIBER PRODUCT. Let (H, ρ) be a right N-module, (K, σ) a left N-module,
α = L((K, π

op
µ ), (H, ρ)) and β = L((K, πµ), (K, σ)), and let A ⊆ L(H) and B ⊆

L(K) be von Neumann algebras satisfying ρ(N) ⊆ H and σ(N) ⊆ K. One easily
verifies the equivalence of the following conditions for each x ∈ L(Hβ ⊗

b
γK):

(i) x|α〉1 ⊆ [|α〉1B]w, (ii) 〈α|1x|α〉1 ⊆ B, (iii) x ∈ (idH ⊗
b

B′)′.

Consequently, the fiber product of A and B, considered as a W∗-b-algebra and a
W∗-b†-algebra, coincides with the fiber product (idH ⊗

b
B′)′ ∩ (A′⊗

b
idK)

′ = (A′⊗
b

B′)′ of Sauvageot.

4.2. RELATION TO CONNES’ FUSION AND SAUVAGEOT’S FIBER PRODUCT. Let
b = (K,B,B†) be a C∗-base such that K = Hµ, B′′ = πµ(N), (B†)′′ = π

op
µ (N) =

B′. Denote by C∗-mod(b† ,b) the category of all C∗-(b†, b)-modules with all semi-
morphisms, and by W∗-bimod(N,Nop) the category of all N-bimodules, respec-
tively. Lemmas 2.5 and 2.6 imply:

LEMMA 4.1. There is a faithful functor F : C∗-mod(b† ,b) → W∗-bimod(N,Nop),
given by α Hβ 7→ (H, ρα ◦ πµ, ρβ ◦ π

op
µ ) on objects and T 7→ T on morphisms.

The categories C∗-mod(b† ,b) and W∗-bimod(N,Nop) carry the structure of
monoidal categories [19], and we now show that the functor F above is monoidal.
Let Hβ be a C∗-b-module, Kγ a C∗-b†-module, and let

ρ = ρβ ◦ π
op
µ , X = L((K, π

op
µ ), (H, ρ)), σ = ργ ◦ πµ, Y = L((K, πµ), (K, σ)).

Given subspaces X0 ⊆ X and Y0 ⊆ Y, we define a sesquilinear form 〈 · | · 〉 on the
algebraic tensor product X0�K�Y0 such that for all ξ, ξ ′∈X0, ζ, ζ ′∈K, η, η′∈Y0,

〈ξ � ζ � η|ξ ′ � ζ ′ � η′〉 = 〈ζ|(ξ∗ξ ′)(η∗η′)η′〉 = 〈ζ|(η∗η′)(ξ∗ξ ′)η′〉.

Denote by X0 =K< Y0 the Hilbert space obtained by forming the separated com-
pletion.

LEMMA 4.2. Let X0 ⊆ X, Y0 ⊆ Y be subspaces satisfying [X0K] = H and
[Y0K] = K. Then the natural map X0 =K< Y0 → X =K< Y is an isomorphism.

Proof. Injectivity is clear. The natural map X0 = K < Y0 → X = K < Y0 is
surjective because both spaces coincide with the separated completion of the al-
gebraic tensor product H � Y0 with respect to the sesquilinear inner form given
by 〈ω � η|ω′ � η′〉 = 〈ω|ρβ(η

∗η′)ω′〉, and a similar argument shows that the
natural map X =K< Y0 → X =K< Y is surjective.
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We conclude that Connes’ original definition of the relative tensor product
Hρ ⊗

µ
σK via bounded vectors coincides with the algebraic one given in (2.1) and

with the relative tensor product Hβ ⊗
b

γK.

THEOREM 4.3. There exists a natural isomorphism between the compositions in
the square

C∗-mod(b† ,b) × C∗-mod(b† ,b)

−⊗
b
−

//

F×F ��

C∗-mod(b† ,b)

nv eeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeee
F��

W∗-bimod(N,Nop) ×W∗-bimod(N,Nop) −⊗
µ
−

// W∗-bimod(N,Nop),

given for each object (α Hβ, γKδ) ∈ C∗-mod(b† ,b) × C∗-mod(b† ,b) by the natural map

Hβ ⊗
b

γK = β =K< γ→ X =K< Y = Hρ ⊗
µ

σK.(4.1)

With respect to this isomorphism, the functor F : C∗-mod(b† ,b) → W∗-bimod(N,Nop)

is monoidal.

