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1. INTRODUCTION

The Fourier transform is one of the most powerful tools coming from ab-
stract harmonic analysis. Many classical applications, in particular in the direc-
tion of Lp-spaces, can be found in for example [6]. Here we extend this tool by
giving a definition of a Fourier transform on the non-commutative Lp-spaces as-
sociated with a locally compact quantum group. This gives a link between quan-
tum groups and non-commutative measure theory.

Recall that the Fourier transform on locally compact abelian groups can be
defined in an Lp-setting for p any real number between 1 and 2. This is done in the
following way. Let G be a locally compact group and let Ĝ be its Pontrjagin dual.
For an L1-function f on G, we define its Fourier transform f̂ to be the function on
Ĝ, which is defined by

(1.1) f̂ (π) =
∫

f (x)π(x)dl x, π ∈ Ĝ.

Then f̂ is a continuous function on Ĝ vanishing at infinity. So we can consider
this transform as a bounded map F1 : L1(G) → L∞(Ĝ). The Plancherel theorem
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yields that if f is moreover an L2-function on G, then f̂ is an L2-function on Ĝ and
this map extends to a unitary map F2 : L2(G)→ L2(Ĝ).

It is known that the Fourier transform can be generalized in an Lp-setting
by means of the Riesz–Thorin theorem, see [1]. The statement of this theorem
directly implies the following. For any p, with 1 6 p 6 2, the linear map L1(G) ∩
L2(G)→ L2(Ĝ) ∩ L∞(Ĝ) : f 7→ f̂ extends uniquely to a bounded map

Fp : Lp(G)→ Lq(Ĝ),
1
p
+

1
q
= 1.

This map Fp is known as the Lp-Fourier transform.
Quantum groups have been around for quite some time and have been stud-

ied in many different guises. From the 80’ies onwards quantum groups are stud-
ied in an operator algebraic approach. In particular, a satisfactory C∗-algebraic
definition of a compact quantum group has been given by Woronowicz [21].

Around 2000 locally compact quantum groups were introduced by Kuster-
mans and Vaes [13], [14], see also [19]. Their definitions include a C∗-algebraic
one and a von Neumann algebraic one. Since their introduction many aspects
of abstract harmonic analysis have been given a suitable extension for quantum
groups. In particular, the Pontrjagin duality theorem has been generalized to lo-
cally compact quantum groups. In fact, this was one of the main motivations
for their definition. So every locally compact quantum group admits a (Pontrja-
gin) dual quantum group such that the double dual is isomorphic to the originial
quantum group.

Since we now have a von Neumann algebraic interpretation for quantum
groups at hand, it is natural to ask if the Lp-Fourier transform can be defined in
this context. This is for two reasons. First of all, this framework studies quantum
groups in a measurable setting which appeals to a more general interest: what
links can be found between on one hand non-commutative measure spaces, in
particular non-commutative Lp-spaces, and on the other hand the theory of quan-
tum groups. The Lp-Fourier transform studied in the present paper establishes
such a link. Secondly, the existence of a Pontrjagin dual is always guaranteed in
the Kustermans–Vaes setting. This is an essential ingredient for defining Fourier
transforms.

The L1- and L2-Fourier transform already appear in the present theory of
quantum groups. In fact, they are implicitly used to define duals of quantum
groups. Let us comment on this.

First of all, the L2-Fourier transform is implicitly used in the construction
of the Pontrjagin dual of a (von Neumann algebraic) quantum group. For the
classical case of a locally compact abelian group G, let (L∞(G), ∆G) be the usual
quantum group associated with it. Its dual is given by (L(G), ∆̂G), where L(G)
is the group von Neumann algebra of G. This structure is spatially isomorphic to
(L∞(Ĝ), ∆Ĝ) by means of the L2-Fourier transform. That is L∞(Ĝ) = F2L(G)F−1

2
and similarly the coproduct and other concepts translate.
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Secondly, in a paper by Van Daele [20] he explains how the Fourier trans-
form should be interpreted on the algebraic level of quantum groups. In his con-
cluding remarks he suggests to study this transform in the operator algebraic
framework. Here, this investigation is carried out. We take Van Daele’s defini-
tion, which agrees with the classical transform (1.1), as a starting point for defin-
ing an L2-Fourier transform in the operator algebraic framework.

Finally, an operator algebraic interpretation of the Fourier transform can be
found in [10]. The main ideas for our L2-Fourier transform first appear here.
However, the suggested Fourier transform ([10], Definition 3) is well-defined
only if the Haar weights of a quantum group are states, i.e. if the quantum group
is compact. In the more general situation, one has to give a more careful defini-
tion, which we work out in Section 5.

The present paper is related to a collection of papers studying module struc-
tures of Lp-spaces associated to the Fourier algebra of locally compact groups [3],
[4], [5]. These papers are based on the theory of non-commutative Lp-spaces as-
sociated to arbitrary (not necessarily semi-finite) von Neumann algebras, which
we recall below.

When dealing with these spaces, we are confronted with the following ob-
struction. For classical Lp-spaces associated with a measure space X, there is a
clear understanding of the intersections of Lp-spaces by means of disjunction of
sets. So Lp(X) ∩ Lp′(X) gives the intersection of Lp(X) and Lp′(X). For non-
commutative Lp-spaces it is more difficult to find the intersection of two such
spaces. In fact, there is a choice which determines the intersection and which de-
pends on a complex interpolation parameter z ∈ C. In [5] the parameter z = −1/2
is used, whereas [3] focuses on the case z = 0 in order to define module actions.
In the final remarks of [4], it is questioned which parameter would fit best for
quantum groups.

One of the results of the present paper is that to define an Lp-Fourier trans-
form, one is obliged to choose the parameter z = −1/2. We also determine in-
tersections of the L1- and L2-space and of the L2- and L∞-space associated with a
von Neumann algebra for this parameter, which are natural spaces.

STRUCTURE OF THE PAPER. In Section 2 we recall the definition of non-commuta-
tive Lp-spaces and introduce the complex interpolation parameter z ∈ C. We spe-
cialize the theory for z=−1/2 and introduce short hand notation. In Sections 3–6,
we only work with Lp-spaces with respect to this parameter. The justification for
this specialization is given in the final chapter.

As indicated, the study of the intersections of Lp-spaces becomes more intri-
cate in the non-commutative setting. In Section 3 we determine the intersections
of L1- and L2-space and of the L2- and L∞-space associated with a von Neumann
algebra. These intersections turn out to be well-known spaces in the theory of
quantum groups. This gives a confirmation that our choice for the interpolation
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parameter made at the beginning is a natural one. Moreover, it gives the nec-
essary ammunition to apply the reiteration theorem. We warn the reader that
the contents of Section 3 are relatively technical and if one is more interested in
Fourier theory on quantum groups, one can skip Section 3 at first reading.

Section 4 recalls the definition of a locally compact quantum group as given
by Kustermans and Vaes. We give the von Neumann algebraic definition.

In Section 5 we define the Lp-Fourier transform. We start with the L1- and
L2-theory and then obtain the Lp-Fourier transform (1 6 p 6 2) through the
complex interpolation method, a method similar to the Riesz–Thorin theorem
mentioned in the introduction.

In Section 6 we define a convolution product in the Lp-setting and show that
the Fourier transform turns the convolution product into a product.

Finally, in Section 7, we prove that the interpolation parameter used in Sec-
tions 3–6 is distinguished. That is, we prove that given the L2-Fourier transform,
there is only one choice for the interpolation parameter that allows an Lp-Fourier
transform. This justifies our choice for this parameter made in the beginning.

NOTATIONS AND CONVENTIONS. Throughout this paper, let M be a von Neu-
mann algebra and ϕ a normal, semi-finite, faithful weight on M. We adopt the
standard notations from [15]. So nϕ = {x ∈M : ϕ(x∗x)< ∞},mϕ = n∗ϕnϕ. We
denote ∇, J, σ for the modular operator, modular conjugation and modular au-
tomorphism group associated with ϕ. We denote Tϕ for the Tomita algebra de-
fined by

Tϕ = {x ∈ M : x is analytic with respect to σ and ∀z ∈ C : σz(x) ∈ nϕ ∩ n∗ϕ}.

Let (H, π, Λ) be the GNS-representation of M with respect to ϕ. Note that M can
be considered as acting on H and therefore we omit the map π if possible. For
x∈mϕ and for a∈M analytic with respect to σ, we have ax∈mϕ and xa∈mϕ and

ϕ(ax) = ϕ(xσ−ia).

For a subset A ⊆ M, we denote A+ for the positive elements in A. Simi-
larly, M+

∗ denotes the space of positive normal functionals on M. Let ω ∈ M∗.
We donote ω ∈ M∗ for the functional defined by ω(x) = ω(x∗), x ∈ M. For
y ∈ M, we denote yω and ωy for the normal functionals defined respectively
by (yω)(x) = ω(xy) and (ωy)(x) = ω(yx) with x ∈ M. Inner products on a
Hilbert spaces are linear in the first entry and anti-linear in the second. Suppose
that M acts on a Hilbert space H and let ξ, η ∈ H. We denote ωξ,η for the normal
functional defined by ωξ,η(x) = 〈xξ, η〉. The character ι will always stand for the
identity homomorphism. If x is a preclosed operator, we use [x] for its closure.
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2. NON-COMMUTATIVE Lp-SPACES

To any von Neumann algebra M, there is a way to associate a non-commuta-
tive Lp-space to it. In fact there are many ways to do this. If M is semi-finite, i.e.
it admits a normal, semi-finite, faithful trace τ, then one can define Lp(M) as
the space of closed, densely defined operators x affiliated with M for which if
|x| =

∫
[0,∞)

λdEλ is the spectral decomposition of |x|, then

‖x‖p :=
(

sup
n∈N

τ
( ∫
[0,n]

λpdEλ

))1/p
< ∞.

If M is abelian, we recover the classical spaces Lp(X) for a certain measure space X.
Since the introduction of Tomita–Takesaki theory, Lp-spaces have been de-

fined for von Neumann algebras that are not semi-finite. Definitions of non-
commutative Lp-spaces have been given by Haagerup [7], [16], Hilsum [8], Terp
[17] and Izumi [9]. The definitions can be shown te be equivalent. That is, the Lp-
spaces obtained by the various definitions are isometrically isomorphic Banach
spaces. For a good introduction to this theory, we refer to [16], where a compari-
son of Haagerup’s definition and Hilsum’s definition is made.

Here we mainly use Izumi’s definition [9] which is abstract in nature. He de-
fines Lp-spaces associated with M by means of the complex interpolation method;
a method that admits a property that is reminiscent of the Riesz–Thorin theorem,
see the introduction. It is for this reason that Izumi’s definition is the most suit-
able context to work in.

A drawback of this context is that the more concrete approach of the other
definitions is absent. Whenever it feels appropriate we comment on this.

2.1. THE COMPLEX INTERPOLATION METHOD. We recall the complex interpola-
tion method as explained in Section 4.1 of [1].

DEFINITION 2.1. Let E0, E1 be Banach spaces. The couple (E0, E1) is called
a compatible couple (of Banach spaces) if E0 and E1 are continuously embedded into
a Banach space E.

