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ABSTRACT. We present a far reaching generalization of a factorization theo-
rem by Bhat, Ramesh, and Sumesh (stated first by Asadi) and furnish a very
quick proof.
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1. THE RESULT

Let E and F be Hilbert modules over C∗-algebras B and C, respectively. Let
ϕ be a map from B to C. We say a linear map T : E→ F is a ϕ-map if

〈T(x), T(x′)〉 = ϕ(〈x, x′〉)
for all x, x′ ∈ E.

THEOREM. Let E and F be Hilbert modules over unital C∗-algebras B and C, re-
spectively. Then for every linear map T : E→ F the following conditions are equivalent:

(i) T is a ϕ-map for some completely positive map ϕ : B → C.
(ii) There exists a pair (F, ζ) of a C∗-correspondence F from B to C and a vector

ζ ∈ F, and there exists an isometry v : E� F → F such that

T = v(idE�ζ) : x 7−→ v(x� ζ).

Proof. (ii)⇒ (i) ϕ := 〈ζ, · ζ〉 is such a map.
(i) ⇒ (ii) By Paschke’s GNS-construction for CP-maps ([5], Theorem 5.2)

there exist a B-C-correspondence F and a vector ζ ∈ F such that 〈ζ, · ζ〉 = ϕ

and F = spanBζC. By

〈x� (bζc), x′ � (b′ζc′)〉 = c∗ϕ(〈xb, x′b′〉)c′ = 〈T(xb)c, T(x′b′)c′〉,
x � (bζc) 7→ T(xb)c defines an isometry v : E� F → F. Specializing to b = 1B
and c = 1C we get v(x� ζ) = T(x).
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If T is a ϕ-map for some completely positive map ϕ : B → C, then the objects
in the second part are unique in the following sense.

COROLLARY. Suppose F̃ is another Hilbert C-module with a map w̃ : E → F̃
such that the set w̃(E)C is total in F̃, and suppose there is an isometry ṽ : F̃ → F such
that ṽw̃(x) = T(x). Then

u : w̃(x) 7−→ x� ζ

defines a unitary F̃ → E� F where (F, ζ) denotes the (unique) GNS-construction for
ϕ. Moreover, w̃ is a ϕ-map itself. Alternatively, we may require w̃ to be a ϕ-map. In that
case, ṽ is an isometry, automatically.

2. DISCUSSION

The basic ingredient, Paschke’s GNS-construction, is a standard result in
Hilbert module theory. Paschke’s paper [5] and Rieffel’s [6] were the first dis-
cussing Hilbert modules over not necessarily commutative C∗-algebras. So, the
GNS-construction is as old as the theory itself. It is a very simple consequence
directly from the axioms of Hilbert module and correspondence. (In fact, start-
ing from the definition of completely positive map, the GNS-construction can be
used nicely to motivate these axioms.) Another standard ingredient we used, is
the tensor product of correspondences. Recall that a correspondence fromA to B is
a Hilbert B-module with nondegenerate(!) left ∗-action byA. Recall, too, that the
(internal) tensor product of a correspondence E fromA to B and a correspondence
F from B to C is the unique (up to canonical isomorphism) correspondence E�F

from A to C that is generated by elements x� y fulfilling

〈x� y, x′ � y′〉 = 〈y, 〈x, x′〉y′〉, a(x� y) = (ax)� y.

A Hilbert module E can be considered as a correspondence under the canonical
left actions of the algebra of adjointable operators Ba(E), the algebra of compact
operators K(E) or the complex numbers C.

Another standard result, is inducing a representation of a Hilbert module
E by operators in B(G, H) from a nondegenerate representation π of B on a
Hilbert space G. It helps to recover first the Stinespring construction from GNS-
construction and then the result from Bhat, Ramesh, and Sumesh [2] (see the
corollary on the next page and the remark following it) from our theorem. This
inducing procedure is known since Rieffel’s paper [7] (see the proof of Proposi-
tion 6.10 in [7] in front of the proposition). Indeed, the representation π turns
G into a correspondence from B to C. We define the Hilbert space H := E� G.
Then every element x ∈ E gives rise to an operator Lx : g 7→ x � g with ad-
joint L∗x : y � g 7→ π(〈x, y〉)g. It follows that the map η : x 7→ Lx is a represen-
tation of E by operators in B(G, H) in the sense that η(x)∗η(y) = π(〈x, y〉) and
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η(xb) = η(x)π(b). Moreover, H is a correspondence from Ba(E) to C. In fact, by
ρ(a) := a� idG we define a representation, satisfying η(ax) = ρ(a)η(x). (Note
that also η(x) may be written conveniently as Lx = x� idG. The whole induction
procedure is nothing but amplifying things with the identity on G.)

