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A FAMILY OF NON-COCYCLE CONJUGATE Ey-SEMIGROUPS
OBTAINED FROM BOUNDARY WEIGHT DOUBLES
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ABSTRACT. Let p € M, (C)* and p’ € M, (C)* be states, and define unital
g-positive maps ¢ and i by ¢(A) = p(A)I, and ¢(D) = p' (D)L, forall A €
M, (C) and D € M,;(C). We show that if v and y are type II Powers weights,
then the boundary weight doubles (¢,v) and (¢, #) induce non-cocycle con-
jugate Eg-semigroups if p and p’ have different eigenvalue lists. We then clas-
sify the g-corners and hyper maximal g-corners from ¢ to ¢, finding that if v
is a type Il Powers weight of the form v(y/I — A(1)B\/I— A(1)) = (f, Bf),
where A(1) € B(L?(0,00)) is the operator of multiplication by e™*, then the
Ep-semigroups induced by (¢, v) and (i, v) are cocycle conjugate if and only
if n = n’ and ¢ and ¢ are conjugate.
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1. INTRODUCTION

Let H be a separable Hilbert space, denoting its inner product by the sym-
bol (-,-) which is conjugate-linear in its first entry and linear in its second. An
Ep-semigroup & = {a¢}s>0 is a semigroup of unital x-endomorphisms of B(H)
which is weakly continuous in t. Ep-semigroups are divided into three types, de-
pending on the existence and structure of their units. More specifically, if « is
an Eg-semigroup and there is a strongly continuous semigroup U = {U; };>o of
bounded operators acting on H such that a;(A)U; = U;A for all A € B(H) and
t > 0, then we say that U is a unit for a. An Ep-semigroup is said to be spatial
if it has at least one unit, and a spatial Ep-semigroup is called completely spatial
if, in essence, its units can reconstruct H. We say an Ej-semigroup « is type I if
it is completely spatial and type II if it is spatial but not completely spatial. If «
has no units, we say it is of type III. Every spatial Eg-semigroup « is assigned an
index n € Z>( U {oo} which corresponds to the dimension of a particular Hilbert
space associated to its units. The type I Ep-semigroups have been classified up
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to cocycle conjugacy by their index in [2]: If a is of type I, (type I, index n) for
n € NU {oo}, then « is cocycle conjugate to the CCR/CAR flow of rank n, while
if a is of type Ip, then it is a semigroup of *-automorphisms. Arveson’s compre-
hensive book on Ey-semigroups [4] provides a detailed exploration of the index
(Sections 2.5, 2.6, 3.6, and others), the CCR and CAR flows (Section 2.1), and other
fundamental results in the theory of Ey-semigroups, along with many relatively
recent results in the subject.

In contrast to the type I case, uncountably many examples of non-cocycle
conjugate Eg-semigroups of types II and III are known (see, for example, [8],
[7], 114], [13], [12], and [16]). Bhat’s dilation theorem [5] and developments in
the theory of CP-flows ([15] and [14]) have led to the introduction of bound-
ary weight doubles and related cocycle conjugacy results for Eyp-semigroups in
[9]. A boundary weight double is a pair (¢,v), where ¢ : M,(C) — M,(C)
is g-positive (that is, ¢(I + t¢)~! is completely positive for all + > 0) and v is a
positive boundary weight over L2(0, 00). If ¢ is unital and v is normalized and un-
bounded (in which case we say v is a type Il Powers weight), then (¢, v) induces
a unital CP-flow whose Bhat minimal dilation is a type Iy Eg-semigroup af. If
¢ : Mn(C) — M,(C) is unital and g-positive and U € M, (C) is unitary, then
the map ¢y;(A) = U*¢(UAU*)U is also unital and g-positive. The relationship
between ¢ and ¢y; is analogous to the definition of conjugacy for Eg-semigroups.
With this in mind, we say that g-positive maps ¢, ¢ : M, (C) — M, (C) are conju-
gate if p = ¢y for some unitary U € M, (C). If v is a type Il Powers weight of the
form v(y/T— A(1)B\/T— A(1)) = (f, Bf), where A(1) € B(L?(0,00)) is defined
by (A(1)g)(x) = e *g(x) for all g € L?(0,c0) and x > 0, then (¢,v) and (¢, v)
induce cocycle conjugate Ep-semigroups (for details, see Proposition 2.11 of [10]
and the discussion preceding it).

Suppose ¢ : M;,(C) - M,(C) and ¢ : M,,(C) — M,,(C) are unital rank
one g-positive maps, so for some states p € M, (C)* and p’ € M,,(C)*, we have
$(A) = p(A)I,and ¢(D) = p' (D)1, forall A € M,(C),D € M,,(C). Letvand 5
be type Il Powers weights. We prove three main results. First, we find that if (¢, v)
and (i, 1) induce cocycle conjugate Eyg-semigroups, then p and p’ have identical
eigenvalue lists (Definition and Proposition [3.4). We then find all g-corners
and hyper maximal g-corners from ¢ to ¢ (see Remark[3.3|and Theorems [3.8/and
B.9). With this result in hand, we complete the cocycle conjugacy comparison
theory for Fg-semigroups a? and 87 induced by (¢,v) and (¢, v) in the case that
v is of the form v(y/T — A(1)B\/T— A(1)) = (f, Bf), finding that ¢ and B? are
cocycle conjugate if and only if n = 1’ and ¢ is conjugate to ¢ (Theorem [3.10).

2. BACKGROUND

2.1. g-POSITIVE AND g-PURE MAPS. Let ¢ : 2 — B be a linear map between
unital C*-algebras. For each n € N, define ¢, : M,,(2) — M,,(B) by
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Ay oo Ay ¢(A11) -+ ¢(Aw)
Pn T = : :
Anl T Ann (P(Anl) T (P(Ann)
We say that ¢ is completely positive if ¢, is positive for all # € N. From the work

of Choi [6] and Arveson [1], we know that every normal completely positive map
¢ : B(H) — B(K) (H, K separable Hilbert spaces) can be written in the form

9(A) = Y SiAS?
i=1

for some n € NU {co} and bounded operators S; : H — K which are linearly
independent over ¢, (N).
We will be interested in a particular kind of completely positive map:

DEFINITION 2.1. Let ¢ : M,,(C) — M, (C) be a linear map with no negative
eigenvalues. We say ¢ is g-positive (and write ¢ >, 0) if ¢(I + t¢) ! is completely
positive for all t > 0.

Powers introduced the term “g-positive” in Definition 4.28 of [15] in order
to describe boundary weight maps which give rise to CP-flows. Our definition of
g-positivity serves the same purpose with regard to constructing unital CP-flows
through boundary weight doubles, as we will see in Proposition We make
two observations in light of Definition First, it is not uncommon for a com-
pletely positive map to have negative eigenvalues. Second, there is no “slowest
rate of failure” for g-positivity: For every s > 0, there exists a linear map ¢ with
no negative eigenvalues such that ¢(I + t¢)~! (t > 0) is completely positive if
and only if ¢ < s. These observations are discussed in detail in Section 2.1 of [10].

