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ABSTRACT. Let L0 be a densely defined symmetric semi-bounded operator of
non-zero defect indexes in a separable Hilbert space H. With L0 we associate
a topological space ΩL0 (wave spectrum) constructed from the reachable sets of
a dynamical system governed by the equation utt + (L0)

∗u = 0. Wave spectra
of unitary equivalent operators are homeomorphic.

In inverse problems, one needs to recover a Riemannian manifold Ω via
dynamical or spectral boundary data. We show that for a generic class of
manifolds, Ω is isometric to the wave spectrum ΩL0 of the minimal Laplacian
L0 = −∆|C∞

0 (Ω\∂Ω) acting in H = L2(Ω). In the mean time, L0 is determined
by the inverse data up to unitary equivalence. Hence, the manifold can be

recovered by the scheme "data⇒ L0 ⇒ ΩL0

isom
= Ω".
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INTRODUCTION

MOTIVATION. The paper introduces the notion of wave spectrum of a symmetric
semi-bounded operator in a Hilbert space. The impact comes from inverse prob-
lems of mathematical physics; the following is one of the motivating questions.

Let Ω be a smooth compact Riemannian manifold with the boundary Γ,
−∆ the (scalar) Laplace operator, L0 = −∆|C∞

0 (Ω\Γ) the minimal Laplacian in H =

L2(Ω). Assume that we are given with a unitary copy L̃0 = UL0U∗ in a space
H̃ = UH (but Ω,H and U are unknown!). To what extent does L̃0 determine the
manifold Ω?

So, we have no points, boundaries, tensors, etc., whereas the only thing
given is an operator L̃0 in a Hilbert space H̃. Provided the operator is unitarily
equivalent to L0, is it possible to “extract” Ω from L̃0? Such a question is an
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invariant version of various setups of dynamical and spectral inverse problems
on manifolds [2], [4].

CONTENT. Substantially, the answer is affirmative: for a generic class of mani-
folds, any unitary copy of the minimal Laplacian determines Ω up to isometry
(Theorem 4.2). A wave spectrum is a construction that realizes the determination
L̃0 ⇒ Ω and thus solves inverse problems.

With a closed densely defined symmetric semi-bounded operator L0 of
nonzero defect indexes in a separable Hilbert space H we associate a topologi-
cal space ΩL0 (its wave spectrum). The space consists of the atoms of a lattice with
inflation determined by L0. The lattice is composed of reachable sets of an ab-
stract dynamical system with boundary control governed by the evolutionary equa-
tion utt + L∗0u = 0. The wave spectrum is endowed with a relevant topology.

Since the definition of ΩL0 is of invariant character, the spectra ΩL0 and
ΩL̃0

of unitarily equivalent operators L0 and L̃0 turn out to be homeomorphic.
So, the wave spectrum is a (hopefully, new) unitary invariant of a symmetric
semi-bounded operator.

A wide generic class of the so-called simple manifolds is introduced. Roughly
speaking, simplicity means that the symmetry group of Ω is trivial. The central
Theorem 4.2 establishes that for a simple Ω, the wave spectrum of its minimal
Laplacian L0 is metrizable and isometric to Ω. Hence, any unitary copy L̃0 of L0

determines the simple Ω up to isometry by the scheme L̃0 ⇒ ΩL̃0

isom
= ΩL0

isom
=

Ω. In applications, it is the procedure which recovers manifolds by the boundary
control method [2], [4]: concrete inverse data determine the relevant L̃0, which
enables one to realize the scheme.

We discuss one more option: elements of the space H can be realized as
“functions” on ΩL0 (in the BC-method, such an option is interpreted as visualiza-
tion of waves [4]). Hopefully, this observation can lead to a functional model of a
class of L0s and/or Spaces of Boundary Values. Presumably, this model will be
local, i.e., satisfying supp (Lmod

0 )∗y ⊆ supp y.

COMMENTS. The concept of wave spectrum summarizes rich “experimental ma-
terial” accumulated in inverse problems of mathematical physics in the frame-
work of the BC-method, and elucidates its operator background. For the first
time, ΩL0 has appeared in [1] in connection with the M. Kac problem; its later
version (called a wave model) is presented in [4] (Section 2.3.4). Owing to its in-
variant nature, ΩL0 promises to be useful for further applications to unsolved
inverse problems of elasticity theory, electrodynamics, graphs, etc.

Our paper is of pronounced interdisciplinary character. “Wave” terminol-
ogy, which we use, is motivated by close relations to applications.

The path from L0 to ΩL0 passes through an intermediate object, which is a
sublattice LL0 of the lattice L(H) of subspaces in H. Section 1 is an excursus to
the lattice theory, in course of which we introduce lattices with inflation. The wave
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spectrum appears as a set of atoms of the relevant lattice with inflation determined
by L0.

We give attention to connections of our approach with C∗-algebras. As is
shown, if Ω is a compact simple manifold then ΩL0 is identical to the Gelfand
spectrum of the continuous function algebra C(Ω). By the recent trend in the
BC-method, to recover unknown manifolds via boundary inverse data is to find
spectra of relevant algebras determined by the data [5]. We hope for utility and
further promotion of this trend.

Reducing the volume of the paper, we do not prove propositions. The
proofs are quite elementary and a typical technique is presented in Appendix.

1. LATTICE WITH INFLATION

1.1. BASIC OBJECTS.

LATTICE. Let L be a lattice, i.e. a partially ordered set (poset) with the order 6
and operations a ∧ b = inf{a, b}, a ∨ b = sup{a, b}. Also, we assume that L is
endowed with the least element 0 satisfying 0 < a for a 6= 0 [7].

The order topology on L is introduced through the order convergence: xj → x if
there are the nets {aj}j∈J ↑ and {bj}j∈J ↓ (J is a directed set) such that aj 6 xj 6 bj
and sup{aj} = x = inf{bj} holds (we write aj ↑ x and bj ↓ x). For an A ⊂ L, the
inclusion x ∈ A occurs if and only if there are aj, bj ∈ A such that aj ↑ x and/or
bj ↓ x [7].

REMARK 1.1. Everywhere ( ) denotes a topological closure. In some places,
to avoid the confusion, we specify the space.

EXAMPLE 1.2. The lattice L = 2Ω of subsets of a set Ω with the order 6=⊆,
operations ∧ = ∩,∨ = ∪, and 0 = ∅.

EXAMPLE 1.3. The (sub)lattice O ⊂ 2Ω of open sets of a topological space
Ω. The convergence ωj ↑ ω means ω = sup{ωj} =

⋃
j

ωj. The convergence

ωj ↓ ω means ω = inf{ωj} = int
⋂
j

ωj, where int A is the set of interior points of

A ⊂ Ω.

INFLATION. For a lattice L, the set FL := F ([0, ∞);L) of L-valued functions is
also a topologized lattice with respect to the point-wise order, operations, and
convergence. 0FL

is the function equal to 0L identically.
A map I : L→ FL is said to be an inflation if for all a, b ∈ L and s, t ∈ [0, ∞)

one has:

(i) (Ia)(0) = a and I0L = 0FL
,

(ii) a 6 b and s 6 t imply (Ia)(s) 6 (Ib)(t).
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Inflation is injective: I−1 f = f (0) on IL.

EXAMPLE 1.4. Ω is a metric space with the distance d. For a subset A ⊂
Ω, by

At := {x ∈ Ω : d(x, A) < t} (t > 0)

we denote its metric neighborhood, ant put A0 := A, ∅t = ∅. The map M : 2Ω →
F2Ω , (MA)(t) := At, t > 0 is a metric inflation. The image M2Ω is a semilattice:
Ma∨Mb = M(a∨ b) ∈ M2Ω. The image of open sets is a (sub)semilattice MO ⊂
FO ⊂ F2Ω .

ATOMS. Let P be a poset with the least element 0. An α ∈ P is called an atom if
0 < a 6 α implies a = α [7]. By AtP we denote the set of atoms.

EXAMPLE 1.5. Each atom of 2Ω is a single point set: At 2Ω = {{x} : x ∈ Ω}.

EXAMPLE 1.6. If the open sets of a topological space Ω are infinitely divisi-
ble, i.e., for any ∅ 6= A ∈ O there is ∅ 6= B ∈ O such that B ⊂ A and A\B 6= ∅.
Then AtO contains no elements.

Inflation preserves atoms: IAtL ⊆ At IL.
For any lattice with inflation, the set ΩIL := At IL ⊂ FL (the closure in FL-

topology) is well defined (but the case of empty ΩIL is not excluded). This set is
a key object of the paper. Namely, the following effect will be exploited: there are
lattices and inflations such that AtL is empty but At IL is not. Inflation can create
atoms!

There is a natural topology on ΩIL ⊂ FL. For atoms α, β ∈ ΩIL, we say that
α influences on β at the moment t if α(t) ∧ β(ε) 6= 0L for any positive ε. Define
tαβ := inf{t > 0 : α(t) ∧ β(ε) 6= 0L∀ε > 0}. If α(t) ∧ β(ε) = 0L for all positive t
and ε, we put tαβ = ∞.

A function τIL : ΩIL ×ΩIL → [0, ∞) ∪ {∞}, τIL(α, β) := max{tαβ, tβα} is
called an interaction time.

Define the balls Br[α] := {β ∈ ΩIL : τIL(α, β) < r}(r > 0), B0[α] := α.

