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ABSTRACT. We introduce a relative tensor product of C*-bimodules and a
spatial fiber product of C*-algebras that are analogues of Connes’ fusion of
correspondences and the fiber product of von Neumann algebras introduced
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proach to quantum groupoids in the setting of C*-algebras that is published
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1. INTRODUCTION

The relative tensor product of Hilbert modules over von Neumann algebras
was introduced by Connes in an unpublished manuscript [4], [10], [20] and later
used by Sauvageot to define a fiber product of von Neumann algebras relative to a
common (commutative) von Neumann subalgebra [21]. These constructions and
Haagerup’s theory of operator-valued weights on von Neumann algebras [12],
[13] form the basis for the theory of measured quantum groupoids developed by
Enock, Lesieur and Vallin [8], [9], [18], [30], [31].

In this article, we introduce a new notion of a bimodule in the setting of
C*-algebras, construct relative tensor products of such bimodules, and define
a fiber product of C*-algebras represented on such bimodules. These construc-
tions form the basis for a series of articles on quantum groupoids in the setting
of C*-algebras, individually addressing fundamental unitaries [29], axiomatics
of the compact case [27], and coactions of quantum groupoids on C*-algebras
[28]. Moreover, our previous approach to quantum groupoids in the setting of
C*-algebras [25] embeds functorially into this new framework [26], and the latter
overcomes the serious restrictions of the former one.
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Already in the definition of a quantum groupoid, the relative tensor product
and a fiber product appear as follows. Roughly, such an object consists of the fol-
lowing ingredients: an algebra B, thought of as the functions on the unit space, an
algebra A, thought of as functions on the total space, a homomorphismr: B — A
and an antihomomorphism s: B — A corresponding to the range and the source
map, and a comultiplication A: B — A * A corresponding to the multiplication

of the quantum groupoid. Here, A * A is a fiber product whose precise definition

depends on the class of the algebras involved. In the setting of operator algebras,
A acts naturally on some bimodule H and product A % A is a certain subalgebra

of operators acting on a relative tensor product H ® H. This relative tensor prod-

uct is important also because it forms the domain or range of the fundamental
unitary of the quantum groupoid.
Let us now sketch the problems and constructions studied in this article.
The first problem is the construction of a tensor product H % K of modules

H, K over some algebra B. In the algebraic setting, H (% K is simply a quotient of

the full tensor product H ® K. In the setting of von Neumann algebras, H and

K are Hilbert spaces, and Connes explained that the right tensor product is not a

completion of the algebraic one but something more complicated. If B is commu-

tative and of the form B = L*®(X, j1), then the modules H, K can be disintegrated

into two measurable fields of Hilbert spaces in the form H = [ @dey(x) and
X

K=/[ “Kydpu(x), and H ® K is obtained by taking tensor products of the fibers
X B

and integrating again: H® K = [ “Hy ® Kydp(x). For the situation where B is a
B X
C*-algebra, we propose an approach that is based on the internal tensor product

of Hilbert C*-modules and essentially consists of an algebraic reformulation of
Connes’ fusion. Central to this approach is a new notion of a bimodule in the
setting of C*-algebras.

The second problem is the construction of a fiber product A % C of two al-

gebras A, C relative to a subalgebra B. If B is central in A and the opposite B°P
is central in C, this fiber product is just a relative tensor product. In the algebraic
setting, it coincides with the tensor product of modules; in the setting of opera-
tor algebras, it can be obtained via disintegration and a fiberwise tensor product
again. This approach was studied by Sauvageot for Neumann algebras [21], and
by Blanchard [1] for C*-algebras.

The case where the subalgebra B°P is no longer central in A or C is more
difficult. In the algebraic setting, the fiber product was introduced by Takeuchi
[24] and is, roughly, the largest subalgebra of the relative tensor product A % C

where componentwise multiplication is still well defined. In the setting of von
Neumann algebras, Sauvageot’s definition of the fiber product carries over to the
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general case and takes the form A * C = (A % C"), where A and C are rep-
resented on Hilbert spaces H and K, respectively, and A’ ® C’ acts on Connes’
B
relative tensor product H ® K. Here, it is important to note that A’ ® C' is a
B B

completion of an algebraic tensor product spanned by elementary tensors, but
in general, A x C is not. Similarly, in the setting of C*-algebras, one cannot start

from some algebraic tensor product and define the fiber product to be some com-
pletion; rather, a new idea is needed. We propose such a new fiber product for
C*-algebras represented on the new class of modules mentioned above. Unfor-
tunately, several important questions concerning this construction remain open,
but the applications in [27], [28], [29] already prove its usefulness.

This article is organized as follows.

The introduction ends with a short summary on terminology and some
background on Hilbert C*-modules.

Section 2 is devoted to the relative tensor product in the setting of C*-
algebras. It starts with some motivation, then presents a new notion of modules
and bimodules in the setting of C*-algebras, and finally gives the construction
and its formal properties like functoriality, associativity and unitality.

Section 3 introduces a minimal fiber product of C*-algebras. It begins with
an overview and then proceeds to C*-algebras represented on the class of mod-
ules and bimodules introduced in Section 2. The fiber product is first defined
and studied for such represented C*-algebras, including a discussion of func-
toriality, slice maps, lack of associativity, and unitality. A natural extension to
non-represented C*-algebras is indicated at the end.

Section 4 relates our constructions for the setting of C*-algebras to the cor-
responding constructions for the setting of von Neumann algebras. Adapting
our constructions to von Neumann algebras, one recovers Connes’ fusion and
Sauvageot’s fiber product; moreover, the constructions are related by functors
going from the C*-level to the W*-level. The section ends with a categorical in-
terpretation of Sauvageot’s fiber product.

Section 5 shows that for a commutative base B = Cy(X), the relative tensor
product of the new class of modules corresponds to the fiberwise tensor product
of continuous Hilbert bundles over X, and the fiber product of represented C*-
algebras is related to the relative tensor product of continuous Cy(X)-algebras
studied by Blanchard.

We use the following conventions and notation.

Given a category C, we write A, B € C to indicate that A, B are objects of C,
and denote by C(A, B) the associated set of morphisms.

Given a subset Y of a normed space X, we denote by [Y] C X the closed
linear span of Y.

All sesquilinear maps like inner products on Hilbert spaces are assumed to
be conjugate-linear in the first component and linear in the second one.
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Given a Hilbert space H and an element { € H, we define ket-bra operators
§): C—= H, A= Ag,and ({| = [§)": H = C, &' — ().

We shall make extensive use of (right) Hilbert C*-modules; a standard ref-
erence is [16].

Let A and B be C*-algebras. Given Hilbert C*-modules E and F over B,
we denote by L(E, F) the space of all adjointable operators from E to F. Let E
and F be Hilbert C*-modules over A and B, respectively, and let 7: A — L(F)
be a *-homomorphism. Then the internal tensor product E ® F is a Hilbert C*-
module over B ([16], Section 4) and the closed linear span of elements 77 ® ¢,
where 7 € Eand § € F are arbitrary, and (1§ @ {|1y' @7 &) = (&|({y]|n'))¢’) and
(n@,8)b =n®z¢bforalln,y €E, & €F be B. We denote the internal
tensor product by “S” and drop the index 7t if the representation is understood;
thus, EGF =ESzF=E®xF.

We define a flipped internal tensor product F,©E as follows. We equip the
algebraic tensor product F ® E with a product (¢ ® (¢’ ©#') := (&|n({(n]n’))&")
and a module structure via (& ® )b := {b © 17, form the separated completion,
and obtain a Hilbert C*-B-module F;©E which is the closed linear span of el-
ements ¢,©1, where 1 € E and ¢ € F are arbitrary, and (91| oy") =
(€lm((nln"))¢") and (Gn©m)b = Cbnm for all " € E, {,¢' € F, b € B. As
above, we usually drop the index 77 and simply write “©” instead of “;&”. Evi-
dently, there exists a unitary X: FS E S EoF, neg— .

Let Eq, E; be Hilbert C*-modules over A, let F;, F, be Hilbert C*-modules
over B with x-homomorphisms 77;: A — L(F;) fori =1,2,and let S € L(Ey, Ep),
T € L(F, F,) such that T7ry (a) = 7»(a)T foralla € A. Then there exists a unique
operator S& T € L(E1 & F,E; & F) such that (S T)(y o) = Sy e T¢ for all
ne€E, e F,and (SeT)* =S5*© T* ([7], Proposition 1.34).

2. THE RELATIVE TENSOR PRODUCT IN THE SETTING OF C*-ALGEBRAS

2.1. MOTIVATION. The aim of this section is to construct a relative tensor product
of suitably defined left and right modules over a general C*-algebra B such that
(i) the construction shares the main properties of the ordinary tensor product
of bimodules over rings like functoriality and associativity and (ii) the mod-
ules admit representations of C*-algebras that do not commute with the mod-
ule structures. The latter condition will be needed to construct fiber products of
C*-algebras; see Section 3.

The internal tensor product of Hilbert C*-modules meets condition (i) but
not (ii) because C*-algebras represented on such modules necessarily commute
with the right module structure. An approach to quantum groupoids based on
the internal tensor product was developed in [25] but remained restricted to very
special cases.
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What we are looking for is an analogue of Connes’ fusion of correspon-
dences. Here, B is a von Neumann algebra, and left and right modules are Hilbert
spaces equipped with suitable representation or antirepresentation of B, respec-
tively. The relative tensor product of a right module H and a left module K is
then constructed as follows. Choose a normal, semi-finite, faithful (n.s.f.) weight
p on B, construct a B-valued inner product (- | - ), on the dense subspace Hy C H
of all bounded vectors, and define H ® K to be the separated completion of the

algebraic tensor product Hy ® K with Vrespect to the sesquilinear form given by
(Conidon')y = (¢ )uy’). The definition of bounded vectors involves the
GNS-space $) := Hj, for u which, by Tomita-Takesaki theory, is bimodule over B,
and each bounded vector { € Hy gives rise to a map L(§) € L($Hp, Hp) of right
B-modules such that (|¢’), = L({)*L(¢") € B C L(9).

EXAMPLE 2.1. Assume that B = L*(X, u) for some nice measure space

(X, ), and denote the weight on B given by integration by u as well. Then

$ = L?(X, 1), and we can disintegrate H and K into measurable fields (Hy), and

(Ky)y of Hilbert spaces over X such that H 2 [“H,du(x) and K 22 [“K,dpu(x).
X X

Each vector ¢ of H or K corresponds to a measurable section x +— ¢(x) with
square-integrable norm function |{|: x — ||{x||, and is bounded with respect to
p if and only if this norm function is essentially bounded. Then for all ¢, &’ € H,
xe X, nn €K,

(€17 u(x) = (€)1 (%)),
(Conldon) = /<§(X)\6’(X)><17(x)|17’(x)>du(x),

X

and H® K = [ °H, ® Kydp(x). Note that the sesquilinear form above need
H X
not extend to H ® K because the integrand need not be in L' (X, u) for arbitrary
¢, ¢ € Hand 1,7’ € K.
For our purpose, the following algebraic description of H ® K is useful. This

H
relative tensor product can be identified with the separated completion of alge-

braic tensor product
(2.1) L($Hp,Hp) ©H© L(9H, K)
with respect to the sesquilinear form
(SOLOTIS 0 o T) = ({S'S'TT'Y) = (T T's*S'T),

where L£($p, Hg) and L(5$, gK) are all bounded maps of right or left B-modules,
respectively. We adapt this definition to the setting of C*-algebras, making the
following modifications:
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(A) The construction above depends on the choice of some n.s.f. weight u
or, more precisely, the triple (H,, 71,(B), 1,(B)’), but any other y yields a triple
which is unitarily equivalent. In the setting of C*-algebras, such a canonical triple
does not exist but has to be chosen.

(B) The module structure of H and K can equivalently be described in terms
of (anti)representations of B or in terms of the spaces L($p, Hg) and L(59, sK).
In the setting of C*-algebras, this equivalence breaks down, and we shall make
suitable closed subspaces of intertwiners the primary object. In the commutative
case, a representation corresponds to a measurable field of Hilbert spaces, and
the subspaces fix a continuous structure.

(C) If H and K are bimodules, then so is H ® K. Here, a bimodule structure on
H
H is given by the additional choice of a representation of some von Neumann al-

gebra A that commutes with the antirepresentation of B or, equivalently, satisfies
AL(Hp,Hp) = L($Hp, Hp). If we pass to C*-algebras, then commutation is too
weak, and we shall adopt the second condition, where £($p, Hp) is replaced by
the subspace of intertwiners mentioned above.

2.2. MODULES AND BIMODULES OVER C*-BASES. Observation (A) leads us to
adopt the following terminology.

DEFINITION 2.2. A C*-base b = (&, B, EB*) consists of a Hilbert space $) and
commuting nondegenerate C*-algebras 8, B C L(#), respectively. The opposite
of b is the C*-base b’ := (& B, B). A C*-base (,,A") is equivalent to b if
Ady (A) = B and Ady (A7) = BT for some unitary V € L($, R).