Note that we suppress E in the notation (E0, E1). We can consider the spaces
E0 ∩ E1 and E0 + E1 interpreted within E and equip them with norms

‖x‖E0∩E1 = max{‖x‖E0 , ‖x‖E1}, x ∈ E0 ∩ E1,
‖x‖E0+E1 = inf{‖x0‖E0 + ‖x1‖E1 : x0 + x1 = x}, x ∈ E0 + E1,

which make them Banach spaces. In that case we can consider E0 and E1 as
subspaces of E0 + E1.

DEFINITION 2.2. A morphism between two compatible couples (E0, E1) and
(F0, F1) is a bounded map T : E0 + E1 → F0 + F1 such that for any j ∈ {0, 1},
T(Ej) ⊆ Fj and the restriction T : Ej → Fj is bounded.
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REMARK 2.3. Let (E0, E1) and (F0, F1) be compatible couples. If T0 : E0 →
F0, T1 : E1 → F1 are bounded maps such that T0 and T1 agree on E0 ∩ E1, then
we call T0 and T1 compatible morphisms. In this case, there is a unique bounded
map T : E0 + E1 → F0 + F1. This gives a way to find morphisms of compatible
couples.

Now we describe the complex interpolation method. Let (E0, E1) be a com-
patible couple. Let S = {z ∈ C : 0 6 Re(z) 6 1} and let S◦ denote its interior.
Let G(E0, E1) be the set of functions f : S → E0 + E1 such that:

(1) f is bounded and continuous on S and analytic on S◦.
(2) For t ∈ R, j ∈ {0, 1}, f (it + j) ∈ Ej and t 7→ f (it + j) is continuous and

bounded with respect to the norm on Ej.
(3) For j ∈ {0, 1}, ‖ f (it + j)‖Ej → 0 as t→ ∞.

Note that at this point our notation is different from [1] and [9], where G is
denoted by F , which we reserve for the Fourier transform. For f ∈ G(E0, E1), we
define a norm

||| f ||| = max{sup ‖ f (it)‖E0 , sup ‖ f (it + 1)‖E1}.

Let θ ∈ [0, 1]. We define (E0, E1)[θ] ⊆ E to be the space { f (θ) : f ∈ G(E0, E1)}
with norm

‖x‖[θ] = inf{||| f ||| : f (θ) = x, f ∈ G(E0, E1)}.

With this norm, (E0, E1)[θ] is a Banach space ([1], Theorem 4.1.2).

DEFINITION 2.4. The assignment from compatible couples of Banach spaces
to Banach spaces which is given by Cθ : (E0, E1) → (E0, E1)[θ] is called the com-
plex interpolation method (at parameter θ ∈ [0, 1]). (E0, E1)[θ] is called a complex
interpolation space.

The following Riesz–Thorin-like theorem plays a central role in the present
paper. It gives the functorial property of the complex interpolation method.

THEOREM 2.5 ([1], Theorem 4.1.2). Let θ ∈ [0, 1]. Let T be a morphism between
compatible couples (E0, E1) and (F0, F1). Then, it restricts to a bounded linear map
T : (E0, E1)[θ] → (F0, F1)[θ]. The norm is bounded by ‖T‖ 6 ‖T : E0 → F0‖1−θ‖T :
E1 → F1‖θ .

If we let Cθ of Definition 2.4 act on the morphisms T : (E0, E1) → (F0, F1)
of compatible couples by assigning its restriction T : (E0, E1)[θ] → (F0, F1)[θ] to it,
we see that Cθ is a functor.

REMARK 2.6. Using the notation of Remark 2.3, the compatible morphisms
T0, T1 give rise to a morphism Cθ(T) : (E0, E1)[θ] → (F0, F1)[θ] on the interpolation
spaces with norm ‖Cθ(T)‖ 6 ‖T0‖1−θ‖T1‖θ .

We will need the following useful fact, see Theorem 4.2.2 of [1].
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LEMMA 2.7. Let (E0, E1) be a compatible couple and θ ∈ [0, 1]. E0 ∩ E1 is dense
in (E0, E1)[θ].

2.2. IZUMI’S Lp-SPACES. In [17] Terp shows that the Lp-spaces as introduced by
Hilsum can be obtained by applying the complex interpolation method to a spe-
cific compatible couple (M, M∗), see Theorem 36 of [17]. Izumi [9] realized that
there is more than one way to turn (M, M∗) into a compatible couple in order to
obtain the Lp-spaces through interpolation. His idea is to define non-commutative
Lp-spaces as complex interpolation spaces of certain compatible structures. It is
this definition which we recall here.

Here, we present the general picture. However, in the larger part of the
present paper, we only work with the complex interpolation parameters z =
−1/2 and z = 1/2 (we introduce the parameter in a minute). We will special-
ize the theory for these parameters in Sections 2.3 and 2.4 and introduce short
hand notation there. The more general theory is used in Section 7, where we
prove that there is in principle only one interpolation parameter that allows an
Lp-Fourier transform, namely z = −1/2.

Fix a von Neumann algebra M with normal, semi-finite, faithful weight ϕ.
The following construction of Lp-spaces can be found in [9].

DEFINITION 2.8. For z ∈ C, we put

L(z)={x∈M : ∃ϕ
(z)
x ∈M∗ such that ∀a, b∈Tϕ : ϕ

(z)
x (a∗b)=〈xJ∇zΛ(a) : J∇−zΛ(b)〉}.

The number z ∈ C will be called the complex interpolation parameter.

REMARK 2.9. We will mainly be dealing with the cases z = −1/2 and z =
1/2. Note that if ϕ is a state, then for any x ∈ M, we see that for a, b ∈ Tϕ,

〈xJ∇−1/2Λ(a) : J∇1/2Λ(b)〉 = 〈xJ∇1/2Λ(σi(a)) : J∇1/2Λ(b)〉
= ϕ(bxσ−i(a∗)) = ϕ(a∗bx),

and hence L(−1/2) = M and ϕ
(−1/2)
x = xϕ. Similarly, L(1/2) = M and ϕ

(1/2)
x = ϕx.

The following proposition implies that there are plenty of elements con-
tained in L(z).

PROPOSITION 2.10 ([9], Propostion 2.3). T 2
ϕ = {ab : a, b ∈ Tϕ} is contained

in L(z).

We are now able to construct Izumi’s Lp-spaces using the complex interpo-
lation method. First, we define a compatible couple. For x ∈ L(z), we define a
norm:

‖x‖L(z)
= max{‖x‖, ‖ϕ

(z)
x ‖}.

We define norm-decreasing injections:

i∞
(z) : L(z) → M : x 7→ x; i1(z) : L(z) → M∗ : x 7→ ϕ

(z)
x .
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Using the duals of the maps, we obtain the following diagram. Note that (i∞
(−z))

∗ :
M∗ → L∗(−z) is restricted to M∗.

(2.1) M∗ � r

(i∞
(−z))

∗

$$IIIIIIIII

L(z)

- 


i1
(z)

;;wwwwwwwww

� q

i∞
(z) ##GGGGGGGGGG

� �
ip
(z) // Lp

(z)(M) � � // L∗(−z) .

M
, �

(i1
(−z))

∗

::uuuuuuuuuu

Now, Theorem 2.5 of [9] yields that the outer rectangle of (2.1) commutes. This
turns (M, M∗) into a compatible couple of Banach spaces.

DEFINITION 2.11. For p ∈ (1, ∞), we define Lp
(z)(M) to be the complex inter-

polation space (M, M∗)[1/p]. We set L1
(z)(M) = M∗ and L∞

(z)(M) = M .

By Lemma 2.7, L(z) can be embedded in Lp
(z)(M). This map is denoted by

ι
p
(z). Note that by definition of the complex interplation method Lp

(z)(M) is a linear
subspace of L∗(−z).

NOTATION 2.12. The map i∞
(z) : L(z) → M is basically the inclusion of a

subspace. Therefore, it is convenient to omit the map i∞
(z) in our notation if the

norms of the spaces do not play a role in the statement. Similarly, we do not
introduce notation for the inclusion of Lp

(z)(M) in L∗(−z), where p ∈ (1, ∞).

A priori one could think that Lp
(z)(M) and Lp

(z′)(M) with z 6= z′, are different
as Banach spaces. However, Izumi proves that they are isometrically isomorphic.
Terp [17] considers the case z = 0. The main result of [17] is that Lp

(0)(M) is
isometrically isomorphic to the Lp-spaces by Hilsum [8]. We will come back to
this in Section 2.4.

THEOREM 2.13 ([9], Theorem 3.8). For z, z′ ∈ C, there is an isometric isomor-
phism

Up,(z′ ,z) : Lp
(z)(M)→ Lp

(z′)(M), p ∈ (1, ∞),

such that for a ∈ T 2
ϕ ,

(2.2) Up,(z′ ,z)(i
p
(z)(a)) = ip

(z′)(σi(r′−r)/p−(s′−s)(a)),

where z = r + is and z′ = r′ + is′, r, r′, s, s′ ∈ R.

We emphasize, that although the Lp-spaces appearing in (2.1) are isomor-
phic for different complex interpolation parameters, the intersections defined by
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this figure may be different. In any case, by Corollary 2.13 of [9],

(2.3) (i1(−z))
∗(L(z)) = (i1(−z))

∗(M) ∩ (i∞
(−z))

∗(M∗),

i.e. if one consideres L(z), M, M∗ as subspaces of L∗(−z), then L(z) = M ∩M∗.

2.3. SPECIALIZATIONS FOR THE COMPLEX INTERPOLATION PARAMETERS. In the
present paper we will mainly work with the parameter z = −1/2. In order to
study these spaces also the parameter z = 1/2 will play a role. In this section, we
specialize the theory for these parameters. The following proposition shows that
L(−1/2) and L(1/2) can be described by a condition that is in generally more easy
to check. If ϕ is a state it reduces to Remark 2.9.

PROPOSITION 2.14. We have the following alternative descriptions:
(i) Let L = {x ∈ nϕ : ∃ x ϕ ∈ M∗ such that ∀y ∈ nϕ : x ϕ(y∗) = ϕ(y∗x)}. Then,

L = L(−1/2).
(ii) Let R = {x ∈ n∗ϕ : ∃ϕx ∈ M∗ such that ∀y ∈ nϕ : ϕx(y) = ϕ(xy)}. Then,

R = L(1/2).

Proof. We only give the proof of (i), since (ii) can be proved similarly. We
first prove ⊆. For x ∈ L, a, b ∈ Tϕ,

x ϕ(a∗b) = ϕ(a∗bx) = ϕ(bxσ−i(a∗)) = 〈xΛ(σ−i(a∗)), Λ(b∗)〉

= 〈x∇J∇1/2Λ(a), J∇1/2Λ(b)〉 = 〈xJ∇−1/2Λ(a), J∇1/2Λ(b)〉.