Proof. Lemma 4.2 implies that the map (4.1) is an isomorphism. Evidently,
this map is natural with respect to α Hβ and γKδ. The verification of the assertion
concerning F is now tedious but straightforward.

Denote by C∗s,nd
(b† ,b) the category formed by all C∗-(b†, b)-algebras Aα,β

H satis-

fying ρα(B) + ρβ(B
†) ⊆ A and all semi-morphisms, and by W∗(N,Nop) the cate-

gory of all von Neumann algebras A equipped with a normal, unital embedding
and anti-embedding ι

op
A : N → A such that [ιA(N), ι

op
A (N)] = 0, together with all

morphisms preserving these (anti-)embeddings. Lemma 3.4 implies:

PROPOSITION 4.4. There exists a faithful functor G : C∗s,nd
(b† ,b) → W∗(N,Nop),

given by (α Hβ, A) 7→ (A′′, ρα ◦ πµ, ρβ ◦ π
op
µ ) on objects and φ 7→ φ′′ on morphisms,

where φ′′ denotes the normal extension of φ.

By Lemma 3.16, A ∗
b
B ∈ C∗s,nd

(b† ,b) for all A,B ∈ C∗s,nd
(b† ,b), but C∗s,nd

(b† ,b) is not

a monoidal category with respect to the fiber product because the latter is not
associative (see Subsection 3.5).

PROPOSITION 4.5. There exists a natural transformation

C∗s,nd
(b† ,b) × C∗s,nd

(b† ,b)

−∗
b
−

//

G×G
��

C∗s,nd
(b† ,b)

G
��px iiiiiiiiiiiiii

iiiiiiiiiiiiii

W∗(N,Nop) ×W∗(N,Nop) −∗
µ
−

// W∗(N,Nop) ,
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given for each object Aα,β
H and Bγ,δ

K by conjugation with the isomorphism (4.1).

The proof is immediate from Theorem 4.3 and Lemma 3.16.

4.3. A CATEGORICAL INTERPRETATION OF THE FIBER PRODUCT OF VON NEU-
MANN ALGEBRAS. We keep the notation introduced above, denote by Hilb the
category of Hilbert spaces and bounded linear operators, and call a subcategory
of W∗-mod(N,Nop) a ∗-subcategory if it is closed with respect to the involution
T 7→ T∗ of morphisms.

DEFINITION 4.6. A category over W∗-mod(N,Nop) is a category C equipped
with a functor UC : C → W∗-mod(N,Nop) such that UCC is a ∗-subcategory of
W∗-mod(N,Nop). Let (C, UC) be such a category. We loosely refer to C as a cate-
gory over W∗-mod(N,Nop) without mentioning UC explicitly, and denote by HC
the composition of UC with the forgetful functor W∗-mod(N,Nop) → Hilb. We
call an object G ∈ C separating if it satisfies [HCC(G, X)(HCG)] = HCX for each
X ∈ C.

We denote by Cat(N,Nop) the category of all categories over W∗-mod(N,Nop)

having a separating object, where the morphisms between objects (C, UC) and
(D, UD) are all functors F : C→ D satisfying UDF = UC.

EXAMPLE 4.7. For each A ∈ W∗(N,Nop), denote by W∗-modA the category
of all normal, unital representations π : A → L(H) for which π ◦ ιA and π ◦ ι

op
A

are faithful, and all intertwiners. This is a category over W∗-mod(N,Nop), where
UA : W∗-modA → W∗-mod(N,Nop) is given by (L, π) 7→ (L, π ◦ ιA, π ◦ ι

op
A ) on

objects and T 7→ T on morphisms. The only non-trivial thing to check is that
W∗-modA has a separating object; by Lemma 2.10 of [3] or IX Theorem 1.2(iv) of
[23], one can take the GNS-representation for a n.s.f. weight on A.

Each morphism φ : A → B in W∗(N,Nop) yields a functor φ∗ : W∗-modB →
W∗-modA, given by (L, π) 7→ (L, π ◦ φ) on objects and T 7→ T on morphisms.

REMARK 4.8. In the definition above, Cat(N,Nop)(C, D) need not be a set,
and this may cause problems. There are several possible solutions: we can fix a
“universe” to work in, or replace the category W∗-mod(N,Nop) by a small subcat-
egory and require categories over W∗-mod(N,Nop) to be small, too. It is clear how
to modify the preceding example in that case.