Clearly, the Hilbert space C and twice the algebra C = £(C) form a trivial
C*-base t = (C,C,C).

EXAMPLE 2.3. Let u be a proper, faithful KMS-weight on a C*-algebra A
[15] with GNS-space H, GNS-representation 7,: A — L(H,), modular con-
jugation J,: H, — H,, and opposite GNS-representation 7,0p: AP — L(Hy),
a > Jumu(a*)]y. Then the triple (Hy, 7w, (A), 7tu00 (A°P)) is a C*-base. Its oppo-
site is equivalent to the C*-base associated to the opposite weight #°P on A°P.
Indeed, Hy, can be considered as the GNS-space for ;P via the opposite GNS-
map Ayop: Nyop — Hy, a%P = [, Ay(a*), and then Jyop 7100 (A%P) Jyop = 71, (A).

Letb = (8B, %*) be a C*-base. We define C*-modules over b as indicated
in comment (B).

DEFINITION 2.4. A C*-b-module H, = (H,«) is a Hilbert space H with a
closed subspace « C L(R, H) satisfying [aR] = H, [aB] = a, [a*a] = B. A semi-
morphism between C*-b-modules H, and Kg is an operator T € L(H, K) satisfying
Ta C B. If additionally T*B C «, we call T a morphism. We denote the set of all
(semi-)morphisms by L) (Ha, Kp).
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Evidently, the class of all C*-a-modules forms a category with respect to
all semi-morphisms, and a C*-category in the sense of [11] with respect to all
morphisms.

LEMMA 2.5. (i) Let H, K be Hilbert spaces and I C L(H, K) such that [IH] = K.
Then there exists a unique normal, unital x-homomorphism py: (I*I)" — (II*)" such
that p;(x)S = Sx forall x € (I*'I)), S € L.
(ii) Let H, K, L be Hilbert spacesand I C L(H,K), ] € L(K, L) such that [[H] = K,
[JK] = L,and J*JI C I. Then p;((I*I)") € (J*])" and pj o p1 = pji.

Proof. (i) Uniqueness is evident. Let x € (I*I)' and Sy,...,S, € L, &1, ..., &x
€ H. Since x*x commutes w1th each S;'S;, the matrix (5 S;x*x); ; € My (L(H)) is
dominated by [ x*x||(5}S;);,j, and

|

Hence, there exists an operator p;(x) € £(K) as claimed. One easily verifies that
the assignment x — p;(x) is a *-homomorphism. It is normal because [[H] = K
and for all S,T € I, {,n € K, the functional x — (S¢|p;(x)Ty) = ({|xS*Ty) is
normal.

(ii) Letx € (I*I)". Then p;(x) € J*] since S*Tp;(x)R = S*TRx = p;(x)S*TR
forall S,T € J, R € I, and pj;(x) = pj(pr(x)) because pj;(x)TR = TRx =
pj(pr(x))TRforallT€ J,Re 1. 1

l]/

2
= Y (@ilsispxgy) < [l C(@ilsisigy) = IIxI2|| s
ij i,j i

LEMMA 2.6. Let H, be a C*-b-module.
(i) a is a Hilbert C*-B-module with inner product (¢,&') — &*&'.

(ii) There exist isomorphisms « SR — H,{S{ — ¢, and Rea — H, (¢ — (L.

(iii) There exists a unique normal, unital and faithful representation p,: B’ — L(H)
such that p, (x)(E) = éx{ forallx € B/, €a, { € A

(iv) Let Kg be a C*-b-module and T € Ls(Hy, Kg). Then Tpy(x) = pg(x)T for all
x € B'. Ifadditionally T € L(Hy, Kg), then left multiplication by T defines an operator
in L («, B), again denoted by T.

Proof. Assertions (i) and (ii) are obvious, and (iii) follows from the preceding
lemma. To prove (iv), let x € B',{ € o, € R Then T¢ € B and Tp,(x)E{ =

Texl = pp(x)TEL. 0

EXAMPLE 2.7. Let Z be a locally compact Hausdorff space, 4 a Radon mea-
sure on Z of full support, and H = (H;); a continuous bundle of Hilbert spaces
on Z with full support. Then the Hilbert space & = L?(Z, i) together with the

C*-algebras B = B = Cy(Z) C L(K) forms a C*-base. Let H = f@HZdy(z) and

z
a = m(Ip(H)), where for each section ¢ € Iy(#H), the operator m(¢) € L(R, H)
is given by pointwise multiplication, m(¢) f = ({(z)f(z))zez. Then Hy is a C*-b-
module and p,: B’ = L®(Z, u) — L(H) is given by pointwise multiplication of
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sections by functions. Every C*-b-module arises in this way from a continuous
bundle; see Section 5.

Let also a = (9,2, 2A") be a C*-base. We define C*-(at, b)-bimodules as
indicated in (C).

DEFINITION 2.8. A C*-(a*, b)-module is a triple «Hp = (H,a,B), where H is
a Hilbert space, (H,«) a C*-af-module, (H, 8) a C*-b-module, and [p,()8] = B
and [pg(B")a] = . The set of (semi-)morphisms between C*-(a’, b)-modules , Hg
and "/K(5 is ‘C(s) (aHﬁ,'ng) = E(S) (Ha, Kry) N ‘C(s)(Hﬁ/ K(g)

REMARK 2.9. By Lemma 2.6, we have [p,(2), 05(B")] = 0 for every C*-
(a*, b)-module , Hg.

Again, the class of all C*-(a', b)-modules forms a category with respect to
all semi-morphisms, and a C*-category with respect to all morphisms.

EXAMPLE 2.10. (i) $g is a C*-a-module, pg(x) = x for all x € ', and 1+ Hg(
isa C*-(a', a)-module because [pg+ (21)21] = [AA] = A and oy (AT)AT] = A*.
(ii) Let Hg be a C*-b-module, let t = (C,C,C) be the trivial C*-base, and let
a = L(C, H). Then Hpg is a C*-(t, b)-module.
(iii) Let (#;); be a family of C*-(at, b)-modules, where H; = (H;, &;, B;) for
each i. Denote by H;a; C L($, ®;H;) the norm-closed linear span of all operators
of the form { — (&;C);, where (§;); is in the algebraic direct sum P 8n;, and

1
similarly define B;8; C L(R, ®;H;). Then the triple B;H; := (®;H;, B;a;, 8;B;)
is a C*—(a*, b)-module, for each j, the canonical inclusions L Hj — ®;H; and
projection 7t;: ®; H; — H; are morphisms H; — H;H; and B;H; — H;, and with
respect to these maps, H;H; is the direct sum of the family (H;);.

The following example shows how bimodules arise from conditional expec-
tations.

EXAMPLE 2.11. Let B be a C*-algebra with a KMS-state y and associated C*-
base b (Example 2.3), let A be a unital C*-algebra containing B such that 14 € B,
and let ¢: A — B be a faithful conditional expectation such that v := po¢isa
KMS-state and ¢ o 0 = 0} o ¢ for all t € R. Fix a GNS-construction 7,: A —
L(H,) for v with modular conjugation J,: H, — H,, and define mF: AP —
L(Hy) by a — Jym,(a*)]y. Then the inclusion B < A extends to an isometry
{: &8 = H, — H, = H, and we obtain a C*-(b", b)-module «Hg, where H = H,,
a = [Jymy(A)C], B = [m(A)Z], and py © TCyop = oy, pp © Ty = 71y Moreover,

1, (A) + mP (ANB')P) C L(Hy), myer(AP) + (AN B') C L(Hp).
For details, see Section 2-3 of [27].

2.3. THE RELATIVE TENSOR PRODUCT. The concepts introduced above allow us
to adapt the algebraic formulation of Connes’ fusion to the setting of C*-algebras
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as follows. Let b = (&, B, %*) be a C*-base, Hg a C*-b-module, and Ky a C*-pt-
module. Then the relative tensor product of Hg and K, is the Hilbert space

which is spanned by elements ¢ © { © 1, where § € 5, € R, n € 7, the inner
product being givenby (S Zen|d’ o ' oy') = (ZI5*E'n™y'l’) = (Cln*n'¢ 'Y
forall¢, &' € B,C,0' € & 1,1 €.

EXAMPLE 2.12. (i) If b is the trivial C*-base t = (C,C,C), then = L(C, H),
7= E(C,K),andHﬁ%)yK':V H®Kviadelon— oyl =21

(ii) Let Z be a locally compact Hausdorff space, 4 a Radon measure on Z of
full support, H = (Hz), and K = (K;), continuous bundles of Hilbert spaces
on Z with full support, and H,X,K/; the associated C*-b-modules as defined in
Example 2.7. One easily checks that then we have an isomorphism

Hyo K= [ H 0 Kedu(z), m(@)SLom(n) = @0 ©n(2)er
Z

Let us list some easy observations and a few definitions.
(i) The isomorphisms in Lemma 2.6(ii), applied to Hg and K, respectively,
yield the following identifications which we shall use without further notice:

Bop, K= Hy@,K= Hyen, toni=Coien=en.
ii) For each ¢ € B and 5 € v, there exist bounded linear operators
n P
‘g)liK%ﬁ(@pr:Hﬁ(%ryK, CU’—)C:@(U,

‘77>2:H_>H,013©7:H/3(§'7K1 w—worn,

whose adjoints (|1 := |§)} and (y7|» := |n); are given by
(Ch:d'cwm (7w, (1l: wen' = pp(n™n)w.
Weput |B)1:={|5)1[S€B} C LK, Hp ® 1K) and similarly define (B[, [7)2, (7]2-
(iii) For all S € pg(B*)" and T € p,(B)’, we have operators
Soid € L(Hp,©7) = L(Hp %YK), ideT € L(Bcp, K) = L(Hg %)ﬂ().

If these operators commute, we let S® T := (S©id)(idcT) = (ideT)(S ©id).
b

The commutativity condition holds in each of the following cases:
(@) S € Ls(Hg); then (S® T)({ G w) = S¢S Tw foreach ¢ € B,w € K;
b

(b) T € Ls(K,); then (S® T)(we 1) =Swe Ty foreachw € H, 5y € ;
b
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(c) (B1) =", then for all &, & € f and 1,7’ €7, the elements 1* Ty’ € B’ and
&*S¢ € (BT) commute, and if {, ' € R and w=Ecley, ' ='c{'on’, then

(wl(ideT)(Seid)w') = (Z](y"Tn")(5"SE")T)
= (Cl(&"Sg") (" Ty")T') = (wl(S ©id)(id & T)w').

Leta = (9,27 and ¢ = (£, ¢, &) be further C*-bases. Then the relative
tensor product of bimodules over (af,b) and (b7, ¢) is a bimodule over (af, ¢):

PROPOSITION 2.13. Let H = oHg be a C*~(a', b)-module, K = ,K; a C*-

(6%, ¢)-module, and

@D wayi= I7)oa) € £(9,Hp oK), Bo0i= [1Bh0) C L(, Hp oK)
Then H (% K = (4ay) (Hp (% vK) (pss) s a C*-(at, ¢)-module and

(23) P(aay)(X) =pa(x)id forall xe (2aty, 0(ps0) () =id Sps(y) forallye ',

Proof. The pair (Hp <§> K a <) is a C*-a'-module since [a*(7y[2|7)2a] =
[0p(BT)a] = AT, [[7)20%7] = [I7)20], and [[7)209] = [I7)2H] = Hp@ K.
Likewise, (Hﬁ %VK,/% >J) is a C*-c-module. For all x € (91*)’, €N Ea,
1 € 7, we have |17)20 € a <7y and hence

O () () (OZO1) = aa) (%) [11)26 = [17)20xT = pa (x) 0T O11 = (0 (x) ©1d) (87 7).

The first equation in (2.3) follows, and a similar agument proves the second
one. Finally, () (Hg %) vK) (gss) is @ C*-(a', ¢)-module because [0(aay) () [B)16] =

[lpa(2)8)18] = [|B)16] and [p(gs5) (€F)[7)2a] = [|7)20]. W

In the situation above, we call H ® K the relative tensor product of H and K.

b
Note the following commutative diagram of Hilbert spaces and closed spaces of
operators between them:

B
H [7)2 1B)1 K
U —
a<ry Hl; (% +K Bré

Given a C*-b-module H = Hp and a C*-(b%, ¢)-module K = ,Ks, we abbre-
viate Hg ® K5 := (Hp ® K)ps. Likewise, we write y Hg @ K for (Hg ® oK) xay
b b b b
and ,XH/g (%) +Ks for ucq'y(Hﬁ (%) 7K)131>5.

The relative tensor product is functorial, associative, unital, and compatible
with direct sums in the following sense:

£
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PROPOSITION 2.14. Let H = yHgand H' = o Hy , H* = o, H} be C*~(a', b)-
modules, K = K, Kl = ,hK%l, K2 = 72K§2 C*—(b*,c)—modules, and L = ¢Ly a
C*-(ct,0)-module.