Hence x ∈ L(−1/2) and x ϕ = ϕ
(−1/2)
x .

To prove ⊇, we first prove that MT 2
ϕ ⊆ L(−1/2). Indeed, let x ∈ M and

let c, d ∈ Tϕ. The functional M 3 y 7→ ϕ(σi(d)yxc) is normal. Furthermore, for
a, b ∈ Tϕ,

〈xcdJ∇−1/2Λ(a), J∇1/2Λ(b)〉 = 〈Λ(xcdσ−i(a∗)), Λ(b∗)〉
= ϕ(bxcdσ−i(a∗)) = ϕ(σi(d)a∗bxc).

Hence, xcd ∈ L(−1/2).
Next, we prove that L(−1/2) ⊆ nϕ. Take x ∈ L(−1/2) and let (ej)j∈J be a

bounded net in Tϕ such that σi(ej) is bounded and such that ej → 1 σ-weakly, see
Lemma 9 of [17]. Then, xej → x σ-weakly. Furthermore,

(2.4) ‖Λ(xej)‖2 = ϕ(e∗j x∗xej) = ϕ
(−1/2)
xejσ−i(e∗j )

(x∗) 6 ‖ϕ
(−1/2)
xejσ−i(e∗j )

‖‖x‖,

where the second equality is due to the previous paragraph. By Proposition 2.6
of [9],

(2.5) ϕ
(−1/2)
xejσ−i(e∗j )

= ϕ
(−1/2)
x σi(ej)e∗j ,

where for ω ∈ M∗, y ∈ M, ωy is the normal functional defined by (ωy)(a) =
ω(ya), a ∈ M. From (2.4) and (2.5) it follows that (Λ(xej))j∈J is a bounded net.
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Furthermore, for a, b ∈ Tϕ,

〈Λ(xej), Λ(ab)〉 = ϕ(b∗a∗xej) = ϕ(a∗xejσ−i(b∗))→ ϕ(a∗xσ−i(b∗)).

Since (Λ(xej))j∈J is bounded, this proves that (Λ(xej))j∈J is weakly convergent.
Since Λ is σ-weak/weak closed, this implies that x∈Dom(Λ)=nϕ. So L(−1/2)⊆nϕ.

To finish the proof, let again x ∈ L(−1/2) and let a, b ∈ Tϕ. We prove that

ϕ
(−1/2)
x ((ab)∗) = 〈Λ(x), Λ(ab)〉. The proposition then follows since by Lem-

ma 8.2, T 2
ϕ is a σ-weak/weak-core for Λ. The proposition follows from:

〈Λ(x), Λ(ab)〉 = ϕ(b∗a∗x) = ϕ(a∗xσ−i(b∗))

= 〈xJ∇−1/2Λ(b), J∇1/2Λ(a∗)〉 = ϕ
(−1/2)
x (b∗a∗).

In particular, it follows from Proposition 2.14 that for y ∈ nϕ,

(2.6) x ϕ(y∗) = ϕ(y∗x), x ∈ L; ϕx(y) = ϕ(xy), x ∈ R.

We emphasize that one has to be careful that (2.6) does not make sense for every
x, y ∈ M. Also, (2.6) justifies why (2.1) is also called the left injection for z = −1/2
and the right injection for z = 1/2.

Part of the next corollary is already proved in [9]. Using the alternative
descriptions of Proposition 2.14, it is easy to prove the remaining statements.

COROLLARY 2.15. We have inclusions MT 2
ϕ ⊆ L, T 2

ϕ M ⊆ R, T 2
ϕ ⊆ L ∩ R,

LTϕ ⊆ L, TϕR ⊆ R, ML ⊆ L and RM ⊆ R. Moreover, R = {x∗ : x ∈ L} and for
x ∈ L, ϕx∗ = x ϕ.

Proof. The first inclusion has already been proved in the proof of Proposi-
tion 2.14. Here we have proved that for x ∈ M, a, b ∈ Tϕ,

xab ϕ(z) = ϕ(σi(b) z xa), z ∈ M.

Similarly, one can prove that for x, z ∈ M, a, b ∈ Tϕ, yl ∈ L, yr ∈ R,

ϕabx(z) = ϕ(bx z σ−i(a)); ϕab(z) = ϕ(b z σ−i(a)); ab ϕ(z) = ϕ(σi(b) z a);

yl a ϕ(z) =yl ϕ(σi(a)z); ϕayr (z) = ϕ
(1/2)
yr (zσ−i(a)); xyl ϕ(z) =yl ϕ(zx);

ϕyr x(z) = ϕyr (xz); ϕx∗ = x ϕ.

Since we are mainly dealing with complex interpolation parameter z =
−1/2 and z = 1/2, it is more convenient to adapt our notation.

NOTATION 2.16. We use the following short hand notations. For p ∈ [1, ∞],

Lp(M)left = Lp
(−1/2)(M), L = L(−1/2), lp = ip

(−1/2), x ϕ = ϕ
(−1/2)
x for x ∈ L,

Lp(M)right = Lp
(1/2)(M), R = L(1/2), rp = ip

(1/2), ϕx = ϕ
(1/2)
x for x ∈ R.

Recall that by definition M∗ = L1(M)left and M = L∞(M)left. From now on, we
consider M∗ and M as subspaces of R∗ by means of the respective maps r∗∞ and
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r∗1 and it is convenient to omit these maps in the notation. So the identifications
of M∗ and M in R∗ are given by the pairings:

〈ω, y〉R∗ ,R = ω(y), ω ∈ M∗, y ∈ R,(2.7)

〈x, y〉R∗ ,R = ϕy(x), x ∈ M, y ∈ R.(2.8)

The norm on L will be denoted by ‖ · ‖L.

2.4. COMPARISON WITH HILSUM’S Lp-SPACES. Here, we recall the definition of
non-commutative Lp-spaces given in [8], see also [17]. We need these spaces for
two reasons.

First of all, many of the objects we introduce are constructed by means of
Theorem 2.5. For that reason the structures are abstract in nature. The advantage
of the Hilsum approach is that it is much more concrete. Hence, also the objects
defined in Section 5 have a more concrete meaning when they are considered in
the Hilsum setting.

Secondly, a non-commutative L2-space associated with a von Neumann al-
gebra M with weight ϕ can be identified with the GNS-space H of the weight.
In Theorem 23 of [17] this identification is given for Hilsum’s definition. In [9],
Izumi does not explicitly keep track of an isomorphism between L2(M)left with
H. Here we make this isomorphism explicit. This is useful for the Lp-Fourier
transform. In particular, Corollary 5.5 relies heavily on this identification.

We refer to the original paper [8] for Hilsum’s Lp-spaces. The following is
also nicely summarized in Sections III and IV of [16]. Fix a normal, semi-finite,
faithful weight φ on the commutant M′. Let σφ be its modular automorphism
group.

DEFINITION 2.17. A closed, densely defined operator x on H is called γ-
homogeneous, with γ ∈ R if the following skew commutation relation holds

ax ⊆ xσ
φ
iγ(a), for all a ∈ M′ analytic with respect to σφ.

The following theorem requires the spatial derivative [2], [15]. We will not
recall this construction, but rather cite its properties. For a good introduction,
we refer to Section III of [17]. The spatial derivative construction gives a passage
between M∗ and the (−1)-homogeneous operators. The following theorem can
be found under the given references in [16]. It can be derived from Theorem 13
of [2].

THEOREM 2.18 ([16], Theorem 29, Definition 33 and Corollary 34). Let x be a
closed, densely defined operator with polar decomposition x = u|x|. Let p ∈ [1, ∞]. The
following are equivalent:

(i) x is (−1/p)-homogeneous;
(ii) u ∈ M and |x|p is (−1)-homogeneous;

(iii) u ∈ M and there is a normal, semi-finite weight ψ on M such that |x|p equals the
spatial derivative dψ/dφ.
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DEFINITION 2.19. Let p ∈ [1, ∞). The Hilsum Lp-space Lp(φ) is defined as
the space of closed, densely defined operators x on the GNS-space H of ϕ such
that if x = u|x| is the polar decomposition, then |x|p is the spatial derivative of
a positive ω ∈ M∗ and u ∈ M. It carries the norm ‖x‖p = (ω(1))1/p. We set
L∞(M) = M.

In particular, every operator in Lp(φ) is closed, densely defined and (−1/p)-
homogeneous. This includes p = ∞. By Theorem 2.18, the spatial derivative
gives an isometric isomorphism between M∗ and L1(φ).

We introduce notation for the distinguished spatial derivative

d =
dϕ

dφ
.

d is a strictly positive, self-adjoint operator acting on the GNS-space H. We need
the fact that it implements the modular automorphism group of ϕ and φ, i.e.

σt(x) = ditxd−it, x ∈ M; σ
φ
t (x) = d−itydit, y ∈ M′.

Using this, one can prove that d is (−1)-homogeneous, see Lemma 22 of [17]. The
operator d forms a handy tool to find elements of Lp(φ).

LEMMA 2.20 ([17], Theorem 26). Let p ∈ [2, ∞] and let x ∈ nϕ. Then, xd1/p is
preclosed and its closure [xd1/p] is in Lp(φ). Moreover, there is an isometric isomorphism
P : H → L2(φ) given by [xd1/2] 7→ Λ(x).

We use this result to prove the following.

PROPOSITION 2.21. Let p ∈ [1, ∞].
(i) Let a, b ∈ Tϕ. Then, abd1/p is preclosed and its closure [abd1/p] is in Lp(φ).

(ii) There is an isometric isomorphism Φp : Lp(φ)→ Lp(M)left such that

Φp : [abd1/p] 7→ lp(ab), a, b ∈ Tϕ.

(iii) There is a unitary map Ul : L2(M)left → H determined by

Ul : l2(a) 7→ Λ(a), a ∈ T 2
ϕ .

(iv) More general, there is a unitary map U(z) : L2
(z)(M)→ H determined by

U(z) : i2(z)(a) 7→ Λ(σ−i(z/2+1/4)(a)), a ∈ T 2
ϕ .

Proof. (i) First note that using Lemma 22 of [17] for the first inclusion, Lem-
ma 2.20 for the third and Theorem 4 (3) of [8] for the last,

abd1/p ⊆ d2/pσ2i/p(ab)d2/p

⊆ d2/pσ2i/p(a) · [σ2i/p(b)d2/p] ∈ Lp/2(φ) · Lp/2(φ) ⊆ Lp(φ).