PROPOSITION 4.9. There exists a contravariant functor Mod : W∗(N,Nop) →
Cat(N,Nop) given by A 7→ Mod(A) := (W∗-modA, UA) on objects and by φ 7→
Mod(φ) := φ∗ on morphisms.

For each category C ∈ Cat(N,Nop), choose a separating object GC. Fix some
C ∈ Cat(N,Nop), let U = UC, H = HC, G = GC, (H, ρ, σ) = UG, and de-
fine End(C) := H(C(G, G))′ ⊆ L(H). Then ρ(N) + σ(N) ⊆ End(C) because
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H(C(G, G)) ⊆ (ρ(N) + σ(N))′, and we can consider End(C) as an element of
W∗(N,Nop) with respect to ρ and σ.

LEMMA 4.10. There exists a morphism ηC : C→ Mod(End(C)) in Cat(N,Nop),
given by X 7→ (UX, ρX) on objects and T 7→ HT on morphisms, where ρX = ρHC(G,X)

for each X ∈ C. In particular, ρX(End(C)) ⊆ H(C(X, X))′ for each X ∈ C.

Proof. Let X ∈ C and (K, φ, ψ) = UX. Then Lemma 2.5, applied to I :=
HC(G, X) ⊆ L(HG, HX), gives a normal representation ρI : (I∗ I)′ → L(K).
Since I∗ I ⊆ HC(G, X) by assumption on C, we have End(C) ⊆ (I∗ I)′ and can
define ρX = ρI |End(C). Each element of I intertwines ρ with φ and σ with ψ,
whence UX = (K, ρI ◦ ρ, ρI ◦ σ) = UEnd(C)(ηCX).

Let Y ∈ C, T ∈ C(X, Y), J := HC(G, Y). Then H(T)ρI(S) = ρJ(S)H(T)
for all S ∈ End(G) because H(T)I ∈ J, and therefore H(T) is a morphism from
(HX, ρX) to (HY, ρY). By definition, HEnd(C)(ηC(T)) = HT.

REMARK 4.11. If G′ ∈ C is another separating object, ρG′ : H(C(G, G))′ →
H(C(G′, G′))′ is an isomorphism with inverse ρHC(G′ ,G).

We shall eventually show that the assignment C 7→ End(C) extends to a
functor End : Cat(N,Nop) → W∗(N,Nop) that is adjoint to Mod. The key is a more
careful analysis of functors from a category C ∈ Cat(N,Nop) to categories of the
form Mod(A), where A ∈ W∗(N,Nop). Such functors themselves can be consid-
ered as objects of a category as follows.

For all C, D ∈ Cat(N,Nop), the elements of Cat(N,Nop)(C, D) are the objects of
a category, where the morphisms are all natural transformations with the usual
composition.

Similarly, for all A, B ∈ Cat(N,Nop), the morphisms in W∗(N,Nop)(A, B) can
be considered as objects of a category, where the morphisms between φ, ψ are all
b ∈ B satisfying bφ(a) = ψ(a)b for all a ∈ A, and where composition is given by
multiplication.

PROPOSITION 4.12. Let A ∈ W∗(N,Nop) and C ∈ Cat(N,Nop). Then there ex-
ists an isomorphism ΦC,A : Cat(N,Nop)(C, Mod(A)) → W∗(N,Nop)(A, End(C)) with
inverse ΨC,A := Φ−1

C,A such that:
(i) ΦC,A(F) is defined by FGC = (HCGC, ΦC,A(F)) for each functor F : C →

Mod(A) and ΦC,A(α) = αGC for each transformation α in Cat(N,Nop)(C, Mod(A));
(ii) ΨC,A(π) = Mod(π) ◦ ηC : C → Mod(End(C)) → Mod(A) for each object

π and ΨC,A(S) = (ρX(S))X∈C for each morphism S in W∗(N,Nop)(A, End(C)).

Explicitly, ΨC,A(π) is given by X 7→ (HCX, ρX ◦π) on objects and T 7→ HCT
on morphisms.

The proof of Proposition 4.12 involves the following result.
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LEMMA 4.13. Write UCGC = (HCGC, ρ, σ). Then the assignments α 7→ αGC

and (ρX(S))X∈C ← [ S are inverse bijections between all natural transformations α of
HC (or ηC) and all elements S ∈ End(GC) (or S ∈ End(GC) ∩ (ρ(N) + σ(N))′,
respectively).