DEFINITION 1.7. By (ΩIL, τIL) we denote the topological space that is the
set ΩIL endowed with the minimal topology which contains all balls.

Surely, at this level of generality, to expect for rich properties of this space
is hardly reasonable. However, in “good” cases the function τIL turns out to be a
metric.

PROPOSITION 1.8. Let (Ω, d) be a complete metric space, L = 2Ω, I = M (see
Example in 1.4). The correspondence Ω 3 x ↔ M{x} ∈ F2Ω is a bijection between
the sets Ω and ΩM2Ω = At M2Ω = At M2Ω = MAt 2Ω = {M{x} : x ∈ Ω}. The
equality τM2Ω(M{x}, M{y}) = d(x, y) holds. Function τM2Ω is a metric on atoms,
whereas (ΩM2Ω , τM2Ω) is a metric space isometric to (Ω, d). The isometry is realized by
the bijection M{x} ↔ x.
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TOPOLOGIES. There are other topologies on atoms, which are also inspired by
the metric topology. The first one is introduced via a closure operation: for a set
W ⊂ ΩIL, we put

W :=
{

α ∈ ΩIL :
∨

β∈W
β
F
> α

}
.

It is easy to check that the map W 7→ W satisfies all Kuratowsky axioms and,
hence, determines a unique topology ρIL in ΩIL. Note a certain resemblance
(duality) of such a topology to Jacobson’s topology on the set I of primitive ideals
of a C∗-algebra A. Namely, for a W ⊂ I , one defines its closure by

W :=
{

i ∈ I :
⋂

b∈W

b ⊆ i
}

(see, e.g., [15]).
One more topology is the following. We define the “balls” by

Br[α] :=
{

β ∈ ΩIL : ∃t0 = t0(α, β, r) > 0 such that 0 6= β(t0)
L
6 α(r)

}
(r > 0).

As one can verify, the system {Br[α]}α∈ΩIL ,r>0 is a base of topology. Hence, it
determines a unique topology, which we denote by σIL.

If L = 2R
n

and I is the (Euclidean) metric inflation, the topologies τIL, ρIL,
and σIL coincide with the standard Euclidean metric topology in Rn.

ISOMORPHIC LATTICES. Let L and L′ be two lattices with inflations I and I′ re-
spectively. We call them isomorphic through a bijection i : L → L′ if i preserves
the order, lattice operations, and i((IA)(t))=(I′i(A))(t) holds for all A∈L and t.

The bijection i can be extended to a bijection on functions i : FL → FL′

by (i f )(t) := i( f (t)), t > 0. Such an extension connects the atoms: i(At IL) =

At I′L′. The following fact is quite obvious.

PROPOSITION 1.9. If the lattices with inflation L and L′ are isomorphic then the
spaces (ΩIL, τIL) and (ΩI′L′ , τI′L′) are homeomorphic. The homeomorphism is realized
by the bijection i on atoms.

1.2. LATTICES IN METRIC SPACE.

LATTICE O. Return to Example 1.4 and assume in addition that:

(A1) Ω is a complete metric space,
(A2) for all x ∈ Ω, the balls {x}t are compact and {x}t\{x} s 6= ∅ as s < t.

By (A2), open sets are infinitely divisible. Therefore, AtO = ∅ holds.
Fix an x ∈ Ω and define the functions x∗, x∗ ∈ FO : x∗(t) := {x}t as t > 0,

x∗(0) := 0O , and x∗(t) := int {x}t as t > 0. Evidently, we have x∗ 6 x∗ in
FO . The upper function satisfies x∗ = lim

ε→0
M({x}ε) ∈ MO, x∗(0) = 0O . The

“clearance” between the functions is “small”: x∗(t) = x∗(t), t > 0. However, we
cannot claim that x∗ ∈ MO.
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Since x∗ ∈ MO, the segment [x∗, x∗] := { f ∈ FO : x∗ 6 f 6 x∗} intersects
with MO. The poset [x∗, x∗]∩MO is a closed subset in FO bounded from below.
Hence, it contains minimal elements, which can be easily recognized as the atoms
of MO. So, ΩMO := AtMO 6= ∅.

EXAMPLE 1.10. For Ω ⊆ Rn one has x∗ = x∗. Therefore, each segment
[x∗, x∗] contains one (and only one) atom {x}t, t > 0. We don’t know whether the
same is valid for a Riemannian manifold Ω.

For an atom α ∈ AtMO, define a kernel α̇ :=
⋂

t>0
α(t) ⊂ Ω.

PROPOSITION 1.11. For each α, its kernel α̇ consists of a single point xα ∈ Ω.
Each atom α belongs to the segment [(xα)∗, (xα)∗]. If α̇ = β̇ then α(t) = β(t), t > 0
holds.

These facts follow from a general lemma stated and proved in Appendix.
With each x ∈ Ω one associates the class of atoms 〈α〉x := [x∗, x∗] ∩AtMO.

For α, β ∈ 〈α〉x one has α(t) = β(t)(= {x}t), t > 0. Hence, α and β interact at any
t > 0. As a result, we have τMO(α, β) = 0.

The relation {α ∼ β} ⇔ {τMO(α, β) = 0} is an equivalence on ΩMO .
The factor-set Ω′MO := ΩMO/∼ is bijective to Ω through the map 〈α〉 7→ α̇.
The function τ′MO(〈α〉, 〈β〉) := τMO(α, β) is a metric on Ω′MO . The equality
τ′MO(〈α〉x, 〈α〉y) = d(x, y) is valid for all x, y ∈ Ω and we conclude the following.

PROPOSITION 1.12. The metric space (Ω′MO , τ′MO) is isometric to (Ω, d). The
isometry is realized by the bijection 〈α〉x ↔ x.

LATTICE Oreg. For a set A ⊂ Ω, denote by ∂A := A ∩Ω\A its boundary. Note
that ∂(A ∩ B) ⊆ ∂A ∪ ∂B and ∂(A ∪ B) ⊆ ∂A ∪ ∂B.

Recall that we deal with complete and locally compact metric spaces: see
(A1)–(A2). In addition, assume that Ω is endowed with a Borel measure µ such
that:

(A3) for any A ⊂ Ω and t > 0, the relation µ(∂At) = 0 holds.

EXAMPLE 1.13. Ω is a smooth Riemannian manifold with the canonical
measure (volume). In particular, Ω ⊆ Rn with the Lebesgue measure [11].

An open set A ⊂ Ω is called regular if µ(∂A) = 0. The system of regular
sets is denoted by Oreg. Note that our definition is similar to (but differs from)
the definition of regularity in [7], p. 216.

As is evident, Oreg is a sublattice in O. It is a base of O: each open set is a
sum of regular sets (balls). By (A3), Oreg is invariant with respect to the metric
inflation: (MOreg)(t) ⊂ Oreg, t > 0. In other words, we have MOreg ⊂ FOreg .

Fix an x ∈ Ω. Note that x∗, x∗ ∈ FOreg and x∗ ∈ MOreg. Using arguments
quite analogous to those which have led to Proposition 1.12, and factorizing the
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set of atoms with respect to the same equivalence∼, one can obtain the following
result.

PROPOSITION 1.14. The metric space (Ω′MOreg , τ′MOreg) is isometric to (Ω, d).
The isometry is realized by the bijection 〈α〉x ↔ x.

The operation A 7→ A∗ := int (Ω\A) is well defined on Oreg and called a
pseudo-complement [7]. The relations A ∩ A∗ = ∅ and A ⊆ (A∗)∗ are valid.

LATTICE R. Introduce an equivalence on Oreg: we put A ' B if A = B. Define
R := Oreg/ '. By [A] we denote the equivalence class of A.

Endow R with the order and operations:

[A] 6 [B] if A ⊆ B;

[A] ∧ [B] := [A ∩ B], [A] ∨ [B] := [A ∪ B];

[A]⊥ := [A∗](= [int (Ω\A)]).

The least and greatest elements are 0 := [∅] and 1 := [Ω].
One can easily check the well-posedness of these definitions and prove the

following relations:

[A] ∧ [A]⊥ = 0, [A] ∨ [A]⊥ = 1;

([A] ∧ [B])⊥ = [A]⊥ ∨ [B]⊥, ([A] ∨ [B])⊥ = [A]⊥ ∧ [B]⊥.

Hence R is a lattice with the complement [ · ]⊥ [7].
For f ∈ FOreg , define [ f ] ∈ FR by [ f ](t) := [ f (t)], t > 0.
Introduce the metric inflation on R by M : R→ FR, (M[A])(t) := [(MA)(t)]

= [At], t > 0.
The relation AtMR = {[α] : α ∈ AtMOreg} holds. The map A 7→ [A] iden-

tifies the atoms belonging to the same class: if α, β ∈ 〈α〉x then α(t) = β(t), t > 0
that implies [α] = [β]. By this, the set ΩMR = AtMR turns out to be bijective
to Ω, whereas the “interaction time” τMR turns out to be a metric. Thus, we
arrive at

PROPOSITION 1.15. The metric space (ΩMR, τMR) is isometric to (Ω, d). The
isometry is realized by the bijection [α]↔ xα.