Hence,

(2.9) (abd1/p)∗ ⊇ (d2/pσ2i/p(a) · [σ2i/p(b)d2/p])∗ ∈ Lp(φ).
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So that (abd1/p)∗ is densely defined. Hence abd1/p is preclosed and by the proof
of Theorem 4 (1) of [8], (abd1/p)∗ = (d2/pσ2i/p(a) · [σ2i/p(b)d2/p])∗, hence [abd1/p]

= d2/pσ2i/p(a) · [σ2i/p(b)d2/p].
(ii) It is argued in the remarks following Proposition 2.4 of [9] that (2.1)

for z = 0 equals the compatible couple as considered in [17]. First note that by
equation (50) of [17],

[abd1/p] = d2/pσ2i/p(a) · [σ2i/p(b)d2/p] = µp(σ2i/p(ab)),

where µp is the embedding of L(0) in Lp(φ), see Theorem 27 of [17]. The main re-
sult of [17] is that Lp(φ) is isometrically isomorphic to Lp

(0)(M). The isomorphism

is given by the map νp : Lp(φ) → Lp
(0)(M) of Theorem 30 in [17]. Moreover, we

see that νpµp = (i1(0))
∗i∞
(0) by commutativity of equation (55) of [17]. In turn we

have (i1(0))
∗i∞
(0) = ip

(0) by commutativity of (2.1). Hence, we have an isometric

isomorphism Lp(φ)→ Lp
(0)(M) for which

[abd1/p] 7→ νp([abd1/p]) = νpµp(σ2i/p(ab)) = ip
(0)(σ2i/p(ab)).

We conclude the proof by applying the isometric isomorphism U(−1/2,0) of Theo-
rem 2.13, so that we get an isometric isomorphism

Φp : Lp(φ)→ Lp
(−1/2)(M) = Lp(M)left,

such that

Φp : [abd1/p] 7→ U(−1/2,0)i
p
(0)(σ2i/p(ab)) = ip

(−1/2)(ab) = lp(ab), a, b ∈ Tϕ.

(iii) This follows from (ii) by applying Lemma 2.20 and the fact that Λ(T 2
ϕ )

is dense inH. So Ul = Φ−1
p P−1.

(iv) U(z) = UlU2,(−1/2,z).

Recall that L2(M)left is by definition a subspace of R∗. Therefore, we can
pair elements of L2(M)left with elements of R.

PROPOSITION 2.22. For ξ ∈ H, y ∈ R,

〈U∗l ξ, y〉R∗ ,R = 〈ξ, Λ(y∗)〉.
Proof. First assume that ξ = Λ(x) = Ul l2(x), x ∈ L. Using the commutativ-

ity of (2.1) in the second equality,

〈U∗l ξ, y〉R∗ ,R = 〈l2(x), y〉R∗ ,R = 〈l1(x), y〉R∗ ,R
(2.7)
= (x ϕ)(y)

(2.6)
= ϕ(yx) = 〈Λ(x), Λ(y∗)〉 = 〈ξ, Λ(y∗)〉.

The proposition follows by the fact that Λ(T 2
ϕ ) ⊆ Λ(L) is dense inH.
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NOTATION 2.23. From now on, we will identify H and L2(M)left and con-
sider it as a subspace of R∗. The identification is given via the unitary Ul . Under
this identification the map l2 becomes the GNS-map Λ, see Proposition 2.21. By
Proposition 2.22 we see that H is identified as a subspace of R∗ by means of the
pairing

(2.10) 〈ξ, y〉R∗ ,R = 〈ξ, Λ(y∗)〉 ξ ∈ H, y ∈ R.

3. INTERSECTIONS OF Lp-SPACES

As indicated in the Section 2, the intersections of the various Lp-spaces de-
pend on the interpolation parameter z of Definition 2.8. Here we study the inter-
sections of L1(M)left and L2(M)left, as well as the intersections of L2(M)left and
L∞(M)left. The spaces turn out to be natural and well-known in the theory of
locally compact quantum groups. We use the intersections in order to apply the
reiteration theorem, see [1].

NOTATION 3.1. In this section, any interpolation space should be under-
stood with respect to the diagram in (2.1) for the parameter z = −1/2. Recall that
we introduced short hand notation for this diagram in Notations 2.16 and 2.23.
Moreover, we identified M∗,H and M as subspaces of R∗ by means of the pair-
ings (2.7), (2.10) and (2.8). Similarly, any intersection of two such spaces should
be understood as an intersection within R∗. The notation can be summarized by
means of the non-dotted arrows in the following diagram. The dotted part of the
diagram is the main topic of the present section.

M∗
(2.7)

��

I

66lllllllll
ξ

((RRRRRRRRR //_______ Lp(M)left

))RRRRRRRRRRRRRRR

L
lp

99

l1
..

lq

%%

l∞
00

Λ //

l1

??�
�

�
�

��>
>

>
> H

(2.10) // R∗;

nϕ

Λ

66lllllllll

))RRRRRRRRR //_______ Lq(M)left

66lllllllllllllll

M
(2.8)

LL

3.1. THE INTERSECTION OF M∗ AND H. The following set defines the intersec-
tion of M∗ andH.
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DEFINITION 3.2. We set:

I = {ω ∈ M∗ : Λ(x) 7→ ω(x∗), x ∈ nϕ is bounded}.
By the Riesz theorem, for every ω ∈ I , there exists a ξ(ω) ∈ H such that
〈ξ(ω), Λ(x)〉 = ω(x∗).

THEOREM 3.3. We have I = H ∩M∗, where the equality should be interpreted
within R∗, see Notation 3.1. Within R∗, ω ∈ I equals ξ(ω) ∈ H.

Proof. We first prove ⊇. Let ξ ∈ H and ω ∈ M∗ be such that ξ = ω in R∗.
For y ∈ R,

ω(y)
(2.7)
= 〈ω, y〉R∗ ,R = 〈ξ, y〉R∗ ,R

(2.10)
= 〈ξ, Λ(y∗)〉.

L contains T 2
ϕ . Moreover, T 2

ϕ is a σ-strong∗/norm core for Λ, see Lemma 8.2.
Hence, it follows that ω ∈ I .

To prove ⊆, let ω ∈ I . For y ∈ R,

〈ξ(ω), y〉R∗ ,R
(2.10)
= 〈ξ(ω), Λ(y∗)〉 = ω(y)

(2.7)
= 〈ω, y〉R∗ ,R.

Hence, ξ(ω) = ω in R∗.

Note that (M∗,H) forms a compatible couple. As explained in Section 2.1,
the intersection of these two spaces carries a natural norm for which it is a Banach
space. So, for ω ∈ I we define

‖ω‖I = max{‖ω‖, ‖ξ(ω)‖}.

PROPOSITION 3.4. The map k : L → I : x 7→x ϕ is injective, norm-decreasing
and has dense range. In fact, k(T 2

ϕ ) is ‖ · ‖I -dense in I .

Proof. Suppose that x ∈ L and x ϕ = 0, then 0 = (x ϕ)(x∗) = ϕ(x∗x). So
x = 0 and hence k is injective. For x ∈ L, ‖x ϕ‖ 6 ‖x‖L and

‖ξ(x ϕ)‖ = ‖Λ(x)‖ = ‖x ϕ(x∗)‖1/2 6 ‖x ϕ‖1/2‖x∗‖1/2 6 ‖x‖L,

so that k is norm-decreasing. Now we prove that the range of k is dense in I . We
identify I with the subspace {(ω, ξ(ω)) : ω ∈ I} ⊆ M∗ ×H. We equip M∗ ×H
with the norm ‖(ω, ξ)‖max = max{‖ω‖, ‖ξ‖}. The norm coincides with ‖ · ‖I
on I . The dual of (M∗ ×H, ‖ · ‖max) can be identified with (M ×H∗, ‖ · ‖sum),
where ‖(x, ξ)‖sum = ‖x‖+ ‖ξ‖. Let N ⊆ M×H∗ be the space of all (y, η) such
that 〈(ω, ξ(ω)), (y, η)〉M∗×H,M×H∗ = 0 for all ω ∈ I . The dual of I is given by
(M×H)/N equipped with the quotient norm.

Now, let (y, η) ∈ M×H be such that

〈(x ϕ, Λ(x)), (y, η)〉M∗×H,M×H∗ = (x ϕ)(y) + 〈Λ(x), η〉 = 0

for all x ∈ T 2
ϕ . The proof is finished if we can show that (y, η) ∈ N. In order to do

this, let (ej)j∈J be a net as in Lemma 8.1. Put aj = σ−i/2(ej). By the assumptions
on (y, η), for x ∈ Tϕ,

(3.1) (xaj ϕ)(y) = −〈Λ(xaj), η〉.
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For the left hand side we find by Corollary 2.15,

(3.2) (xaj ϕ)(y) = ϕ(σi(aj)yx) = 〈Λ(x), Λ(y∗σi(aj)
∗)〉,

where the first equality follows from Proposition 2.3 of [9]. For the right hand
side of (3.1) we find

(3.3) 〈Λ(xaj), η〉 = 〈Jσ−i/2(a∗j )JΛ(x), η〉 = 〈Λ(x), Jσi/2(aj)Jη〉.

Hence (3.1) together with (3.2) and (3.3) yield

Λ(y∗σi(aj)
∗) = −Jσi/2(aj)Jη.

Hence, since σi/2(aj) = ej → 1 strongly, Λ(y∗σi(aj)
∗)→ −η weakly. For ω ∈ I ,

〈ξ(ω), η〉 = − lim
j∈J
〈ξ(ω), Λ(y∗σi(aj)

∗)〉

= − lim
j∈J

ω(σi(aj)y) = − lim
j∈J

ω(σi/2(ej)y) = −ω(y).

Thus (y, η) ∈ N.

3.2. THE INTERSECTION OF H AND M. It turns out that nϕ is the intersection of
M andH.

THEOREM 3.5. We have nϕ = H ∩M, where the equality should be interpreted
within R∗, see Notation 3.1. Within R∗, x ∈ nϕ equals Λ(x) ∈ H. Moreover, let L be
the closure of l∞(L) in M. Then nϕ = H∩ L.

Proof. First we prove that nϕ = H∩M in R∗. For x ∈ nϕ, y ∈ R,

〈Λ(x), y〉R∗ ,R
(2.10)
= 〈Λ(x), Λ(y∗)〉 = ϕ(yx)

(2.6)
= ϕy(x)

(2.8)
= 〈x, y〉R∗ ,R,

so Λ(x) = x in R∗. Hence the inclusion ⊆ follows.
Now let x ∈ M, ξ ∈ H be such that x = ξ in R∗. For y ∈ R,

ϕy(x)
(2.8)
= 〈x, y〉R∗ ,R = 〈ξ, y〉R∗ ,R

(2.10)
= 〈ξ, Λ(y∗)〉.

For a ∈ T 2
ϕ , y ∈ nϕ, using Corollary 2.15 for the third, fourth and fifth equality,

〈Λ(xa), Λ(y)〉 = ϕ(y∗xa) =a ϕ(y∗x) = ϕσi(a)(y
∗x)

= ϕσi(a)y∗(x) = 〈ξ, Λ(yσi(a)∗)〉 = 〈Jσi/2(a)∗ Jξ, Λ(y)〉.