There is a natural order structure for g-positive maps. If ¢, : M, (C) —
M, (C) are g-positive, we say ¢ g-dominates ¢ (i.e. ¢ >4 ¢) if p(I+tp) L — (I +
t)~1 is completely positive for all + > 0. It is not always true that ¢ >, A¢
if A € (0,1) (for a large family of counterexamples, see Theorem 6.11 of [9]).
However, if ¢ is g-positive, then for every s > 0, we have ¢ >, ¢(I +s¢)~! >, 0
([9, Proposition 4.1). If these are the only nonzero g-subordinates of ¢, we say
¢ is g-pure. The unital g-pure maps which are either rank one or invertible have
been classified ([9]], Proposition 5.2 and Theorem 6.11).

If ¢ is a unital g-positive map, then as t — oo, the maps t¢(I + t¢p)~! con-
verge to an idempotent completely positive map Ly which has interesting prop-
erties (see Lemma 3.1 of [[10]):

LEMMA 2.2. Suppose ¢ : M (C) — M, (C) is g-positive and ||tp(I + tp) 1| <
1forallt > 0. Then the maps t(I + t¢) ! have a unique norm limit Lyast — oo, and
Ly is completely positive. Furthermore,

)¢ =¢oly=Lgog,
(ii) LG = Ly,
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(iii) range(Ly) = range(¢), and
(iv) nullspace(Ly) = nullspace(¢).

2.2. Ep-SEMIGROUPS AND CP-FLOWS. From a celebrated result of Wigner [17],
we know that every one-parameter group & = {a;}cr of *-automorphisms of
B(H) arises from a strongly continuous unitary group {V;};cr in the sense that
at(A) = ViAV) forallt € Rand A € B(H).

DEFINITION 2.3. Let H be a separable Hilbert space. We say a family o =
{at} >0 of x-endomorphisms of B(H) is an Eg-semigroup if:
(i) as oy = gy foralls, t > 0and ag(A) = Aforall A € B(H);
(i) for each f,¢ € H and A € B(H), the inner product (f,a¢(A)g) is continu-
ousint;
(iii) a¢(I) = I forall t > 0.

We have two notions of equivalence for Eg-semigroups:

DEFINITION 2.4. Let « and B be Eg-semigroups acting on B(H;) and B(H,),
respectively. We say a and B are conjugate if there is a *-isomorphism 6 from
B(H;) onto B(Hp) such thatf@ oa; = By o6 forall t > 0.

We say « and B are cocycle conjugate if « is conjugate to p/, where p’ is an Ey-
semigroup of B(H;) satisfying the following condition: For some strongly con-
tinuous family of unitaries W = {W; };>¢ acting on H; and satisfying W;p:(Ws) =
Wiys foralls > 0and t > 0, we have B}(A) = W;B:(A)W; for all A € B(H;) and
t>0.

Let K be a separable Hilbert space, and form H = K® LZ(O, o0), which we
identify with the space of K-valued measurable functions on (0, c0) which are
square integrable. Let U = {U;};>0 be the right shift semigroup on H, so for all
t>0, f € H and x > 0, we have

(U f)(x)=f(x—1t) ifx>t (Uf)(x)=0 ifx<t

A strongly continuous semigroup &« = {a;};>0 of completely positive contrac-
tions from B(H) into itself is called a CP-flow over K if a;(A)U; = U;A for all
A € B(H) and t > 0. A result of Bhat in [5] shows that if « is unital, then it
minimally dilates to a unique (up to conjugacy) Eg-semigroup a?. We may natu-
rally construct a CP-flow B = {B:}+>0 over K using the right shift semigroup by
defining

pi(A) = U AU

forall A € B(H), t > 0. In fact, if « is any CP-flow over K, then « dominates f in
the sense that a; — B is completely positive for all ¢ > 0.
Define A : B(K) — B(H) by

(A(A)f)(x) = e " Af(x)
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forall A € B(K), f € H,and x € (0,00), and let 2A(H) be the algebra
A(H) = /T — A(Ix)B(H)\/T — A(Ix).

We say a linear functional 7 acting on 2A(H) is a boundary weight (denoted T €
2(H),) if the functional ¢ defined on B(H) by

Ay =1(\J1- Al AT - A(Ix))

satisfies / € B(H).. Boundary weights were first defined in Definition 4.16 of
[15], where their relationship to CP-flows was explored in depth. For an addi-
tional discussion of boundary weights and their properties, we refer the reader
to Definition 1.10 of [11]] and the remarks that follow it.

Every CP-flow over K corresponds to a boundary weight map p — w(p) from
B(K), to 2L(H)« ([15]). On the other hand, it is an extremely important and non-
trivial fact that, under certain conditions, a map from B(K). to 2(H) can induce
a CP-flow (see Theorems 4.17, 4.23, and 4.27 of [15])):

THEOREM 2.5. Let p — w(p) be a completely positive mapping from B(K), into
A(H), satisfying w(p)(I — A(Ix)) < p(Ik) for all positive p. Let {U;}1=o be the right
shift semigroup acting on H. For each t > 0, define a truncated boundary weight map
p € B(K)« — wi(p) € B(H)« by

wi(p)(A) = w(p)(U:Uy AU UY)
forall A € B(H). If the maps
ﬁt = wt(I +//\\(Ut)71

are completely positive contractions from B(K), into B(H), for all t > 0, then p —
w(p) is the boundary weight map of a CP-flow over K. The CP-flow is unital if and only

if (o) (I — A(Ix)) = p(I) for all p € B(K)..
If « is a CP-flow over C, then we identify its boundary weight map ¢ — w(c)
with the single positive boundary weight w := w(l) so w has the form

w(\/l— 1A/1- A0 )= (fZ,AfZ)

for some mutually orthogonal nonzero Lz—functions { f,'}i.‘:l (k € NU {oo}) with

k
Z | fil|> < co. We call w a positive boundary weight over L2(0,00), and, following

the notation of [11], we write w € 2(L?(0,0));. We say w is bounded if there
exists some r > 0 such that |w(B)| < r||B|| for all B € 2(H). Otherwise, we say
w is unbounded. Suppose w(I — A(1)) = 1 (i.e. w is normalized), so « is unital
and therefore dilates to an Eg-semigroup a“. Results from [15] show that a“ is of
type I if w is bounded but of type Il if w is unbounded, leading us to make the
following definition:
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DEFINITION 2.6. A boundary weight v € 2A(L?(0,0)). is called a Powers
weight if v is positive and normalized. We say a Powers weight v is type I if it is
bounded and type II if it is unbounded.