LATTICE RH . Introduce a Hilbert spaceH := L2,µ(Ω).
For a measurable set A ⊂ Ω, define the subspace HA := {χAy : y ∈ H},

where χA is the indicator of A. Such subspaces are called geometric. If A ∈ Oreg

then µ(A\A) = µ(∂A) = 0 that leads toHA = HA.
If A ∈ Oreg, we say the subspace HA to be regular. The system of regular

subspaces is denoted by RH.
Let L(H) be the lattice of subspaces of the space H (see item 2.1, “Inflation

inH” below). The system RH ⊂ L(H) is a sublattice.
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Introduce a map i : R → RH, i[A] := HA. As is easy to check, it preserves
the operations and complement. The latter means i([A]⊥) = (HA)⊥ = H 	
HA = HA∗.

Extend i to functions: for an f ∈ FR we put

i f ∈ FRH ⊂ FL(H), (i f )(t) := i( f (t)), t > 0.

Also, define a metric inflation on RH by

iM : RH → FL(H), (iMHA)(t) := H((MA)(t)) = i[At] = HAt, t > 0.

Thus, i is an isomorphism of lattices with inflation. Propositions 1.11 and
1.15 lead to the following result.

PROPOSITION 1.16. The metric space (ΩiMRH , τiMRH ) is isometric to (Ω, d).
The isometry is realized by the bijection i[α]↔ xα.

The meaning of the passageOreg → RH is that it “codes” regular subsets of
Ω in Hilbert terms. Later, in inverse problems, we will see that the inverse data
determine an isometric copy of the lattice RH along with the metric inflation iM
on it. Thereafter, we can construct the space (ΩiMRH , τiMRH ) and thus get an
isometric copy of the original space (Ω, d), i.e., recover the latter up to isometry.
It is a plan which will be realized Section 4.

DENSE SUBLATTICE. We call a system of subsets N ⊂ Oreg dense in Oreg, if for
any x ∈ Ω and A ∈ Oreg provided x ∈ A there is an N ∈ N such that x ∈ N ⊂ A.
If, moreover, N is a sublattice such that MN ⊆ N holds, we call it a dense M-
invariant sublattice in Oreg.

Let RN ⊆ R be the image of N through the map A 7→ [A]. The following
fact can be derived as a consequence of density.

PROPOSITION 1.17. IfN is a dense M-invariant sublattice, then the metric space
(ΩMRN , τMRN ) is isometric to (Ω, d). The isometry is realized by the bijection [α]↔xα.

Let RHN ⊂ RH ⊂ L(H) be the image of N through the map N 3 N 7→
HN ∈ RH. The image is an iM-invariant sublattice in RH. The next result is a
straightforward consequence of the previous one.

PROPOSITION 1.18. If N ⊂ Oreg is a dense M-invariant sublattice then the
metric space (ΩiMRHN

, τiMRHN
) is isometric to (Ω, d). The isometry is realized by the

bijection i[α]↔ xα.

Later, in applications, we will deal with concrete Ω and N .

The relation (Ω, d) isom
= (ΩiMRHN

, τiMRHN
) is the final goal of our excursus to

the lattice theory. It represents the original metric space as collection of atoms of
relevant Hilbert lattice with inflation. This representation will play the key role
in reconstruction of Ω via inverse data.
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2. WAVE SPECTRUM

2.1. BASIC OBJECTS.

INFLATION IN H. Let H be a separable Hilbert space, L(H) the lattice of its
(closed) subspaces equipped with the order 6=⊆, operations A ∧ B = A ∩ B,
A ∨ B = {a + b : a ∈ A, b ∈ B}, the complement A 7→ A⊥ = H 	 A, and ex-
tremal elements 0 = {0}, 1 = H. A sublattice of L(H) is a subset closed with
respect to the operations and complement. Each sublattice contains 0 and 1.

By PA we denote the (orthogonal) projection onto A ∈ L(H). Also, if A is a
non-closed lineal set, we put PA := PA.

Let B(H) be the algebra of bounded operators. For an S ⊆ B(H), by ProjS
we denote the set of projections belonging to S .

For a lattice L ⊆ L(H), with a slight abuse of notation, we put ProjL :=
{PA : A ∈ L}. The map L 3 A 7→ PA ∈ ProjL induces the lattice structure
on ProjL: PA ∧ PB = PA∧B , PA ∨ PB = PA∨B , (PA)⊥ = PA⊥ . For P, Q ∈ ProjL
the relation P 6 Q means RanP ⊆ RanQ and holds if and only if (Px, x) 6
(Qx, x), x ∈ H. The extremal elements of ProjL are the zero and unit operators O
and I.

The same map relates the order topology on L(H) with the strong operator
topology on B(H): A = limAj in L(H) if and only if PA = s-lim PAj in B(H).

Recall that the metric inflation iM inH = L2,µ(Ω) is defined on a sublattice
RH ⊂ L(H). In contrast to it, in what follows we deal with inflations defined on
the whole L(H).

For an inflation I : L(H)→ FL(H), we denote At := (IA)(t), t > 0. Also, it
is convenient to regard inflation as an operation on projections:

I : ProjB(H)→ FProjB(H), (IP)(t) = Pt := P(IRanP)(t), t > 0,

A lattice L ⊂ L(H) is said to be I-invariant if IL ⊂ FL holds, i.e. A ∈ L

implies (IA)(t) ∈ L, t > 0.

DEFINITION 2.1. Let f ⊆ L(H) be a family of subspaces. Define L[I, f] ⊆
L(H) as the minimal I-invariant lattice, which contains f.

SPECTRA. Let H and I be given, L be an I-invariant lattice. Recall that the space
of atoms with the interaction time topology was introduced by Definition 1.7.

DEFINITION 2.2. The space ΩAt
IL := (ΩIL, τIL) is called an atomic spectrum

of the lattice L.

REMARK 2.3. One more option is to define the atomic spectrum as (ΩIL, ρIL)
or (ΩIL, σIL) (see 1.1, “Atoms”). In applications, which we know and deal with,
these spaces turn out to be identical. Our reserve of concrete examples is rather
poor and provides no preferable choice of topology.
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There is a version of this notion. Each function f ∈ IL ⊂ FL is an increasing
family of subspaces { f (t)}t>0 ⊂ L(H), i.e., a nest [10]. The corresponding nest of

projections {Pt
f }t>0, Pt

f := Pf (t) determines a self-adjoint operator E f :=
∞∫
0

tdPt
f .

It acts inH and is called an eikonal. The set of eikonals is EikL := {E f : f ∈ IL}.

DEFINITION 2.4. A metric space Ωnest
IL := {Eα : α ∈ ΩIL} with the distance

‖Eα − Eβ‖ is called a nest spectrum of the lattice L.

Caution! We do not assume Eα to be a bounded operators, so that the patho-
logic situation dist(Eα, Eβ) = ∞ is not excluded. However, a “good” case, when
all the differences Eα − Eβ are bounded operators, is realized in applications.

Note in addition that the nests, which correspond to the atoms, can be rec-
ognized as minimal nests (in the relevant sense: see [4]). Therefore, one can regard
Ωnest

IL just as the metrized set of atoms.
One more version is the following.
Let us say that we deal with a bounded case if the set of eikonals of the lattice

is uniformly bounded:

sup{‖E‖ : E ∈ EikL} < ∞.

With a lattice L one associates the von Neumann operator algebra (i.e., a
unital weekly closed self-adjoint subalgebra of B(H): see [15]) NL ⊆ B(H) gen-
erated by the projections of L, i.e., the minimal von Neumann algebra satisfying
ProjL ⊆ ProjNL.

In the bounded case, we have EikL ⊂ NL (the closure in the strong operator
topology). The elements of this closure are also called eikonals.

The set EikL is partially ordered: for two eikonals E, E′, we write E 6 E′ if
(Ex, x) 6 (E′x, x), x ∈ H. An eikonal E is maximal if E 6 E′ implies E = E′. By
Ωeik

IL ⊂ EikL we denote the set of maximal eikonals.

LEMMA 2.5. In the bounded case, the set Ωeik
IL is nonempty.

Proof. By the boundedness, any totally ordered family of eikonals {Ej} has
an upper bound s-limEj, which is also an eikonal. Hence, the Zorn lemma implies
Ωeik

IL 6= ∅.

DEFINITION 2.6. A metric space Ωeik
IL with the distance ‖E − E′‖ is called

an eikonal spectrum of the lattice L.

In the general (unbounded) case, one can regularize the eikonals as

Eε
f :=

∞∫
0

t
1 + εt

dPt
f (ε > 0)

and deal with the corresponding spectra Ωeik,ε
IL 6= ∅.
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2.2. INFLATION IL .

DYNAMICAL SYSTEM. Let L be a semi-bounded self-adjoint operator inH. With-
out lack of generality, we assume that it is positive definite:

L = L∗ =
∞∫
κ

λdQλ; (Ly, y) > κ‖y‖2, y ∈ Dom L ⊂ H,

where dQλ is the spectral measure of L, κ > 0 is a constant.
Operator L governs the evolution of a dynamical system

vtt + Lv = h, t > 0,(2.1)

v|t=0 = vt|t=0 = 0,(2.2)

where h ∈ Lloc
2 ((0, ∞);H) is a H-valued function of time (control). Its solution

v = vh(t) is represented by the Duhamel formula

vh(t) =
t∫

0

L−1/2 sin[(t− s)L1/2]h(s)ds

=

t∫
0

ds
∞∫

0

sin
√

λ(t− s)√
λ

dQλh(s), t > 0(2.3)

(see, e.g., [8]). (For κ 6 0, problem (2.1), (2.2) is also well defined but the rep-
resentation (2.3) is of slightly more complicated form.) In system theory, vh is
referred to as a trajectory; vh(t) ∈ H is a state at the moment t. In applications, vh

describes a wave initiated by a source h.
Fix a subspace A ⊆ H. The set V t

A := {vh(t) : h ∈ Lloc
2 ((0, ∞);A)} of all

states produced by A-valued controls is called reachable (at the moment t, from
the subspaceA). Reachable sets are increasing: A ⊆ B and s 6 t imply V s

A ⊆ V
t
B .