So for a ∈ T 2
ϕ , Λ(xa) = Jσi/2(a)∗ Jξ. Let (ej)j∈J be a net as in Lemma 8.1. Put aj =

e2
j . Then xaj → x σ-weakly. Furthermore, Jπ(σi/2(aj)

∗)Jξ → ξ weakly, hence
Λ(xaj) converges weakly. Since Λ is σ-weak/weak closed, x ∈ Dom(Λ) = nϕ

and ξ = Λ(x). This proves ⊇.
Recall the complex interpolation method from Definition 2.4. Recall that in

this section every interpolation space should be interpreted with respect to (2.1)
for parameter z=−1/2. Note that Theorem 4.2.2 of [1] gives the second equality in

(3.4) H = (M, M∗)[1/2] = (L, M∗)[1/2] ⊆ L + M∗.
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We now prove that

(3.5) M ∩ (L + M∗) = L.

Take any s ∈ M ∩ (L + M∗) ⊆ R∗. Since s ∈ L + M∗, we can choose represen-
tatives x ∈ L, ω ∈ M∗ such that s = x + ω in R∗. Since s ∈ M, we can find a
representative y ∈ M such that s = y in R∗. Then ω = y− x is both in M∗ and
M, and hence by (2.3) in M∗ ∩M = L. Hence we see that s = x + ω ∈ L + L = L.
This proves ⊆, the other inclusion is trivial.

Now, (3.4) and (3.5) imply:

H∩M = H∩M ∩ (L + M∗) = H∩ L.

Again, we introduce the norm on an intersection of a compatible couple as
in Section 2.1. For x ∈ nϕ, we put

‖x‖nϕ = max{‖x‖, ‖Λ(x)‖}.
Again, we can prove a density result similar to Propostion 3.4

PROPOSITION 3.6. The map k′ : L → nϕ : x 7→ x is injective, norm-decreasing
and has dense range.

Proof. The non-trivial part is that k′(L) is dense in nϕ with respect to ‖ · ‖nϕ .
To prove this, we identify nϕ with the subspace {(x, Λ(x)) : x ∈ nϕ} ⊆ M×H.
For (x, ξ) ∈ M ×H, we set ‖(x, ξ)‖max = max{‖x‖, ‖ξ‖}. So ‖ · ‖max coincides
with ‖ · ‖nϕ on nϕ. The dual of (M×H, ‖ · ‖max) is given by (M∗ ×H∗, ‖ · ‖sum),
where ‖(θ, ξ)‖sum = ‖θ‖+ ‖ξ‖.

Let (θ, ξ) ∈ M∗ ×H∗ be such that for all x ∈ L,

(3.6) θ(x) + 〈Λ(x), ξ〉 = 0.

We must prove that (3.6) holds for all x ∈ nϕ. The proof proceeds in several steps.
Claim 1. There exists an ω ∈ M∗ such that for x ∈ L ∩ R, ω(x) = θ(x).
Proof of the claim. From Corollary 2.15 it follows that

L ∩ R(= l∞(L) ∩ r∞(R))

is a C∗-algebra. Here and in the rest of this proof the closure has to be interpreted
within M. Let (uj)j∈J be an approximate unit for the C∗-algebra L ∩ R. We may
assume that uj ∈ (L ∩ R)+. Set ωj(x) = −〈xΛ(uj), ξ〉, x ∈ M. So ωj ∈ M∗.
Moreover, by (3.6) and Corollary 2.15,

ωj(x) = −〈xΛ(uj), ξ〉 = θ(xuj).

Let ρ be a representation of L ∩ R on a Hilbert space Hρ such that θ(x) =
〈ρ(x)ξ, η〉 for certain vectors ξ, η ∈ Hρ. Then ωj(x) = 〈ρ(x)ρ(uj)ξ, η〉. Since
ρ(uj) → 1 strongly, ‖ωj|L∩R − θ|L∩R‖ → 0. L ∩ R(⊇ T 2

ϕ ) is σ-weakly, hence
strongly dense in M so that by Kaplansky’s density theorem ‖ωj‖ = ‖ωj|L∩R‖.
Hence (ωj)j∈J is a Cauchy net in M∗. Let ω ∈ M∗ be its limit. This proves the
first claim.
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Claim 2. For x ∈ nϕ, we find ω(x) = −〈Λ(x), ξ〉.

Proof of the claim. Note that L ∩ R is a σ-weak/weak core for Λ. Indeed, T 2
ϕ

is contained in L ∩ R so that we can apply Lemma 8.2.
Now, if x ∈ L ∩ R, the claim follows by the first claim and the properties of

θ, i.e. ω(x) = θ(x) = −〈Λ(x), ξ〉. Let x ∈ nϕ and, by the previous paragraph,
let (xi)i∈I be a net in L ∩ R converging σ-weakly to x such that Λ(xi) → Λ(x)
weakly. Then, we arrive at the following equation:

(3.7) ω(x) = lim
i∈I

ω(xi) = − lim
i∈I
〈Λ(xi), ξ〉 = −〈Λ(x), ξ〉.

This proves the second claim.
Claim 3. L ∩ R = nϕ ∩ n∗ϕ = L ∩ R, where the closures are interpreted with

respect to the norm on M.

Proof of the claim. Note that by Proposition 2.14, L ∩ R ⊆ nϕ ∩ n∗ϕ. By Theo-
rem 3.5, we see that nϕ ⊆ L. Since R = {x∗ : x ∈ L}, see Corollary 2.15, we also
have n∗ϕ ⊆ R. Hence,

L ∩ R ⊆ nϕ ∩ n∗ϕ ⊆ L ∩ R (closures in M).

The inclusions are in fact equalities. Indeed, let x ∈ L ∩ R be positive. Let xn
and yn be sequences in L, respectively R, converging in norm to x. Then, by
Corollary 2.15, ynxn ∈ LR ⊆ L∩ R. ynxn is norm convergent to x2. So x2 ∈ L ∩ R,
hence x ∈ L ∩ R. From Corollary 2.15 it follows that L ∩ R and L ∩ R are C∗-
algebras. Hence, L ∩ R = nϕ ∩ n∗ϕ = L ∩ R.

Claim 4. Equation (3.6) holds for x ∈ nϕ ∩ n∗ϕ.

Proof of the claim. Let x ∈ nϕ ∩ n∗ϕ and by the third claim, let xn ∈ L ∩ R
be a sequence converging in norm to x. Then, using the first claim in the second
equality and the third claim in the fourth equality,

θ(x) = lim
n→∞

θ(xn) = lim
n→∞

ω(xn) = ω(x) = −〈Λ(x), ξ〉.

Hence (3.6) follows for x ∈ nϕ ∩ n∗ϕ.
We are coming to the proof of the proposition. Let x ∈ nϕ and let x = u|x|

be its polar decomposition. Since (3.6) holds for y ∈ L, we find for y ∈ L that
uy ∈ L by Corollary 2.15 and,

(3.8) (θu)(y) + 〈Λ(y), u∗ξ〉 = 0,

where we defined θu ∈ M by (θu)(a) = θ(ua), a ∈ M. If we apply the arguments
in the previous paragraphs to the pair (θu, u∗ξ), we see that actually (3.8) holds
for all y ∈ nϕ ∩ n∗ϕ. In particular, putting y = |x|, the required equation (3.6)
follows.



THE Lp -FOURIER TRANSFORM ON LOCALLY COMPACT QUANTUM GROUPS 179

3.3. REITERATION. Here we apply the reiteration theorem, see Theorems 4.6.1 of
[1], for the complex interpolation method to obtain Lp(M)left, p ∈ (1, 2] as an in-
terpolation space ofH and M∗. Similarly, Lp(M)left, p ∈ [2, ∞) as an interpolation
space ofH and M. Recall that in this section every intersection and interpolation
is understood with respect to (2.1) for the parameter z = −1/2.

THEOREM 3.7. We have the following interpolation properties:
(i) For p ∈ (1, 2], (H, M∗)[(2/p)−1] = Lp(M)left.

(ii) For q ∈ [2, ∞), (H, M)[1−(2/q)] = (M,H)[2/q] = Lq(M)left.

Proof. (i) Recall that L = l∞(L) denotes the closure of L in M. Recall from
(2.3) that M∗ ∩M = L. By Theorem 4.2.2 (b) of [1] we get the first equality of:

(3.9) (L, M∗)[1/2] = (M, M∗)[1/2] = L2(M)left ' H.

The latter isomorphism is the identification in Notation 2.23. On the other hand,
we find:

(3.10) (L, M∗)[1] = (M, M∗)[1].

Since l1(L) is dense in M∗, see Proposition 2.4 of [9], we find that (3.10) in turn
equals M∗, by Proposition 4.2.2 of [1].

Note that the following three density assumptions are satisfied:
(i) l1(L) is dense in M∗, see Proposition 2.4 of [9].

(ii) l∞(L) is dense in L (trivial).
(iii) l1(L) is ‖ · ‖I -dense in I by Proposition 3.4. Moreover I is the intersection

of M∗ andH in R∗, see Theorem 3.3.
Hence, we have checked the assumptions of the reiteration theorem Theo-

rems 4.6.1 of [1] which is used in the third equality,

Lp(M)left = (M, M∗)[1/p] = (L, M∗)[1/p]

= ((L, M∗)[1/2], (L, M∗)[1])[2/p)−1] = (H, M∗)[2/p)−1],

(here the second equality follows again by Theorem 4.2.2 of [1]).
(ii) Completely analogously, using Theorem 3.5 and Proposition 3.6, one

proves that
Lq(M)left = (H, M)[1−(2/q)],

which in turn equals (M,H)[2/q] by Theorem 4.2.1 of [1].

4. LOCALLY COMPACT QUANTUM GROUPS

We now recall the Kustermans–Vaes definition of a locally compact quan-
tum groups, see [13] and [14]. Since we will be dealing with non-commutative
Lp-spaces, we stick to the von Neumann algebra setting. For an introduction to
the theory of locally compact quantum groups we refer to [12] or [18], where the
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results below are summarized. See also [19] were a simple von Neumann alge-
braic approach to quantum groups is presented.

4.1. VON NEUMANN ALGEBRAIC QUANTUM GROUPS.

DEFINITION 4.1. A locally compact quantum group (M, ∆) consists of the
following data:

(i) A von Neumann algebra M.
(ii) A unital, normal ∗-homomorphism ∆ : M→ M⊗M satisfying the coasso-

ciativity relation (∆⊗ ι) ◦∆ = (ι⊗∆) ◦∆, where ι : M→ M is the identity.
(iii) Two normal, semi-finite, faithful weights ϕ, ψ on M so that

ϕ((ω⊗ ι)∆(x)) = ϕ(x)ω(1), ∀ ω ∈ M+
∗ , ∀ x ∈ m+

ϕ (left invariance);

ψ((ι⊗ω)∆(x)) = ψ(x)ω(1), ∀ ω ∈ M+
∗ , ∀ x ∈ m+

ψ (right invariance);

where ϕ is the left Haar weight and ψ the right Haar weight.

Note that we suppress the Haar weights in the notation. The triple (H, π, Λ)
denotes the GNS-construction with respect to the left Haar weight ϕ. We may
assume that M acts on the GNS-spaceH.

In order to reflect to the classical situation of a locally compact group, we
include the following example.