Proof. A family of morphisms (αX : HCX → HCX)X∈C is a natural transfor-
mation of HC if and only if αXT = TαX for all X ∈ C and T ∈ HC(GC, X), that
is, if αX = ρX(αGC) and αGC ∈ End(C). Such a family is a natural transformation
of ηC if and only if additionally, αX = ρX(αGC) is a morphism of UCX for each
X ∈ C or, equivalently, if αGC ∈ (ρ(N) + σ(N))′.

Proof of Proposition 4.12. Lemma 4.13 implies that Ψ := ΨC,A is well defined
by (ii). Let us show that Φ := ΦC,A is well defined by (i). For each F as above,
the image HMod(A)(F(C(GC, GC))) = HC(C(GC, GC)) consists of intertwiners
for Φ(F) and hence (Φ(F))(A) ⊆ HC(C(GC, GC))

′ = End(C). Likewise, for each
α as above, αGC intertwines HC(C(GC, GC)) and hence αGC ∈ End(C). Finally,
Φ(α ◦ β) = αGC ◦ βGC = Φ(α)Φ(β) for all composable α, β.

Next, Φ ◦ Ψ = id because for each π as above, Ψ(π)(GC) = (HCGC, ρGC ◦
π) so that Φ(Ψ(π)) = ρGC ◦ π = π, and for each S as above, the component of
(ρX(S))X∈C at X = GC is ρGC(S) = S.

Finally, we prove Ψ ◦ Φ = id. Let F be as above and define φX by FX =
(HCX, φX) for each X ∈ C. Then Φ(F) = φGC , and for each a ∈ A, the family
(φX(a))X∈C is a natural transformation of HMod(A) ◦ F = HC which coincides by
Lemma 4.13 with (ρX(φGC(a)))X∈C. Therefore, FX = (HCX, φX) = (HCX, ρX ◦
Φ(F)) = Ψ(Φ(F))(X) for each X ∈ C. On morphisms, Ψ(Φ(F)) and F coincide
anyway. For each α as above, Ψ(Φ(α)) = (ρX(αGC))X∈C = α by Lemma 4.13.

COROLLARY 4.14. (i) Let A ∈ W∗(N,Nop) and consider idA as an object of C :=
Mod(A). Then ΦC,A(idC) : A → End(Mod(A)) is an isomorphism in W∗(N,Nop)

with inverse εA := ρidA .
(ii) Let A, B ∈ W∗(N,Nop). Then the isomorphism Mod(A,B) obtained by composing

(ε−1
B )∗ : W∗(N,Nop)(A, B)→ W∗(N,Nop)(A, End(Mod(B)))

with

ΨMod(B),A : W∗(N,Nop)(A, End(Mod(B)))→ Cat(N,Nop)(Mod(B), Mod(A)),

is given by φ 7→ Mod(φ) on objects and b 7→ (π(b))(L,π) on morphisms.
(iii) Let C, D ∈ Cat(N,Nop). Then the functor End(C,D) obtained by composing

(ηD)∗ : Cat(N,Nop)(C, D)→ Cat(N,Nop)(C, Mod(End(D)))

with

ΦC,End(D) : Cat(N,Nop)(C, Mod(End(D)))→ W∗(N,Nop)(End(D), End(C))

is given by F 7→ ρFGC on objects and α 7→ HD(αGC) on morphisms.
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Proof. Assertions (i) and (iii) follow immediately from the definitions and
Proposition 4.12.

Let us prove (ii). For each object φ, we have GMod(B) = (HMod(B), ε−1
B ) and

ΦMod(B),A(Mod(φ)) = ε−1
B ◦ φ, whence ΨMod(B),A(ε

−1
B ◦ φ) = Mod(φ), and for

each morphism b, the family α := (π(b))(L,π) is a natural transformation and
ΦMod(B),A(α) = αGMod(B)

= ε−1
B (b).

The relative tensor product on W∗-mod(N,Nop) yields a product on the cate-
gory Cat(N,Nop) as follows. Let C, D ∈ Cat(N,Nop). Then C×D and the functor

UC×D = (− ⊗
µ
−) ◦ (UC ×UD) : C×D→ W∗-mod(N,Nop),

form a category over W∗-mod(N,Nop) with separating object (GC, GD). Thus, we
obtain a monoidal structure on Cat(N,Nop), given by (C, D) 7→ C×D on objects
and (F, G) 7→ F×G on morphisms.