DYNAMICAL INFLATION. With the system (2.1), (2.2) one associates a map IL :
L(H)→ FL(H), (ILA)(0) := A, (ILA)(t) := V t

A, t > 0.

LEMMA 2.7. IL is an inflation.

Proof. The relation (ILA)(s) ⊆ (ILB)(t) as A ⊆ B and 0 < s 6 t is a
consequence of the general properties of reachable sets. The only fact we need to
verify is that the map extends subspaces: A ⊆ (ILA)(t), t > 0.

By χ[a,b] we denote the indicator of the segment [a, b] ⊂ R. Fix an r > 0
and ε ∈ (0, r). Define the functions ϕε(t) := ε−2χ[−ε,ε](t)sign(−t) and ϕr

ε(t) :=

ϕε(t− r + ε) for t ∈ R. Note that
r∫

0
ϕr

ε(t) f (t)dt → − f ′(r) as ε → 0 for a smooth

f , i.e., ϕr
ε(t) converges to δ′(t− r) as a distribution.
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For λ > 0, define the function

ψε(λ) :=
r∫

0

sin[
√

λ(r− t)]√
λ

ϕr
ε(t)dt =

2 cos(
√

λε)− cos(
√

λ2ε)− 1
ε2λ

.

Note that ψε(λ) →
ε→0

1 as ε→ 0 uniformly with respect to λ in any segment [κ, N].

Take a nonzero y ∈ A and consider (2.1), (2.2) with the control hε(t) =
ϕr

ε(t)y. By the properties of ψε one has

‖y− vhε(r)‖2 (2.3)
=
∥∥∥y−

r∫
0

dt
∞∫
κ

sin[
√

λ(r− t)]√
λ

dQλ[ϕε(t)y]
∥∥∥2

=
∥∥∥y−

∞∫
κ

ψε(λ)dQλy
∥∥∥2

=
∥∥∥ ∞∫
κ

[1− ψε(λ)]dQλy
∥∥∥2

=

∞∫
κ

|1− ψε(λ)|2d‖Qλy‖2 →
ε→0

0.

The order of integration change is easily justified by the Fubini theorem.
Thus, y = lim

ε→0
vhε(r), whereas vhε(r) ∈ (ILA)(r) holds. Since (ILA)(r) is

closed inH, we get y ∈ (ILA)(r). Hence, A ⊆ (ILA)(r), r > 0.

So, each positive definite operator L determines the inflation IL , which we
call a dynamical inflation.

2.3. SPACE ΩL0 .

LATTICE LL,D AND SPECTRA. Fix a subspace D ∈ L(H) and call it a directional
subspace.

Return to the system (2.1)–(2.2). Introduce the classMD :={h∈C∞([0,∞);D)
: supp h ⊂ (0, ∞)} of smooth D-valued controls vanishing near t = 0. This class
determines the sets

U t
D := {h(t)− vh′′(t) : h ∈ MD}

(2.3)
=
{

h(t)−
t∫

0

L−1/2 sin[(t− s)L1/2]h′′(s)ds : h ∈ MD
}

, t > 0,(2.4)

where ( · )′ := d/dt. They are also called reachable. As one can show, the sets U t
D

are increasing as t grows.

DEFINITION 2.8. The family of subspaces uL,D = {U t
D}t>0 ⊆ L(H) is called

a boundary nest.

The boundary nest determines the lattice LL,D := L[IL, uL,D ], which is the
minimal IL-invariant sublattice in L(H) containing uL,D (item 2.1, “Inflation
inH”).
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The lattice determines the spectra ΩAt
ILLL,D

and Ωnest
ILLL,D

. In the bounded case,

the spectrum Ωeik
ILLL,D

is also well defined (Definition 2.6).

LATTICE LL0 AND SPECTRA. Let L0 be a closed densely defined symmetric semi-
bounded operator with the defect indexes 0 6= n+ = n− 6 ∞. As is easy to see,
such an operator is necessarily unbounded. For the sake of simplicity, we assume
it to be positive definite: (L0y, y) > κ‖y‖2, y ∈ DomL0 with κ > 0.

Let L be the Friedrichs extension of L0, so that L = L∗ > κI and L0 ⊂ L ⊂ L∗0
holds [8]. Also, note that 1 6 dimKer L∗0 = n 6 ∞.

With the operator L0 one associates two objects: the inflation IL and the di-
rectional subspace D = KerL∗0 . This pair determines the boundary nest uL0 :=
uL,KerL∗0

= {U t
KerL0

}t>0 and the lattice LL0 := LL,KerL∗0
. The nest and lattice deter-

mine the corresponding spectra, and we arrive at the key subject of the paper.

DEFINITION 2.9. The space ΩL0 := ΩAt
ILLL0

is called the wave spectrum of the
operator L0.

Recall that ΩL0 is endowed with topology: see item 1.1, “Topologies”, and
Remark 2.3.

By analogy with the latter definition, one can introduce the metric spaces
Ωnest

L0
:= Ωnest

LL0
and, in the bounded case, Ωeik

L0
:= Ωeik

LL0
, which are also deter-

mined by L0.
As is evident from their definitions, the spectra are unitary invariants of the

operator.

PROPOSITION 2.10. If U : H → H̃ is a unitary operator and L̃0 = UL0U∗

then ΩL̃0
is homeomorphic to ΩL0 . If H = H1 ⊕H2 and L0 = L1

0 ⊕ L2
0 then ΩL0 =

ΩL1
0
∪ΩL2

0
.

These properties motivate the use of term “spectrum”. The same properties
occur for Ωnest

L0
and Ωeik

L0
, replacing “homeomorphic” with “isometric”.

STRUCTURES ON ΩL0 . The boundary nest uL0 can be regarded as an element
(function) of the space FL(H). As such, it can be compared with the atoms, which
constitute the wave spectrum ΩL0 ⊂ FL(H).

DEFINITION 2.11. The set ∂ΩL0 := {α ∈ ΩL0 : α 6 uL0} is said to be the
boundary of ΩL0 . Recall that α 6 uL0 in FL(H) means that α(t) ⊆ U t holds for
t > 0.

Also, it is natural to put ∂Ωnest
L0

:= ∂ΩL0 . In the bounded case, one intro-

duces the boundary eikonal E∂ =
∞∫
0

tdPU t
KerL0

and defines ∂Ωeik
L0

= {E ∈ Ωeik
L0

: E >

E∂} (see [6]).
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There is a way to represent elements of H as “functions” on the wave spec-
trum. Fix an atom α ∈ ΩL0 : α = α(t), t > 0. Let Pt

α := Pα(t) be the corresponding

projections. For w, y ∈ H, we put w α
= y if there is ε = ε(w, y, α) > 0 such that

Pt
αw = Pt

αy as t < ε. The relation α
= is an equivalence. The equivalence class

[y]α =: Gy(α) is called a wave germ (of the element y at the atom α).

DEFINITION 2.12. The germ-valued function Gy : α 7→ [y]α, α ∈ ΩL0 is
called a wave image of the element y.

The collection G := {Gy : y ∈ H} is a linear space with respect to the point-
wise algebraic operations: (λGw + µGy)(α) := [λw + µy]α, α ∈ ΩL0 . The linear
map I : H 3 y 7→ Gy ∈ G is called an image operator.

3. DYNAMICAL SYSTEM WITH BOUNDARY CONTROL

3.1. GREEN SYSTEM.

RYZHOV AXIOMS. Consider a collection {H,B; A, Γ0, Γ1} of separable Hilbert
spaces H and B, and densely defined operators A : H → H and Γk : H →
B(k = 0, 1) connected via the Green formula

(Au, v)H − (u, Av)H = (Γ0u, Γ1v)B − (Γ1u, Γ0v)B .

The space H is called an inner space; B and Γk are referred to as a boundary values
space and the boundary operators respectively [14]. Such a collection is said to be a
Green system.

The following additional conditions are imposed:

(R1) Dom Γk ⊇ Dom A holds. The restriction A|Ker Γ0∩Ker Γ1 =: L0 is a densely
defined symmetric positive definite operator with nonzero defect indexes. The
relation A = L∗0 is valid (“bar” is the operator closure).

(R2) The restriction A|Ker Γ0 =: L coincides with the Friedrichs extension of L0,
so that we have L0 ⊂ L ⊂ L∗0 = A. Operator L−1 is bounded and defined onH.

(R3) The subspaces A := Ker A and D := Ker L∗0 are such that the relations
A = D and Γ0A = B hold.

These conditions were introduced by V.A. Ryzhov [16], which puts them as
basic axioms. Note that there are a few versions of such an axiomatics but the
one proposed in [16] seems to be most relevant for applications to forward and
inverse multidimensional problems of mathematical physics.

The following consequences are derived from (R1)–(R4) of [16].