We note that if v is a type II Powers weight, then for the weights v; de-
fined by v;(A) = v(UU; AU U} ) for A € B(L?(0,00)) and t > 0, both v¢(I) and
v¢(A(1)) approach infinity as t — 0+. We can combine unital g-positive maps
with type II Powers weights to obtain Eyp-semigroups (see Proposition 3.2 and
Corollary 3.3 of [9]):

PROPOSITION 2.7. Let H = C" @ L2(0,00). Let ¢ : M,(C) — My(C) be a
unital g-positive map, and let v be a type 11 Powers weight. Let (2, : A(H) — M,,(C) be
the map that sends A = (Ajj) € M, (A(L?(0,00))) = A(H) to the matrix (v(A;j)) €
M, (C). The map p — w(p) from M,,(C)* into A(H )« defined by

w(p)(A) = p(¢(2u(A)))

is the boundary weight map of a unital CP-flow « over C" whose Bhat minimal dilation
o is a type Iy Eq-semigroup.

In the notation of the previous proposition, we call a¢ the Eg-semigroup
induced by the boundary weight double (¢, v). In order to compare Ey-semigroups
induced by boundary weight doubles, we appeal to results of [[15], where Powers
defined corners between CP-semigroups and showed that two Ep-semigroups are
cocycle conjugate if and only if only if there is a corner from one to the other ([15],
Definition 3.7 and Lemma 3.8). Furthermore, if & and p are unital CP-flows which
induce type ITy Eg-semigroups & and ¢, then a? and B are cocycle conjugate if
and only if there is a hyper maximal flow corner from « to B ([15], Definition 4.53
and Theorem 4.56).

In [14], Powers defined g-corners and hyper maximal g-corners ([14], Defi-
nition 3.11) between Powers weights. As a consequence of Theorem 4.56 of [15],
type II Powers weights v and # induce cocycle conjugate Eg-semigroups if and
only if there is a hyper maximal g-corner from v to 77. Powers also found a con-
dition involving the trace density operators for v and # which was necessary
and sufficient for v and # to induce cocycle conjugate Ep-semigroups ([14], The-
orem 3.23). Motivated by the above results, we define corners, g-corners, and
hyper maximal g-corners in an analogous context ([9], Definitions 3.4 and 4.4):

DEFINITION 2.8. Suppose ¢ : B(H;) — B(K7) and ¢ : B(Hy) — B(K3) are
normal completely positive maps. Write each A € B(H; @ Hy) as A = (A;),
where A;; € B(Hj, H;) for each i,j = 1,2. We say a linear map -y : B(Hp, Hy) —
B(Kjy,Kj) is a corner from « to B if © : B(H; @ Hy) — B(Kj @ Kj) defined by

A A _( (A1) v(Ap)
o 4 qz )= (M wae)

is normal and completely positive.
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Suppose Hy = K; = C" and H, = K, = C". We say v : My u(C) —
My, (C) is a g-corner from ¢ to ¢ if @ >, 0. A g-corner 7y is hyper maximal if,
whenever

(¢ 7 .
0>,0 = ( v >4 0;
we have ® = ©@'.

Hyper maximal g-corners between unital g-positive maps ¢ and ¢ allow us
to compare Ep-semigroups induced by (¢, v) and (¢, v) if v is a particular kind of
type Il Powers weight ([9]], Proposition 4.6):

PROPOSITION 2.9. Let ¢ : Mu(C) — My (C) and ¢ : Mp(C) — My (C) be
unital g-positive maps, and let v be a type Il Powers weight of the form

u(\/l — A()By/1 - A()) = (£, Bf).

The boundary weight doubles (¢,v) and (y,v) induce cocycle conjugate Eg-semigroups
if and only if there is a hyper maximal q-corner from ¢ to .

From [9], we know that a unital rank one map ¢ : M, (C) — M,(C) is g-
positive if and only if it has the form ¢(A) = p(A)I for a state p € M, (C)*, and
that ¢ is g-pure if and only if p is faithful. We also have the following comparison
result ([9], Theorem 5.4), which we will extend in this paper to all unital rank one

g-positive maps (Theorem 3.10):

THEOREM 2.10. Let ¢ : M, (C) — M, (C) and ¢ : M,,(C) — M, (C) be rank
one unital q-pure maps, so for some faithful states p € M, (C)* and p' € M, (C)*, we
have

¢(A) =p(A)L, and (D) = p'(D)lLy
forall A € M, (C) and D € M, (C) . Let v be a type I Powers weight of the form

1/(\/1 — A()By/1 — A1) = (£, Bf).

The Ey-semigroups induced by (¢, v) and (¢, v) are cocycle conjugate if and only
if n = n’ and for some unitary U € M, (C) we have p’'(A) = p(UAU*) for all A €
M, (C).

2.3. CONJUGACY FOR ¢-POSITIVE MAPS. We will consider equivalence classes
of g-positive maps up to a relation we call conjugacy. More specifically, if ¢ :
M, (C) — M,(C) is a unital g-positive map and U € M, (C) is any unitary ma-
trix, the map ¢ (A) := U*$(UAU*)U is also unital and g-positive. We have the
following definition from [10]:

DEEFINITION 2.11. Let ¢, ¢ : M,(C) — M, (C) be g-positive maps. We say
¢ is conjugate to ¢ if = ¢y for some unitary U € M, (C).
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Conjugacy is clearly an equivalence relation, and its definition is analogous
to that of conjugacy for Eyp-semigroups. Indeed, since every *-isomorphism of
M, (C) is implemented by unitary conjugation, it follows that two g-positive
maps ¢, P : M,(C) — M, (C) are conjugate if and only if 6 o ¢ = 1 o 6 for some
s-isomorphism 6 of M, (C). If v is a type Il Powers weight of the form

v(\/l— 1)By/I - A( (1) = (£,B/),

then conjugacy between unital g-positive maps ¢ and ¢ is always a sufficient
condition for (¢,v) and (¢, v) to induce cocycle conjugate Ep-semigroups. To see
this, we note that if ¢ : M, (C) — M, (C) is unital and g-positive, then the map
v : My (C) = M, (C) defined by y(A) = ¢(AU*)U is a hyper maximal g-corner
from ¢ to ¢y (for details, see the discussion preceding Proposition 2.11 of [10]),
whereby Proposition [2.9|gives us:

PROPOSITION 2.12. Let ¢ : My(C) — M, (C) be unital and g-positive, and
suppose 1 is conjugate to ¢. If v is a type 11 Powers weight of the form

1/<\/I— 1)By/1 - A( (1) = (£,B/),

then (¢,v) and (¢, v) induce cocycle conjugate Ey-semigroups.