(i)Ss ® T e L(H! ® Kt H? ® K?) forall S € L(H!, H?), T € L(K!, K?).

(ii) The composition of the isomorphisms (Hg %) +Ks) (ECQ L = (Hp %) yK)pr) ©¢ =
B Gp, Ko, Qe and B Sp, Kp,0e = By . (Ks ® ¢L) = Hpg (%) (4K © ¢L) is an isomor-
phism of C*-~(a*, ¢)-modules aqp . o (L, K, H): (H % K) (? L—H % (K Q? L).

(iii) Put U := g3+ Res. Then there exist isomorphisms
rap(H): HOU S H, Eogob e’ =pp(b")3E,
loe(K): USK = K, bSLOn = ybl = py(b)nE.

(iv) Let (H'); be a family of C*-(at, b)-modules and (le)j a family of C*-(b%, ¢)-
modules. For each i,j, denote by tfH: H — EHi/’Hil, l;ci Kl — EEj/ICf/ and 711;{: B,
H — H, nﬁcz H; KI' — KJ the canonical inclusions and projections, respectively.
Then there exist inverse isomorphisms 8; ;(H' (% K s (BHH) (%) (B;K7), given by

(wi)ij— ZZ];(L’H %) L],C)(w,',j) and ((n’H (%) nﬁc)(w))i/i < w, respectively.

Proof. (i) If S, T are as above and Hi = ,XinSi, K= 'YjK]J;‘j fori,j = 1,2, then
(5@ T)Im)2mr = [T11)2501 € |72)282 and similarly (S© T)B1)161 € [B2)102,
(S ® T)*|v2)202 € |71)2001, (S ® T)*|B2)162 € |B1)101.

(ii) Straightforward.

(i) 7q,6 (H) - (0 9B") = [op(B)a] = wand rq4(H) - (B>B) = [BB] = B.
For Iy, (K), the arguments are similar.

(iv) Straightforward. 1

REMARK 2.15. The relative tensor product of modules and morphisms can
be considered as composition in a bicategory as follows. Recall that a bicate-
gory B consists of a class of objects obB, a category B(A, B) for each A,B €
ob B whose objects and morphisms are called 1-cells and 2-cells, respectively, a
functor c4 pc: B(B,C) x B(A,B) — B(A,C) (“composition”) for each A, B,C €
ob B, an object 14 € B(A, A) (“identity”) for each A € ob B, an isomorphism
aapcn(f,gh):capp(csep(hg) f) = cacp(hcapc(g f)) in B(A D) (“as-

sociativity”) for each triple of 1-cells A i> B chDin B, and isomorphisms
Ia(f):canp(f,1a) = fand rg(f): capp(1p,f) = fin B(A, B) for each 1-cell

A i) B in B, subject to several axioms [17]. Tedious but straightforward calcula-
tions show that there exists a bicategory C*-bimod such that
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(i) the objects are all C*-bases and C*-bimod(a, b) is the category of all C*-
(a*, b)-modules with morphisms (not semi-morphisms) for all C*-bases a, b;
(ii) the functor cq 5 is given by (,Ks, o Hg) + o Hp ® 4Ks and (T,S) — S® T,
b b

respectively, and the identity 1, is +)g for all C*-bases a, b, ¢, ?;
(iii) a, r, [ are as in Proposition 2.14.

3. THE SPATIAL FIBER PRODUCT OF C*-ALGEBRAS

3.1. BACKGROUND. We now use the relative tensor product to construct a fiber
product of C*-algebras that are represented on C*-modules over C*-bases. To
motivate our approach, let us first review several related constructions. In each
case, the task is to construct a relative tensor product or “fiber product” of two
algebras A and C with respect to a common subalgebra B.

First, assume that we are working in the category of unital commutative
rings. Then the fiber product is just the push-out of the diagram formed by
A, B,C. Explicitly, it is the algebraic tensor product A % C, where A and C are

considered as modules over B, and the multiplication is defined component-

wise. In the category of commutative C*-algebras, the push-out is the maxi-

mal completion of the algebraic tensor product A ® C and, as usual in the set-
B

ting of C*-algebras, also other interesting completions exist [1]. For example, if
B = Cy(X) for some locally compact Hausdorff space and if A and C are rep-
resented on Hilbert spaces H and K, respectively, then H and K can be disinte-
grated over X with respect to some measure y (see Subsection 2.1), and the alge-

bra A ® C has a natural representation 7t on the relative tensor product H ® K =
B K

[¥Hy ® Kydp(x), leading to a minimal completion 77(A © C). In the setting of
X B
von Neumann algebras, H and K are intrinsic, and the desired fiber product is

n(A®C)” C L(H ® K). Note that all of these constructions do not depend on
B H

commutativity of A and C and make sense as long as B is central in A and in C.
Next, consider the case where A, B, C are non-commutative, B is a subal-
gebra of A, and the opposite BP is a subalgebra of C. Then one can consider
A and C as modules over B via right multiplication, and form the algebraic ten-
sor product A @ C, but componentwise multiplication is well defined only on

the subspace A xCCA @ C which consists of all elements Zal © ¢; satisfying
B
Zbal Oc =140 b°Pc¢; for all b € B. This subspace was f1rst considered by

1 1

Takeuchi and provides the right notion of a fiber product for the algebraic the-

ory of quantum groupoids [2], [32]. In the setting of C*-algebras, the Takeuchi

product A x C may be 0 even when we expect a nontrivial fiber product on the
B
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level of C*-algebras; therefore, the latter cannot be obtained as the completion of
the former. In the setting of von Neumann algebras, a fiber product can be con-
structed as follows [21]. If A and C act on Hilbert spaces H and K, respectively,
one can form the Connes fusion H ® K with respect to some weight y on B and the

I
actions of B on H and B°P on K which, by functoriality, carries a representation
n: A’ ®C' = L(H ®K), and the desired fiber product is A p C=nAol) A
" 1

categorical interpretation of this construction is given in Theorem 4.3.
We modify the last construction to define a fiber product for C*-algebras A
and C as follows:

(A) We assume that A and C are represented on a C*-b-module Hg and a C*-
b*-module K, respectively, where b = (8,8, B") is a C*-base, such that rp(B)
and p, (B") take the places of B and B°P, respectively.

(B) On Hy %) vK, we define two C*-algebras Ind|,, (A) and Ind,g, (C) which,

roughly, take the places of 1(A’ ® idk)" and 7t(idy ©C’)".
(C) The fiber product is then Aﬁ?’wB =Ind|),(A) NIndjg), (C) C L(Hp @ ,K).
b

3.2. C*-ALGEBRAS REPRESENTED ON C*-MODULES. Let b = (&,%,8B") be a C*-
base. As indicated in step (A), we adopt the following terminology.

DEFINITION 3.1. A C*-B"-algebra (A, p), briefly written A,, is a C*-algebra
A with a x-homomorphism p: 8" — M(A). A morphism of C*-B*-algebras A,
and B, is a x-homomorphism 77: A — B satisfying o (x)7t(a) = m(p(x)a) for all
x € B%,a € A. We denote the category of all C*-B'-algebras by Cht-

A (nondegenerate) C*-b-algebra is a pair A}, = (Hy, A), where H,, is a C*-
b-module, A C L(H) a (nondegenerate) C*-algebra, and p(BHA C A A
(semi-)morphism between C*-b-algebras A%, Bﬁ is a *-homomorphism 77: A —
B satisfying the condition f = [EETS)(H,X,K/g)oc], where EETS)(H,X,K/g) ={T €
L) (Hy, Kg) : Va € A: Ta = 7t(a)T}. We denote the category of all C*-b-algebras
together with all (semi-)morphisms by Cj (s),

We first give some examples of C*-b-algebras and then study the relation
between CJ,; and Cy.

EXAMPLE 3.2. (i) If H is a Hilbert space and A C £(H) a C*-algebra, then
AY; is a C*-t-algebra, where t = (C,C,C) denotes the trivial C*-base and & =
L(C,H).
(ii) Let A%, be a nondegenerate C*-b-algebra. If we identify M(A) with a C*-
subalgebra of £(H) in the canonical way, M(A)}, becomes a C*-b-algebra.
(iii) Let (\A;); be a family of C*-b-algebras, where A; = (H;, A;) for each i. Then
the cp-sum @ A; and the [*-product [ ] A; are naturally represented on the under-

1 1
lying Hilbert space of H;#;, and we obtain C*-b-algebras B, A; := (B;H;, ®; A;)
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and [TA; = (B;H;,I1; A;). For each j, the canonical maps A - QA —
i i

[TA; — Aj are evidently morphisms of C*-b-algebras A; — B;4; — [T.A; — A;.

i i

The following example is a continuation of Example 2.11.

EXAMPLE 3.3. Let B be a C*-algebra with a KMS-state u and associated C*-
base b, and let A be a C*-algebra containing B with a conditional expectation

¢: A — B as in Example 2.11. With the notation introduced before, 7T,,(A)'Z isa
nondegenerate C*-b-algebra because pg(B) 7, (A) = my(B)my(A) C my(A), and
similarly, (7," (A°P))%, is a nondegenerate C*-b*-algebra ([27], Section 2-3).

The categories C® and Cg,, are related by a pair of adjoint functors, as we
shall see now.

LEMMA 3.4. Let 7t be a semi-morphism of C*-b-algebras A%, and Bﬁ. Then 7t is
normal and 7t(apa(x)) = 7(a)pp(x) forall x € Bt aec A

Proof. Let T,T' € LI (Hy, Kg), 8,8 €@, € Rac Aandx € Bt Then
(TC|m(a)T'¢'") = (¢ClaT*T'¢'C’) and

7(apa(x))TEE = Tapa (x)8C = 71(a) TExE = 7t(a)pp(x)TEC
because T¢ € B. Now, the assertions follow since K = [L(Hy, Kg)af]. 1

The preceding lemma shows that there exists a forgetful functor

Ay Ap, for each object A%,

Up: Cy° — Cyt, )
T 7T for each morphism 7.

We shall see that this functor has a partial adjoint that associates to a C*-5*-

algebra a universal representation on a C*-b-module. For the discussion, we fix a

C*-B1-algebra C,.

DEFINITION 3.5. A representation of Cy in C;° is a pair (A, ¢), where A =
Af € G and ¢ € C4(Cy, UA). Denote by Rep,,(C,) the category of all such
representations, where the morphisms between objects (A, ¢) and (B, ¢) are all
€ CP(A, B) satisfying ¢ = Urr o ¢.

Note that Rep(C,) is just the comma category (C, | Uy) [19]. Unfortu-
nately, we have no general method like the GNS-construction to produce rep-
resentations of C, in in Ci®. In particular, we have no good criteria to decide
whether there are any and, if so, whether there exists a faithful one. However, we
now show that if there are any representations, then there also is a universal one.
The proof involves the following direct product construction.

EXAMPLE 3.6. Let (A;, ¢;) € Rep,(Co) for all i, where A; = (H;, A;), and
define ¢: C — [T A; by ¢ = (¢i(c));- ThenI(A;, ¢:) := (IT; Ai, ) € Repy(Co),



THE RELATIVE TENSOR PRODUCT AND A MINIMAL FIBER PRODUCT IN THE SETTING OF C*-ALGEBRAS 379

and the canonical maps A; — [[.A; — A; are morphisms between (A}, ¢;) and
i
(I'T; Ai, ¢) for each .

PROPOSITION 3.7. If the category Rep, (C,) is non-empty, then it has an initial
object.

Proof. Assume that Repy (C,) is non-empty. We first use a cardinality argu-
ment to show that Rep, (Cy) has an initial set of objects, and then apply the direct
product construction to this set to obtain an initial object.

Given a topological vector space X and a cardinal number ¢, let us call X
c-separable if X has a linearly dense subset of cardinality c. Choose a cardinal
number d such that B and C x £ are d-separable, and let e := |N|)_d". Then the

n
isomorphism classes of e-separable Hilbert C*-B-modules form a set, and hence
there exists a set R of objects in Rep, (C,) such that each (A%, ¢) € Rep,(Cs)
with e-separable « is isomorphic to some element of R. Let (A}, ¢) = HrerR.
We show that (¢(C)%, ¢) is initial in Rep (Cy).