(C1) The operator Π := (Γ1L−1)∗ : B → H is bounded. The set Ran Π is dense
in D.

(C2) The representation A = {y ∈ Dom A : ΠΓ0y = y} is valid.
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(C3) Since L is the extension of L0 by Friedrichs, the relations Dom L0 = L−1[H	
D] and L0 = L|L−1[H	D] easily follow from the definition of such an extension
(see [8]).

ILLUSTRATION. Let Ω be a C∞-smooth compact Riemannian manifold with the
boundary Γ, ∆ the (scalar) Beltrami–Laplace operator in H := L2(Ω), ν the out-
ward normal on Γ, B := L2(Γ).

Denote A = −∆|H2(Ω), Γ0u = u|Γ, Γ1u = ∂νu|Γ, so that Γ0,1 are the trace
operators. Here Hk are the Sobolev classes; H2

0(Ω) = {y ∈ H2(Ω) : y = |∇y| =
0onΓ}; ∂ν is the differentiation with respect to the outward normal on Γ.

The collection {H,B; A, Γ0, Γ1} is a Green system. Other operators, which
enter in Ryzhov’s axiomatics, are the following:

(i) L0 = −∆|H2
0 (Ω) is the minimal Laplacian that coincides with the closure of

−∆|C∞
0 (Ω\∂Ω);

(ii) L = −∆|H2(Ω)∩H1
0 (Ω) is the self-adjoint Dirichlet Laplacian;

(iii) L∗0 = −∆|{y∈H:∆y∈H} is the maximal Laplacian;
(iv) A = {y ∈ H2(Ω) : ∆y = 0} is the set of harmonic functions of the class

H2(Ω);
(v) D = {y ∈ H : ∆y = 0} is the subspace of all harmonic functions in L2(Ω);

(vi) Π : B → H is the harmonic continuation operator (the Dirichlet problem
solver): Πϕ = u is equivalent to ∆u = 0 in Ω, u|Γ = ϕ.

3.2. EVOLUTIONARY DSBC.

DYNAMICAL SYSTEM. The Green system determines an evolutionary dynamical
system with boundary control.

utt + Au = 0 inH, 0 < t < ∞,(3.1)

u|t=0 = ut|t=0 = 0 inH,(3.2)

Γ0u = f (t) in B, 0 6 t < ∞,(3.3)

where f is a boundary control, u = u f (t) is the solution (wave). The space of con-
trols F = Lloc

2 ((0, ∞);B) is said to be outer.
Assign f to a class F+ ⊂ F if it belongs to C∞([0, ∞);B), takes the values in

Γ0DomA ⊂ B, and vanishes near t = 0, i.e., satisfies supp f ⊂ (0, ∞). Also, note
that f ∈ F+ implies Π( f ( · )) ∈ MD (see item 2.3, “Lattice LL,D and spectra”).

LEMMA 3.1. For f ∈ F+, the classical solution u f to problem (3.1)–(3.3) is
represented in the form

(3.4) u f (t) = h(t)−
t∫

0

L−1/2 sin[(t− s)L1/2]h′′(s)ds, t > 0

with h := Π( f ( · )) ∈ MD .
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Proof. Introducing a new unknown w = w f (t) := u f (t)−Π( f (t)) and tak-
ing into account (C1) (item 3.1, "Ryzhov axioms"), we easily get the system

wtt + Aw = −Π( ftt(t)) inH, 0 < t < ∞,

w|t=0 = wt|t=0 = 0 inH,

Γ0w = 0 in B, 0 6 t < ∞.

With regard to the definition of the operator L (see the axiom (R2)), this problem
can be rewritten in the form

wtt + Lw = −htt inH, 0 < t < ∞,

w|t=0 = wt|t=0 = 0 inH,

and then solved by the Duhamel formula

w f (t) = −
t∫

0

L−1/2 sin[(t− s)L1/2]h′′(s)ds.

Returning back to u f = w f + Π f , we arrive at (3.4).

REACHABLE SETS. The sets

U t
+ :={u f (t) : f ∈ F+}

(3.4)
=
{

h(t)−
t∫

0

L−1/2 sin[(t−s)L1/2]h′′(s)ds : h=Π f ( · ), f ∈F+

}
, t>0(3.5)

are said to be reachable from boundary.
The Green system, which governs the DSBC, determines a certain pair L,D,

which in turn determines the family {U t
D} by (2.4). Comparing (2.4) with (3.5),

we easily conclude that the embedding U t
+ ⊂ U t

D holds. Moreover, the density
properties (R3) (item 3.1, “Ryzhov axioms”) enable one to derive U t

+ = U t
D , t > 0.

It is the latter relation which inspires the definition (2.4) and motivates the terms
“reachable sets”, “boundary nest”, etc. in the general case (item 2.3, “Lattice LL,D
and spectra”), where neither boundary value space nor boundary operators are
defined.

ILLUSTRATION. Return to the “Illustration” in item 3.1. The DSBC (3.1)–(3.3) as-
sociated with the Riemannian manifold is governed by the wave equation and is
of the form

utt −∆u = 0 in Ω× (0, ∞),(3.6)

u|t=0 = ut|t=0 = 0 in Ω,(3.7)

u|Γ = f (t) for 0 6 t < ∞,(3.8)

with a boundary control f ∈ F = Lloc
2 ((0, ∞); L2(Γ)). The solution u = u f (x, t)

describes a wave, which is initiated by boundary sources and propagates from the
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boundary into the manifold with the speed 1. For f ∈ F+ = C∞([0, ∞); C∞(Γ))
provided supp f ⊂ (0, ∞), the solution u f is classical.

By the finiteness of the wave propagation speed, at a moment t the waves fill
a near-boundary subdomain Γt := {x ∈ Ω : dist (x, Γ) < t}. Correspondingly,
the reachable sets U t

+ increase as t grows and the relation U t
+ ⊂ HΓt, t > 0 holds.

Recall that the geometric subspaces HA are defined in item 1.2, “Lattice RH”.
Closing inH, we get U t

D ⊆ HΓt, t > 0.
So, if the pair L,D (or, equivalently, the operator L0) appears in the frame-

work of a Green system, then {U t
D} introduced by the general definition (2.4) can

be imagined as the sets of waves produced by boundary controls. The question
arises: What is the meaning of the corresponding wave spectrum ΩL,D (= ΩL0 )?
In a sense, it is the question which this paper is written for. Speaking in advance,
the answer (Section 3) is that, in the generic case, ΩL0 is identical to Ω.

BOUNDARY CONTROLLABILITY. Return to the abstract DSBC (3.1)–(3.3) and de-
fine for it a certain property. Begin with the following observation. Since the
class of controls F+ satisfies (d2/dt2)F+ = F+, the reachable sets (3.5) satisfy
AU t

+ = U t
+. Indeed, taking f ∈ F+ we have

(3.9) Au f (t)
(3.1)
= −u f

tt(t) = u− f ′′(t) ∈ U t
+.

By the same relations, u f (t) = Aug(t) holds with g = −(
t∫

0
)2 f ∈ F+. Hence, the

sets U t
+ reduce the operator A and its parts A|U t

+
are well defined.

DEFINITION 3.2. The DSBC (3.1)–(3.3) is said to be controllable from boundary
at the time t = T if A|UT

+
= A holds, i.e., one has

(3.10) {{u f (T), Au f (T)} : f ∈ F+} = graph A
(R1)
= graph L∗0 .

Here the closure is taken inH×H; graph A := {{y, Ay} : y ∈ Dom A}.
Controllability means two things. First, since A is densely defined in H,

the equality (3.10) implies U t
+ = H, t > T, i.e., for large times the reachable sets

become rich enough (dense inH). Second, the ‘wave part’ A|UT
+

of the operator A,
which governs the evolution of the system, represents the operator substantially.

In applications to problems in bounded domains, such a property “ever
holds” (typically, for large enough times T). In particular, the system (3.6)–(3.8) is
controllable from boundary for any T > max

x∈Ω
dist (x, Γ) [2], [4].

Let us represent the property (3.10) in the form appropriate for what fol-
lows.

Restrict the system (3.1)–(3.3) on a finite time interval [0, T]. Define the
Hilbert space of controls FT = L2([0, T];B) and the corresponding smooth class
FT
+ ⊂ FT .
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Introduce a control operator WT : FT → H, DomWT = FT
+, WT f := u f (T).

Let WT = UT : WT | be its polar decomposition, where |WT | := ((WT)∗WT)1/2

acts in FT , and UT is an isometry from Ran |WT | ⊂ FT onto Ran WT ⊆ H (see,
e.g., [8]).

LEMMA 3.3. If the DSBC (3.1)–(3.3) is controllable at t = T then the relation
{{|WT | f , |WT |(− f ′′)} : f ∈ F+} = (UT)∗L∗0UT holds.

Proof. Represent (3.10) in the equivalent form {{WT f , WT(− f ′′)} : f ∈ F+}
= graph L∗0 . Since RanUT = UT = H, the isometry UT is a unitary operator.
Applying it to the latter representation, one gets the assertion of the lemma.

As a consequence, we conclude the following.

PROPOSITION 3.4. If the DSBC (3.1)–(3.3) is controllable at t = T then the
operator |WT | determines the operator L∗0 up to unitary equivalence.