In the case that ¢ and ¢ are unital rank one g-pure maps and v is a type Il
Powers weight of the form v(y/T — A(1)B\/T — A(1)) = (f, Bf), Theorem 2.10|
states that conjugacy between ¢ and 1 is both necessary and sufficient for (¢, v)
and (1, v) induce cocycle conjugate Ey-semigroups.

Let ¢ : M,,(C) — M, (C) be a unital rank one g-positive map, so ¢p(A) =
p(A)I for some state p € M, (C)*. It is well-known that we can write p in the
form

(2.1) p(A) = Z Ai(8ir Agi),

for some mutually orthogonal unit Vectors { gl} _, € C" and some positive num-

bers A = - -+ > Ay > 0 such that Z A; = 1. With the conditions of the previous
i=1

sentence satisfied, the number k and the monotonically decreasing set {/\,'}Ll are

unique.

DEFINITION 2.13. Assume the notation of the previous paragraph. We call
{A;}5_, the eigenvalue list for p.

We should note that our definition differs from a previous definition of
eigenvalue list in the literature (for example, [3]) in that our eigenvalue lists do
not include zeros.
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Let {e;}!" ; be the standard basis for C". If p has the form and U €
M,,(C) is any unitary matrix such that Ue; = g; foralli =1,...,k, then

M»

k
p(UAU") = Y Ai(gi, UAU*g;) = Z/\ (U*g;, AU*g;) =
i=1 i=1 i

Ai(ei, Ae;)

l
—

and

22)  Pu(A) = U ¢(UAUU = U* [( Z/\ e;, Ae; ) } (ZA az,)

forall A € M, (C). We will use this fact repeatedly.

3. OUR RESULTS

We begin with the following observation:

LEMMA 3.1. Let ¢ : M, (C) — M, (C) and ¢ : M, (C) — M, (C) be unital g-
positive maps, and let v and u be type Il Powers weights. If the boundary weight doubles
(¢,v) and (, 1) induce cocycle conjugate Eo-semigroups, there is a corner -y from Ly to
Ly such that ||y|| = 1.

Proof. This is a slight generalization of Lemma 5.3 of [9] (where ¢ and ¢
were assumed to have rank one and be g-pure), but its proof is identical. The
exact same argument as in the proof of Lemma 5.3 shows that there is a corner
7 from lim v (A(L)g(1 +u(A)¢) " to Tim ne(AM)P(I + (A1) " Gif
the limits exist) such that ||| = 1. We observe that the former limit is Ly and
the latter limit is Ly. Indeed, the values {v;(A(1))};~0 and {#:(A(1))}+>0 are
monotonically decreasing in ¢, and since v and # are unbounded, we have

li A(l)) =1 A(1)) = oo
Jim v (A1) = lim 7:(A(1)) =00 1

We have the following lemma (a consequence of Lemma 3.5 of [9]):

LEMMA 3.2. Let ¢ : My(C) — M,(C), ¢ : M,y(C) — M,/ (C) be completely
positive maps, so for some k, k' € N and sets of linearly independent matrices {Sl-}i.‘:1 C
M, (C) and {T;}¥ ; € My ,(C), we have

k K
(3.1) ¢(A) =) SiAS], (D) =) TAT;
i=1 i=1
forall A € M, (C), D € M,;(C).

A linear map v : My, ,»(C) — M, ,+(C) is a corner from ¢ to i if and only if, for

some C = (cjj) € My (C) with ||C|| < 1, we have, for all B € M,, ,(C),

k K
B) = Z ZcijSiBT]-*.

i=1j=1
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REMARK 3.3. Suppose 7 is a g-corner from ¢ to ¢p. Let U € M,(C) and
V € M, (C) be arbitrary unitary matrices, and let

(P 7
19_<7 lp)/qo

. u 0,y
Z — < On/’n V > E MVL—‘,—H,(C)/

we have ¢ > 0 (since ¢ >, 0), where

o ( A B ) _ ( pu(A) Uy (UBV*)V )
Z\ ¢ D )\ vx*(vcusu ¥y (D) '
Therefore, B — U*y(UBV*)V is a g-corner from ¢;; to ¢y. By Proposition 4.5 of
[9], we know thatif @ : M, ,/(C) — M, 1,y (C) is alinear map, then ¢ >, & >, 0
if and only if 87 >, @z >, 0. It follows that -y is a hyper maximal g-corner from
¢ to ¢ if and only if B — U*y(UBV*)V is a hyper maximal g-corner from ¢y; to

yy. The same argument gives us a bijection between norm one corners from ¢ to
¢ and norm one corners from ¢y to Py.

PROPOSITION 3.4. Let ¢ : M,(C) — My,(C)and ¢ : M,,(C) — M,(C) be
unital rank one g-positive maps, so for some states { € M, (C)* and ¢’ € M, (C)* with
eigenvalue lists {A\;}*_, and {yi}f/zl, respectively, we have

¢(A) =L(A)L,, y(D)="L(D)I,

forall A € M,,(C) and D € M, (C). Let v and 3 be type II Powers weights.
If the boundary weight doubles (¢,v) and (,n) induce cocycle conjugate Eg-
semigroups a and B?, then k = k' and A; = y; foralli =1,... k.

For the unitary matrix

Proof. Our proof is similar to the proof of Theorem 5.4 of [9]. Suppose a*

and B are cocycle conjugate. For some unitaries U € M,(C) and V € M,,(C),
we have

Pul( (Z/\an>lnr v (D (ZVI 11) n

forall A € M,(C) and D € M,/ (C). Let {e;}}' ; and {ei};‘:1 be the standard
bases for C" and C"', respectively, and let p € M,(C)* and p’ € M, (C)* be the
functionals

k k K K
(3.2) p(A) =Y AiejAe; =Y Ajaii, o (D) =Y uiej*De; =Y pidy;,
i=1 i—1 i—1 i=1

so ¢y (A) = p(A)I, and ¢y (D) = p' (D)1, forall A € M,(C) and D € M,,;(C).
Note that Ly = ¢ and Ly = ¢, so by Lemma there is a norm one corner from
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¢ to 1. Therefore, by Remark [3.3] there is a norm one corner <y from ¢y; to iy, so
the map @ : M,,, v (C) — M, ,(C) defined by
e < Aﬂ,n Bn,n/ ) — ( P(A)In ’Y(B) >
Cn’,n Dn’,n’ ')’*(C) p,(D)In’
is completely positive.
Since [|y|| = 1, there is some X € M, ,/(C) with ||X|| = 1 and some unit

vector g € C" such that ||7(X)g||? = (7(X)g,7(X)g) = 1. Let T € M, (C)* be
the functional defined by