Let (Blli, P) € Rep,(Cy). We shall show that there exists a morphism 77 €
C(e(O)y, Blﬁ() such that iy = 7o ¢. Uniqueness of such a 7 is evident. Let
¢ € B be given. Since B and C x 8 are d-separable, we can inductively choose
subspaces fyg C B1 C --- C B and cardinal numbers dy, dy, ... such that ¢ € By,
[ByBol = B, do < 2d + 1, By is dp-separable and for all n > 0,

BB C Bui1, P(C)BnR C [Bu+1R], dui1 <|N|ddn, Pyi1is dyiq-separable.
Let B := [U, Bn] € B and K := [BA] C K. By construction, [3*f] = B, BB C B,

zp(C)IZ C K, so that (zp(C)|IZ)ﬁIz is in Cj. Define zﬁ: C — gb(C)\K by ¢ — ‘P(C”IZ'
Then (@(C)g, ) is in Rep, (Cy). Since B is e-separable, (@(C)ﬁk, ) is isomor-
phic to some element of R. Hence, there exists a surjection T: H — K such
that Ta = B, and the composition with the inclusion K — K gives an operator

T € Ls(Hy, Kp) such that ¢(c)T = T¢(c) forall c € C. Since { € p = Ta and
¢ € P was arbitrary, we can conclude the existence of 7t as desired. 1

Evidently, every morphism @ between C*-B-algebras C, and Dy yields a
functor
(A%, ¢) — (A%, po @) for objects (A%, ),

@*: Repy (D7) — Rep,(Cy), .
T 7T for morphisms 7z.

Denote by C; the full subcategory of CJ,; formed by all objects C, for which
Rep(C,) is non-empty.
THEOREM 3.8. There exist a functor Ry : C3y — CF and natural transforma-
tions 1: idc*r+ — UpRyp and e: RgUp — idC;;S such that for every Cy, Dz € ng
B
@ € Ci(Co, Dr), A € CF,
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(i) Ry (Cy) € Repy(Cy) is an initial object and Ry (P) is the unique morphism from
Ry (Cy) to @*(Rp(Dx));
(i) nc, = ¢ ifRe(Cy) = (BIﬁ(, ¢), and e ax is the unique morphism from Ry Uy (Af;)
to (A%, ida).
Moreover, Ry, is left adjoint to Uy, and 1, € are the unit and counit of the adjunction,
respectively.

The proof follows from Proposition 3.7 and Section IV Theorem 2 of [19].
We next consider C*-algebras acting on C*-bimodules. Let a = ($,2l,2")
be a C*-base.

DEFINITION 3.9. A C*-(2,B")-algebra is a triple (A, p, ), briefly written
Ay, where A, is a C*--algebra, A, is a C*-B-algebra, and [p(A),o(B')] =
0. A morphism of C*-(2,%8%)-algebras is a morphism of the underlying C*-2-
algebras and C*-B'-algebras. We denote the category of all C*-(2, B)-algebras

by CZ‘QUBJF).

A (nondegenerate) C*-(a', b)-algebra is a pair A‘};’ﬁ = (ang,A), where ,Hg

is a C*-(a+, b)-module, Af%; is a (nondegenerate) C*—a+—algebra, and Ag is a C*-

b-algebra. A (semi-)morphism of C*-(a', b)-algebras Agﬁ and Blz"s is a *-homo-
morphism 77: A — Bsatisfying v = [L'ETS) («Hp,7Ks)a] and 6 = [EETS) («Hp, +K5)B],

where EE’S)(QHﬁ,yK‘;) = {T € L («Hp,1Ks) : Va € A : Ta = 7(a)T}. We
denote the category of all C*-(a', b)-algebras together with all (semi-)morphisms
b C*(S)

y (aflb)'

REMARK 3.10. Note that the condition on a (semi-)morphism between C*-
(af, b)-algebras above is stronger than just being a (semi-)morphism of the un-
derlying C*-a'-algebras and C*-b-algebras.

Examples 3.2(ii) and (iii) naturally extend to C*-(a',b)-algebras, and the

categories CE“Q[ B+ and CE‘Z,r p) are again related by a pair of adjoint functors.

THEOREM 3.11. There exists a functor Uatp): Cz‘z,r 6) CE‘Q[ Bty

given by
A?{”g = Ap,pp 01 objects and 7t — 7T on morphisms. Denote by CE‘%,%JF) the full
) formed by all objects Cq, for which the comma category (Cyp |

has a left adjoint

subcategory of CZ*QUBJF
U(a*,b)) is non-empty. Then the corestriction of U gt 4y to C(j

(A,31)
R gt p): C = C% -

Proof. The proof proceeds as in the case of C*-b-algebras with straightfor-
ward modifications, so we only indicate the necessary changes for the second half
of the proof of Proposition 3.7. Given a C*-(%, ‘B*)—algebra Corand a C*-(at,b)-
algebra B?(’(S with a morphism ¢: Cy,r — By, ps, One constructs 7y C -y and 6Co
for given ¢ € v, # € 0 as follows. One first fixes a cardinal number d such that

*T
(2A,37)



THE RELATIVE TENSOR PRODUCT AND A MINIMAL FIBER PRODUCT IN THE SETTING OF C*-ALGEBRAS 381

2,27, 5,98, 8%, § are d-separable, and then inductively chooses cardinal numbers
do,dq,... and closed subspaces 79 C 71 € -+ C yand 6y € 4 C --- C § such
that, foralln > 0,

E€y0, 1€8%, [vivo]=2A", [6500]=DB, do<2d+1, 79,0 are dg-separable,
05(B) v+ 12 C v, o (A) 0+ 0aB C b,
P(C)rnH + P(C)0nR C [1n419] N [65418],

dpi1 < IN|d2dy,  Ypi1,0ps1 are d,+1-separable,
and finally lets 7 := [U, Y], 0 := [Uyn 0n), K := [79] = [08].

REMARK 3.12. Let C,, be a C*-(2, EB*)-algebra, A'zﬁ = R(a‘f,b)(cpﬂ)r and
¢ =1c,,: Cpo = Ap,p, the morphism given by the unit of the adjunction above.
Then (A%, ¢) € Rep,+(C,) and (AP, $) € Rep,(C,) and therefore, we have semi-
morphisms R+ (Cy) — Af; and Rp(Cp) — Alﬁq.

3.3. THE SPATIAL FIBER PRODUCT FOR C*-ALGEBRAS ON C*-MODULES. Our def-
inition of the fiber product of C*-algebras represented on C*-modules, more pre-
cisely, step (B) in the introduction, involves the following construction.

Let H and K be Hilbert spaces, I C £(H,K) a subspace and A C L(H) a
C*-algebra such that [[H] = K, [I*K] = H, [II"]] = I, I*IA C A. We define a
new C*-algebra

Ind;(A) := {T € L(K) : TI+ T*I C [IA]} C L(K).

DEFINITION 3.13. The I-strong-x, I-strong, and I-weak topology on L(K) are
the topologies induced by the families of semi-norms T — || T¢|| + ||T*¢|| (€ € I),
T — ||T¢|| (¢ € I),and T — |[|E*TE'|| (¢,&" € I), respectively. Given a subset
X C L(K), denote by [X]; the closure of span X with respect to the I-strong-x*
topology.

Evidently, the multiplication in £(K) is separately continuous with respect
to the topologies introduced above, and the involution T — T* is continuous
with respect to the I-strong-* and the [-weak topology. Define p;: (I*I)’ — L(K)
as in Lemma 2.5.

LEMMA 3.14. (i) [I*Ind;(A)I] C A and Ind;(A) = [IAT*],.
(i) Ind; (M(A)) C M(Ind;(A)).
(iii) Ind;(A) C L(K) is nondegenerate if and only if A C L(H) is nondegenerate.
(iv) If A C L(H) is nondegenerate, then A’ C (I*I)" and Ind;(A) C p;(A")".
Proof. (i) First, [I*Indj(A)I] C [I*IA] C A by definition and [IAI*]; C
Ind;(A) because [[AI*|;I C [IAI*I] C [IA]. To see that [[AI*]; D Ind;(A),

choose a bounded approximate unit (u, ), for the C*-algebra [II*] and observe
that for each T € Ind;(A), the net (u,Tuy ), lies in the space [II* Ind;(A)II*] C
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[IAI*] and converges to T in the I-strong-* topology because lilr/n THu, & = TH¢E
€ [IA] forall ¢ € I and lilgnu,,w =wforall w € [[A].

(i) If S € Ind;(M(A)) and T € Indj(A), then ST € Ind;(A) because STI C
[SIA] C [IM(A)A] = [IA] and T*S*I C [TIM(A)] C [TAM(A)] = [IA].

(iii) If Ind;(A) € L(K) is nondegenerate, then [AH| D [[*Ind;(A)IH] =
[I*Ind;(A)K] = [I*K] = H. Conversely, if A is nondegenerate, then [IAI*] and
hence also Ind;(A) is nondegenerate.

(iv) Assume that A is nondegenerate. Then I*] C M(A) C £(H) and hence
A" C(I*I). Forallx € Ind;(A),y € A, S, T € I, we have S*xp;(y)T = S*xTy =
yS*xT = S*p;(y)xT because S*xT € A, and since [IH| = K, we can conclude that
xpr(y) = pi(y)x. 1

Let b = (8&,9,B") be a C*-base, Alil a C*-b-algebra, and Blz a C*—b*—algebra.
We apply the construction above to A, B and |y)2 € L(H,Hpg ®,K), [B)1 C
b

L(K,Hg %) +K), respectively, and define the fiber product of Ag and B} to be the
C*-algebra
A,Bt’)’B = Il’ldlw2 (A) N Ind|ﬁ>1 (B)
={T € L{Hp@,K): T®|7)2 C [I7)24] and T )1 C [|B)1B]}.

The spaces of operators involved are visualized as arrows in the following dia-
gram:

H 17)2 Hg %VK 1B

~—K

A\L | Ao B \LB
o 17)2 Hp (%ﬂ( 1B)1 K

Even in very special situations, it seems to be difficult to give a more explicit
description of the fiber product. The main drawback of the definition above is
that apart from special situations, we do not know how to produce elements of
the fiber product.

Leta = (9, A") and ¢ = (&, ¢, ") be further C*-bases.

PROPOSITION 3.15. Let A = AZﬁ be a C*-(a*,b)-algebra and B = BIZ’(S aC*-
(6%, ¢)-algebra. Then A * B:= («Hp ® 4Ks, AﬁtyB) isa C*-(at, ¢)-algebra.
b

Proof. The product X := p(y,) () (Aﬁsz) is contained in A,gt,YB because

X|Bh € llpa()B)B] = [|B)1B],  X*|B)1 = (ApxqB)loa(A)B)1 S [IB)1B],
X[1)2 S l17)2pu(MA] € [7)24], XT|7)2 = (ApzyB)[7)20a(%) € [I7)24],
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by equation (2.3). A similar argument proves 0 (s5) (Qﬁ*) (Aﬁ?,B) - AﬁtyB. ]

In the situation above, we call A Z B the fiber product of A and B. Forgetting
« or §, we obtain a C*-c-algebra Aﬁt735 = A?I x BZI"S = (Hp ®4K;, Aﬁ}':’YB) and
b
a C*-a'-algebra aAptyB = AP * BY.

Denote by A’ C L£(H) and B’ C L(K) the commutants of A and B, respec-
tively, and let

AP = AnL(HE), BY:=BnL(K,), X:= (AP ®id)+ (i[deB"),
b b
Ms(AP) @ B") .= {T € L(Hp ® ,K) : TX, XT € AP @ B}
b b b
LEMMA 3.16. The following relations hold:
Q) (Bl1(Ap2,B)IB)1 C B and (1a(Agry B2 C A and M(A)gs, M(B) C
A .
M( ﬁ;‘)‘vB)
(ii) AP @ B C ApoB.
b
(iii) If [APP) B] = B and [B()y] = v, then A/g:WB is nondegenerate and Ms(AP) @
B(M) C Apx,B.
(iv) If pp(BF) C A, then idy @B C ApyB. If p(B) C B, then AP @idg C
b b
AﬁE’YB’
(v) id(Hﬁ%yK) € Aﬁsz ifand only if pg(BY) C A and p,(B) C B.
(vi) IfA';f is a C*-(a', b)-algebra and BIZ’(S a C*-(b%, c)-algebra such that p, () +
pp(B") € Aand p(B) + ps(€") C B, then p(aaq) (A) + 0(po) (€1)  Apo B,
(vii) IfAﬁtyB is nondegenerate, then the C*-algebra [B*AB] N [yY*By] C L(R) is

nondegenerate.
(viii) If A and B are nondegenerate, then A’ C pg(B*)’, B' C p,(B)', and A/g?;rYB C

Pima(A) Ny, (BY) = (A" ®idk)" N (idy @B')'".
Proof. (i) Immediate from Lemma 3.14.
(ii) Follows from (A () %B(”)L@l C [|APBYB(M] C [|B)1B] and (AP) @

B)[7)2 C [[BW )1 AP)] C [|7),4].
(iii) Assume [A(P)B] = B and [B()q] = . Then A(P) %{) B C Aﬂ:VB is

nondegenerate and for each T € Ms(A(P) (% B(), we have T|g); C [T(AP) (%
id)[)] € [(AP) %B(”’))lﬁh] C [|)1B] and similarly T*|)1  [[)1B], T|7)2 +
T*7)2 € [[7)24].
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(i) 1f py(B) © B, then (AP @ idi) )2 = [7)24") and [(AP) @ id)|B)1]
C1B)1=1[1BB)1]=1|B)1p4(B)] C[|B)1B]. The second assertion follows similarly.