RESPONSE OPERATOR. In the DSBC (3.1)–(3.3) restricted on [0, T], an “input–
output” correspondence is described by the response operator RT : FT→FT , Dom R
= FT

+,
(RT f )(t) := Γ1(u f (t)), 0 6 t 6 T.

As illustration, the response operator of the DSBC (3.6)–(3.8) is RT : f 7→
∂νu f |Γ×[0,T].

The key fact of the BC-method is that the operator R2T determines the oper-
ator CT := (WT)∗WT through an explicit formula [2], [3], [4].

PROPOSITION 3.5. The representation CT = (1/2)(ST)∗R2T J2TST holds, where
the operator ST : FT → F 2T extends controls from [0, T] to [0, 2T] by oddness with

respect to t = T, J2T : F 2T → F 2T , (J2T f )(t) =
t∫

0
f (s)ds.

Hence, R2T determines the modulus |WT | = (CT)1/2. By Proposition 3.4,
we conclude that R2T determines the operator L∗0 up to unitary equivalence. Since
L0 = L∗∗0 , we arrive at the following basic fact.

PROPOSITION 3.6. If the DSBC (3.1)–(3.3) is controllable from boundary at t =
T then its response operator R2T determines the operator L0 up to unitary equivalence.

ILLUSTRATION. The system (3.6)–(3.8) is also controllable from boundary. Such
a property is a partial case of the following general fact.

Return to the system (2.1)–(2.1). In our case, the operator L governing
its evolution is the Dirichlet Laplacian −∆ (item 3.1, “Illustration”). Fix a set
A ∈ Oreg. The reachable sets V t

HA consist of the waves produced by sources sup-
ported in A ⊂ Ω. Since the waves propagate with unit velocity, the embedding
V t
HA ⊆ HAt holds evidently. The character of this embedding is a subject of

control theory of hyperbolic PDE.
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The principal result is that the relation V t
HA = HAt is valid for any A ∈ Oreg

and t > 0. It is derived from the fundamental Holmgren–John–Tataru uniqueness
theorem (see, e.g., [2], [4]). In control theory this property is referred to as a
local controllability of manifolds. In notation of item 2.2, “Dynamical inflation”, it
takes the form: (ILHA)(t) = HAt holds for any A ∈ Oreg, t > 0. Since HAt =
(iMHA)(t) by the definition of metric inflation on RH (item 1.2, “Lattice RH”),
we arrive at the following formulation of the local controllability.

PROPOSITION 3.7. The inflations IL and iM coincide on the lattice RH.

Return to the system (3.6)–(3.8) and the embedding U t
D ⊆ HΓt (item 3.2,

“Illustration”). The same HJT-theorem implies the equality U t
D = HΓt, t > 0,

which is referred to as a local boundary controllability of the manifold Ω.
Recall that the boundary nest uL0 = {U t

D}t>0 (D = KerL∗0) is introduced by
Definition 2.11. Let b = {Γt}t>0 ⊂ Oreg be the family of metric neighborhoods
of the boundary Γ. Denote [b] = {[Γt]}t>0 ⊂ R (items 1.2, “Lattice R” and 1.2,
“Lattice RH”). Boundary controllability of Ω is equivalent to the following.

PROPOSITION 3.8. The relation i[ΓT ] = U t
D , t > 0 holds. Hence, i[b] = uL0 .

Boundary controllability implies the following. Since the family {Γt} ex-
hausts Ω for any T > T∗ := sup

x∈Ω

d(x, Γ), the boundary nest {U t
D}t6T exhausts the

space H as T > T∗. By this, the system (3.6)–(3.8) turns out to be controllable as
T > T∗ [2], [4].

Hence, by Proposition 3.6, given for a fixed T > 2T∗ the response operator
RT of the system (3.6)–(3.8) determines the minimal Laplacian L0 up to unitary
equivalence.

3.3. STATIONARY DSBC.

WEYL FUNCTION. Here we follow the paper [16], and deal with the same Green
system {H,B; A, Γ0, Γ1} and the associated operators L0, L.

The problem

(A− zI)u = 0 inH, z ∈ C,(3.11)

Γ0u = ϕ in B,(3.12)

is referred to as a stationary DSBC. For ϕ ∈ Γ0Dom A and z ∈ C\ spec L, such a
problem has a unique solution u = uϕ

z , which is a Dom A-valued function of z.
The “input–output” correspondence in the system (3.11)–(3.12) is realized

by an operator-valued function W(z) : B → B, W(z)ϕ := Γ1uϕ
z (z /∈ spec L). It

is called the Weyl function and plays the role of data in frequency domain inverse
problems.
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Recall that a symmetric operator in H is said to be completely non-selfadjoint
if there is no subspace inH, in which the operator induces a self-adjoint part. The
following important fact is established in [16].

PROPOSITION 3.9. If the Green system is such that the operator L0 is completely
non-selfadjoint, then the Weyl function determines the operator L0 up to unitary equiva-
lence.

ILLUSTRATION. Return to item 3.1, “Illustration”. The DSBC (3.11)–(3.12) associ-
ated with the Riemannian manifold is

(A + z)u = 0 in Ω,(3.13)

u|Γ = ϕ,(3.14)

where A = −∆|H2(Ω).

LEMMA 3.10. The operator L0 = −∆|H2
0 (Ω) is completely non-selfadjoint.

Proof. Assume that there exists a subspace K ⊂ H such that the operator
LK0 := −∆|K∩H2

0 (Ω) 6= O is self-adjoint in K. In the mean time, LK0 is a part of

L, which is a self-adjoint operator with the discrete spectrum. Hence, specLK0 is
also discrete; each of its eigenfunctions satisfies −∆φ = λφ in Ω and belongs to
H2

0(Ω). The latter implies φ = ∂νφ = 0 on Γ. This leads to φ ≡ 0 by the well-
known E. Landis uniqueness theorem for solutions to the Cauchy problem for
elliptic equations. Hence, LK0 = O in contradiction to the assumption.

The Weyl function of the system is W(z)ϕ = ∂νuϕ
z |Γ (z 6∈ spec L). By the

aforesaid, the function W determines the minimal Laplacian L0 of the manifold
Ω up to unitary equivalence.

SPECTRAL DATA. Besides the Weyl function, there is one more kind of bound-
ary inverse boundary data associated with the DSBC (3.13)–(3.14). Let {λk}∞

k=1 :
0 < λ1 < λ2 6 λ3 6 · · · → ∞ be the spectrum of the Dirichlet Laplacian L.
Let {φk}∞

k=1 : Lφk = λkφk be the corresponding eigenbasis in H normalized by
(φk, φl) = δkl .

The set of pairs ΣΩ := {λk; ∂νφk|Γ}∞
k=1 is called the (Dirichlet) spectral data

of the manifold Ω.
The well-known fact is that these data determine the Weyl function and

vice versa (see, e.g., [16]). Hence, ΣΩ determines the minimal Laplacian L0 up to
unitary equivalence. However, such a determination can be realized not through
W but in more explicit way.

Namely, let U : H → H̃ := l2, Uy = ỹ := {(y, φk)}∞
k=1 be the Fourier

transform that diagonalizes L: L̃ := ULU∗ = diag {λ1, λ2, . . . }. For any har-
monic function a ∈ A, its coefficients are (a, φk) = −(1/λk)

∫
Γ

a∂νφkdΓ that can

be derived by integration by parts. Therefore, the spectral data ΣΩ determine the
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image Ã := UA ⊂ H̃ and its closure D̃ = UD = Ã. Thus, the determination
ΣΩ ⇒ L̃, D̃ occurs.

In the mean time, the relation (C3) (item 3.1, "Ryzhov axioms") implies
L̃0 = U∗L0U = L̃|L̃−1[H̃	D̃] by isometry of U. Thus, L̃0 is a unitary copy of L0

constructed via the spectral data.

4. RECONSTRUCTION OF MANIFOLDS

4.1. INVERSE PROBLEMS.

SETUP. In inverse problems (IP) for DSBC associated with manifolds, one needs
to recover the manifold via its boundary inverse data. In concrete applications
(acoustics, geophysics, electrodynamics, etc. ), these data formalize the measure-
ments implemented at the boundary. Namely,

(IP1) given for a fixed T > 2max
x∈Ω

dist (x, Γ) the response operator RT of the sys-

tem (3.6)–(3.8), to recover the manifold Ω;
(IP2) given the Weyl function W of the system (3.13)–(3.14), to recover the mani-

fold Ω;
(IP3) given the spectral data ΣΩ, to recover the manifold Ω.

These problems are called time-domain, frequency-domain, and spectral respec-
tively.

Setting the goal to determine an unknown manifold from its boundary in-
verse data, we have to keep in mind the evident nonuniqueness of such a deter-
mination: all isometric manifolds with the mutual boundary have the same data.
Therefore, the only reasonable understanding of “to recover” is to construct a
manifold, which possesses the prescribed data [4].

As we saw, the common feature of problems (IP1)–(IP3) is that their data
determine the minimal Laplacian L0 up to unitary equivalence. By this, each kind
of data determines the wave spectrum ΩL0 up to isometry (see Proposition 2.10).

As will be shown, for a wide class of manifolds the relation ΩL0
isom
= Ω holds.

Hence, for such manifolds, to solve the (IP)s it suffices to extract a unitary copy

L̃0 from the data, find its wave spectrum ΩL̃0

isom
= ΩL0 , and thus get an isometric

copy of Ω. It is the program for the rest of the paper.