EXAMPLE 4.2. Let G be a locally compact group. Consider M = L∞(G) and
define the coproduct ∆G : L∞(G)→ L∞(G)⊗ L∞(G) ' L∞(G× G) by putting

(∆G( f ))(x, y) = f (xy),

where ϕ and ψ are given by integrating against the left and right Haar weight
respectively. In this way (L∞(G), ∆G) is a locally compact quantum group.

4.2. MULTIPLICATIVE UNITARY. There exists a unique unitary operator

W ∈ B(H⊗H),

defined by

W∗(Λ(a)⊗Λ(b)) = (Λ⊗Λ)(∆(b)(a⊗ 1)), a, b ∈ nϕ,

where W is known as the multiplicative unitary. It satisfies the pentagonal equa-
tion W12W13W23 = W23W12 in B(H ⊗ H ⊗ H). Furthermore, ∆(x) = W∗(1 ⊗
x)W, x ∈ M.

4.3. THE DUAL QUANTUM GROUP. In [13], [14], it is proved that there exists a

dual locally compact quantum group (M̂, ∆̂), so that ( ̂̂M, ̂̂∆) = (M, ∆). The dual
left and right Haar weight are denoted by ϕ̂ and ψ̂. Similarly, all other dual objects
will be denoted by a hat. By construction,

M̂ = {(ω⊗ ι)(W) : ω ∈ B(H)∗}
σ−strong∗

.
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Furthermore, Ŵ = ΣW∗Σ, where Σ denotes the flip on H⊗H. This implies that
W ∈ M⊗ M̂ and

M = {(ι⊗ω)(W) : ω ∈ B(H)∗}
σ−strong∗

.

The dual coproduct can be given by the dualized formula

∆̂(x) = Ŵ∗(1⊗ x)Ŵ, x ∈ M̂.

For ω ∈ M∗, we use the standard notation

λ(ω) = (ω⊗ ι)(W).

Finally, we introduce the dual left Haar weight ϕ̂. Recall from Definition 3.2,
that we let I be the set of ω ∈ M∗, such that Λ(x) 7→ ω(x∗), x ∈ nϕ extends to
a bounded functional on H. By the Riesz theorem, for every ω ∈ I , there is a
unique vector denoted by ξ(ω) ∈ H such that ω(x∗) = 〈Λ(x), ξ(ω)〉, x ∈ nϕ.

DEFINITION 4.3. The dual left Haar weight ϕ̂ is defined to be the unique
normal, semi-finite, faithful weight on M̂, with GNS-construction (H, ι, Λ̂) such
that λ(I) is a σ-strong∗/norm core for Λ̂ and Λ̂(λ(ω)) = ξ(ω), ω ∈ I .

Since we do not need it, we merely mention that there also exists a dual
right Haar weight. The following example gives the dual structure in the classical
situation.

EXAMPLE 4.4. Let G → B(L2(G)) : x 7→ λx be the left regular representa-
tion. For (M, ∆G) as in Example 4.2, one finds that H⊗H = L2(G)⊗ L2(G) '
L2(G× G) and

W f (x, y) = f (x, x−1y).

For f ∈ L1(G), let ω f be the functional on L∞(G) defined by

ω f (g) =
∫
G

f (x)g(x)dl x.

Then,

λ(ω f ) = (ω f ⊗ ι)(W) =
∫
G

f (x)λxdl x,

where the integral is in the σ-strong∗ topology. So λ is the left regular representa-
tion. We find that M̂ is given by the group von Neumann algebra M̂ = L(G).

For completeness, we mention that ∆̂(λx) = λx ⊗ λx. The dual left Haar
weight is given by the Plancherel weight [15]. For a continous, compactly sup-
ported function f on G, one finds ϕ̂(λ( f )) = f (e), where e is the identity of G.

If G is abelian, conjugation with the L2-Fourier transform shows that this
structure is isomorphic to (L∞(Ĝ), ∆Ĝ).
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5. FOURIER THEORY

In this section we define an Lp-Fourier transform. Our strategy is similar
to the one defining the classical Lp-Fourier transform on locally compact abelian
groups. We first define an L1- and L2-Fourier transform and show that they form
a compatible pair of morphisms, see Remark 2.3. Then we apply the complex
interpolation method to get a bounded Lp-Fourier transform for p ∈ [1, 2],

Fp : Lp(M)left → Lq(M)left,
1
p
+

1
q
= 1.

The crucial property of the complex interpolation method is the one given by
Theorem 2.5. The theorem gives the non-commutative analogue of the Riesz–
Thorin theorem as mentioned in the introduction. It is for this reason that we
have approached Lp-spaces from the perspective of interpolation spaces and that
we have used Izumi’s definition.

NOTATION 5.1. From now on, let (M, ∆) be a locally compact quantum
group with left Haar weight ϕ. (M̂, ∆̂) is the Pontrjagin dual. In this section
all Lp-spaces we encounter are “left” Lp-spaces which are defined with respect to
the (dual) left Haar weight. More precisely, we stick to Notation 3.1. We equip
the objects introduced in Section 2 with a hat if they are associated with the dual
quantum group. So we get L̂, R̂, Lp(M̂)left, . . . Recall that by construction Ĥ = H.

THEOREM 5.2 (L1- and L2-Fourier transform). We can define compatible Fou-
rier transforms in the following way:

(i) There exists a unique unitary map F2 : H → H, which is determined by:

(5.1) Λ(x) 7→ Λ̂(λ(x ϕ)), x ∈ L.

(ii) There exists a bounded map F1 : M∗ → M̂ : ω 7→ λ(ω). Moreover, ‖F1‖ = 1.
(iii) F2 : H → H and F1 : M∗ → M̂ are compatible in the sense of Remark 2.3, i.e.

the following diagram commutes:

(5.2) M∗
(2.7)

  BBBBBBBB
F1 +3 M̂

(2.8)

  BBBBBBBB

L
Λ //

l1
??~~~~~~~~
H

(2.10) //

F2

4<R∗ L̂

l̂∞
@@�������� Λ̂ // H

(2.10) // R̂∗ .

Proof. (i) By Proposition 3.3, we see that for x ∈ L, we have x ϕ ∈ I . By
definition of Λ̂, we have Λ̂(λ(x ϕ)) = ξ(x ϕ). Since by (2.6),

x ϕ(y∗) = ϕ(y∗x) = 〈Λ(x), Λ(y)〉, y ∈ nϕ,
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we see that by definition of ξ(x ϕ), we have ξ(x ϕ) = Λ(x). So (5.1) is the identity
map. Since T 2

ϕ ⊆ L and Λ(T 2
ϕ ) is dense in H, see the much stronger result of

Lemma 8.2, this determines a map onH.
(ii) The norm bound follows, since:

‖λ(ω)‖ = ‖(ω⊗ ι)(W)‖ 6 ‖(ω⊗ ι)‖‖W‖ 6 ‖ω‖.

(iii) For y ∈ R̂, x ∈ L, we find:

〈F2Λ(x), y〉R̂∗ ,R̂ = 〈Λ̂(λ(x ϕ)), y〉R̂∗ ,R̂
(2.10)
= 〈Λ̂(λ(x ϕ)), Λ̂(y∗)〉

= ϕ̂(yλ(x ϕ))
(2.6)
= ϕ̂y(λ(x ϕ))

(2.8)
= 〈λ(x ϕ), y〉R̂∗ ,R̂ = 〈F1(x ϕ), y〉R̂∗ ,R̂,

which proves the commutativity of the diagram.

REMARK 5.3. Kahng [10] defines an operator algebraic Fourier transform
and in principle the idea behind Theorem 5.2 can also be found here. However,
Definition 3 of [10] has to be given a more careful interpretation, since, if ϕ is not
a state, the expression (ϕ ⊗ ι)(W(a ⊗ 1)), a ∈ λ̂(Î), is in general undefined. In
case ϕ is a state, our definition of F2 equals Kahng’s by Remark 2.9.

We comment on the classical situation. As is shown in Example 4.4, the Fou-
rier transform is implicitly used to define the dual quantum group of a classical
abelian group. It is for this reason that the L2-Fourier transform F2 trivializes on
the level of GNS-spaces. We work this out in the next example.

EXAMPLE 5.4. Let G be a locally compact abelian group. For f ∈ L1(G), let
ω f be the normal functional on L∞(G) given by ω f (g) =

∫
G

f (x)g(x)dl x. Then,

λ((ω f )) = (ω f ⊗ ι)(W) =
∫
G

f (x)λxdl x ∈ L(G),

where x 7→ λx is the left-regular representation. On the other hand, using the
direct integral decomposition L∞(Ĝ) =

∫̂
G

⊕Cdπ, we find for (1.1),

f̂ =
∫
Ĝ

⊕ ∫
G

f (x)π(x)dx dπ =
∫
G

f (x)
∫
Ĝ

⊕
π(x)dπ dx.

The left regular representation x 7→ λx is unitarily equivalent to
∫̂
G

⊕
πdπ, where

the intertwiner is given by the (classical) L2-Fourier transform. Since the dual
quantum group associated to a classical group is given by conjugating L∞(Ĝ)
with the classical L2-Fourier transform, see Example 4.4, the identification of the
dual GNS-space L2(Ĝ) with the GNS-space L2(G) = H is given by applying
the classical (inverse) L2-Fourier transform. Hence, using these identifications,
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we see that the transform defined in (1.1) is the quantum group analogue of the
transform of Theorem 5.2.

Note that it is due to the identifications L2(M)left withH and L2(M̂)left with
Ĥ = H that the L2-Fourier transform becomes the identity map. If we had not
made these identifications the map would be less trivial. It is for this reason that
we have choosen to write unitary map in the first statement of Theorem 5.2 instead
of identity map.

Note that moreover, our transform coincides with the definition given in
Definition 1.3 of [20]. To comment on this, suppose that (M, ∆) is compact, i.e. ϕ
is a state. Let A ⊆ M be the Hopf algebra of the underlying algebraic quantum
group. We mention that A is the Hopf algebra of matrix coefficients of irreducible,
unitary corepresentations of M and refer to [18] for more explanation. Let Â be
its dual, which is the space of linear functionals on A of the form ϕ( · x), where
x ∈ A, ([20], Theorem 1.2). Van Daele defines the transform by

A→ Â : x 7→ ϕ( · x), x ∈ A.

On the other hand, by Remark 2.9, the normal functional x ϕ, with x ∈ L
is given by xϕ, since we assumed that ϕ is a state. Here xϕ ∈ M∗ is defined by
(xϕ)(y) = ϕ(yx), y ∈ M (we use this notation to distinguish it from the algebraic
map ϕ( · x)). So the Fourier transform is defined by:

x 7→ λ(xϕ), x ∈ M.

Since in the transition of compact algebraic quantum groups to compact von
Neumann algebraic quantum groups, the element ϕ( · x) ∈ Â corresponds to
λ(xϕ) ∈ M̂, this shows the correspondence. Here, we refer to [18] for compact al-
gebraic quantum groups and their relations to locally compact quantum groups.