W Ifid (0, € AptyBs then pg(B7) = [(v]2[7)2] € A, p4(B) = [(Bl11B)1]
C B by (i). Conversely, if the last two inclusions hold, then |7), = [[vB"),] =
[|'y>2pﬁ(%+)] C [|7)24] and similarly |B); C [|‘B>1B],Whenceid(HﬁG§7K) € A/g:,YB.

(vi) Immediate from (iv).

(vii) The C*-algebra C := [*AB] N [y*B7y| contains ﬁ*<7|2(A/3>[!:7B)|’y>2ﬁ =
7 (Bla(Apy,B)IB)1y. Hence, [CK] 2 [6*(712(AgzB) (Hp ©,K)] = Rif Agr, B
is nondegenerate.

(viii) Immediate from Lemma 3.14. 1

Even in the case of a trivial C*-base, we have no explicit description of the
fiber product.

EXAMPLE 3.17. Let H and K be Hilbert spaces, p = L(C, H), v = L(C,K),
b = t the trivial C*-base (C, C,C), and identify H p ® K with H® K as in Exam-
b
ple 2.12.
(i) Let A C L£(H) and B C L(K) be nondegenerate C*-algebras. Then AF) =
A, B = B, and by Lemma 3.16, Alg:’yB contains the minimal tensor product

A®B C LH®K)and Ms(A®B) = {T € LH®K) : TH(1®B), T (A®
1) € A® B}. If A or B is non-unital, then idggx & AﬁzyB by Lemma 3.16 and
so M(A®B) ¢ A}gﬁryB. In Example 5.3(iii), we shall see that also Aﬁz‘vB ¢
M(A ® B) is possible.

(ii) Assume that H = K = [2(N) and identify g = v = £(C, H) with H. Then
theflip X: H® H - H® H, { ® 1 — 1 ® {, is not contained in E(H)ﬁtyﬁ(H).
Indeed, let (¢,), be an orthonormal basis for H and let 7 € H be non-zero. Then
(¢vl1Zln)1 = |n)(Cv| for each v and hence Y (Cy|1X|y); does not converge in

v

norm. On the other hand, one easily verifies that ) ({,|1S converges in norm
v

foreach S € [|H)1L(H)]. Hence, Z|n)1 ¢ [|[H)1L(H)].

3.4. FUNCTORIALITY AND SLICE MAPS. We show that the fiber product is func-
torial, and consider various slice maps. The results concerning functoriality were
stated in slightly different form in [27], [28], [29] with proofs referring to unpub-
lished material. We use the opportunity to rectify this situation. As before, let
a=(9HAAN,6= (8 5,8),c= (g ¢ ") be C*-bases.

LEMMA 3.18. Let 7t be a (semi-)morphism of C*-b-algebras Ag and C3}, let ,K;

bea C*-(b*, ¢)-module, and let I := LT, (Hg, L)) ® id € L(Hg ® 4K, L) ® 1K).
(s) b b b
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(i) The pairs X := (Hpg (%) +Ks, (I*I)) and Y := (L, (% +Ks, (1I*)") are nondegen-
erate C*-c-algebras.

(ii) There is a unique p; € Mor () (X, V) satisfying pi(x)S = Sx for all x €
(r'n’,s el

(iii) There is a unique linear contraction jr: [|77)2A] — [|7v)2C] given by |n)2a —
1727 (a).

(iv) Ind,), (A) C (I*I)" and p1(x)|n)2 = j=(x|n7)2) for all x € Ind|,(A), 7 € 7.

(v) Let B} be a C*-b*-algebra. Then Aﬂﬂng C (I*I) and pI(AﬁﬂgyB) CCy h +B.

Proof i) First, (I*I)" and (I I*)" are nondegenerate C*-algebras, and second,
P(pse) (€7) = ldﬁ (%WP(S(@) C (I*I)' and p(5,5)(€") = id 5 ®7P5(¢+) (Ir)".

(ii) There exists a unique *-homomorphism p;: (I*I ) (IT*)’ satisfying
the formula above by Lemma 2.5, and this is a (semi-)morphism because [I(p >
d)] = [A > d] by assumption on 7.

(iii) Forall n1,...,1n € yand ay,...,a, € A, we have

| Szt =| £ e sestoimntap)| < | Coiestainia] = Siogan

i

by Lemma 3.4. The claim follows.
(iv) The first assertion follows from Lemma 3.14 and the relation [*] C A’ ®

b
id = pj,),(A’), and the second one from the fact that for all x € Ind,,,(A),7 €
7,58 € EETS)(Hﬁ,L,\), we have p;(x)|17)2S = pr(x)(S %id)|17>2 = (S (%)id)x\;y)z =

ju(x[1)2)S.

(v) First, Ag :WB C (I*I) by Lemma 3.16. The second assertion follows from

the relations

pi(ApxyB)|7)2 € pr(Indyy), (A)[7)2 S jr([l7)24]) = [I7)2€],
p1(Ap21B) N1 = pr(Agy B)TIBN] € [1(Agx,B)|B)1]  118)1B] = [IA)1B].
THEOREM 3.19. Let ¢ be a (semi-)morphism of C*-(a, b)-algebras A = A'zﬁ and

C = CZ”\, and ¢ a (semi-)morphism of C*-(b%, ¢)-algebras B = BIZ"S and D = D7
Then there exists a unique (semi-)morphism of C*-(a, ¢)-algebras ¢ * i from A * B to

C : D such that

(¢p*¢)(x)R=Rx forallx € AﬁtWB and R € IyfJyg + Jrlx,

where Iy = E((ps) (Hﬁ/ L/\) (% idy and Jy = idy %ﬁw

(S)(Kn,, M,) for X € {K,M},Y €
{H,L}.
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Proof. By Lemma 3.18, we can define ¢ * 1 to be the restriction of py,, o o, or
of pj, o py, to Aﬁ:WB. Uniqueness follows from the fact that [Ip ] (Hp ® (K)] =
b

LIk (Hg %WK)} =1L, %MM. ]

REMARK 3.20. Let Ag, Cﬁ‘ be C*-b-algebras, Blz, D;’A C*—b+—algebras, and
¢ € Mor(A'Z,M(C)i‘), € Mor(BY, M(D)h,) such that [¢(A)C] = C, [y(B)D] =
D. Then there exists a *-homomorphism ¢ H P: Aﬁ?ﬁB — M(C);\?;FM(D) —

M(C, h uD), but in general, we do not know whether this is nondegenerate.

Next, we briefly discuss two kinds of slice maps on fiber products. For ap-
plications and further details, see [29]. The first class of slice maps arises from a
completely positive map on one factor and takes values in operators on a certain
KSGNS-construction, that is, an internal tensor product with respect to a com-
pletely positive linear map ([16], Sections 4-5).

PROPOSITION 3.21. Let A’g be a C*-b-algebra, K a C*-bt-module, L a Hilbert
space, : [A + pg(B")] — L(L) a c.p. map, and 6 = ¢ o pg: BY — L(L). Then
there exists a unique c.p. map ¢ xid: Ind,,),(A) — L(Le©) such that for all {,{' €
L, 1, 17/ € y,xc Il’ld|,},>2 (A),

(3.1) ({Conl(gxid)(x)(Z"@n") = (le((l2x]n")2)").
If BY is a C*-b'-algebra, then
(¢ +id)(ApxqB) S (¢(A)'90 (BN L(Ky))" S L(Lo©).

Proof. Let x = (xjj);j € Mu(Ind,),(A)) be positive, let {1,...,ln € L,
N,--.,In € 7, where n € N, and let d = diag(|n1)2,...,|%n)2). Then 0 <
((mil2xij|nj)2)i; = d*xd < [|x[|d*d and hence 0 < (¢((nil2xij[7;)2))i; < ||x[¢(d*d)
and

0< Z(@i|¢(<’7i|2xzj|77j>2)5j> < x|l Z<Ci onilg; ©n;)-
1] L]
Hence, there exists a map ¢ = id as claimed. The verification of the assertion
concerning BY, is straightforward. 1

REMARK 3.22. If C} is a C*-b-algebra and ¢| is a semi-morphism of C*-
bf-algebras, then the map ¢ * id extends the fiber product ¢ * id defined in Theo-
rem 3.19.

Second, we show that the fiber product is functorial with respect to the fol-
lowing class of maps. A spatially implemented map of C*-b-algebras Aﬁ and C} is
amap ¢: A — C admitting sequences (S, ), and (T, ) in £(L,, Hg) such that:

32 @) ZS,’;SH,ZT:{ T, converge innorm, (i) gb(a):ZS;aTn for all acA.
n n n
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Note that condition (i) implies norm-convergence of the sum in (ii). Evidently,
such a map is linear, it extends to a normal map ¢: A" — C”, its norm is bounded

1/2 1/2
by || ¥ 55 (| T;Ty|| , and the composition of spatially implemented
n n
maps is spatially implemented again.

PROPOSITION 3.23. Let ¢ be a spatially implemented map of C*-b-algebras Al;[
and C}', and let BIZ’(S be a C*-(b%, ¢)-algebra. Then there exists a spatially implemented

map from Afy x B’ to Cly x BY such that (y]a(¢ +id) (x)[')2 = ¢((yl2xIn)2) for
all x € Aﬁt7B' n.1 €.

Proof. Uniqueness is clear. Fix sequences (S,)n, (Tn)n as in (3.2) and let
Sp = Sy ®idg, Ty := Ty ®idg for all n. Then S,, T, € L(L) ® ,Ks, Hpg® +Ks)
b b b b

LSiSu|| = | LSiSu||, |[ZTiT|| = | ST T

n n n n

¢ xid: Aﬁ;’;vB — L(L) ® 4K) given by x — Y. T; xS, has the desired proper-
b n

for all n, we have = =

7

, and the map

ties. Indeed, let x € A[;?;VB, 1, € 7. Then S,|n)s = |1)2S, and T,|y')s =
|7")2T, for all n, and hence (17|2(¢ xid)(x)|7")2 = $({y]2x|n’)2). It remains to
show that (¢ xid)(x) € CAZVB’ Consider the expression (¢ x id)(x)|")2 =

Y. Six|n’)2 Ty This sum converges in norm and each summand lies in [|7),£(H)]
n

because x[5)2 € [|7)2A] and [S;|7)2] = [|7)25}]. Since ("[2(¢ + id) (x)[5)2 € C
for each 1" € <, we can conclude that the sum lies in [|y),C]. Finally, con-
sider the expression (¢ *id)(x)|¢)1 = ;SnxTnkj)l, where { € A. Again, the

sum converges in norm and each summand lies in [[A)1B] because S;xT,|&); =
S5p¥|TuC)1 € Sp(ApxyB)|B)1 S [SalP)1B] S [IA0B].

REMARK 3.24. (i) The map ¢ * id constructed above is a “slice map” in the
case where Cf = E(ﬁ)? and S, Ty, € B C E(ﬁ%,Hﬁ) for all n. Then, we can
identify C, ?;VB with a C*-subalgebra of £(K), and ¢ id is just the map Ag ?;VB —

B given by x — Y (Sn 1 X|Tn)1-
n
(ii) Assume that the extension ¢: [A + pg(B")] — C givenby x — ¥ S;xT, is

completely positive. Here, we use the notation of the proof above. The; the map
¢ * id constructed in Proposition 3.21 extends the map ¢ * id of Proposition 3.23
because then § = p, and hence (y]2(¢ *id)(x)|")2 = ¢({n]2x|y’)2) for all x €
A;;:WB and 17,17’ € 7.

Of course, slice maps of the form id *¢ can be constructed in a similar way:.
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3.5. FURTHER CATEGORICAL PROPERTIES. The fiber product of C*-algebras is
neither associative, unital, nor compatible with infinite sums.

We first discuss non-associativity. Let A = Agﬁ be a C*-(a', b)-algebra,

B = B;g"s a C*-(b%,¢)-algebra, and C = Ci’fp a C*-(ct,0)-algebra. Then we can

form the fiber products (A h B) >ckC and Az (B % C). The following example
c

shows that these C*-algebras need not be identified by the canonical isomorphism

Ag,b,c,0 (€L¢,7K5, aHﬁ) of Proposition 2.14. A similar phenomenon occurs in the
purely algebraic setting with the Takeuchi x g-product [24].

EXAMPLE 3.25. Leta = b = ¢ = 0 be the trivial C*-base, H = I*>(N), a =
L(C,H), A =B =C = L(H)}" Identify Hy ® 1Ko ® oL = a ® H ® a with
b [
H®@H®Hvia|¢)e (e |y) = ®{®n, fix an orthonormal basis (e,),cn of H,
and define T € £(H®3) by
e Qe ®ey forallk,l,m € Nsuchthatm <k+1,

T(ley Qe Qey) =
(e en) {€z®€k®em forall k,I,m € N such that m > k + 1.