COROLLARY 4.15. For all A, B, C ∈ W∗(N,Nop), there exists an isomorphism

Ξ : W∗(N,Nop)(A, B∗
µ

C)→ Cat(N,Nop)(Mod(B)×Mod(C), Mod(A))

such that
(i) for each object π, the functor Ξ(π) : Mod(B)×Mod(C) → Mod(A) is given

by ((L, τ), (M, υ)) 7→ (L ⊗
µ

M, (τ∗
µ

υ) ◦ π) and (S, T) 7→ S ⊗
µ

T;

(ii) for each morphism x : π1 → π2, the transformation Ξ(b) : Ξ(π1) → Ξ(π2) is
given by Ξ(b)((L,τ),(M,υ)) = (τ∗

µ
υ)(x).

Proof. Let B := Mod(B), C := Mod(C), D := B× C. Then G := (GB, GC)
is separating and

ρG: End(D)→HD(D(G, G))′=(End(B)′ ⊗
µ

End(C)′)′=End(B)∗
µ

End(C)∼=B∗
µ

C

is an isomorphism by Remark 4.11.
Let X = (L, τ) ∈ B and Y = (M, υ) ∈ C. Then ρ(X,Y) = (τ∗

µ
υ) ◦ ρG by

Lemma 2.5 because τ∗
µ

υ = ρJ , where J = HB(B(GB, X)) ⊗
µ

HC(C(GC, Y)), and

J ·HD(D(GD, G)) ⊆ HD(D(GD, (X, Y))). Now, the assertion follows from Propo-
sition 4.12.

The categories W∗(N,Nop) and Cat(N,Nop) are enriched over the monoidal
category Cat of small categories [14], or, equivalently, are 2-categories, mean-
ing that the morphisms between fixed objects are themselves objects of a small
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category, as explained before Proposition 4.12, and that the composition of mor-
phisms between fixed objects extends to a functor, where

B
ψ1

((

ψ2

66⇓ c C ◦ A
φ1

((

φ2

66⇓ b B = A

ψ1◦φ1

++

ψ2◦φ2

33⇓ψ2(b)c C in W∗(N,Nop),(4.2)

C
G1

))

G2

55⇓ β D ◦ B
F1

))

F2

55⇓ α C = B

G1◦F1

++

G2◦F2

33⇓ βF2◦G1α D in Cat(N,Nop).(4.3)

Recall that a contravariant functor between enriched categories C, D consists of
an assignment F : ob C → ob D and, for each pair of objects X, Y ∈ C, a functor
F(X,Y) : C(X, Y) → D(FY, FX) that is compatible with composition in a natural
sense. We now show that the assignments Mod, End defined above are functors
in this sense and that the isomorphisms in Proposition 4.12 form part of an ad-
junction between Mod and End. For background on enriched categories, see [14].

THEOREM 4.16. The assignments Mod and End define contravariant functors
Mod : W∗(N,Nop) → Cat(N,Nop) and End : Cat(N,Nop) → W∗(N,Nop) of enriched cate-
gories. The isomorphisms (ΦC,A)C,A define an adjunction whose unit is (ηC)C∈Cat(N,Nop)

and counit is (εA)A∈W∗(N,Nop)
.

Proof. We first show that Mod and End are functors of enriched categories.
By Corollary 4.14, it suffices to prove this for End. Consider a diagram as in (4.3)
and let a = End(B,C)(α), b = End(C,D)(β), c = End(B,D)(βF2 ◦G1α). We have to
show that then the cells

End(C)

End(B,C)(F1)
++

⇓a

End(B,C)(F2)

33 End(B) ◦ End(D)

End(C,D)(G1)
,,

⇓b

End(C,D)(G2)

22 End(C)

and

End(D)

End(B,D)(G1F1)
++

End(B,D)(G2F2)

33⇓c End(B)

are equal. By definition, a = HC(αGB), b = HD(βGC), and by Lemma 4.13,

c = HD(βF2GB ·G1(αGB)) = ρF2GB(HD(βGC)) ·HC(αGB) = End(F2)(b) · a.
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It remains to show that for all morphisms φ : A → B in W∗(N,Nop) and
F : C→ D in Cat(N,Nop), the diagram

Cat(N,Nop)(D, Mod(B))
ΦD,B //

��

W∗(N,Nop)(B, End(D))

��
Cat(N,Nop)(C, Mod(A))

ΦC,A // W∗(N,Nop)(A, End(C))

commutes, where the vertical maps are induced by F and Mod(A,B)(φ) on the left
and φ and End(C,D)(F) on the right, respectively, or, more precisely, that for each
object G and each morphism α in Cat(N,Nop)(D, Mod(B)),

End(C,D)(F) ◦ΦD,B(G) ◦ φ = ΦC,A(Mod(A,B)(φ) ◦G ◦ F),

End(C,D)(F)(α) = Mod(A,B)(φ)(αF).