By Pontrjagin duality, one also find dual Fourier transforms. At every point
in Theorem 5.2 where one of the objects L, R, M, ϕ, Λ, λ,F2 or F1 appears, one
should replace the object by the same object equipped with a hat and vise versa.
In that way, we get a dual L2-Fourier transform F̂2 : H → H, determined by

Λ̂(x) 7→ Λ(λ̂(x ϕ̂)), x ∈ L̂.

Since this map is on the GNS-level given by the identity, we automatically find
the following corollary.

COROLLARY 5.5. We have F−1
2 = F̂2.

In the following theorem, we apply the complex interpolation method to
define Lp-Fourier transforms.

THEOREM 5.6. Let p ∈ [1, 2] and set q by 1/p + 1/q = 1. There exists a unique
bounded linear map Fp : Lp(M)left → Lq(M̂)left such that Fp is compatible with F1



THE Lp -FOURIER TRANSFORM ON LOCALLY COMPACT QUANTUM GROUPS 185

and F2 in the sense of Remark 2.3, i.e. the following diagram commutes:

(5.3) M∗
(2.7)

##HHHHHHHHHH
F1 +3 M̂

(2.8)

$$IIIIIIIIII

L
Λ

##GGGGGGGGGGG

l1
;;wwwwwwwwww lp

// Lp(M)left
//

Fp
19

R∗ L̂

l̂1
;;xxxxxxxxxx l̂q

//

Λ̂ ##GGGGGGGGGG Lq(M̂)left
// R̂∗ .

H
(2.10)

::uuuuuuuuuu F2 +3 H
(2.10)

::uuuuuuuuuu

Moreover, ‖Fp‖ 6 1.

Proof. We can apply the complex interpolation method with parameter θ =

2/p− 1 = 1− 2/q to the pairs (H, M∗) and (H, M̂) which are compatible couples
as in (5.2). By Theorem 3.7 the corresponding interpolation spaces are respec-
tively Lp(M)left and Lq(M̂)left.

Since by Theorem 5.6, F1 : M∗ → M̂ and F2 : H → H are compatible, with
respect to diagram (5.2), we can use Remark 2.3 to obtain a map Fp : Lp(M)left →
Lq(M̂)left with the desired properties.

We conclude this section by giving the Fourier transform explicitly in terms
of Hilsum’s Lp-spaces. We omit the proof and merely give a few comments. The
result relies on some technicalities involving Hilsum’s Lp-spaces, which was not
our focus. The theorem is not needed for the subsequent sections.

THEOREM 5.7. Let p ∈ [1, 2] and set q by 1/p + 1/q = 1. Fix a normal, semi-
finite, faithful weight φ on M′ and φ̂ on M̂′. Set the corresponding spatial derivatives
d = dϕ/dφ and d̂ = dϕ̂/dφ̂. Then

Φ̂−1
q FpΦp : Lp(φ)→ Lq(φ̂) : [ad1/p] 7→ [λ(a ϕ)d̂1/q], a ∈ T 2

ϕ .

Note that in Theorem 5.7, we see that [ad1/p] is in Lp(φ) by Proposition 2.21.
Moreover, since a ϕ ∈ I , we see that λ(a ϕ) ∈ nϕ̂. Therefore, [λ(a ϕ)d̂ 1/q] is in
Lq(φ̂) by Lemma 2.20. The theorem follows by a careful analyis of (5.3) involving
Proposition 2.21. The proof then relies on the following fact. For x ∈ nϕ̂, one
can consider x as an element of Lq(M̂)left, see Section 3, and one can prove that
Φ̂qx = [xd̂ 1/q].

6. CONVOLUTION PRODUCT

We define convolutions of elements in L1(M)left = M∗ with elements in
Lp(M)left. We prove that the Fourier transform transfers the convolution product
into a product on the dual quantum group.

NOTATION 6.1. We keep the notation as in Section 5, c.f. Notation 5.1.
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Note that since Izumi’s Lp-spaces are defined by means of complex interpo-
lation, there is a priori no multiplication on these spaces. Therefore, we extend
the multiplication of M to the Lp-setting in the following proposition. This seems
to be the most natural definition of a multiplication in the Lp-setting. The proof
of the following proposition is completely similar to the one of Theorems 5.2(iii)
and 5.6.

PROPOSITION 6.2. We extend the product of M to the Lp-setting.
(i) Let x ∈ M. The maps

m∞
x : M→ M : y 7→ xy, m1

x : M∗ → M∗ : ω 7→ xω,

are compatible in the sense of Remark 2.3, i.e. the non-dotted arrows in the following
diagram commute:

(6.1) M∗
(2.7)

$$IIIIIIIIII
m1

x +3 M∗
(2.7)

$$IIIIIIIIII

L
l∞

##HHHHHHHHHH

l1
;;wwwwwwwwww lp

// Lp(M)left
//

mp
x

19TT VV WW YY ZZ [[ [[ \\ ]] ^̂ ^̂ __ `̀ `̀ aa bb cc cc dd ee gghhjj
R∗ L

l1
;;wwwwwwwwww lp

//

l∞
##HHHHHHHHHH Lp(M)left

// R∗.

M
(2.8)

::uuuuuuuuuu m∞
x +3 M

(2.8)

::uuuuuuuuuu

(ii) Let p ∈ (1, ∞). There is a unique bounded map mp
x : Lp(M)left → Lp(M)left

that is compatible with m∞
x and m1

x, i.e. the dotted arrow in (6.1) makes the diagram
commutative.

DEFINITION 6.3. Let x∈M and let y∈Lp(M)left. We will write xy for mp
x(y).

For ω1, ω2 ∈ M∗, we define the convolution product,

ω1 ∗ω2 = (ω1 ⊗ω2) ◦∆.

This product is well-known in the theory of l.c. quantum groups. We show that it
is possible to extend it to the Lp-setting for p ∈ [1, 2]. Moreover, the convolution
product is turned into the product of Definition 6.3 by the Fourier transfrom.

THEOREM 6.4. Let p ∈ [1, 2] and set q ∈ [2, ∞] by 1/p + 1/q = 1.
(i) Let x ∈ L and let ω ∈ M∗. Then,

ω ∗ (x ϕ) ∈ I and ξ(ω ∗ (x ϕ)) = λ(ω)Λ(x).

(ii) Let ω ∈ M∗. We denote ω∗2 for the bounded operator λ(ω) : H → H. Further-
more, we define ω∗1 : M∗ → M∗ : θ 7→ ω ∗ θ. Then, ω∗1 and ω∗2 are compatible, i.e.
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the non-dotted arrows in following diagram commute:

(6.2) M∗
(2.7)

$$IIIIIIIIII
ω∗1

+3 M∗
(2.7)

$$IIIIIIIIII

L
Λ

##HHHHHHHHHH

l1
;;wwwwwwwwww lp

// Lp(M)left
//

ω∗p
19TT VV WW YY ZZ [[ [[ \\ ]] ^̂ ^̂ __ `̀ `̀ aa bb cc cc dd ee gghhjj

R∗ L

l1
;;wwwwwwwwww lp

//

Λ
##HHHHHHHHHH Lp(M)left

// R∗.

H
(2.10)

::uuuuuuuuuu ω∗2
+3 H

(2.10)

::uuuuuuuuuu

(iii) There is a unique bounded operator ω∗p : Lp(M)left → Lp(M)left that is com-
patible with ω∗1 and ω∗2, i.e. (6.2) commutes.

(iv) For ω ∈ M∗, a ∈ Lp(M)left,

F1(ω)Fp(a) = Fp(ω ∗p a),

where the left hand side uses Definition 6.3 for Lq(M̂)left.

Proof. Let θ ∈ Î and put y = λ̂(θ) = (ι⊗ θ)(W∗). Now, (ii) follows from,

(ω ∗ (x ϕ))(y∗) = (ω⊗ (x ϕ))∆((ι⊗ θ)(W∗)∗) = (ω⊗ (x ϕ)⊗ θ)(W13W23)

= θ(( (ω⊗ ι)(W)((x ϕ)⊗ ι)(W) )∗)

= 〈Λ̂((ω⊗ ι)(W)((x ϕ)⊗ ι)(W)), ξ̂(θ)〉
= 〈(ω⊗ ι)(W)ξ(x ϕ), Λ(y)〉 = 〈λ(ω)Λ(x), Λ(y)〉,

and the fact that {Λ((ι⊗ θ)(W∗)) : θ ∈ Î} is dense inH.
The compatibility in (ii) follows directly from (i) using Theorem 3.3. (iii)

follows by applying Theorem 3.7 to (ii). (iv) For ω1, ω2 ∈ M∗, note that

F1(ω1 ∗ω2) = (ω1 ⊗ω2 ⊗ ι)(∆⊗ ι)(W)

= (ω1 ⊗ω2 ⊗ ι)W13W23 = (ω1 ⊗ ι)(W)(ω2 ⊗ ι)(W).

For x ∈ L, ω ∈ M∗,

Fp(ω ∗p lp(x)) = F1(ω ∗ (x ϕ)) = F1(ω)F1(x ϕ) = F1(ω)Fp(lp(x)).

Here, the first and last equality follows from commutativity of (5.3), (6.1) and
(6.2). Since the range of lp is dense in Lp(M)left, see Lemma 2.7, (iv) follows.

7. A DISTINGUISHED CHOICE FOR THE INTERPOLATION PARAMETER

Recall that in Sections 3 to 6 we considered the compatible couple (M, M∗)
for the interpolation parameter z = −1/2, see Definition 2.8. For this parameter
one is able to define an Lp-Fourier transform. In this section we show that the
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real part of the parameter is distinguished. More precisely, we investigate the
example of (M, ∆) = SUq(2) and show that given the fact that

(7.1) F1 : M∗ → M̂ : ω 7→ (ω⊗ ι)(W),

is the L1-Fourier transform the only interpolation parameters z that allows a pas-
sage to an Lp-Fourier transform are z = −1/2 + it, where t ∈ R.

The importance of this result is strengthened by the final remark of [4]. For
classical, locally compact groups there is an approximation property called Re-
iter’s property (Pp), where p ∈ [1, ∞). The definition assumes the existence of
a net of functions in Lp(G) satisfying the approximation axiom of Definition 1.2
of [4]. Daws and Runde show that (P1) and (P2) can be defined for quantum
groups as well and they use them to study (co-)amenability properties of quan-
tum groups.

In the final remark of [4], Daws and Runde mention that it remains to be
seen if there is a property (Pp) for any p ∈ [1, ∞). In particular, they mention that
it remains unclear how the Lp-space associated with a quantum group should
be turned into an L1-module. In [5] this is done using Izumi’s Lp-spaces for the
complex interpolation parameter z = −1/2, whereas in [3] a similar, but not
identical construction was used for the parameter z = 0. We believe that the
Fourier transform indicates that the most natural choice would be z = −1/2.

From now on we let (M, ∆) be the quantum group SUq(2), see [21], [22], [11].
See also [12] for a concise introduction. We recall its most important properties.