©(B) = (v(X)8, 7(B)g)-
Letting

X 0
S = ( ’Yé 113 gl ) € Myyw2(C),
n’,

we observe that

p(A) tB) \ . A B A B
( () o(D) )~ CHC) c D S forall c p )€ M, . (C),
hence 7 is a corner from p to p’. Note that || 7| = 7(X) = 1.
Let D) € Mi(C)and D, € My (C) be the diagonal matrices whose ii entries

are y/A; and ,/ji;, respectively. Since T is a corner from p to p’, equation (3.2)
and Lemma 3.2 imply that 7 has the form 7(B) = %ciﬂ [ Ainj(ei, Be;-) for some

C= (Cl’]'> S Mk,k/(C) such that HC” < 1. Foreach B € M, (C), let Be Mk/,k((c>
be the top left k' x k minor of BT, observing that

k K " _
T(B) = Z Z Cij )Ll;u]bl] = tr(CDHBD)\) = tI'(CDI/,(D/\(B)*)*).
i=1j=1

Let M = X € My x(C). Applying the Cauchy-Schwarz inequality to the inner
product (A, B) = tr(BA*) on My ;(C), we see

1= [t(X)]* = [tr(CDu(DyM*)*)|> = |{DAM*,CDy) |2
< ||[CDu|I% | DAM* |3 = tr(DuC*CDy,) tr(DyM*MD,)

K k
(3.3) < tr(DylpDy) tr(Dy D) = ( y yi) ( y AZ-) —1%1=1.
i=1 i=1

Since equality holds in Cauchy-Schwarz, it follows that for some m € C,
(3.4) mCD,, = D,M~,

where || = 1since |[CDy /¢ = ||[DAM* ||t = 1. In fact, m = 1 since 7(X) = 1.
Since equality holds in and the trace map is faithful, we have C*C = I
and M*M = I;. Note that

min{k,k'} > rank(C) =k, min{k,k'} > rank(M) =k,
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hence k = k’ and the previous sentence shows that C and M are unitary. There-
fore, from (3.4) we have

D, = C*DyM* = C*M*(MD,M*),

whereby uniqueness of the right polar decomposition for the invertible positive
matrix D, implies D, = MD, M*. Since the eigenvalues of D, and D, are listed
in decreasing order, we have D, = D), hence A; = y; foralli=1,...,k. &

REMARK 3.5. Let¢ : My(C) — Mj(C) be a unital rank one g-pure map, and
suppose v is a nonzero g-corner from ¢ to ¢, so the map @ : My (C) — My (C)
below is unital and g-positive:

o4 B)-(Ha Ay,
¢ D 7°(C) ¢(D)
Applying Lemma [2.2]to © yields the idempotent completely positive map
. -1 . -1
L Lim (I + t¢) Lim (I + t) (¢ o
© lim #9* (14 #97) 7" Jim tp(I + tp) ! o P )’
—r00 —®

SO 0 1= tlim ty(I + ty)~! is a corner from ¢ to ¢ satisfying 0> = o. We note
—00

that ||| = 1. Indeed, since 0> = ¢ and range(c) = range(v) 2 {0}, we have

lo|l > 1, while the fact that o is a corner between norm one completely positive
maps implies ||c||<1, hence ||c||=1. The following lemma gives us the form of o:

LEMMA 3.6. Let ¢ : My(C) — My (C) be a unital g-positive map of the form
¢(A) = p(A)I. Assume p is a faithful state of the form

k
p(A) =Y wiai,
i=1

k
where py, ..., py are positive numbers and y y; = 1. Let Dy, be the diagonal matrix
i=1

with ii entries \/ji; fori = 1,...,k, s0o Q2 := (Dy,)? is the trace density matrix for p.

Let o : My(C) — M;y(C) be a nonzero linear map such that c* = ¢. Then o is a
corner from ¢ to ¢ if, and only if, for some unitary X € My(C) that commutes with (2,
we have

o(B) = tr(X*BO)X

forall B € My (C).

Proof. For the forward direction, suppose that ¢ is a nonzero corner from ¢
to ¢ and ¢ = ¢, so the map O : My (C) — My (C) defined below is completely

positive:
°(¢ 0)=(50 o)
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Note that ||| = 1 by Remark[3.5] We first show that o has rank one. If rank(c) >
2, then there is a non-zero non-invertible element A € range(c). Scaling A if
necessary, we may assume ||A|| = 1. Let P be the orthogonal projection onto the
range of A, so PA = A and A* = A*P. Since P # I and p is faithful, we have
¢(P) = p(A)I = al for some a < 1. We note that

()0 DD -Ch )= (4 )20

so by complete positivity of @ and the fact that 0> = ¢, we have

(F S )= (5 1) =0

which is impossible since 4 < 1 and ||A|| = 1. This shows that not only does
o have rank one, but that every non-zero element of its range is invertible. In
other words, for some linear functional T € Mk((C)* and some invertible matrix
X € M;(C) with || X]|| = 1, we have ¢(B) = 7(B)X for all B € M;(C). Since ¢
fixes its range and ||c|| = 1, we have ||7|| = 7(X) = 1.

Let ¢ € Ck be a unit vector such that ||Xg| = 1. We observe that T is
merely the functional 7(B) = (¢(X)g,0(B)g) forall B € My (C), and an argument
analogous to the one given in the proof of Proposition B.4/shows that T is a corner
from p to p. By Lemma 3.2} there is some C € My (C) with ||C|| < 1 such that

Z cij/Hilj(e;, Bej) = tr( CDHB Dy)

i,j=1
for all A € M(C). By the above equation and the fact that 7(X) = 1, we may
use the exact same Cauchy-Schwarz argument as in the proof of Proposition 3.4]
to conclude that C and XT are unitary and that

Dy, = C*Dy(X")* = C*(X")*(X D, (X)").

Uniqueness of the polar decomposition for the invertible positive matrix D, gives
us C*(XT)* = I and XTD,(XT)* = D,, where the transpose of the last equality
is X*D, X = Dy. Therefore, C = (X*)T and X commutes with (2, so for all
B € M (C) we have

7(B) = tr ((X*)'D4B'D, ) = tr(D,BD, X") = tr(X"B(2)

and 0(B) = 7(B)X = tr(X*BOQ) X

Now assume the hypotheses of the backward direction and define T €
M (C)* by 7(B) = tr(X*BQ), noting that 0> = ¢ and ¢(B) = 7(B)X for all
B € M(C). Let 7,1’ : Mpi(C) — My (C) be the maps

1 o )-( &% pon ) 7(¢ 5 )-(£Q s )
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Define Y : My (C) — My (C) by

(o) (Es)(ov)

Note that Y and Y~! are completely positive, Yoy = 5, and Y"1 oy’ = 7.
Therefore, 7 is completely positive if and only if 7’ is completely positive. Since
a complex matrix (m;;) € M,(C) (r € N) is positive if and only if (m;jl,) €
M, (M, (C)) = M;,(C) is positive for every n € N, it follows that #’ is completely
positive if and only if 7 below is completely positive:

n( A B\ _ o(A) T(B)
T\cop ™(C) p(D) )
Thus, 7 is completely positive if and only if #” is. In other words, ¢ is a corner
from ¢ to ¢ if and only if T is a corner from p to p. But for all B € M (C), we have

K
T(B) = ) cij\/Hit(ei, Bey)

i,j=1
for the unitary matrix C = (X*)7, so 7 is a corner from p to p by Lemma 1

We will make use of the following standard result regarding completely
positive maps, providing a proof here for the sake of completeness:

LEMMA 3.7. Let ¢ : M, (C) — M,,(C) be a completely positive map. If ¢(E) =
0 for a projection E, then ¢(A) = ¢(FAF) forall A € M,,(C), where F =1 —E.