We show that T belongs to the underlying C*-algebra of (A x B) % C, but not of
c
A x (B * C).
For each & € H and w € H®?, we define |&)1,|&)s € L(H®?, H*®) and

|w)1p € L(H,H®) by v E®v, v~ v®E and { — w ® {, respectively. Then
forallk,I,m € N,

Tlex®er)12 = lex®e)12Prik+]e;®er)12(id—Ppii), where Pryg:= ) lew)(eml,
m<k+1

Tlem)s=lem)3(id +Zn), whereZ,:= Y |e@er—ex@e){er@el,
kL k+l<m

and therefore,
T|H®?)1p € [[H*?*)12L(H)],
Tla)s € [las) (id +K(H) @ K(H))] € [la)s(L(H)axa L(H))]

Since T = T*, we can conclude that T belongs to (ﬁ(H)aﬂ;aﬁ(H)“) Eaﬁ(H)' How-
ever,
Tleo)1 = leo)1Q+ ) le))1Qi, where Q = ) |e; @ en)(e; @ e
1 m<l

and Q; = ) _ [eg @ em) (e @ enl,

m>I

and |eg)1Q € [[a)1L(H® H)],but }_|e;)1Q; & [|a)1L(H ® H)| because the sum
1

Y QrQi=) ) le®em) (e @ enl
g 1

m>l
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does not converge in norm. Therefore, we have Tleg); ¢ [|a)1£L(H ® H)| and
T¢ E(H)a;‘:(aﬁ(H)a:aﬁ(H))‘

We next discuss unitality. A unit for the fiber product relative to b would
be a C*-(b*, b)-algebra U = il?r'% such that for all C*-(a', b)-algebras A = A'}‘f
and all C*-(b%, ¢)-algebras B = Bz’é, we have A = Ad,(A h U) and B = Ad;(U *
B), where r = r45(«Hp) and I = Iy, c(,Ks) (see Proposition 2.14). The relations
rIB)1 =B, r|BT)2 = pp(BY), l|7)2 = 7,1|B)1 = p(B) imply
Ad,(Ap * i) = Indg (L) N Indpﬁ(w)(A),

3.3
63 Ad; (s E,YB) = IndP?(%)(B) N Indv(u).

If B and B are unital, then Indpﬁ(%Jr) (A) = Aand Ind, ()(B) = B, and then
+

the C*-(b*, b)-algebra E(ﬁ)? *® s a unit for the fiber product on the full subcat-

egories of all Auﬁﬁ and Blz’é satisfying A C Indg(£(8)) and B C Ind, (L(R)).

REMARK 3.26. (i) If A C Indy(£($)) and B C Ind,(£(£)), then we have
Ap¥yB C Ind (40 (L£(9)) N Ind o) (L(R))-

(ii) Indg(B*) = L(Hp), and if B* is unital, then Ad,(Ag H »tB7) = An
L(Hg) = AB),
(iii) Ad, (B »g%wB*) = L(8p) N L(Kyxt) = M(B) N M(BH).

We finally discuss compatibility with sums and products. First, the fiber
product is compatible with finite sums in the following sense. Let (A’); be a
finite family of C*-(a', b)-algebras and (B/) j a finite family of C *-(b%, ¢)-algebras.
For each i, j, denote by

Li41 .Ai — EE|1'/.Ail, ljél B] — EH]'/Bj/, 7'[_1;42 EE|1'/ .Ai, — Ai, 7'[][';1 EB]/ B]/ — B]
the canonical inclusions and projections, respectively. One easily verifies that
there exist inverse isomorphisms Eﬂi,j.Ai % B = (8;AY) * G ij ), given by

(xig)ij > Y (La s 1) (xig) and (g 75) (¥))i <=,
i,j
respectively. However, the fiber product is neither compatible with infinite sums
nor infinite products:

EXAMPLE 3.27. Lett = (C,C, C) be the trivial C*-base.
(i) For eachi,j € N, let A’ and B/ be the C*-t-algebra C%. Identify @ C¢ (2t<) cC
i

with I?(N x N) in the canonical way. Then EB(.AH;B]' ) corresponds to Cp(N x N),
ij

represented on [2(N x N) by multiplication operators, but (&, .Ai)f(@j Bi) =
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CO(N)TCO(N ) is strictly larger and contains, for example, the characteristic func-

tion of the diagonal {(x, x) : x € N} (see Example 5.3).
(ii) Let H = I2(N), « = L£(C, H), and let A and B/ be the C*-t-algebra K(H)¥
for all j. Identify Hy, ® o H with H ® H as in Example 2.12(i), choose an orthonor-
t

mal basis (ex)ren of H, and puty; := |ej ®eg)(eo @ eg| € K(H @ H) foreachj € N.
Theny := (y;); € HATBj because y; € K(H) @ K(H) C ATBj forall j € N, but
]

with respect to the canonical identification @ H ® H = H ® (; ®H), we have
i
yé AT(Hf /) because y|eg); corresponds to the family

(lejleo)(eol); € TTL(H, He H) € L(ED, H, €D, H @ H)
J

which is not contained in the space [|a)1 £(EP;

i H)J.

3.6. A FIBER PRODUCT OF NON-REPRESENTED C*-ALGEBRAS. The spatial fiber
product of C*-algebras represented on C*-modules yields a fiber product of non-
represented C*-algebras as follows.

Let b = (8,8,B") be a C*-base. In Subsection 3.2, we constructed a functor
Rp: C+ — Cy° that associates to each C*-%1-algebra a universal representation
in form of a C*-b-algebra. Replacing b by b*, we obtain a functor Ry+: Cj§ — C;5,
and composition of these with the spatial fiber product gives a fiber product of
non-represented C*-algebras in form of a functor

Ry xR
Cil x Cf = CEE x €5 — € (Cy, D) = Ry (Co) £ Ry (Dr),

where C* denotes the category of C*-algebras and *-homomorphisms. In categor-
ical terms, this is the right Kan extension of the spatial fiber product on C{® x C§
along the product of the forgetful functors Uy x Ugy: C® x C§ — Cyy X Cy
([19], Section X).

Given further C*-bases a = (£, %, 91+) and ¢ = (&,¢, Q:*), we similarly ob-
tain a functor

*T *r R(uU’) XR("+") *S *S *S U(“+") *T

o X Caen T St X S 7 Cano T Caery
and, using Remark 3.12, a natural transformation between the compositions in
the square

Clamty X Cim ety — Claer)

L

C;+XC§—>C*,

where the vertical maps are the forgetful functors.
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4. RELATION TO THE SETTING OF VON NEUMANN ALGEBRAS

In this section, let N be a von Neumann algebra with a n.s.f. weight y, de-
note by M, Hy, 77, ], the usual objects of Tomita-Takesaki theory [23], and define
the antirepresentation n;p: N — L(Hy) by x = Jummu(x*) ]y

4.1. ADAPTATION TO VON NEUMANN ALGEBRAS. The definitions and construc-
tions presented in Sections 2 and 3 can be adapted to a variety of other settings.
We now briefly explain what happens when we pass to the setting of von Neu-
mann algebras. Instead of a C*-base, we start with the triple b = (&, B, B,
where & = Hy,, B = ny(N), and Bt = Jutu(N)Ju. Next, we define W*-b-
modules, W*-(b*, b)-modules, their relative tensor product, W*-b-algebras, and
the fiber product by just replacing the norm closure [ -] by the closure with re-
spect to the weak operator topology [-]|w everywhere in Sections 2 and 3. We
then recover Connes’ fusion of Hilbert bimodules over N and Sauvageot’s fiber
product as follows.

MODULES. Let H be some Hilbert space. If (H, p) is a right N-module, then

a=L((R nﬁp),(H,p)) ={Te€L(®RH):YxeN: Tnﬁp(x) =p(x)T}

satisfies [af] = H,[a*a]y, = B,aB C a, and p, 0 nﬁp (see Lemma 2.5) coin-
cides with p. Conversely, if & C L(R, H) is a weakly closed subspace satisfy-
ing the three preceding equations, then (H,p, o nﬁp) is a right N-module and
a = L((8R nzp), (H,py © nﬁp)) [22]. We thus obtain a bijective correspondence
between right N-modules and W*-b-modules. This correspondence is an iso-
morphism of categories since for every other right N-module (K, o), an oper-
ator T € L(H,K) intertwines p and ¢ if and only if Ta is contained in p :=
L((R, nﬁp ), (K,0)). For W*-b-modules, the notions of morphisms and semi-mor-
phisms coincide.

ALGEBRAS. Let H, p,« be as above and let A C £(H) be a von Neumann
algebra. Then p(N) C A if and only if p,(B)A C A. Thus, W*-b-algebras cor-
respond with von Neumann algebras equipped with a normal unital embedding
of N. Moreover, let K, 7, B be as above, let B C [,(K) be a von Neumann algebra,
assume p(N) € Aand ¢(N) C B, and let m: A — B be a x-homomorphism sat-
isfying 77 0 p = 0. Then 7 is normal if and only if [L”(H,, Kg)a]w = B. Indeed,
the “if” part is straightforward (see Lemma 3.4), and the “only if” part follows
easily from the fact that every normal *-homomorphism is the composition of an
amplification, reduction, and unitary transformation ([5], Section 4.4).

BIMODULES. Let (H, p) be a left N-module, let (H, ) be a right N-module,
and let &« = L((R my),(H,p)) and B = L((R, nﬁp),(H,U)). Then (H,p,0) is
an N-bimodule if and only if p(N)B = B and ¢(N)a = «, and thus we obtain
an isomorphism between the category of N-bimodules and the category of W*-
(6%, b)-modules.
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FUSION. The preceding considerations and (2.1) show that the relative tensor
product of W*-(b*, b)-modules corresponds to Connes’ fusion of N-bimodules.

FIBER PRODUCT. Let (H,p) be a right N-module, (K, o) a left N-module,
« = L((®]mrF),(H,p))and p = L((& my),(K,0)), and let A C L(H) and B C
L(K) be von Neumann algebras satisfying p(N) C H and ¢(N) C K. One easily
verifies the equivalence of the following conditions for each x € L(Hy (% +K):

() x|y € [l)1Blo, (i) (hxla)s € B, (i) x € (idy 9B

Consequently, the fiber product of A and B, considered as a W*-b-algebra and a
W*-b-algebra, coincides with the fiber product (idy ®B’)' N (A’ ®1idk)’ = (A’ ®
b b b

B’)’ of Sauvageot.

4.2. RELATION TO CONNES’ FUSION AND SAUVAGEOT’S FIBER PRODUCT. Let
b = (8 B, B") be a C*-base such that & = H,, B” = 7, (N), (B")" = m;’ (N) =
%B’. Denote by C*-mod ;: ,) the category of all C*-(b*, b)-modules with all semi-
morphisms, and by W*-bimod y nop) the category of all N-bimodules, respec-
tively. Lemmas 2.5 and 2.6 imply:

LEMMA 4.1. There is a faithful functor F: C*-mod 4t ) — W*-bimod y nop),
given by o Hp — (H, px © 7T, pp © nzp) on objects and T — T on morphisms.
The categories C*-mod;+ ) and W*-bimod y nep carry the structure of

monoidal categories [19], and we now show that the functor F above is monoidal.
Let ng be a C*-b-module, K a C*-bT-module, and let

p=ppomi, X=LI(KmF),(Hp) o=pyom, Y=LK (K0)).

Given subspaces Xy C X and Y C Y, we define a sesquilinear form (- |- ) on the
algebraic tensor product Xo ® & ® Yy such that forall ¢, &' € Xo,Z, ' € &, 1,1 €Yo,

Cotogld ot on')y =)o) = &l ") @& e '),

Denote by Xy © R © Yj the Hilbert space obtained by forming the separated com-
pletion.

LEMMA 4.2. Let Xg € X, Yo C Y be subspaces satisfying [XoR] = H and
[YoR] = K. Then the natural map Xo © R Yy — X © R Y is an isomorphism.

Proof. Injectivity is clear. The natural map X8 Re Yy -+ X O RO Y is
surjective because both spaces coincide with the separated completion of the al-
gebraic tensor product H ® Y with respect to the sesquilinear inner form given
by (w O nlw’ © ') = (wleg(*y")w’), and a similar argument shows that the
natural map X e R Yy - X © RQ Y is surjective. 1
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We conclude that Connes’ original definition of the relative tensor product
H, ® ;K via bounded vectors coincides with the algebraic one given in (2.1) and
1z
with the relative tensor product Hg ® /K.
b

THEOREM 4.3. There exists a natural isomorphism between the compositions in
the square

C*-mod 1 ) X C*-mod ;) C*-mod ;)

FXF\L / \LF

W*-bimod(N,Nop) X W*-bimod(N,Nop) ? W*-bimod(N,Nop),
M

given for each object («Hg, Ks) € C*-mod 4+ 1) x C*-mod g+ ) by the natural map

With respect to this isomorphism, the functor F: C*-mod 4+ ,) — W*-bimod y nop)
is monoidal.