We set H = L2(N)⊗ L2(T). Let (ei)i∈N be the canonical orthonormal basis
of L2(N) and let ( fk)k∈Z be the canonical orthonormal basis for L2(Z) (so fk = ζk,
where ζ is the identity function on the complex unit circle T). Define operators
α, γ given by:

(7.2) α ei ⊗ fk =
√

1− q2iei−1 ⊗ fk, γ ei ⊗ fk = qiei ⊗ fk+1.

Then, M is the von Neumann algebra generated by α and γ, i.e.

M = B(L2(N))⊗ L∞(T) ' L∞(T, B(L2(N))).

For x = x(t) ∈ L∞(T, B(L2(N))), both the left and right Haar weight are given
by the state

ϕ(x) =
(1− q2)

2π

∫
T

∞

∑
i=0

q2i〈x(t)ei, ei〉dt.

Next, we need Peter–Weyl theory for SUq(2). Recall [11] that for every l ∈
(1/2)N, there exists a unique irreducible corepresentation t(l) ∈ M⊗M2l+1(C).
In fact, these are all the irreducible corepresentations of (M, ∆) and we have a
Peter–Weyl decomposition

W '
⊕

l∈(1/2)N
t(l) ⊗ 12l+1

(
∈ M⊗

⊕
l∈N

M2l+1(C)⊗M2l+1(C)
)

.
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So every corepresentation t(l) appears 2l + 1 times in the multiplicative unitary.
Let g(l)−l , g(l)−l+1, . . . , g(l)l denote the standard basis vectors of C2l+1. Let us

denote t(l)i,j for the matrix elements (ι⊗ω
g(l)j ,g(l)i

)(t(l)). For every l ∈ (1/2)N, there

exists a unique strictly positive operator Q(l) such that we have orthogonality
relations between matrix coefficients:

(7.3) ϕ((t(l)i,j )
∗t(l

′)
i′ ,j′) = δl,l′δj,j′〈Q(l)g(l)i , g(l)i′ 〉.

In fact, with respect to the basis g(l)i , the matrix Q(l) is diagonal. It follows that
M̂ ' ⊕

l∈(1/2)N
M2l+1(C). We put Q =

⊕
l∈(1/2)N

Q(l), so that Q is affiliated with M̂.

Moreover,

(7.4) σ̂t(x) = Q−itxQit, x ∈ M̂.

Finally, the following two matrix coefficients will play an essential role in
the proof of the main theorem of this section. It follows from Chapter 4 of [11]
that for n ∈ N,

t(n/2)
n/2,n/2 = αn, t(n/2)

−n/2,−n/2 = (α∗)n.

Recall the notational conventions from Section 2.

THEOREM 7.1. Consider (M, ∆) = SUq(2) and let z, z′ ∈ C. Let F1 : M∗ → M̂
be defined as in (7.1). Suppose that there is bounded map F2 : L2

(z)(M) → L2
(z′)(M̂)

making the following diagram commutative:

(7.5) M∗
(i∞
(−z))

∗

$$HHHHHHHHH
F1 +3 M̂

(î1
(−z′))

∗

$$JJJJJJJJJJ

L(z)
i2
(z) //

i1
(z)

;;wwwwwwwww
L2
(z)(M)

⊆ //

F2

08
L∗(−z) L̂(z′)

î∞
(z′)

;;vvvvvvvvvv î2
(z′) // L2

(z′)(M̂)
⊆ // L̂∗(−z′) .

Then, z = −1/2 + it for some t ∈ R.

Proof. We will prove that F2 is unbounded unless z = −1/2 + it for some
t ∈ R. We need three preparations.

Firstly, the modular automorphism group of ϕ is given by

σt(x) = (γγ∗)itx(γγ∗)−it.

Hence, it follows from (7.2) that α ∈ Tϕ and

σz(α) = q−2izα, σz(α
∗) = q2izα∗.
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Secondly, for a, b ∈ Tϕ, x ∈ T 2
ϕ , z ∈ C, we find

ϕ
(z)
x (a∗b) = 〈xJ∇zΛ(a), J∇−zΛ(b)〉

= 〈∇z+(1/2)x∇−z−(1/2)∇J∇1/2Λ(a), J∇1/2Λ(b)〉
= 〈σ−i(z+(1/2))(x)Λ(σ−i(a∗)), Λ(b∗)〉 = ϕ(bσ−i(z+(1/2))(x)σ−i(a∗))

= ϕ(a∗bσ−i(z+(1/2))(x)).

So we conclude that ϕ
(z)
x = σ−i(z+(1/2))(x)ϕ.

Thirdly, we identify M̂ with
⊕

l∈(1/2)N
M2l+1(C). Let e(n/2)

n/2,n/2 (and e(n/2)
−n/2,−n/2)

be the element of M̂, with matrix elements equal to zero everywhere, except for
the summand with index n/2, where it has a 1 on the upper left (respectively
lower right) corner. Using the Peter–Weyl orthogonality relations, we see that for
every n ∈ N:

(ϕ⊗ι)(W(αn⊗1))=
⊕

l∈(1/2)N
(ϕ⊗ι)(t(l)(t(n/2)∗

−n/2,−n/2⊗1))= ϕ((α∗)nαn)e(n/2)
−n/2,−n/2 ,

(ϕ⊗ι)(W((α∗)n⊗1))=
⊕
l∈N

(ϕ⊗ι)(t(l)(t(n/2)∗
n/2,n/2 ⊗ 1)) = ϕ(αn(α∗)n)e(n/2)

n/2,n/2 ,

ϕ((α∗)nαn) =
(1− q2)q2n

1− q2n+2 , ϕ(αn(α∗)n) =
(1− q2)

1− q2n+2 .(7.6)

By (7.4) and the fact that Q is diagonal we see that (7.6) are in T 2
ϕ̂ and

(7.7) σ̂z(e
(n/2)
−n/2,−n/2) = e(n/2)

−n/2,−n/2, σ̂z(e
(n/2)
n/2,n/2) = e(n/2)

n/2,n/2.

Now we prove that F2 must be unbounded by proving that the map

U(z′)F2U∗(z) : H → H,

is unbounded. Recall that U(z) was defined in Proposition 2.21. Then

F2U∗(z)Λ(σ−i(z+1/2)/2(α
n)) = F2i2(z)(α

n) = (î 1
(−z′))

∗F1i1(z)(α
n)

= (î 1
(−z′))

∗(ϕ
(z)
αn ⊗ ι)(W)

= (î 1
(−z′))

∗(ϕ⊗ ι)(W(σ−i(z+1/2)(α
n)⊗ 1))

= q−2n(z+1/2)(î 1
(−z′))

∗(ϕ⊗ ι)(W(αn ⊗ 1)).

Since (ϕ⊗ ι)(W(αn⊗ 1)) ∈ T 2
ϕ̂ , we see that by commutativity of the right triangle

in (7.5),

F2U∗(z)Λ(σ−i(z+1/2)/2(α
n)) = q−2n(z+1/2)(î 2

(z′))(ϕ⊗ ι)(W(αn ⊗ 1)).
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Hence,

U(z′)F2U∗(z)Λ(σ−i(z+1/2)/2(α
n)) = q−2n(z+1/2)Λ̂(σ̂−i(z′+1/2)/2(ϕ⊗ ι)(W(αn ⊗ 1)))

(7.6),(7.7)
= q−2n(z+1/2)Λ̂((ϕ⊗ ι)(W(αn ⊗ 1)))

= q−2n(z+1/2)ξ(αn ϕ) = q−2n(z+1/2)Λ(αn).

Hence,

U(z′)F2U∗(z) : Λ(αn) = qn(z+1/2)Λ(σ−i(z+1/2)/2(α
n)) 7→ q−n(z+1/2)Λ(αn),

which is unbounded in case Re(z) > −1/2.
By a similar computation, one finds that

U(z′)F2U∗(z) : Λ((α∗)n) 7→ qn(z+1/2)Λ((α∗)n).

In this case we see that U(z′)F2U∗(z) is unbounded for Re(z) < −1/2.

REMARK 7.2. By Pontrjagin duality also the dual statement holds. So in
order to get a proper Fourier theory on quantum groups with Fourier transforms
and inverse Fourier transforms, one is obliged to take the interpolation parameter
on both M and M̂ to be −1/2.

8. APPENDIX A

We have not found an explicit proof of the following lemmas’ in the litera-
ture. For completeness, we prove them here. Here M is a von Neumann algebra
with normal, semi-finite, faithful weight ϕ.

The following lemma is a variant of Lemma 9 of [17].

LEMMA 8.1. Let δ > 0. There exists a net (ej)j∈J in Tϕ such that:

(i) ‖σz(ej)‖ 6 eδIm(z)2
;

(ii) ej → 1 strongly; and
(iii) σi/2(ej)→ 1 σ-weakly.

Proof. Let ( f j)j∈J and (ej)j∈J be nets as in Lemma 9 of [17]. This lemma
proves already that (ej)j∈J satisfies (i) and (ii). Now, (iii) follows, since for ξ ∈ H,

〈σi/2(ej)ξ, ξ〉=ωξ,ξ

(√δ

π

∞∫
−∞

e−δ(t−(i/2))2
σt( f j)dt

)
=
(√δ

π

∞∫
−∞

e−δ(t−(i/2))2
(ωξ,ξ ◦ σt)dt

)
( f j)

→
(√ δ

π

∞∫
−∞

e−δ(t−(i/2))2
(ωξ,ξ ◦ σt)dt

)
(1)

=

√
δ

π

∞∫
−∞

e−δ(t−(i/2))2
dt〈ξ, ξ〉 = 〈ξ, ξ〉,
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where the last equality is obtained by means of the residue formula for meromor-
phic functions. So σ

ϕ
i/2(ek) is bounded and converges weakly, hence σ-weakly

to 1.

LEMMA 8.2. T 2
ϕ is a σ-strong∗/norm core for Λ.

Proof. It is enough to prove that T 2
ϕ is a σ-weak/weak core for Λ, since the σ-

weak/weak continuous functionals on the graph of Λ equal the σ-strong∗/norm
continuous functionals. It is not too hard to show that nϕ ∩ n∗ϕ is a σ-weak/weak
core for Λ. Now, let x ∈ nϕ ∩ n∗ϕ. Put

xn =
n√
π

∞∫
−∞

e−(nt)2
σt(x)dt,

where the integral is taken in the σ-strong∗ sense. By standard techniques (c.f. the
proof of Lemma 9 of [17]), xn ∈ Tϕ and xn converges σ-weakly to x. Moreover,
using the the fact that Λ is σ-strong∗/norm closed, we obtain

Λ(xn) =
n√
π

∞∫
−∞

e−(nt)2∇itΛ(x)dt→ Λ(x) weakly,

where the integral is a Bochner integral, c.f. Chapter VI, Lemma 2.4 of [15]. Hence
Tϕ is a core for Λ. Now, let x ∈ Tϕ and let (ej)j∈J be a net in Tϕ such that ej → 1
σ-weakly, c.f. Lemma 8.1. Then, ejx ∈ T 2

ϕ and ejx → x σ-weakly and Λ(ejx) =

ejΛ(x)→ Λ(x) weakly.
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