The second equation holds because of Lemma 4.13 and the relation

End(C,D)(F)(αGC) = ρFGC(αGD) = αFGC = Mod(A,B)(φ)(αFGC)

first one holds because by Corollary 4.14,

End(C,D)(F) ◦ΦD,B(G) ◦ φ = ρFGC ◦ΦD,B(G) ◦ φ,

(Mod(A,B)(φ) ◦G ◦ F)(GC) = (HCGC, ρFGC ◦ΦD,B(G) ◦ φ).

5. THE SPECIAL CASE OF A COMMUTATIVE BASE

Let Z be a locally compact Hausdorff space with a Radon measure µ of
full support, and identify C0(Z) with multiplication operators on L(L2(Z, µ)).
Then the relative tensor product and the fiber product over the C∗-base b =
(L2(Z, µ), C0(Z), C0(Z)) can be related to the fiberwise product of bundles as fol-
lows.

Denote by Modb, ModC0(Z), and BdlZ the categories of all C∗-b-modules
with all morphisms, of all Hilbert C∗-modules over C0(Z), and of all continuous
Hilbert bundles over Z; for the precise definition of the latter, see [6]. Each of
these categories carries a monoidal structure, where the product

(i) of E, F ∈ ModC0(Z) is the separated completion of E� F with respect to the
inner product 〈ξ � η|ξ ′ � η′〉 = 〈ξ|ξ ′〉〈η|η′〉, denoted by E ⊗

C0(Z)
F;

(ii) of E ,F ∈ BdlZ is the fibrewise tensor product of E and F ;
(iii) of Hβ, Kγ ∈ Modb is (Hβ ⊗

b
γK, β ./ γ), where β ./ γ := [|γ〉2β] = [|β〉1γ];

here, note that β Hβ, γKγ are C∗-(b, b)-modules.
There exist equivalences of monoidal categories

Modb

U
�
F

ModC0(Z)
B
�
Γ0

BdlZ
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such that for each E ∈ ModC0(Z), F ∈ BdlZ, Hβ ∈ Modb,

(i) UHβ = β ∈ ModC0(Z);
(ii) FE = (E ⊗C0(Z) L2(Z, µ), l(E)), where l(ξ)η = ξ ⊗C0(Z) η for each ξ ∈

E, η ∈ L2(Z, µ);
(iii) BE =

⊔
z∈Z

Ez and Γ0(BE) = {(ξz)z : ξ ∈ E}, where Ez is the completion

of E with respect to the inner product (ξ, η) 7→ 〈ξ|η〉(z), and ξ 7→ ξz denotes the
quotient map E→ Ez;

(iv) the operations on the space of sections Γ0(F ) ∈ ModC0(Z) are defined
fiberwise.

The equivalence on the left is easily verified, and the equivalence on the
right is explained in [6]. Compare also Examples 2.7 and 2.12(ii).

Denote by C∗C0(Z) the category of all continuous C0(Z)-algebras with full
support [6], where the morphisms between A, B ∈ C∗C0(Z) are all C0(Z)-linear

nondegenerate ∗-homomorphisms π : A → M(B), and by C̃∗b the category of all
C∗-b-algebras Aβ

H satisfying [ρβ(C0(Z))A] = A and [Aβ] = β, where the mor-

phisms between Aβ
H , Bγ

K ∈ C̃∗b are all π ∈ C∗b(Aβ
H , M(B)γ

K) satisfying [π(A)B] =
B. Then there exists a functor C̃∗b → C∗C0(Z), given by Aβ

H 7→ (A, ρα) and π 7→ π,

and this functor has a full and faithful left adjoint which embeds C∗C0(Z) into C̃∗b
([28], Theorem 6.6).