SIMPLE MANIFOLDS. Recall that we deal with a compact smooth Riemannian
manifold Ω with the boundary Γ. The family b = {Γt}t>0 consists of metric
neighborhoods of Γ. Nets and dense lattices were introduced in item 1.2, “Dense
sublattice”; L[M, b] ⊂ Oreg is the minimal M-invariant (sub)lattice, which con-
tains b.

DEFINITION 4.1. We say Ω to be a simple manifold if the lattice L[M, b] is
dense in Oreg.
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An evident obstacle for a manifold to be simple is its symmetries. For a ball
Ω = {x ∈ Rn : |x| 6 1}, the lattice L[b, M] consists of sums of “annuli” of the
form {x ∈ Ω : 0 6 a < |x| < b 6 1}. Surely, such a system is not a net in
the ball. A plane triangle is simple if and only if its sides are pair-wise nonequal.
Easily checkable sufficient conditions on the shape of Ω ⊂ Rn, which provide
the simplicity, are proposed in [1]. They are also appropriate for Riemannian
manifolds and show that simplicity is a generic property: it can be provided by
arbitrarily small smooth variations of the boundary Γ.

Presumably, any compact manifold with trivial symmetry group is simple
but it is a conjecture. In the mean time, for noncompact manifolds this is not true.

SOLVING (IP)S. The following result provides reconstruction of Ω.

THEOREM 4.2. Let Ω be a simple manifold, L0 = −∆|H2
0 (Ω) the minimal Lapla-

cian, ΩL0 its wave spectrum. There exists an isometry (of metric spaces) i∗, which maps
ΩL0 onto Ω, the relation i∗(∂ΩL0) = Γ being valid.

Proof. Denote [b] := {[Γt]}t>0 ⊂ R. Let L[M, [b]] ⊂ R be the image of
L[M, b] through the “projection” A 7→ [A] (item 1.2, “Lattice R”).

Propositions 3.7, 3.8 imply iL[M, [b]]=L[iM, i[b]]=L[IL, uL0 ]=LL0⊂RH.
Taking into account the simplicity condition and applying Proposition 1.18

to the case N = L[M, b], we conclude that ΩL0 is isometric to (Ω, d). The isome-
try is realized by the bijection i∗ : i[α] 7→ xα.

To compare the atoms i[α], which constitute ΩL0 , with the boundary nest
uL0 is in fact to compare the metric neighborhoods {xα}t with the metric neigh-
borhoods Γt. Since {xα}t ⊂ Γt, t > 0 holds if and only if xα ∈ Γ, we conclude
that i∗(∂ΩL0) = Γ.

Thus, to solve the (IP1)–(IP3) in the case of simple Ω, it suffices to determine
(from the inverse data) a relevant unitary copy L̃0 of the minimal Laplacian, and
then find its wave spectrum ΩL̃0

.

REMARKS. (a) Regarding non-simple manifolds, note the following. If the sym-
metry group of Ω is nontrivial then, presumably, ΩL0 is isometric to the properly
metrized set of the group orbits. Such a conjecture is motivated by the following
easily verifiable examples.

(i) For a ball Ω = {x ∈ Rn : |x| 6 r}, the spectrum ΩL0 is isometric to
the segment [0, r] ⊂ R. Its boundary ∂ΩL0 is identical to the endpoint {0}.

(ii) For an ellipse Ω = {(x, y) ∈ R2 : x2/a2 + y2/b2 6 1}, ΩL0 is iso-
metric to its quarter Ω ∩ {(x, y) : x > 0, y > 0}, whereas ∂ΩL0 is isometric to
{(x, y) : x2/a2 + y2/b2 = 1, x > 0, y > 0}.

(iii) Let ω ⊂ {(x1, x2) ∈ R2 : x2 > 0} be a compact domain with the
smooth boundary. Let Ω be a torus in R3, which appears as result of rotation of

ω around the x1-axis. Then ΩL0
isom
= ω and ∂ΩL0

isom
= ∂ω.
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(b) In applications, possible lack of simplicity is not an obstacle for solving
problems (IP1)–(IP3) because their data not only determine a copy of L0 but con-
tain substantially more information about Ω. Roughly speaking, the matter is as
follows. When we deal with these problems, the boundary Γ is given. By this,
besides the boundary nest uL0 of the sets reachable from the whole Γ (see (3.5)),
we can use the much richer family u′L0

= {U t
σ}t>0,σ⊂Γ of sets reachable from any

patch σ ⊂ Γ of positive measure. (More precisely, U t
σ consists of the solutions

(waves) u f (t) produced by the boundary controls f supported on σ × [0, ∞).)
Therefore, even though the density of the lattice L[IL, uL0 ] in RH may be violated
by symmetries, the lattice L[IL, u′L0

] is always dense. As a result, the wave spec-
trum corresponding to the dense lattice turns out to be isometric to Ω. The latter
is the key fact, which enables one to reconstruct Ω: see [5] for detail.

(c) The spectra Ωnest
L0

and Ωeik
L0

are also appropriate for reconstruction. If Ω is

simple, one has ΩL0
isom
= Ωnest

L0

isom
= Ωeik

L0

isom
= (Ω, d) [5], [6].

(d) If Ω is noncompact, the definition of simplicity remains meaningful, local
controllability is in force, andH =

⋃
t>0
U t
D holds. One can show that the response

operator RT known for all T > 0 determines the simple manifold up to isome-
try. Also, defining mutatis mutandis the Weyl function and spectral data for a
noncompact Ω, one can obtain the same result: these data determine the simple
manifold up to isometry.

ALGEBRAS IN RECONSTRUCTION. Recall that the von Neumann algebra NL ⊂
B(H) associated with the lattice L ⊂ L(H) was introduced in 2.1, “Spectra”. In
the bounded case, along with NL one can define the algebra CL as the minimal
norm-closed subalgebra of B(H), which contains all maximal eikonals.

For the algebras NL0 ;= NLL0
and CL0 ;= CLL0

associated with a manifold,
the following holds [5], [6]:

(i) Both of these algebras are commutative. The embedding CL0 ⊂ NL0 is
dense in the strong operator topology in B(H).

(ii) If Ω is simple then CL0 is isometrically isomorphic to the algebra C(Ω) of
continuous functions. By this, its spectrum (i.e., the set of maximal ideals of CL0

[15]) ĈL0 is homeomorphic to Ω.

These results are applied to reconstruction by the scheme {inverse data} ⇒
CL0 ⇒ ĈL0⇒Ω ([5], [6]).

Note that commutativity is derived from local controllability of the system
(3.6)–(3.8). In the corresponding DSBC on a graph, a lack of controllability occurs
and, as a result, these algebras turn out to be noncommutative (N. Wada, private
communication). This leads to substantial difficulties in reconstruction, which
are not overcome yet. In particular, the relations between the spectra ΩL0 and ĈL0

are not clear.
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4.2. COMMENTS.

A LOOK AT ISOSPECTRALITY. Let specL = {λk}∞
k=1 be the spectrum of the Dirich-

let Laplacian on Ω (item 3.3, “Spectral data”). The question: "Does spec L deter-
mine Ω up to isometry?" is a version of the classical M. Kac drum problem [12].
The negative answer is well known (see, e.g., [9]) but, as far as we know, the sat-
isfactory description of the set of isospectral manifolds is not obtained yet. The
following are some observations relative to such a description.

Assume that we deal with a simple Ω. In accordance with Theorem 1, such
a manifold is determined by any unitary copy L̃0 of the operator L0 ⊂ L. If the
spectrum of L is given, to get such a copy it suffices to possess the Fourier image
D̃ = UD of the harmonic subspace in H̃ = l2: see (C3), item 3.1, "Ryzhov axioms"
(it is the fact which is exploited in [1]). In the mean time, as is evident, if Ω and Ω′

are isometric, then the corresponding images are identical: D̃ = D̃′. Therefore, Ω

and Ω′ are isospectral but not isometric if and only if D̃ 6= D̃′. In other words, the
subspace D̃ is a relevant “index”, which distinguishes the isospectral manifolds.

As an image of harmonic functions, which is admissible for the given L̃ =

diag {λ1, λ2, . . . }, a subspace D̃ ⊂ l2 has to obey the following conditions:

(i) A lineal set LD̃ := L̃−1[l2 	 D̃] is dense in l2, whereas replacement of D̃ by
any wider subspace D̃′ ⊃ D̃ leads to the lack of density: closLD̃′ 6= l2.

(ii) Extending an operator L̃|LD̃ by Friedrichs, one gets L̃.

In the mean time, taking any subspace D̃ ⊂ l2 obeying (i) and (ii) (such
subspaces do exist: M.M. Faddeev, private communication), one can construct a
symmetric operator L̃0 by (C3), and then find its wave spectrum ΩL̃0

as a can-
didate to be a drum. However, the open question is whether such a “drum” is
human (is a manifold).

WAVE MODEL. Return to the DSBC (3.1)–(3.3) and assume that it is controllable
at t = T. Reduce the system to the interval 0 6 t 6 T. Recall that the image
and control operators I : H → G and WT : FT → H were introduced in items
2.3, “Structures on ΩL0” and 3.2, “Boundary controllability”, respectively. The
composition VT := IWT : FT → G is called a visualizing operator [2], [3], [4].