Proof. Lemma 4.2 implies that the map (4.1) is an isomorphism. Evidently,
this map is natural with respect to o Hg and , K;. The verification of the assertion
concerning F is now tedious but straightforward. &

Denote by CE‘Z{?Z) the category formed by all C*-(b', b)-algebras A‘;{’ﬁ satis-
fying pa(B) 4 pg(B*) C A and all semi-morphisms, and by W* (y nop) the cate-
gory of all von Neumann algebras A equipped with a normal, unital embedding
and anti-embedding 1) : N — A such that [14(N), )] (N)] = 0, together with all
morphisms preserving these (anti-)embeddings. Lemma 3.4 implies:

PROPOSITION 4.4. There exists a faithful functor G: CE‘Z;”,Z) — W*(y,Nop),
given by (oHg, A) = (A", pa 0 111,08 © n;p) on objects and ¢ — ¢ on morphisms,
where ¢'' denotes the normal extension of ¢.

By Lemma 3.16, A * B e CZ‘Z}"’Z) forall A4, B € CZ‘Z;’?Z), but CE‘Z;”,Z) is not
a monoidal category with respect to the fiber product because the latter is not
associative (see Subsection 3.5).

PROPOSITION 4.5. There exists a natural transformation

—k—

C*s,nd C*s,nd b xs,nd

- =C

(6%,0) (b*,b) (bt,b)
chi / iG

w*(N,Nop) X w*(N,Nop) %—7*7 w*(NlNop) ,
K
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given for each object Aaﬁﬁ and B?f by conjugation with the isomorphism (4.1).

The proof is immediate from Theorem 4.3 and Lemma 3.16.

4.3. A CATEGORICAL INTERPRETATION OF THE FIBER PRODUCT OF VON NEU-
MANN ALGEBRAS. We keep the notation introduced above, denote by Hilb the
category of Hilbert spaces and bounded linear operators, and call a subcategory
of W*-mod y nop) a *-subcategory if it is closed with respect to the involution
T +— T* of morphisms.

DEFINITION 4.6. A category over W*-mod y nor) is a category C equipped
with a functor Uc: C — W*-mody nor) such that UcC is a *-subcategory of
W*-mod y nop). Let (C,Uc) be such a category. We loosely refer to C as a cate-
gory over W*-mod y nop) without mentioning Uc explicitly, and denote by Hc
the composition of Uc with the forgetful functor W*-mod y yor) — Hilb. We
call an object G € C separating if it satisfies [HcC(G, X)(HcG)] = HcX for each
XecC

We denote by Cat(y nop) the category of all categories over W*-mod y nor)
having a separating object, where the morphisms between objects (C, Uc) and
(D, Up) are all functors F: C — D satisfying UpF = Uc.

EXAMPLE 4.7. For each A € W*y yop), denote by W*-mod 4 the category
of all normal, unital representations 7w: A — L(H) for which o4 and 7t o th
are faithful, and all intertwiners. This is a category over W*-mod y nor), where
Ux: Wi-mody — W*-mody nor) is given by (L, ) — (L, mois, 7o IF) on
objects and T — T on morphisms. The only non-trivial thing to check is that
W*-mod 4 has a separating object; by Lemma 2.10 of [3] or IX Theorem 1.2(iv) of
[23], one can take the GNS-representation for a n.s.f. weight on A.

Each morphism ¢: A — B in W*y yop) yields a functor ¢*: W*-modp —

W*-mody, given by (L, 7r) — (L, r o ¢) on objects and T — T on morphisms.

REMARK 4.8. In the definition above, Caty yor)(C, D) need not be a set,
and this may cause problems. There are several possible solutions: we can fix a
“universe” to work in, or replace the category W*-mod y nor) by a small subcat-
egory and require categories over W*-mod y nop) to be small, too. It is clear how
to modify the preceding example in that case.

PROPOSITION 4.9. There exists a contravariant functor Mod: W* (y nopy —
Cat(y nor) given by A — Mod(A) = (W*-mody, Uy) on objects and by ¢
Mod(¢) := ¢* on morphisms.

For each category C € Cat(y nor), choose a separating object G¢. Fix some
C € Catynor), let U = Uc, H = He, G = Gc, (H,p,0) = UG, and de-
fine End(C) := H(C(G,G))" € L(H). Then p(N) + ¢(N) C End(C) because
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H(C(G,G)) C (p(N) + c(N))’, and we can consider End(C) as an element of
W* (n,nop) With respect to p and o

LEMMA 4.10. There exists a morphism nc: C — Mod(End(C)) in Cat(y nor),
given by X — (UX, pX) on objects and T — HT on morphisms, where pX = PHC(G,X)
for each X € C. In particular, pX (End(C)) C H(C(X, X))’ for each X € C.

Proof. Let X € C and (K,¢,9) = UX. Then Lemma 2.5, applied to I :=
HC(G,X) C L(HG,HX), gives a normal representation p;: (I*I)’ — L(K).
Since I*I C HC(G, X) by assumption on C, we have End(C) C (I*I)’ and can
define pX = P1lEnd(c)- Each element of I intertwines p with ¢ and o with v,
whence UX = (K, p; 0,01 00) = Ugpqa(c) (1cX)-

LetY € C, T € C(X,Y), ] := HC(G,Y). Then H(T)p;(S) = p;(S)H(T)
for all S € End(G) because H(T)I € ], and therefore H(T) is a morphism from
(HX, p¥) to (HY, p"). By definition, Hgng(c) (7c(T)) = HT.

REMARK 4.11. If G’ € C is another separating object, o : H(C(G, G))’ —
H(C(G',G"))" is an isomorphism with inverse pyc(c/,G)-

We shall eventually show that the assignment C — End(C) extends to a
functor End: Cat(y nopy — W*(y nor) that is adjoint to Mod. The key is a more
careful analysis of functors from a category C € Cat(y nop) to categories of the
form Mod(A), where A € W* i nopy. Such functors themselves can be consid-
ered as objects of a category as follows.

Forall C,D € Caty yor), the elements of Cat y nor) (C, D) are the objects of
a category, where the morphisms are all natural transformations with the usual
composition.

Similarly, for all A, B € Caty nop), the morphisms in W*  nop (A, B) can
be considered as objects of a category, where the morphisms between ¢, i are all
b € B satisfying b¢(a) = (a)b for all a € A, and where composition is given by
multiplication.

PROPOSITION 4.12. Let A € W*(y nop) and C € Cat(y nop). Then there ex-
ists an isomorphism ¢ 4: Cat(y nop)(C,Mod(A)) — W*  nory (A, End(C)) with
inverse Yc 4 := CDE}A such that:

(i) @c a(F) is defined by FGc = (HcGe, @ca(F)) for each functor F: C —
Mod(A) and Pc,a(x) = ag, for each transformation a in Cat(y nop)(C,Mod(A));

(i) ¥c a(r) = Mod(m) o c: C — Mod(End(C)) — Mod(A) for each object
7t and ¥c A (S) = (0%(S))xec for each morphism S in Wy, nop) (A, End(C)).

Explicitly, ¥c 4 () is given by X +— (HcX, pX o 77) on objectsand T+ HcT

on morphisms.
The proof of Proposition 4.12 involves the following result.
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LEMMA 4.13. Write UcGe = (HcGc,p,0). Then the assignments o — g,
and (pX(S))xec <+ S are inverse bijections between all natural transformations w of
Hc (or 5¢c) and all elements S € End(Gc) (or S € End(Gc) N (p(N) + ¢(N))’,
respectively).

Proof. A family of morphisms (ax: HcX — HcX) xec is a natural transfor-
mation of H¢ if and only if axT = Tax forall X € Cand T € H¢(Gc, X), that
is, if ay = pX (age) and ag,. € End(C). Such a family is a natural transformation
of yc if and only if additionally, ax = pX(ocGC) is a morphism of UcX for each
X € Cor, equivalently, if xg. € (o(N) +c(N))". 1

Proof of Proposition 4.12. Lemma 4.13 implies that ¥ := ¥ 4 is well defined
by (ii). Let us show that @ := ®¢ 4 is well defined by (i). For each F as above,
the image Hyoq(4)(F(C(Ge, Ge))) = He(C(Ge, Ge)) consists of intertwiners
for @ (F) and hence (®(F))(A) C Hc(C(Gc, Ge))' = End(C). Likewise, for each
w as above, ag, intertwines Hc(C(Gc, Ge)) and hence ag. € End(C). Finally,
@(xop) = age o Bc. = P(a)P(B) for all composable «, B.

Next, ® o ¥ = id because for each 7t as above, ¥(77)(Gc) = (HcGe, p%¢ o
7) so that (¥ (7)) = p®c o T = 7, and for each S as above, the component of
(0%(8))xec at X = Ge is p©c(S) = S.

Finally, we prove ¥ o @ = id. Let F be as above and define ¢X by FX =
(HcX, ¢X) for each X € C. Then ®(F) = ¢°c, and for each a € A, the family
(¢*X(a))xec is a natural transformation of Hpyd(4) © F = Hc which coincides by
Lemma 4.13 with (0X(¢%c(a)))xec. Therefore, FX = (HcX,¢X) = (HeX, p%X o
®(F)) = ¥(P(F))(X) for each X € C. On morphisms, ¥ (P (F)) and F coincide
anyway. For each « as above, ¥(@(x)) = (p*(ng.))xec = # by Lemma 4.13. 1

COROLLARY 4.14. (i) Let A € W*(N’Nop) and consider id 4 as an object of C :=
Mod(A). Then @c,a(idc): A — End(Mod(A)) is an isomorphism in W* (y nop)

with inverse e 4 := plda,
(ii) Let A, B € W*(y o). Then the isomorphism Mod 4 g obtained by composing

(Egl)* : VV>k (N,Nop) (A, B) — W>k (N,Nop) (A, End(MOd(B)))
with
lFMOd(B),A: W*(N,Nop)(A, End(MOd(B))) — Cat(N,Nop) (MOd(B),MOd(A)),

is given by ¢ — Mod(¢) on objects and b — (71(b))(y ) on morphisms.
(iii) Let C, D € Cat(y nop). Then the functor End ¢ p) obtained by composing

(UD)*: Cat(N,Nop)(C, D) — Cat(N,Nop)(C, MOd(End(D)))
with
®C,End(D): Cat(N,Nop)(C, Mod(End(D))) — W*(N,Nop)(End(D), End(C))

is given by F +— p¥G¢ on objects and a Hp («G.) on morphisms.
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Proof. Assertions (i) and (iii) follow immediately from the definitions and
Proposition 4.12.

Let us prove (ii). For each object ¢, we have Gpoa(p) = (Hmod(B)- e5') and
Pmod(B),a(Mod(¢)) = sgl o ¢, whence lFMod(B),A(SEl o¢) = Mod(¢), and for
each morphism b, the family a := (71(b))(;, ) is a natural transformation and

(DMOd(B),A (“) = aGMod(B) = F’Bl<b) 1

The relative tensor product on W*-mod y nor) yields a product on the cate-
gory Caty o) as follows. Let C, D € Cat(y nop). Then C x D and the functor

UCXD = (— & —) o) (UC X UD)Z CxD— W*'mod(N/Nop),
M

form a category over W*-mod y nop) With separating object (Gc, Gp). Thus, we
obtain a monoidal structure on Cat(y o), given by (C,D) — C x D on objects
and (F,G) — F x G on morphisms.

COROLLARY 4.15. Forall A,B,C € W* y nop), there exists an isomorphism

E: Wy nory (4, B*C) — Cat(y,nor) (Mod(B) x Mod(C),Mod(A))

such that
(i) for each object t, the functor Z(7r): Mod(B) x Mod(C) — Mod(A) is given
by (L, 7),(M,v)) — (L® M, (T;«;v) om)and (S,T) — S®T;
p p
(ii) for each morphism x: 17 — 112, the transformation Z(b): E(my) — E(my) is
given by E(b)((1,x), (M) = (T;U)(x)-

Proof. Let B := Mod(B), C := Mod(C), D := B x C. Then G := (Gp, G¢)
is separating and

0% End(D) — Hp (D(G, G))'=(End (B)’ © End(C)')’=End(B) + End(C) = B+C

is an isomorphism by Remark 4.11.
Let X = (L,7) € Band Y = (M,v) € C. Then p*¥) = (T;U) 0 % by

Lemma 2.5 because Tiv = pj, where ] = Hg(B(Gg, X)) ® Hc(C(Gc, Y)), and
M

J-Hp(D(Gp,G)) C Hp(D(Gp, (X,Y))). Now, the assertion follows from Propo-
sition 4.12. 1

The categories Wy yop) and Cat(y yop) are enriched over the monoidal
category Cat of small categories [14], or, equivalently, are 2-categories, mean-
ing that the morphisms between fixed objects are themselves objects of a small
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category, as explained before Proposition 4.12, and that the composition of mor-
phisms between fixed objects extends to a functor, where

P 4;1 ProPr
A .
42 B \@ CoA @ B=A \Utpz_(_bzi/ C in W*(y nop),
¥2 L 2092
Gl Fl G]OF]
//.——_’———\ .
(43) C @ Do B @ C = B \M;_liz_o_f’]_’x’/ D In Cat(N,Nop).
Gz FZ GZOFZ

Recall that a contravariant functor between enriched categories C, D consists of
an assignment F: ob C — ob D and, for each pair of objects X,Y € C, a functor
Fixy): C(X,Y) — D(FY,FX) that is compatible with composition in a natural
sense. We now show that the assignments Mod, End defined above are functors
in this sense and that the isomorphisms in Proposition 4.12 form part of an ad-
junction between Mod and End. For background on enriched categories, see [14].