We finally consider the fiber product of commutative C∗-b-algebras and
start with preliminaries. Let Z be a locally compact space, E a Hilbert C∗-module
over C0(Z), and BE =

⊔
z∈Z

Ez the corresponding Hilbert bundle. The topology

on BE is generated by all open sets of the form UV,η,ε = {ζ|z ∈ V, ζ ∈ Ez, ‖ηz −
ζ‖Ez < ε}, where V ⊆ Z is open, η ∈ E, ε > 0. Denote by q :

⊔
z∈Z
L(Ez) → Z the

natural projection and define for each η, η′ ∈ E maps

ωη,η′ :
⊔

z∈Z
L(Ez)→ C, T 7→ 〈ηq(T)|Tη′q(T)〉,

υ
(∗)
η :

⊔
z∈Z
L(Ez)→

⊔
z∈Z

Ez, T 7→ T(∗)ηq(T).

The weak topology (strong-∗-topology) on
⊔

z∈Z
L(Ez) is the weakest one that makes q

and all maps of the form ωη,η′ (of the form υ
(∗)
η ) continuous.

Let A be a commutative C∗-algebra, let π : C0(Z)→ M(A) be a ∗-homomor-
phism, and let χ ∈ Â. Then we identify E ⊗φ∗ A ⊗χ C with Ez, where z ∈ Z

corresponds to χ ◦ π ∈ Ĉ0(Z), via η ⊗π a ⊗χ λ 7→ λχ(a)ηz. A map T : Â →⊔
z∈Z
L(Ez) is weakly vanishing (strong-∗-vanishing) at infinity if for all η, η′ ∈ E, the

map ωη,η′ ◦ T (the maps χ 7→ ‖υ(∗)η (T(χ))‖) vanish at infinity.
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LEMMA 5.1. Let Aβ
H be a C∗-b-algebra, Kγ a C∗-b†-module, x ∈ L(Hβ ⊗

b
γK).

Assume that A is commutative, [ρβ(C0(Z))A] = A, and 〈γ|2x|γ〉2 ⊆ A. Define
Fx : Â→ ⊔

z∈Z
L(γz) by χ 7→ (χ ∗ id)(x). Then:

(i) Fx is weakly continuous, weakly vanishing at infinity.
(ii) x ∈ Ind|γ〉2(A) if and only if Fx is strong-∗ continuous, strong-∗-vanishing at

infinity.

Proof. First, note that for all η, η′ ∈ γ and χ ∈ Â,

χ(〈η|2x|η′〉2) = 〈1(χ◦ρβ)
<η|(χ ∗ id)(x)(1(χ◦ρβ)

<η′)〉 = 〈η(χ◦ρβ)
|Fx(χ)η

′
(χ◦ρβ)

〉.

(i) For each η′, η∈γ, the map χ 7→〈η(χ◦ρβ)
|Fx(χ)η′(χ◦ρβ)

〉 equals 〈η|2x|η′〉2∈A.

(ii) Assume that Fx is strong-∗ continuous vanishing at infinity and let η ∈ γ.
Then the map χ 7→ Fx(χ)η(χ◦ρβ)

lies in Γ0(γ =ρβ
A). Hence, there exists an

ω ∈ γ =ρβ
A such that Fx(χ)η(χ◦ρβ)

= ωχ for all χ ∈ Â. We identify γ =ρβ
A

with [|γ〉2 A] ⊆ L(H, Hβ ⊗
b

γK) in the canonical manner and find that x|η〉2 = ω

because χ(〈η′|2x|η〉2) = 〈η′(χ◦ρβ)
|ω(χ◦ρβ)

〉 = χ(〈η′|2ω) for all χ ∈ Â, η′ ∈ γ.

Since η ∈ γ was arbitrary, we can conclude x|γ〉2 ⊆ [|γ〉2 A]. A similar argu-
ment, applied to x∗ instead of x, shows that x∗|γ〉2 ⊆ [|γ〉2 A], and therefore
x ∈ Ind|γ〉2(A). Reversing the arguments, we obtain the reverse implication.

Let X be a locally compact Hausdorff space with a continuous surjection
p : X → Z and a family of Radon measures φ = (φz)z∈Z such that:

(i) supp φz = Xz := p−1(z) for each z ∈ Z and
(ii) the map φ∗( f ) : z 7→

∫
Xz

f dφz is continuous for each f ∈ Cc(X).

Define a Radon measure νX on X such that∫
X

f dνX =
∫
Z

φ∗( f )dµ for all f ∈ Cc(X).