P
Proof. We know from [6] and [1] that ¢ can be written ¢(A) = ) S;AS; for
i=1
some p < n? and {S;}!_; € M,(C). If $(E) = 0 for a projection E, then
0 = S;ES; = S;EES! = (S;E)(S;E)*

for all i, so S;E = ES} = 0 for all i. Therefore, ¢(EAE) = ¢(EAF) = ¢(FAE) =0
for every A € M, (C). Letting F = I — E, we observe that for every A € M, (C),

¢(A) = ¢(EAE + EAF + FAE + FAF) = ¢(FAF). 1

Let ¢ : Mu(C) — M,(C) and ¢ : M,/(C) — M,,(C) be unital rank one
g-positive maps. We ask two very important questions: Is there a g-corner from
¢ to ¢ ? If so, can we find all such g-corners, and, even further, determine which
g-corners are hyper maximal? The following two theorems give us a complete
answer to both questions when ¢ and ¢ are implemented by diagonal states. This
suffices, since for any unital rank one g-positive maps ¢ and i, there are always
unitaries U € M, (C) and V € M, (C) such that ¢;; and ¢y are implemented by
diagonal states, where Remark [3.3]tells us exactly how to transform the g-corners
and hyper maximal g-corners from ¢; to ¢y into those from ¢ to 1.
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THEOREM 3.8. Let {y;}¥_, and {rl} be monotonically decreasing sequences of
k k’

strictly positive numbers such that Z ur = Y r; = 1. Define unital g-positive maps
i=1 z 1
¢ : My(C) = My(C)and ¢ : M,y (C) — M, (C) (where n > kand n' > k') by
k
(3.5) ¢(A) = ( 2 ﬂi%’i) I, and (D ( 2 7 d”> o
i=1

forall A = (a;;) € Mu(C) and D = (d;j) € My/(C). Let Q € Mk((C) be the trace
density matrix for the faithful state p € My (C)* defined by p(A) = Z Hidij.

If there is a nonzero q-corner from ¢ to , then k = k' and yl =r;forall i =

., k. In that case, a linear map y : M, (C) — M, ,»(C) is a g-corner from 4) to
P ifand only if: for some unitary X € My(C) that commutes with 2, some contraction
E € M,_i_i(C), and some A € C with |A]2 < Re(A), we have

By k Win —k ) " ( X Ogw—k )
¢ 4 = A tr(X* B (2 4
v ( Qu—ik Yu—kn—k (X" By 2) On—kk E

By x Wicn —k >
4 / e M, (C).
( Qu-ik Yu—kn—k nar (€)

Proof. Suppose that -y is a nonzero g-corner from ¢ to ¥, so 9 : M, (C) —
M,, v (C) below is g-positive:

19< An,n Bn,n’ > _ ( (P(An,n) 'Y(Bn,n’) )
Con Duw ')’*(Cn’,n) w(Dn’,n’)

for all

We observe that

Lﬂ( An,n Bn,n’ ) _ ( ¢(A71,'rl) U(Bn,n’) )
Cn/,n Dn’,n’ U*(Cn’,n) l/J(Dn’,n’) ’

where by Lemma the map o := tlim ty(I + ty)~! is a corner of norm one
— 00

from ¢ to ¢ satisfying 02 = o, range (o) = range(7y), and y oo = oo = . Since
llo|l = 1, the proof of Propositionimplies k=k andr; = y;foralli=1,... k.
We observe that Ly(P) = 0 for the projection

n n+n’

p:( TR eii) € M 1w (C).

i=k+1 i=n+k+1
Therefore, Ly(A) = Ly((I — P)A(I — P)) forall A € M, ,»(C) by Lemma In

particular, o satisfies
( Ok Wiw—k ) —0
Qn-kk Yu—kn—k
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In other words, o depends only on its top left k x k minor, so for some ¢ :
Mi(C) — M (C) and some maps ¢; from M (C) into the appropriate matrix

spaces, we have
( Brk  Wiw—« ) _ ( 0(Bkk)  L1(Bri) ) _
Qu-kk  Yn—in—k 62(Bx)  3(Bik)
From the facts 0> = o and ||c|| = 1, it follows that 7> = ¢ and ||7|| = 1.
Let ¢ : My(C) — My (C) be the map

k
$(A) = p(A)Ix = ( ;P‘iaii) Iy

forall A = (a;;) € Mi(C). Define @ : My (C) — My (C) by
o ( Ark  Brk ) _ < P(Ak)  T(Bi) >

Cik Dk 7 (Cix)  @(Dix)
and let
Ik Ogu—k Okk Okn/k>
*= og o Cor € Mgy (C).
( Ok Okn—k Tk Opuw—k 2k ntn' (C)
Note that

O(N) = SLy(S*NS)Ss*
forall N € My, (C), so © is completely positive. Therefore, ¢ is a norm one corner
from ¢ to ¢. Since ||7|| = 1 and 62 = 7, Lemmaimplies that for some unitary
X € My (C) that commutes with (2, we have
(3.6) F(B) = tr(X*BQ)X

for all B € My(C). For simplicity of notation in what follows, let T € M (C)* be
the functional T(B) = tr(X*BQ).
We claim that ¢; = ¢, = 0. For this, let

Bix Wik >
M = 4 eM,_ . (C
( Qn kk Ynfk,n/fk e ( )

be arbitrary. We will suppress the subscripts for B, Q, W, and Y for the remainder
of the proof. From (3.6) and the fact that ¢?(M) = o(M), we have

3.7) ti(B) = £i(a(B)) = £i(T(B)X) = ©(B)i(X)

fori =1,2,3. Since o is a contraction, it follows that

=2 (5 0 ) I=1(ato B0 )l

But X is unitary, so the line above implies that ¢1(X) = ¢;(X) = 0, hence ¢; =
ly =0by B.7). Let E = {3(X) € M, ,v—x(C), noting that ||E|| < 1 since o is a
contraction. Therefore, o has the form

B W X Ok,n/_k
(Q Y) T(B)<0n—k,k E )
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Since v = y o0 and

range(y) = range(c) = {c ( i)( g > ic€ (C},

we have

(o ¥ )=e(g ¥ )= (m(3 1))
—T(B)“r()g g>—r(3){/\( g)}—AT(B)<}O< 2)

for some A € C. Since 7y is a nonzero g-corner between unital completely positive
maps and is thus necessarily a contraction with no negative eigenvalues, we have
A% 0and |A] <1

In summary: we have proved that if <y is a nonzero g-corner, then it is of the

form
B W " X 0
7(Q Y):Atr(XBQ)<O E)

for some A £ 0 with [A| < 1, where X and E satisfy the conditions stated in the
theorem. To complete the proof, we show that such a map 7 is a g-corner if and
only if |A|> < Re(A).