THEOREM 4.16. The assignments Mod and End define contravariant functors
Mod: W* (N,N°P) — Cat(N/Nop) and End : Cat(N,Nop) — W* (N,N°P) Ofenriched cate-
gories. The isomorphisms (Pc a)c, define an adjunction whose unit is (1¢) cecat (N.NOP)
and counit is (SA)AGW*(N,N‘)P)'

Proof. We first show that Mod and End are functors of enriched categories.
By Corollary 4.14, it suffices to prove this for End. Consider a diagram as in (4.3)
and leta = End (g c)(«), b = End(¢p)(B), ¢ = End g p)(BE, © G1a). We have to
show that then the cells

End g c)(F1) End(cp)(G1)
End(C) U«  End(B) o End(D) T End(C)
End(B’C) (Fz) End(C,m (Gz)

and
End g p)(G1Fp)
T
End(D) {e End(B)

—— T
End g p)(G2F2)

are equal. By definition, # = Hc(ag,), b = Hp(Bg,.), and by Lemma 4.13,

¢ = Hp(Br,G; - G1(agy)) = p™“8 (Hp(Bg.)) - He(ag,) = End(F)(b) - a.
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It remains to show that for all morphisms ¢: A — B in W*y nop) and
F: C — D in Caty nor), the diagram

[}
Cat(N,Nop) (D, MOd(B)) i W*(N,NOP) (B, End(D))
v . v

Cat(N,Nop) (C, MOd(A)) s W* (N,N°P) (A, End(C))

commutes, where the vertical maps are induced by F and Mod , p)(¢) on the left
and ¢ and End ¢ p)(F) on the right, respectively, or, more precisely, that for each
object G and each morphism a in Caty nor) (D, Mod(B)),

End ¢ p)(F) o Pp,3(G) 0 p = Oc a(Mod 4 5)(¢) oG oF),
Endcp)(F)(a) = Mod 4 ) (¢)(aF).

The second equation holds because of Lemma 4.13 and the relation

End(c p)(F)(ac.) = pFC(ap) = apce = Mod 4 p) (¢) (arce)
first one holds because by Corollary 4.14,

End ¢ p)(F) o Ppp(G) 0 ¢ = p"°C 0 &p p(G) 0 ¢,
(Mod 4 5)(¢) © G o F)(Gc) = (HcGe, 0" 0 Pp p(G) 0 ¢). 1

5. THE SPECIAL CASE OF A COMMUTATIVE BASE

Let Z be a locally compact Hausdorff space with a Radon measure p of
full support, and identify Co(Z) with multiplication operators on £(L%(Z, u)).
Then the relative tensor product and the fiber product over the C*-base b =
(L2(Z,u),Co(Z),Co(Z)) can be related to the fiberwise product of bundles as fol-
lows.

Denote by Modp, Mod((7), and Bdlz the categories of all C*-b-modules
with all morphisms, of all Hilbert C*-modules over Cy(Z), and of all continuous
Hilbert bundles over Z; for the precise definition of the latter, see [6]. Each of
these categories carries a monoidal structure, where the product

(i) of E,F € Modc,(z) is the separated completion of E © F with respect to the

inner product (¢ ® |¢ ©7') = (&) (n|y’), denoted by E ® F;
Co(2)
(ii) of £, F € Bdly is the fibrewise tensor product of £ and F;

(iii) of Hg, Ky € Mod is (Hﬁ % +K, B> y), where B >a vy := [|7)28] = [|B)17);
here, note that gHg, K, are C*-(b, b)-modules.
There exist equivalences of monoidal categories

8] B
MOdb = MOdCO(Z) = Bdlz
F

To
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such that for each E € ModCO(Z), F € Bdly, Hﬁ € Mody,

(1) UHﬁ = ‘3 € MOdCO(Z);

(ii) FE = (E ®c,(z) L*(Z,u),1(E)), where [(§) = & ®¢,(z) 1 for each ¢ €
E,n € L*(Z,p);

(i) BE = | E; and IH(BE) = {(&z): : ¢ € E}, where E; is the completion
z€Z
of E with respect to the inner product (¢, 1) — (&|)(z), and ¢ — ¢, denotes the

quotient map E — E;
(iv) the operations on the space of sections Ip(F) € Modc,(z) are defined
fiberwise.

The equivalence on the left is easily verified, and the equivalence on the
right is explained in [6]. Compare also Examples 2.7 and 2.12(ii).

Denote by CZ‘:O( 2) the category of all continuous Cy(Z)-algebras with full
support [6], where the morphisms between A, B € CEO(Z) are all Cy(Z)-linear
nondegenerate *-homomorphisms 7t: A — M(B), and by é’g the category of all
C*-b-algebras Ag satisfying [05(Co(Z))A] = A and [AB] = B, where the mor-
phisms between AP, By € Ciareall 7w € CZ(AﬂH,M(B)Iz) satisfying [t(A)B] =
B. Then there exists a functor éz — CEO( 7y given by A?{ — (A, py) and T — ~7'c,
and this functor has a full and faithful left adjoint which embeds Céo( z) into C;

([28], Theorem 6.6).
We finally consider the fiber product of commutative C*-b-algebras and
start with preliminaries. Let Z be a locally compact space, E a Hilbert C*-module

over Cy(Z), and BE = || E; the corresponding Hilbert bundle. The topology
zeZ
on BE is generated by all open sets of the form Uy, . = {Clz € V,l € E,, |In:—

C|le. < €}, where V C Zisopen,y € E, ¢ > 0. Denote by q: || L(E;) — Z the
z€Z

natural projection and define for each 77, 7" € E maps

Wy |_|Z£(Ez) - C, T— <77q(T)|T’7;(T)>r
ze

v,(]*): || £(E;) = | | E:, T T(*)Uq(T)-
z€Z z€Z

The weak topology (strong-*-topology) on | | L(E) is the weakest one that makes g
z€Z
and all maps of the form w,, s (of the form v,g*)) continuous.
Let A be acommutative C*-algebra, let 71: Co(Z) — M(A) be a *-homomor-

phism, and let x € A. Then we identify E ®¢+ A ®) C with E;, where z € Z

—

corresponds to x o 1 € Cy(Z), via § @7 a @y A — Ax(a)y. Amap T: A —

L L(E:) is weakly vanishing (strong-+-vanishing) at infinity if for all 5’ € E, the
zeZ

map wy, o T (the maps x — ||v,(7*) (T(x))|l) vanish at infinity.
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LEMMA 5.1. Let AﬂH be a C*-b-algebra, K, a C*-b*-module, x € L(Hg ® 1K).
b
Assume that A is commutative, [0g(Co(Z))A] = A, and (y[ax|v)2 C A. Define
Fo: A— || L(72) by x — (x *id)(x). Then:
zeZ
(i) Fy is weakly continuous, weakly vanishing at infinity.
(ii) x € Ind,,y,(A) if and only if Fy is strong-* continuous, strong-+-vanishing at
infinity.
Proof. First, note that for all 7,5’ € v and x € A,
X 2x17)2) = {1300 @116 #50) (2) Ly 1) = gapgy e o))

(i) For each j/, 7€+, the map x — <’7(X°Pﬁ) | Fx <X)17EX°P[%)> equals (17|2x|n’)2€A.
(i) Assume that Fy is strong-* continuous vanishing at infinity and let# € «.
Then the map x +— Fx(X)”()(opﬁ) lies in Iy(7y ©p; A). Hence, there exists an
w € 7y Gy, A such that FX(X)W()(Opﬁ) = wy forall x € A. We identify v Gpy A

with [|7)2A] € L(H, Hg ® 1K) in the canonical manner and find that x[#7), = w
b

because x((1'[2x7)2) = (H{yop,)|@Wirep)) = x((1'Lw) forall x € 4, ' € 7.
Since 1 € <y was arbitrary, we can conclude x|y), C [|y)2A]. A similar argu-
ment, applied to x* instead of x, shows that x*|v)2 C [|7)24], and therefore
x € Ind,, (A). Reversing the arguments, we obtain the reverse implication. 1

Let X be a locally compact Hausdorff space with a continuous surjection
p: X — Z and a family of Radon measures ¢ = (¢).cz such that:

(i) supp ¢, = Xz := p~1(z) foreach z € Z and
(ii) the map ¢.(f): z+— [ fd¢. is continuous for each f € Cc(X).
X;

Define a Radon measure vy on X such that
/fde = /4>*(f)dy forall f € Cc(X).
X z

Then there exists a unique map
jx: Ce(X) = L(LA(Z, ), L*(X, vx))
such that jx(f)h = fp*(h) and jx(f)*g = ¢«(fg) forall f,g € Cc(X),h € Cc(Z).

Similarly, let Y be a locally compact Hausdorff space with a continuous map
g: Y — Z and a family of measures ¢ = (;),c7 satisfying the same conditions
as X, p, ¢, and define a Radon measure vy on Y and an embedding jy: C.(Y) —
L(L?(Z,u),L?(Y,vy)) as above. Let

H:=L*X,vx), B:=[ix(Cc(X))], A:=Co(X)CL
Ki=L*(Y,vy), 7:=[y(C(Y)], B:=Co(Y)C LIL(Y,vy)) = L(K).
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Then Hﬁ, K, are C*-b-modules and A’SH, Blz are C*-b-algebras, as one can easily
check. Considering B and -y as Hilbert C*-modules over Cy(Z), we can canoni-
cally identify B, = L?(X,, ¢,) and 7y; = L?(Y;, ;). Finally, define a Radon mea-
sure v on X, >Z< qY such that for all h € Cc(Xp >Z< qY),

| onav= [ [ [hey)dg.(y) des(x) ducz).

Xp>Z<qY Z X; YZ

PROPOSITION 5.2. (i) There exists a unitary U: Hg @ K — L?(Xp % 4Y,v)
b z

such that (U(jx (f) o h © jy()))(x,y) = f(x)h(p(x))g(y) forall f € Cc(X), g €
C(Y), heC(2), (x,y) € Xp X ne

(if) Adu(Aﬁsz) is the C*-algebra of all f € L%(X, X qY,v) that have repre-
sentatives fx, fy such that the maps X — TotL(y) and Y — TotL(p) given by
x> fx(x,0) € L¥(Yp) Ypx)) and y — fr(-y) € L¥(Xy(y), Pq(y)) respectively,
are strong-* continuous vanishing at infinity.

Proof. The proof of assertion (i) is straightforward, and assertion (ii) follows
immediately from Proposition Lemma 3.16(viii) and Lemma 5.1(ii). 1

EXAMPLE 5.3. (i) Let X, Y be discrete, Z = {0}, and let ¢, 1y be the count-
ing measures on X, Y, respectively. Then

CO(X)ﬁ’E';WCO(Y) 2LfeC(XxY):f(x, )€ Co(Y) forallx € X,
f(-,y) € Co(X) forally € Y}.

This follows from Proposition 5.2 and the fact that for each f € Cp(X X Y), the
maps X — L(I?(Y)), x — f(x,-),and Y — L(I>(X)),y — f(-,y), are strong-x
continuous vanishing at infinity if and only if f(-,y) € Co(X) and f(x, ) €
Co(Y) foreachy € Yand x € X.

(ii) Let X = N, Z = {0}, and let ¢ be the counting measure. Then

CO(N)[;?CO(Y) =~ {feG(NxY): (f(x,))x is a sequence in Cy(Y)
that converges strongly to 0 € £(L*(Y, v0))}

because for each f € L®(N x Y), themap Y — L(I>(N)),y — f(-,y), is strong-x
continuous vanishing at infinity if and only if f(x, - ) € Co(Y) forall x € N.

(iii) Let X = Y = [0,1], Z = {0}, and let ¢p = 1y be the Lebesgue mea-
sure. For each subset I C [0, 1], denote by y; its characteristic function. Then the
function f € L*([0,1] x [0,1]) givenby f(x,y) = 1ify < xand f(x,y) = 0 other-
wise belongs to C([0, 1])5?;7C([0, 1]) because the functions [0,1] — L*®([0,1]) C

L(L2([0,1])) given by x > f(x, ) = X andy — f(-,y) = x|y, are strong-*
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continuous. In particular, we see that C([0,1]) ﬁ;’;vc ([0,1]) € C([0,1] x [0,1]) =
C([0,1]) ® C([0,1]).
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