Then there exists a unique map

jX : Cc(X)→ L(L2(Z, µ), L2(X, νX))

such that jX( f )h = f p∗(h) and jX( f )∗g = φ∗( f g) for all f , g ∈ Cc(X), h ∈ Cc(Z).
Similarly, let Y be a locally compact Hausdorff space with a continuous map
q : Y → Z and a family of measures ψ = (ψz)z∈Z satisfying the same conditions
as X, p, φ, and define a Radon measure νY on Y and an embedding jY : Cc(Y) →
L(L2(Z, µ), L2(Y, νY)) as above. Let

H := L2(X, νX), β := [jX(Cc(X))], A := C0(X) ⊆ L(L2(X, νX) = L(H),

K := L2(Y, νY), γ := [jY(Cc(Y))], B := C0(Y) ⊆ L(L2(Y, νY)) = L(K).
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Then Hβ, Kγ are C∗-b-modules and Aβ
H , Bγ

K are C∗-b-algebras, as one can easily
check. Considering β and γ as Hilbert C∗-modules over C0(Z), we can canoni-
cally identify βz ∼= L2(Xz, φz) and γz ∼= L2(Yz, ψz). Finally, define a Radon mea-
sure ν on Xp ×

Z
qY such that for all h ∈ Cc(Xp ×

Z
qY),

∫
Xp×

Z
qY

h dν =
∫
Z

∫
Xz

∫
Yz

h(x, y)dψz(y)dφz(x)dµ(z).

PROPOSITION 5.2. (i) There exists a unitary U : Hβ ⊗
b

γK → L2(Xp ×
Z

qY, ν)

such that (U(jX( f ) = h < jY(g)))(x, y) = f (x)h(p(x))g(y) for all f ∈ Cc(X), g ∈
Cc(Y), h ∈ Cc(Z), (x, y) ∈ Xp ×

Z
qY.

(ii) AdU(Aβ∗
b

γB) is the C∗-algebra of all f ∈ L∞(Xp ×
Z

qY, ν) that have repre-

sentatives fX , fY such that the maps X → TotL(γ) and Y → TotL(β) given by
x 7→ fX(x, ·) ∈ L∞(Yp(x), ψp(x)) and y 7→ fY(·, y) ∈ L∞(Xq(y), φq(y)) respectively,
are strong-∗ continuous vanishing at infinity.

Proof. The proof of assertion (i) is straightforward, and assertion (ii) follows
immediately from Proposition Lemma 3.16(viii) and Lemma 5.1(ii).

EXAMPLE 5.3. (i) Let X, Y be discrete, Z = {0}, and let φ0, ψ0 be the count-
ing measures on X, Y, respectively. Then

C0(X)β∗
b

γC0(Y) ∼= { f ∈ Cb(X×Y) : f (x, · ) ∈ C0(Y) for all x ∈ X,

f ( · , y) ∈ C0(X) for all y ∈ Y}.

This follows from Proposition 5.2 and the fact that for each f ∈ Cb(X × Y), the
maps X → L(l2(Y)), x 7→ f (x, · ), and Y → L(l2(X)), y 7→ f ( · , y), are strong-∗
continuous vanishing at infinity if and only if f ( · , y) ∈ C0(X) and f (x, · ) ∈
C0(Y) for each y ∈ Y and x ∈ X.

(ii) Let X = N, Z = {0}, and let φ0 be the counting measure. Then

C0(N)β∗
b

γC0(Y) ∼= { f ∈ Cb(N×Y) : ( f (x, ·))x is a sequence in C0(Y)

that converges strongly to 0 ∈ L(L2(Y, ψ0))}

because for each f ∈ L∞(N×Y), the map Y → L(l2(N)), y 7→ f ( · , y), is strong-∗
continuous vanishing at infinity if and only if f (x, · ) ∈ C0(Y) for all x ∈ N.

(iii) Let X = Y = [0, 1], Z = {0}, and let φ0 = ψ0 be the Lebesgue mea-
sure. For each subset I ⊆ [0, 1], denote by χI its characteristic function. Then the
function f ∈ L∞([0, 1]× [0, 1]) given by f (x, y) = 1 if y 6 x and f (x, y) = 0 other-
wise belongs to C([0, 1])β∗

b
γC([0, 1]) because the functions [0, 1] → L∞([0, 1]) ⊆

L(L2([0, 1])) given by x 7→ f (x, · ) = χ[0,x] and y 7→ f ( · , y) = χ[y,1] are strong-∗
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continuous. In particular, we see that C([0, 1])β∗
b

γC([0, 1]) * C([0, 1]× [0, 1]) =

C([0, 1])⊗ C([0, 1]).
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