Straightforward computations show that for all f >> 0,

L(B w\ [ B4y w
(I+ t')/) ( Q Y ) - ( Q Y — ti\j_(ti)E s and
At(B)
(B wY [ ZBx o 1 B W
(It (Q Y>_< o A®p ) 1"\ o v )0

For each t > 0, define maps ©; : My (C) — My (C), Ly : My (C) —
Myt —2k(C), and Y; : Mor(C) — M4 (C) by

(3.8) @t< A B >: (A Zrt(B)X

P Ta T (OX tap(D)h )

* A

(3.9) Lt( A B >: P (A)EE 2xT(B)E »

C D 1_"_%T*(CT)E* %HP(D)Inffk,n/,k 7

A B A B LP(A)(I _k _k—EE*) 0 ek

1 Y, =L T+f n—kn ko .

(3.10) t( C D) t( C D >+( Ot —kn—k Owr a1
Let

On—rkk  Tn—tkn—k On-kk On—puw—k
T — n , n N n » n N c M (C
( O ik Ow—tn—t Ow—ik Iw—iw—k w2kt (C),
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and let M € M, ,#(C) be arbitrary, writing

Ak Gen—k  Brk  Tew—k

S, by m ke Uy Uyl Ay B
(3.11) M=| Tkl Tk Bl Bkl ok soSMs*:(k'k k'k>~
Cok  Win—k  Drx Cow—k Ciik Dri

dw ik enw—kn—k fu—kk Sn'—kn'—ks
For every t > 0, 8(I + t9) (M) is equal to the quantity below:

P (A) Ik Ok HErT(B)X U
0y gk oA b knk Ou ki T T(B)E
AT (OX* Oguk 170 (D) Ik Ok —k
Ok 2aT (OF Ow—tk  T0D) w—kw—k

In other words,

(3.12) (I +t8) (M) = S*O;(SMS*)S + T*Y;(SMS*)T.

Note also that for all N € My, (C),

(3.13) O:(N) = S(8(I + t9) 1 (S*NS))S*, Yi(N) = T(8(I + t8) 1(S*NS))T*.

It follows from and that ¢ is g-positive if and only if ©; and Y; are
completely positive for all ¢ > 0.

We may easily argue as in the proof of Lemma [3.6|to conclude that @ is
completely positive for all t > 0 if and only if the maps 7} : My (C) — M;(C)
below are completely positive for all ¢ > 0:

’7//( A B >: ﬁf)(A) H_Lt/\T(B)
e o) | &0 e )

Recall that in the proof of Lemma we showed that 7 is a corner from p to p.
Since ||p|| = [|T]| = 1, it follows from Lemma [3.2)that c7 is a corner from p to p if
and only if |c| < 1. Since

S (A BY [ ea) A
(1+ ) ( C D ) = xa+n _« ’
Tyl (©) p(D)
we see that 77’ is completely positive for all t > 0 if and only if
A(l+1t)
1+tA

for all t > 0. Squaring both sides of the above equation and then cross multiply-
ing gives us

IAP(1+2t+1) <T+2tRe(A) + A2, (A £0, [A]<1)

which is equivalent to

‘ <1 (where we already know A £ 0 and |A| < 1)

14 2tRe(A)

14 2g
(3.14) A 1+2¢

(A £0, Al <1)
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for all nonnegative t. Note that if [A|?> < Re()), then Re(A) < 1 and equation
holds for t > 0. On the other hand, suppose that A is any complex num-
ber that satisfies (3.14) for all + > 0. We conclude immediately that Re(A) > 0,
whereby the fact that |)t| 1 implies Re(A) € (0,1]. A computation shows that

the net {%Rzet()») }=0 is monotonically decreasing and converges to Re(A), hence
|A|> < Re(A) by (3.14). We have now shown that 7’ (and thus ©) is completely
positive for all t > 0 if and only if |A|*> < Re(A). Therefore, if |A|> > Re(A) then
(3.13) implies that ¢ is not g-positive, which is to say that -y is not a g-corner from
¢ to .

Suppose that |A|> < Re(A). Then from above, the maps {©;}~¢ are all
completely positive. Let

E 0, fn—
G = ( On/_k n' —k nIn]flfk ‘ ) < Mn+n/72k,2n/72k(©)'
We observe that

AL, AL (B,
(1+t)Lt<A B )—G X(1ft() )n k JEwyY T( )n k G,
¢ D 1A T (C)In’fk p(D)In’fk

where we have already shown that the map in the middle is completely positive
since |)L|2 < Re(A). Thus, L; is completely positive for every t > 0. Also, Y; — L¢
has the form

A B P(A)(Li—x — EE*)  Op_guw—x )
Yi— L = / ,
( t t) ( cC D ) ( On/—k n—k On’—k n'—k

where the right hand side is completely positive since ||E|| < 1. Therefore, the
maps {Y;}1>o are all completely positive, so (3.12) implies that ¢(I + t8)~*
completely positive for all t > 0, hence v is a g-corner from ¢ to 1. 1

THEOREM 3.9. Assume the notation of the previous theorem, and suppose that
k=Kandy;=riforalli=1,...,k Ag-cornery: M, ,,(C) = M, ,(C) from ¢ to
 is hyper maximal if and only if n = n’, 0 < |A|*> = Re(A), and E is unitary.

Proof. We first show that v is not hyper maximal if n # n’, regardless of the
assumptions for A or E. If n > n’, then EE* € M,, (C) is a positive contraction
of rank at most n’ — k, so EE* # I,,_;.