Let the response operator R2T be given. The following is a way to construct
a canonical “functional” model of the operator L∗0 .

(i) R2T determines the operator |WT | in FT (item 3.2, “Response operator”).
In what follows, it is regarded as a model control operator W̃T := |WT |, which acts
from FT to a model inner space H̃ := FT .

(ii) Determine the operator L̃∗0 in H̃ as the operator of the graph

{{W̃T f , W̃T(− f ′′)} : f ∈ F+} (Lemma 3.10). Find L̃0 = L̃∗∗0 .
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(iii) Find the wave spectrum ΩL̃0
and recover the germ space G̃ on it. Determine

the image operator Ĩ : H̃ → G̃. Compose the visualizing operator ṼT = ĨW̃T :
FT → G̃.

(iv) Define (Lmod
0 )∗ as an operator in G̃ determined by the graph {{ṼTf , ṼT(−f ′′)}

: f ∈ F+}.
Surely, it is just a draft of the model (for some details see Section 3.4 of [6])

and plan for future work: one needs to endow the germ space G with relevant
Hilbert space attributes. Presumably, in “good cases”, G = L2,µ(ΩL0). Also, the
model operator is expected to be local: supp (Lmod

0 )∗y ⊆ supp y, whereas the
model trace operators Γ̃0,1 are connected with the restriction y 7→ y|∂ΩL0

. As
far as we know, the known models of symmetric operators do not possess such
properties [17]. Hopefully, the collection {G̃,B; (Lmod

0 )∗, Γ̃0, Γ̃1} constitutes the
Green system, which is a canonical model of the original {H,B; A, Γ0, Γ1}. The
model is determined by R2T .

Such a model is in the spirit of general system theory [13], where it would
be regarded as a realization relevant to the transfer operator function R2T .

Remarkable point is the role of a time in the wave model construction.

OPEN QUESTION. For any operator L0 of the class under consideration, the lattice
LL0 is a well-defined object, LL0 6= {0} being true. We have neither a proof nor a
counterexample to the following principal conjecture: ΩL0 6= ∅. However, there
is an example of an the operator L0 such that ΩL0 consists of a single point.

A BIT OF PHILOSOPHY. In applications, the external observer pursues the goal
to recover a manifold Ω via measurements at its boundary Γ. The observer
prospects Ω with waves u f produced by boundary controls. These waves propa-
gate into the manifold, interact with its inner structure and accumulate informa-
tion about the latter. The result of interaction is also recorded at Γ. The observer
has to extract the information about Ω from the recorded.

By the rule of game in inverse problems, the manifold itself is invisible (un-
reachable) in principle. Therefore, the only thing the observer can hope for, is to
construct from the measurements an image of Ω possibly resembling the original.
By the same rule, the only admissible material for constructing is the waves u f .
To be properly formalized, such a look at the problem needs two things:

(i) an object, which codes exhausting information about Ω and, in the mean
time, is determined by the measurements;

(ii) a mechanism, which decodes this information.

Resuming our paper, the first is the minimal Laplacian L0, whereas to de-
code information is to determine its wave spectrum constructed from the waves
u f . It is ΩL0 , which is the relevant image of Ω.

The given paper promotes an algebraic trend in the BC-method [5], by which
to solve IPs is to find spectra of relevant lattices and algebras. An attempt to apply this
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philosophy to solving new problems would be quite reasonable. An encourag-
ing fact is that in all above-mentioned unsolved (IP)s of anisotropic elasticity and
electrodynamics, graphs, etc., the wave spectrum ΩL0 does exist. However, to
recognize how it looks like and verify (if true!) that ΩL0 is isometric (homeomor-
phic) to Ω is difficult in view of very complicated structure of the corresponding
reachable sets U t.

4.3. APPENDIX: BASIC LEMMA. Recall the notation: for a set A ⊂ Ω, A is its
metric closure, intA is the set of interior points, At is the metric neighborhood of
radius t, A0 := A. If A ∈ O then A ⊆ int A and A = intA holds.

Return to item 1.2, “Lattice O”. Let f = f (t), t > 0 be an element of MO.
Define the set ḟ :=

⋂
t>0

f (t) ⊂ Ω. Define the functions f∗(t) = (M ḟ )(t) = ḟ t as

t > 0, f∗(0) = f (0) and f ∗(t) = int ḟ t, t > 0.

LEMMA 4.3. (i) If f 6= 0FO then ḟ = ḟ 6= ∅ and the relations f∗ 6 f 6 f ∗ hold
in FO .

(ii) If f and g satisfy ḟ = ġ then f (t) = g(t)(= ḟ t) as t > 0.

Proof. Step 1. If f ↖ f j ∈ MO then f (t) =
⋃

j>1
f j(t), t > 0. Therefore,

fk(0) ⊆
⋃
j>1

f j(0) ⊆
⋃
j>1

( f j(0))t =
⋃
j>1

f j(t) = f (t), t > 0.

Hence, ḟ ⊇ fk(0) 6= ∅.
Step 2. If f ↙ f j ∈ MO then f (t) = int

⋂
j>1

f j(t), t > 0. Define a closed set

F =
⋂

j>1
f j(0) ⊂ Ω and show that F 6= ∅.

Assume F = ∅. Since f j+1(0) ⊆ f j(0), for any x ∈ Ω and t > 0 there is
j0 = j0(x, t) such that {x}t ∩ f j(0) as j > j0. Indeed, otherwise, by assumptions
(A1)–(A2), the ball {x}t has to contain the points of F. Hence, x /∈ ( f j(0))t as
j > j0. Since x is arbitrary, we have ∅ =

⋃
j>1

( f j(0))t =
⋃

j>1
( f j(0))t =

⋃
j>1

f j(t).

Therefore f (t) = int
⋂

j>1
f j(t) = ∅, i.e., f (t) = 0O , t > 0. It means that f = 0FO in

contradiction with assumptions of the lemma. So, F 6= ∅.
Step 3. Show that F = ḟ , i.e., F does not depend on { f j} (however, the limit

f can depend on { f j}: there are examples for Ω = Rn!). For every j > 1, we have
f j(0) =

⋂
t>0

( f j(0))t =
⋂

t>0
f j(t) ⊇

⋂
t>0

f (t) = ḟ . Hence F =
⋂

j>1
f j(0) ⊇ ḟ .

On the other hand, the monotonicity f j+1(0) ⊆ f j(0) implies F =
⋂

j>1
f j(0) ⊆( ⋂

j>1
f j(0)

)t
⊆ ⋂

j>1
( f j(0))t. Since the next to the last set is open as t > 0, we have
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F ⊆
( ⋂

j>1
f j(0)

)t
⊆ int

⋂
j>1

( f j(0))t ⊆ int
⋂

j>1
( f j(0))t ⊆ int

⋂
j>1

f j(t) = f (t) for all

t > 0. Hence F ⊆ ⋂
t>0

f j(t) = ḟ , and we arrive at F = ḟ .

Thus, we obtain F = ḟ 6= ∅.
Step 4. Show that f∗ 6 f . Choosing MO 3 f j ↘ f , for t > 0 one has

ḟ t = Ft ⊆ ( f j(0))t = ( f j(0))t = f j(t). This implies ḟ t ⊆ ⋂
j>1

f j(t). Since ḟ t is an

open set, the embedding ḟ t ⊆ int
⋃

j>1
f j(t) = f (t) holds. The latter means that

f∗(t) 6 f (t) inO as t > 0. The definition of f∗ at t = 0 leads to f∗(t) 6 f (t), t > 0
in O, i.e., f∗ 6 f in FO .

Show that f 6 f ∗. Choose MO 3 f j ↘ f that means f (t) = int
⋂

j>1
f j(t), t >

0. For t = 0 one has f (0) = int
⋂

j>1
f j(0) ⊂ int

⋂
j>1

f j(0) = int ḟ = int ḟ = f ∗(0).

For t > 0, with regard to monotonicity of { f j}↓, we have f (t) = int
⋂

j>1
f j(t) =

int
⋂

j>1
( f j(0))t = int

⋂
j>1

( f j(0))
t ⊆ int

( ⋂
j>1

f j(0)
)t

= int ḟ t = f ∗(t). Hence f 6 f ∗

is valid.
Thus, the part (i) of the lemma is proven.

Step 5. For t > 0, since ḟ t is an open set, one has ḟ t = int ḟ t. Therefore,
f∗(t) = f ∗(t) = ḟ t, and (i) implies f (t) = ḟ t. Hence, f (t) = ḟ t = ġt = g(t) as
t > 0.

Let t = 0. Choosing MO 3 f j ↘ f , one has

f (0) = int
⋂
j>1

f j(0) ⊆ int
⋂
j>1

f j(0) = int ḟ .

Hence f (0) ⊆ int ḟ ⊆ ḟ . Show that f (0) = int ḟ . Indeed, assuming the opposite,
one can find x ∈ ḟ separated from f (0) with a positive distance. In the mean
time, defining f ε by f ε(t) = ( f (0))ε+t, t > 0, we get f∗(t) = ḟ t ⊆ f (t) ⊂ f ε(t).
However, the relation ḟ t ⊂ f ε(t) is impossible for small enough t and ε by the
choice of x. Hence, f (0) = int ḟ does hold.

The latter implies f (0) = int ḟ = int ġ = g(0). Thus, we get f (t) = g(t) for
all t > 0 and prove (ii).
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