Note that, given π, a map η : E → B(G, H′) (where H′ can be any Hilbert
space) is uniquely determined (up to suitable unitary equivalence) by the proper-
ties η(x)∗η(y) = π(〈x, y〉) and η(xb) = η(x)π(b) plus the cyclicity condition that
η(E)G be total in H′. Note, too, that we need not require that η be bounded. (By
the stated properties, η is a ternary homomorphism into the Hilbert B(G)-module
B(G, H′); see Skeide and Abbaspour [1] for details. In particular, η is completely
contractive. As the map η : x 7→ 1 ∈ C shows, the linearity condition may not be
dropped from Theorem 2.1 of [1].) Of course, also ρ is determined uniquely by
η(ax) = ρ(a)η(x).

Now let us return to our CP-map ϕ : B → C with GNS-construction (F, ζ).
Suppose we have a representation σ of C on a Hilbert space K. This gives rise to
a Hilbert space G := F � K and the induced representation π : B → Ba(F) →
B(G) of B on G. If we put Z := Lζ : k 7→ ζ � k, then Z∗π(b)Z = σ ◦ ϕ(b). In
particular, if C ⊂ B(K) is an operator algebra and σ is the canonical injection,
then Z∗π(b)Z = ϕ(b). Clearly, π(B)ZK = (Bζ)�G is total in G. In other words,
π is the Stinespring representation [10] of B and Z ∈ B(K, G) the cyclic map.

COROLLARY. Let ϕ : B → C ⊂ B(K) be a CP-map and construct its (unique!)
Stinespring triple (G, π, Z) as explained. Suppose T : E → F is a ϕ-map as in the
theorem, and let η be the (unique!) representation of E into B(G, H) induced by the
Stinespring representation π as discussed. Put L := F � K, and define the (unique!)
representation χ of E into B(K, L) induced by the canonical injection C → B(K).

Then with v as in the theorem, V := v� idK ∈ B(E� F� K, F� K) = B(E�
G, L) = B(H, L) is an isometry such that Vη(x)Z = χ ◦ T(x). Moreover:

(i) (G, π, Z) is determined uniquely by the properties a minimal Stinespring con-
struction fulfills (properties that have nothing to do with the ϕ-map T).

(ii) (H, η) is determined uniquely by the properties a representation induced by π

fulfills (properties that have nothing to do with the ϕ-map T).
(iii) V is determined uniquely by Vη(x)Z = χ ◦ T(x). In particular, it is an isometry,

automatically.

REMARK. Like we assumed that C is given as a subalgebra of B(K) from
the beginning, we also may assume that F is a concrete Hilbert C-module con-
tained in B(K, L) from the beginning. (By this we mean that F is a norm closed
subspace of B(K, L) fulfilling FC ⊂ F, F∗F ⊂ C, and span FK = L .) In this case,
χ reduces to the canonical injection F → B(K, L) and disappears from the formu-
lae: Vη(x)Z = T(x). In particular, if C = B(K) and F = B(K, L) we get back the
results of [2].



546 MICHAEL SKEIDE

But a CP-map ϕ : B → B(K) may be considered as a CP-map into C∗(ϕ(B))
(or any C∗-algebra C in between), and a ϕ-map T : E → B(K, L) may be consid-
ered a ϕ-map into the ternary space span T(E)C∗(ϕ(B)) generated by T(E) (or any
Hilbert C-module in between).

REMARK. Like the Stinespring construction, also the GNS-construction re-
quires that B is unital. The GNS-correspondence can be constructed also when
B is nonunital, coming shipped with an embedding i : B ⊗ C → F such that
〈i(a ⊗ b), i(a′ ⊗ b′)〉 = b∗ϕ(a∗a′)b′ and F = i(B ⊗ C). In order to have a cyclic
vector ζ (without making F bigger, what is always possible via unitalization), it
is necessary to require that ϕ be strict. For us, the simplest way to describe this,
is the condition that for some bounded approximate unit

(
uλ

)
for B the corre-

sponding net in Ba(F) be ∗-strongly convergent to the identity; see Sections 2
and 5 of [4] and Section 4.1 of [8] for details.

REMARK. The purpose of this note was to illustrate that assuming only lit-
tle and very basic knowledge about Hilbert modules, results like the Stinespring
construction or its generalization to ϕ-maps drop out easily. (For whom who
knows these facts, the corollary in this section could be stated already in the end
of the first section. And also there it would not require any proof.) We wish
to underline that this aspect of simplification, though already quite positive as
such, is not at all the most important one. Using GNS-construction instead of
Stinespring construction has the most striking consequences, when it comes to
composition of CP-maps. This is so, because correspondences may be viewed
as functors in various ways, and composition of CP-maps, roughly, corresponds
to tensor products of correspondences. Nothing like this works with Stinespring
representations! We explained this carefully in Section 2 of [3]. (In this section the
reader can also find a compact introduction to Hilbert modules and correspon-
dences.) We explained it once more very detailedly in the survey [9]. In [3] the
consequent application of GNS-construction instead of Stinespring construction
for CP-semigroups led to the first construction of a product system of correspon-
dences.
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