Ikk Ok, n—k
Op—kk EE* )’

Define ¢’ : M,,(C) — M, (C) by
observing that ¢/(I + t¢')"! = 15¢' for all > 0. Define ¢ : M,/ (C) —
M1 (C) by
_ ( 9
,.)/*

< =
~——
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noting that ¢ has no negative eigenvalues. Define maps {©;}>0, {Lt}+=0, and

{Y:}+=0 as in equations (3.8), (3.9), and (3.10). Writing each M € M, ,(C) in the
form (B.11), we see that ¢ (I + t®') 1 (M) is equal to

Ak Ok mpT(B)X O
_ Onfk,k %.HP(A)EE* 0nfk,k WT(B)E
1+AtXT*(C)X* B Ok n—k %HP(D)Ik,k Ok ' —k
O —k 2T (OF 0w (D) ik

In other words,
(3.15) ¥ (I+ tﬁ')fl(M) = S5*0(SMS*)S + T*Li(SMS*)T

foreveryt > 0and M € M, ,/(C), hence ¢ is g-positive. By (3.12) and (3.15),
we have

(O +t0) P = (I + ")) (M) = T*((Yy — L) (SMS*))T.

Since Y; — L; is completely positive for all t > 0 (as shown in the previous proof),
the above equation implies that ¢ >, ¢'. However, ¢ # ¢’ since EE* < I,,_, s0 7y
is not hyper maximal.

If n < n', then since E*E < I,;_y, we may replace {L;}, with the maps
{R¢}{2, below and argue analogously (this time cutting down ¢ using E*E) to
show that v is not hyper maximal:

1 A
R, < Ak,k Bk,k ) _ fﬁtP(A)In—k WT(B)E '
Ckk  Dik iz T (C)E* 133p(D)E*E
Of course, if n = n’ but E is not unitary, then EE* < I, i, and the same argument
given in the case that n > n’ shows that 7 is not hyper maximal.

Therefore, we may suppose for the remainder of the proof that n = n’ and
E is unitary. Note that ¢ = ¢ since n = n’. For some a € (0,1], we have A2 =
aRe(A). We first show that vy is not hyper maximal if 2 # 1. We claim that the
map ¢ : M, (C) — My, (C) defined by

0//( Aun  Bun ) _ ( aﬁb(An,n) 'Y(Bn,n) )
Cn,n Dn,n ')’* (Cn,n) a(l)(D”,n)

satisfies 9" >, 0. For each t > 0, let nt(”) : My (C) — M;(C) be the map
,@ ( A B > _( dae(4)  fT(B)
“lco A (0) (D)

It is routine to check that since 7 is a corner from p to p, the condition |A|? =

—
N

aRe(A) implies that ﬁr is a corner from ;0 to ;0 for every t > 0, so "
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is completely positive for all t > 0. Defining @t(a) and Yt(a) for each t > 0 by

ol ( A B ) I ratBX

Y(a)(A B)_G %p(A)Infk e T(B) Lok o
t\cD 22T (Ol tap(D)
_<1fatp<A>1nk e T(B)E )

s T*(C)E* 1£atp(D)In—k

1+tA
we observe that the maps {@ga)}go and {Yt(a)}t>0 are all completely positive

since qt(”) is completely positive for all f > 0. Note that

-1 _ a
(ap) (1 + tap) " = g
forall t > 0, so for every M € M, (C), we have
81+ t9")"L(M) = $* (0 (SMS*))S + T* (Y (SMS*))T.

Therefore, 9" >, 0, and trivially ¢ >, 0”. If a # 1, then 8" # ¢, hence v is not
hyper maximal. To finish the proof, it suffices to show that -y is hyper maximal if
a = 1 (of course, maintaining our assumption that E is unitary).

Suppose a = 1, and let ¢’ be any g-subordinate of ¢ such that

(4 3o

If Ly(I) # I, then Ly(I) = R < I for some positive R € M;(C). Recall that
o= tlim ty(I + ty)~1, so applying Lemma 2.2 to x gives us
—00

oo¢
Letting Z be the unitary matrix

_ X Ogn—k
7 = < Ok T ) € M, (C),

we observe that 0(Z) = Z, so by complete positivity of Ly,

I Z R Z

Since R < I, wehave (f, Rf) < 1for some unit vector f € C". A quick calculation
shows that

(L) (5 T)(Ls))-urn-1<0

contradicting (3.16).
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Therefore, Ly (I) = I. Since ¢ >4 ¢', it follows that Ly — Ly is completely
positive, so

1Ly = Ly [l = ILp(I) — Ly (D)l = O,
hence Ly (A) = Ly(A) = ¢(A) = £(A)I for the state £ € M, (C)* defined by
L(A) = f Hiakk- But range(¢') = range(Ly) = {cI:c € C}and ¢' = ¢’ o Ly, s0
¢'(I) = rI for some r < 1and
¢'(A) = ¢'(Ly (A)) = p(L(A)]) = L(A)Y'(I) = rl(A)] = rd(A)

forall A € M, (C).
We claim that r = 1. To prove this, we define V; : My (C) — My (C) for

each t > 0 by
Vt(é g)—s(;c(l—i—t)()l[s*( s

:< ap(A)y Wr(B )

S*

>a

A * *
Ty (€)X 1+tp(D

Since x >, 0, each V; is completely positive. Therefore,
X* 0 I X X 0 21 2l
o< (5 D)l DI (T T ),
0 I [ X* 1 } 0 I 1+t/\I el

r A2 Re(A)

(1+rt)(1+1t) 7 [1+tA2 1+ (£2+2t)Re(N)
for all t > 0. This is equivalent to

hence

L (L+H)Re(d)
! +tRe(A)

for all t > 0. We take the limit as  — oo in and observe r > 1. Since r < 1
we haver =1,s0 ¢' = ¢.
We have shown that if

¢ ¢
('r 4>) (7* ¢>>q0’

then ¢ = ¢'. An analogous argument shows that if

(5 3)z (3 3 )ze

then ¢ = ¢’. Therefore, <y is hyper maximal. &

(3.17)

We are now ready to prove the following:
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THEOREM 3.10. Let ¢ : M, (C) — M,,(C) and ¢ : M,,(C) — M, (C) be rank
one unital g-positive maps, and let v be a type 11 Powers weight of the form

v(\/l — A()By/I — A()) = (£, Bf).

The Ey-semigroups induced by (¢, v) and (i, v) are cocycle conjugate if and only if n =
n' and ¢ is conjugate to .

Proof. The backward direction follows trivially from Proposition For
the forward direction, suppose (¢,v) and (i, v) induce cocycle conjugate Eo-
semigroups a and 7. For some sets {1;}*_; and {r;}¥_, satisfying the conditions
of Theorem[3.8/and some unitaries U € M, (C) and V € M,,(C), ¢y and ¢y have
the form of (3.5). Let af; and B¢, be the E¢-semigroups induced by (¢, v) and
(v, v), respectively. Since a?; ~ a? and p¢, ~ p? ~ a?, we have af; ~ p%,, so by
Proposition there is a hyper maximal g-corner from ¢y to ¢y. Theorems
andimply thatn =n', k =k/,and y; = r; foralli = 1,...,k. In other words,

¢u = Py. Therefore, ¢ = P(y+), so ¢ and ¢ are conjugate. 1§
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